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Toru AKISHITA†a) and Tsuyoshi TAKAGI††b), Members

SUMMARY Isogeny for elliptic curve cryptosystems was initially used
for efficient improvement of order counting methods. Recently, Smart pro-
posed a countermeasure using isogeny for resisting a refined differential
power analysis by Goubin (Goubin’s attack). In this paper, we examine a
countermeasure using isogeny against zero-value point (ZVP) attack that
is generalization of Goubin’s attack. We show that some curves require
higher order of isogeny to prevent ZVP attack. Moreover, we prove that
the class of curves that satisfies (−3/p) = 1 and whose order is odd can-
not be mapped by isogeny to curves with a = −3 and secure against ZVP
attack. We point out that three SECG curves are in this class. In the ad-
dition, we compare some efficient algorithms that are secure against both
Goubin’s attack and ZVP attack, and present the most efficient method of
computing a scalar multiplication for each curve from SECG. Finally, we
discuss another improvement for an efficient scalar multiplication, namely
the usage of a point (0, y) for a base point of curve parameters. We are able
to improve about 11% for double-and-add-always method, when the point
(0, y) exists in an underlying curve or its isogeny.
key words: elliptic curve cryptosystems, isomorphism, isogeny, side chan-
nel attack, zero-value point attack

1. Introduction

Elliptic curve cryptosystem (ECC) is an efficient public-key
cryptosystem with a short key size. ECC is suitable for im-
plementing on memory-constraint devices such as mobile
devices. However, if an implementation is careless, side
channel attacks (SCA) might reveal a secret key of ECC.
We have to carefully investigate the implementation of ECC
in order to achieve high security.

The standard method of defending SCA on ECC is
randomizing curve parameters, for instance, randomizing
a base point in projective coordinates [5] and randomizing
curve parameters in its isomorphic class [11]. However,
Goubin pointed out that a point (0, y) cannot be random-
ized by these methods [7]. He proposed a refined differen-
tial power analysis using the point (0, y). This attack has
been extended to zero value of auxiliary registers, called the
zero-value point (ZVP) attack [1]. Both Goubin’s attack and
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the ZVP attack assume that a base point P can be chosen by
an attacker and a secret scalar d is fixed, so that we need to
care these attacks in ECIES and single-pass ECDH, but not
in ECDSA and two-pass ECDH.

In order to resist Goubin’s attack, Smart proposed to
map an underlying curve to an isogenous curve that does
not have the point (0, y) [17]. This countermeasure with a
small isogeny degree is faster than randomizing the secret
scalar d with the order of the curve. However, the security
of this countermeasure against the ZVP attack has not been
discussed yet—it could be vulnerable to the ZVP attack.

In this paper, we examine a countermeasure using
isogeny against the ZVP attack. The zero-value points
(ED1) 3x2 + a = 0, (MD1) x2 − a = 0, and (MD2) x2 + a = 0
were examined. We show that some curves require higher
order of isogeny to prevent the ZVP attack. For example,
SECG secp112r1 [18] is secure against Goubin’s attack, but
insecure against the ZVP attack. Then, the 7-isogenous
curve to secp112r1 is secure against both attacks. We re-
quire the isogeny of degree 7 to prevent the ZVP attack. For
each SECG curve we search the minimal degree of isogeny
to the curve that is secure against both Goubin’s attack and
the ZVP attack. Since the ZVP attack strongly depends on
the structure of addition formulae, the minimal degree of
isogeny depends on not only the curve itself but also addi-
tion formulae.

Interestingly, three SECG curves cannot be mapped to
a curve with a = −3 that is secure against the ZVP attack.
A curve with a = −3 is important for efficiency. We prove
that this countermeasure cannot map a class of curves to a
curve with a = −3 that is secure against the ZVP attack. In
addition to a = −3, this class satisfies that the curve order is
odd and (−3/p) = −1 for the base field p. We point out that
these three curves belong to this class.

Moreover, we estimate the total cost of a scalar multi-
plication in the necessity of resistance against both Goubin’s
attack and the ZVP attack. We compare two efficient DPA-
resistant methods, namely the window-based method and
Montgomery-type method, with the countermeasure using
isogeny, and present the most efficient method to compute
the scalar multiplication for each SECG curve.

Finally we show another efficient method for comput-
ing a scalar multiplication, namely using a point (0, y) for
the base point of curve parameters. We prove that the dis-
crete logarithm problem with the base point (0, y) is as in-
tractable as using a random one thanks to random self re-
ducibility. Comparing with the previous method, we are
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able to achieve about 11% faster scalar multiplication us-
ing the double-and-add-always method. This base point
can also save 50% memory space without any compression
trick. We propose a scenario to utilize the proposed method
efficiently and show an example of a curve to achieve this
scenario.

This paper is organized as follows: Section 2 briefly
describes known results about elliptic curve cryptosystems.
In Section 3 we review side channel attacks on elliptic curve
cryptosystems. Section 4 describes the choices of a secure
curve against the ZVP attack using isogeny. In Section 5 we
show efficient implementations using isogeny. In Section 6
we state concluding remarks.

2. Elliptic Curve Cryptosystems

We shortly review some results on elliptic curve cryptosys-
tems related to isogeny. Let K = Fp be a finite field, where
p > 3. Elliptic curve over K is uniquely represented by the
Weierstrass form E : y2 = x3 + ax + b (a, b ∈ K), where
discriminant ∆ = −16(4a3 + 27b2) � 0. In this paper, we
represent a point P = (x, y) on the curve by Jacobian coor-
dinates (X : Y : Z) setting x = X/Z2 and y = Y/Z3. The
result using other coordinates can be similarly obtained. El-
liptic curve E has a group structure with neutral element
O = (0 : 1 : 0). The addition P3 = (X3 : Y3 : Z3) of two
points P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) is
computed by the following formulae:

ECDBL in Jacobian Coordinates (ECDBLJ ) :
X3 = T , Y3 = −8Y1

4 + M(S − T ), Z3 = 2Y1Z1,
S = 4X1Y1

2, M = 3X1
2 + aZ1

4, T = −2S + M2,
for P1 = P2.

ECADD in Jacobian Coordinates (ECADDJ ) :
X3 = −H3 − 2U1H2 + R2,
Y3 = −S 1H3 + R(U1H2 − X3), Z3 = Z1Z2H,
U1 = X1Z2

2, U2 = X2Z1
2, S 1 = Y1Z2

3,
S 2 = Y2Z1

3, H = U2 − U1, R = S 2 − S 1,
for P1 � ±P2.

We call these formulae as the standard addition formulae.
For ECADDJ we require 16 multiplications when Z1 � 1
and 11 ones when Z1 = 1. For ECDBLJ we require 10
multiplications in general, 9 ones when a is small, and only
8 ones when a = −3 by M = 3(X1+Z1

2)(X1−Z1
2). All SECG

random curves over Fp with prime order satisfy a = −3. In
this paper, we are interested in the curves with prime order
such as these curves.

2.1 Isomorphism and Isogeny

Two elliptic curves E1(a1, b1) and E2(a2, b2) are called iso-
morphic if and only if there exists r ∈ K∗ such that a1 = r4a2

and b1 = r6b2. Isomorphism is given by

ψ :

{
E1 −→ E2

(x, y) �−→ (r−2x, r−3y)
.

There are (p − 1)/2 isomorphic classes.

Let Φl(X, Y) be a modular polynomial of degree l.
Two elliptic curves E1(a1, b1) and E2(a2, b2) are called l-
isogenous if and only if Φl( j1, j2) = 0 satisfies, where ji are
j-invariant of curve Ei for i = 1, 2. Isogenous curves have
the same order. Isogeny is given by

ψ :

 E1 −→ E2

(x, y) �−→ ( f1(x)
g(x)2 ,

y· f2(x)
g(x)3 ) ,

where f1, f2 and g are polynomials of degree l, (3l − 1)/2
and (l − 1)/2 respectively (see details in [2, Chapter VII]).
By Horner’s rule, the computational cost of this mapping is
estimated as (l+(3l−1)/2+(l−1)/2+5)M+I = (3l+4)M+I.

The usage of isogeny for elliptic curve cryptosystem
initially appeared for improving order counting methods
(see, for example, [12]). Recently, some new applications
of isogeny have been proposed, namely for improving the
efficiency of a scalar multiplication [4], and for enhancing
the security for a new attack [17].

Brier and Joye reported that isogeny could be used for
improving the efficiency of ECDBLJ [4]. Recall that if a
curve parameter a of an elliptic curve is equal to −3, the
cost of ECDBLJ is reduced from 10 multiplications to 8
ones. If there is an integer r such that −3 = r4a, then we can
transform the original elliptic curve to its isomorphic curve
with a = −3. However, its success probability is about 1/2
when p ≡ 3 (mod 4) or about 1/4 when p ≡ 1 (mod 4).
They proposed that isogeny of the original curve could have
a curve with a = −3.

3. Scalar Multiplication and Side Channel Attack

A scalar multiplication evaluates dP for a given integer d
and a base point P of ECC. A standard algorithm of comput-
ing dP is the binary method, which repeatedly calls ECDBL
and ECADD based on the secret bits. ECADD is computed
if and only if the corresponding secret bit is 1. Note that the
standard formulae are not same for computing ECADD and
ECDBL. Therefore, a single observation of power consump-
tion of computing the scalar multiplication might break the
secret bit. This attack is called as a simple power analysis
(SPA). The binary method is vulnerable to SPA.

Coron proposed a simple countermeasure against SPA,
called as the double-and-add-always method [5]. The
double-and-add-always method is as follows:

Algorithm 1: Double-and-add-always method
Input: d = (dn−1 · · · d1d0)2, P ∈ E(K) (dn−1 = 1).
Output: dP.
1. Q[0]← P.
2. For i = (n − 2) downto 0 do:

2.1. Q[0]← ECDBL(Q[0]).
2.2. Q[1 − di]← ECADD(Q[0], P).

3. Return(Q[0]).

An attacker cannot guess the bit information because this
method always computes ECADD whether di = 0 or 1. Two
more efficient SPA-resistant methods have been proposed.
The first is window-based method [13], [14], [16] and the
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second is Montgomery-type method [3], [6], [8]–[10].
However, the SPA-resistant scheme is not generally se-

cure against a differential power analysis (DPA), which uses
many observations of power consumption together with sta-
tistical tools. In order to enhance SPA security to DPA se-
curity, we must insert random numbers during computation
of dP. The standard randomization methods for the base
point P are Coron’s 3rd countermeasure [5] and Joye-Tymen
countermeasure [11]. Coron’s 3rd countermeasure random-
izes point P = (X : Y : Z) in Jacobian coordinates, namely
P = (Xr2 : Yr3 : Zr) with randomly chosen r ∈ K∗. Joye-
Tymen countermeasure maps an underlying curve to a ran-
dom isomorphic curve.

3.1 Efficient Methods Secure against SCA

3.1.1 Window-Based Method

The window-based method secure against SPA was first
proposed by Möller [13], [14], and optimized by Okeya
and Takagi [16]. This method uses the standard addition
formulae the same as the double-and-add-always method.
It makes the fixed pattern |0 · · · 0x|0 · · · 0x| · · · |0 · · · 0x| for
some x. Though a SPA attacker distinguishes ECDBL
and ECADD in the scalar multiplication by measuring
power consumption, he obtains only the identical sequence
|D · · ·DA|D · · ·DA| · · · |D · · ·DA|, where D and A denote
ECDBL and ECADD, respectively. Therefore, he cannot
guess the bit information. This method reduces ECADD
as compared with the double-and-add-always method and
thus enables efficiency. In order to enhance this method to
be DPA-resistant, we have to insert a random value using
Coron’s 3rd countermeasure or Joye-Tymen countermea-
sure. Moreover, we have to randomize the value of table
to protect 2nd order DPA. We estimate the computational
cost of a scalar multiplication dP according to [16]. Denote
the computational cost of multiplication and inversion in the
definition field by M and I, respectively. The total cost is es-
timated as (16 · 2w + (9w + 21)k − 18)M + I when a is small
and (16 · 2w + (8w + 21)k − 18)M + I when a = −3, where n
is the bit length of d, w is the window size, and k = �n/w	.

3.1.2 Montgomery-Type Method

Montgomery-type method was originally proposed by
Montgomery [15] and enhanced to the Weierstrass form
of elliptic curves over K [3], [6], [8]–[10]. This method
always computes ECADD and ECDBL whether di = 0
or 1 as the double-and-add-always method, and thus sat-
isfies SPA-resistance. In this method, we don’t need to
use y-coordinate (Y-coordinate in projective coordinates) to
compute a scalar multiplication dP. This leads the effi-
ciency of Montgomery-type method. In the original method
ECADD and ECDBL are computed separately. However,
Izu and Takagi encapsulated these formulae into one for-
mula mECADDDBL to share intermediate variables and
cut two multiplications [10]. Let P1 = (X1 : Z1) and

P2 = (X2 : Z2) in projective coordinates, which don’t equal
to O, by setting x = X/Z. In the following we describe
the encapsulated formula mECADDDBLP, which compute
P3 = (X3 : Z3) = P1 + P2 and P4 = (X4 : Z4) = 2P1, where
P1 � ±P2, P3

′ = (X3
′ : Z3

′) = P1 − P2 and (X′3, Z
′
3 � 0).

ECADDDBL in Montgomery-Type Method
(mECADDDBLP):

X3 = Z3
′(2(X1Z2 + X2Z1)(X1X2 + aZ1Z2)+ 4bZ1

2Z2
2)−

X3
′(X1Z2 − X2Z1)2,

Z3 = Z3
′(X1Z2 − X2Z1)2,

X4 = (X1
2Z2

2 − aZ1
2Z2

2)2 − 8bX1Z1
3Z2

4,
Z4 = 4Z1Z2(X1Z2(X1

2Z2
2 + aZ1

2Z2
2) + bZ1

3Z2
3).

We call this formula as Montgomery addition formula.
mECADDDBL requires 17 multiplications in general and
15 ones when a is small. By using this formula, the scalar
multiplication is computed as follows:

Algorithm 2: Montgomery-type method
Input: d = (dn−1 · · · d1d0)2, P ∈ E(K) (dn−1 = 1).
Output: dP.
1. Q[0]← P, Q[1]← mECDBL(P).
2. For i = (n − 2) downto 0 do:

(Q[1 − di],Q[di])← mECADDDBL(Q[di],Q[1 − di]).
3. Return(Q[0]).

In order to enhance this method to DPA-resistant, we
have to use Coron’s 3rd countermeasure or Joye-Tymen
countermeasure. The total cost of scalar multiplication dP
is estimated as (17n+8)M+ I in general and (15n+10)M+ I
when a is small, where n is the bit length of the scalar d (see
[8]).

3.2 Goubin’s Attack and Isogeny Defense

Goubin proposed a new power analysis on ECC [7]. This
attack utilizes points (x, 0) and (0, y) that cannot be random-
ized by the above two standard randomization techniques.
Goubin’s attack is effective on a curve that has a point (x, 0)
or (0, y) in such protocols as ECIES and single-pass ECDH.
The point (x, 0) is not on a curve with odd order because the
order of (x, 0) is 2. The point (0, y) appears on a curve if b is
quadratic residue modulo p, which is computed by solving
y2 = b.

As a countermeasure to Goubin’s attack, Smart utilized
isogeny [17]. He proposed that if an original curve E has
the point (0, y), an isogenous curve E′ to E could have no
point (0, y). If we can find E′ which has no point (0, y), we
transfer a base point P ∈ E to P′ ∈ E′ using the isogeny
ψ : E → E′. Instead of computing the scalar multiplication
Q = dP, we compute Q′ = dP′ on E′ and then pull back
Q ∈ E from Q′ ∈ E′ by the mapping ψ−1 : E′ → E. The
mappings ψ, ψ−1 require (3l + 4)M + I respectively, so that
the additional cost for this countermeasure is (6l+8)M+2I.

3.3 Zero-Value Point Attack

At ISC’03, we proposed the zero-value point (ZVP) attack
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which is an extension of Goubin’s attack [1]. We pointed out
that if a point has no zero-value coordinate, auxiliary regis-
ters might take zero value. We found several points (x, y)
which cause zero-value registers and called these points as
the zero-value points (ZVP). ZVP strongly depend on the
structure of addition formula, and namely ZVP for the stan-
dard addition formulae are different from those for Mont-
gomery addition formula. The points with the following
conditions from ECDBL are effectively used for the ZVP
attack.

– (ED1) 3x2 + a = 0 for the standard addition formulae
– (MD1) x2−a = 0 and (MD2) x2+a = 0 for Montgomery

addition formula

An attacker can utilize the points that cause zero-value
registers in ECADD, however finding ZVP in ECADD is
much more difficult than in ECDBL. In this paper we con-
sider only the above points (ED1), (MD1), and (MD2).

4. Isogeny Countermeasure against ZVP Attack

In this section we examine a countermeasure using isogeny
against the ZVP attack. In order to prevent the ZVP at-
tack, we have to choose a curve which has neither the point
(0, y) nor (ED1) for the methods using the standard ad-
dition formulae, and neither (0, y), (MD1) nor (MD2) for
Montgomery-type method. The degree of isogeny depends
on not only a curve itself but also addition formulae. We
examine the standard curves from SECG [18].

4.1 Example from SECG Curve

For example, we mention a curve secp112r1 from SECG
curves [18]. secp112r1 E : y2 = x3 + ax + b over Fp is
defined by


p = 4451685225093714772084598273548427,
a = 4451685225093714772084598273548424 = −3,
b = 2061118396808653202902996166388514.

This curve does not have (0, y), but has (ED1) 3x2 + a = 0
as

(x, y) = (1, 1170244908728626138608688645279825).

Therefore secp112r1 is secure against Goubin’s attack,
but vulnerable against the ZVP attack for the methods using
the standard addition formulae. However, the 7-isogenous
curve E′ : y2 = x3 + a′x + b′ over Fp defined by
{

a′ = 1,
b′ = 811581442038490117125351766938682,

has neither (0, y) nor (ED1) 3x2 + a′ = 0. Thus E′ is se-
cure against both Goubin’s attack and the ZVP attack for
the methods using the standard addition formulae. We don’t
require isogeny defense to prevent Goubin’s attack, but re-
quire the isogeny of degree 7 to prevent the ZVP attack.

4.2 Experimental Results from SECG Curves

For each SECG curve we search the minimal degree of
isogeny to a curve which has neither (0, y) nor ZVP as de-
scribed above. If the original curve has neither (0, y) nor
ZVP, we specify this degree as 1. For the standard addition
formulae, we also search the minimal isogeny degree to a
curve which we prefer for particularly efficient implemen-
tation, namely a = −3 as described in section 2. We call
the former as the minimal isogeny degree and the latter as
the preferred isogeny degree, and define lstd, lprf , and lmnt as
follows:

– lstd : the minimal isogeny degree for the standard ad-
dition formulae,

– lprf : the preferred isogeny degree for the standard ad-
dition formulae,

– lmnt : the minimal isogeny degree for Montgomery ad-
dition formula.

Here we show the searching method of these degrees
for the standard addition formulae.

Algorithm 3: Searching method for the standard
addition formulae

Input: E : y2 = x3 + ax + b over GF(p),
j = j-invariant of E

Output: minimal isogeny degree lstd and
preferred isogeny degree lprf

1. Set l← 3.
2. Solve the equation Φl( j′, j) = 0.
3. If the equation has no solution then go to Step 4,

else then
3.1. Construct E′ : y2 = x3 + a′x + b′

where j′ = j-invariant of E′.
3.2. Check E′ has the point (0, y) or (ED1).
3.3. If E′ has then go to Step 4, else then

3.3.1. If lstd is null, set lstd ← l.
3.3.2. Check r ∈ GF(p)∗ exists

where r4a′ = −3 mod p.
3.3.3. If exists then set lprf ← l and stop,

else then go to Step 4.
4. If l > 107 then stop,

else then l← nextprime(l) and go to Step 2.

In this algorithm nextprime(l) is a function which returns
the smallest prime number larger than l. For lmnt, we check
(MD1) and (MD2) instead of (ED1) in Step 3.2.

Table 1 shows isogeny degrees lstd, lprf , and lmnt for
SECG curves. The number in (·) is the minimal isogeny
degree listed in [17], which considers only Goubin’s point
(0, y) (not the ZVP). In order to prevent the ZVP at-
tack, some curves require higher degree of isogeny, e.g.,
secp112r1 for lstd. These isogeny degrees depend on not
only a curve itself but also addition formulae, namely some
curves require different isogeny degrees for the standard ad-
dition formulae and Montgomery addition formula. Inter-
estingly, we have not found preferred isogeny degree up to
107 for secp112r1, secp192r1, and secp384r1.
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Table 1 Minimal and preferred isogeny degree for SECG curves.

lstd lprf lmnt

secp112r1 7 (1) > 107 (1) 1 (1)
secp128r1 7 (7) 7 (7) 7 (7)
secp160r1 13 (13) 13 (13) 19 (13)
secp160r2 19 (19) 41 (41) 19 (19)
secp192r1 23 (23) > 107 (73) 23 (23)
secp224r1 1 (1) 1 (1) 1 (1)
secp256r1 3 (3) 23 (11) 3 (3)
secp384r1 31 (19) > 107 (19) 19 (19)
secp521r1 5 (5) 5 (5) 7 (5)

4.3 Some Properties of ZVP Attack

Here we show some properties of the zero-value point at-
tack.

Theorem 1: Let E be an elliptic curve over prime field Fp

defined by y2 = x3 + ax + b. The elliptic curve E has point
(0, y), if E satisfies (MD2) x2 + a = 0 (i.e., there exists a
point (x, y) on the curve E with x2 + a = 0).

Proof: If a = 0 or b = 0 holds, then the assertion is trivial.
We assume that a � 0 and b � 0. Note that (0, y) exists on
the curve E if b is a quadratic residue in F∗p. Let s ∈ F∗p be
the solution of equation x2+a = 0. Condition (MD2) implies
that there is a solution y = t of equation y2 = s3+as+b. Thus
E has a point (0, t) due to t2 = s3+as+b = (s2+a)s+b = b.

All curves which satisfy condition (MD2) have
Goubin’s point (0, y). These curves are insecure against both
Goubin’s attack and the ZVP attack.

Theorem 2: Let E be an elliptic curve over prime field Fp

defined by y2 = x3 + ax + b. The elliptic curve E satisfies
condition (ED1) 3x2 + a = 0 (i.e., there exists a point (x, y)
on the curve E with 3x2 + a = 0), if E satisfies the follow-
ing three conditions: (1) a = −3, (2) #E is odd, and (3) p
satisfies (−3/p) = −1, where (·/·) is Legendre symbol.

Proof: From Cardano’s formula, equation x3 + ax + b =
0 has a solution, if (−3∆/p) = 1 holds and all elements
over Fp are cubic residue. Note that (−3/p) = −1 implies
p mod 3 = 2 and all elements over Fp are cubic residue.
Since E has odd order, E does not have a point (x, 0), and
thus the equation x3 + ax + b = 0 has no root. Therefore,
we obtain (∆/p) = 1 due to (−3/p) = −1. Equation ∆ =
−16(4(−3)3 + 27b2) = −3(12)2(b + 2)(b − 2) implies either
((b + 2)/p) = 1 or ((b − 2)/p) = 1. In other words, an
equation y2 = b + 2 or y2 = b − 2 is solvable, namely curve
E has a point (x, y) with a = −3 and either x = 1 or x =
−1. Consequently, the elliptic curve E with the above three
conditions satisfies (ED1) 3x2 + a = 0.

The definition fields Fp that satisfy (−3/p) = −1 in
Table 1 are secp112r1, secp192r1, and secp384r1. These
curves also have odd order and satisfy a = −3. Therefore,
these curves satisfy (ED1) and are vulnerable to the ZVP
attack.

Since an isogenous curve has same order as E, any
isogenous curve with a = −3 always satisfies (ED1) and
thus is insecure against the ZVP attack. We have the follow-
ing corollary.

Corollary 1: Let E be an elliptic curve over prime field Fp.
We assume that #E is odd and (−3/p) = −1. Any isogeny
cannot map E to a curve with a = −3 that is secure against
the ZVP attack.

Corollary 1 shows that it is impossible to find an isoge-
nous curve with a = −3 which does not satisfy (ED1),
namely lprf-isogenous curve, for these three curves.

5. Efficient Implementation Using Isogeny

5.1 Most Efficient Method for Each SECG Curve

We estimate the total cost of a scalar multiplication in the
necessity of resistance against both Goubin’s attack and the
ZVP attack. This situation corresponds to a scalar multipli-
cation in ECIES and single-pass ECDH.

Here we notice two efficient DPA-resistant methods,
namely the window-based method and Montgomery-type
method. We have to use the window-based method on lstd-
isogenous curve because this method uses the standard ad-
dition formulae. Isomorphism enables efficient implementa-
tion with small a. Moreover, more efficient implementation
with a = −3 can be achieved on lprf-isogenous curve. On
the other hand, we have to use Montgomery-type method
on lmnt-isogenous curve. Isomorphism also enables efficient
implementation with small a.

Therefore, we mention the following three methods:

Method 1 Window-based method with small a on lstd-
isogenous curve,

Method 2 Window-based method with a = −3 on lprf-
isogenous curve,

Method 3 Montgomery-type method with small a on lmnt-
isogenous curve.

From section 2 and 3 we estimate the total cost of each
method as follows:

Method 1 T1 = (16 · 2w + (9w + 21)k + 6lstd − 10)M + 3I.
Method 2 T2 = (16 · 2w + (8w + 21)k + 6lprf − 10)M + 3I,
Method 3 T3 = (15n + 6lmnt + 18)M + 3I.

If the degree of isogeny equals to 1, the cost of isogeny
14M + 2I is cut.

Table 2 shows the estimated cost for each SECG curve.
A number in (·) is window size for Method 1 and 2. Method
2 cannot be used for some curves because there is no
preferred isogeny degree lprf (notation ‘—’ indicates these
curves). We emphasize the most efficient method for each
curve with bold letters. The most efficient method differs
on each curve because the degree of isogeny depends on the
curve and implementation method.
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Table 2 Total cost of scalar multiplication to resist Goubin’s attack and
the ZVP attack.

Method 1 Method 2 Method 3

secp112r1 1884M + 3I (4) — 1690M + I
secp128r1 2112M + 3I (4) 1984M + 3I (4) 1980M + 3I
secp160r1 2604M + 3I (4) 2444M + 3I (4) 2532M + 3I
secp160r2 2640M + 3I (4) 2612M + 3I (4) 2532M + 3I
secp192r1 3120M + 3I (4) — 3036M + 3I
secp224r1 3430M + I (4) 3206M + I (4) 3370M + I
secp256r1 3912M + 3I (4) 3776M + 3I (4) 3876M + 3I
secp384r1 5770M + 3I (5) — 5892M + 3I
secp521r1 7462M + 3I (5) 6937M + 3I (5) 7875M + 3I

5.2 Efficient Scalar Multiplication Using (0, y)

In this section we propose another improvement for com-
puting an efficient scalar multiplication.

In order to clearly describe our method, we catego-
rize improvements of efficiency into five classes, namely,
(1) curve parameter (e.g. a = −3, Z = 1, etc), (2) ad-
dition chain (e.g. binary method, NAF, etc), (3) base field
(e.g. optimal normal base, OEF, etc), (4) coordinate (e.g.
projective coordinates, Jacobian coordinates, etc). (5) curve
form (e.g. Montgomery form, Hessian form, etc). The pro-
posed method belongs to class (1), but its improvement is
related to classes (2), (4), and (5). Our improvement can be
simultaneously used with other methods in class one. For
sake of convenience, we discuss the improvement for the
double-and-add-always method in section 3 on a curve with
parameters a = −3, Z = 1, Jacobian coordinates, and the
Weierstrass form.

The main idea of the improvement is to use a point
(0, y) for the base point of an underlying curve, namely the
point with zero x-coordinate. The double-and-add-always
method in section 3 is a left-to-right method, and thus the
base point P is fixed during the scalar multiplication dP.
The addition formula with the point X = 0 is represent as
follows:

ECADD in Jacobian Coordinates with X = 0
(ECADDJX=0) :
X3 = −H3 + R2, Y3 = −S 1H3 − RX3, Z3 = Z1Z2H,
H = X2Z1

2, S 1 = Y1Z2
3, S 2 = Y2Z1

3, R = S 2 − S 1.

We denote by ECADDJX=0 the addition formula for
ECADD in Jacobian Coordinates with X = 0. Formula
ECADDJX=0 requires only 14 multiplications when Z1 � 1
and 9 multiplications when Z1 = 1.

Table 3 shows estimations of cost for n-bit scalar mul-
tiplication with a = −3, Z = 1 using Jacobian coordinates
and the double-and-add-always method in section 3. The
proposed scheme can achieve about 11% improvement over
the scheme X � 0.

Here we have a question about the security of choosing
a base point (0, y). The following theorem can be easily
proven thanks to random self reducibility.

Theorem 3: Let E be an elliptic curve over Fp. We assume
that #E is prime. Breaking the discrete logarithm problem
with the base point (0, y) is as intractable as doing with a

Table 3 Comparison of efficiency with X � 0 and X = 0.

n-bit ECC 160-bit ECC
Scheme X � 0 19nM 3040M
Scheme X = 0 17nM 2720M

random base point.

Proof: (⇐) Let logG0
P0 be the discrete logarithm problem

for the base point G0 = (0, y) and a point P0. We can
randomize these points by multiplying random exponents
r, s ∈ [1, #E], namely let G = rG0, P = sP0 be random-
ized points. From the assumption, we can solve the discrete
logarithm problem logG P, and thus the discrete logarithm
logG0

P0 = (logG P)r/s mod #E.
(⇒) Let A0 be an oracle which solves the discrete logarithm
problem for the base point G0 = (0, y), namely A0 answers
logG0

P0 for a random point P0. We try to construct algo-
rithm A that solves the discrete logarithm problem with a
random base. Algorithm A is going to compute logG P for
random inputs G, P. Algorithm A randomizes G with a ran-
dom exponent t ∈ [1, #E] and obtains discrete logarithm
logG0

G by asking tG,G0 to oracle A0. Similarly, algorithm
A obtains logG0

P. Then algorithm A returns the discrete
logarithm logG P = (logG0

P)/(logG0
G) mod #E.

From this theorem, there is no security disadvantage of
using the based point (0, y). Another advantage of using the
base point (0, y) is that memory required for base point is
reduced to half.

In order to utilize the proposed method efficiently, we
propose the following scenario. If we need to resist against
both Goubin’s attack and the ZVP attack as ECIES and
single-pass ECDH, we compute the scalar multiplication on
the original curve which has neither Goubin’s point (0, y)
nor ZVP. Otherwise as ECDSA and two-pass ECDH, we
compute on the isogenous curve of a small degree which has
a point G = (0, y), and map the result point to the original
curve using isogeny.

We show the example of a curve to achieve this sce-
nario. The curve E : y2 = x3 + ax + b over Fp defined by


p = 1461501637330902918203684832716283019653785059327,
a = 1461501637330902918203684832716283019653785059324 = −3,
b = 650811658836496945486322213172932667970910739301,
#E = 1461501637330902918203686418909428858432566759883,

has neither (0, y) nor (ED1) 3x2 + a = 0. Therefore this
curve is secure against both Goubin’s attack and the ZVP
attack for the methods using the standard addition formulae.
Then, the 3-isogenous curve E′ : y2 = x3 + a′x + b′ over Fp
defined by
{

a′ = 1461501637330902918203684832716283019653785059324 = −3,
b′ = 457481734813551707109011364830625202028249398260,

has the point G′ = (0, y) such as

G′ = (0, 914154799534049515652763431190255872227303582054).

The isogeny ψ : E → E′ and ψ−1 : E′ → E cost
only 13M + I respectively. This cost is much smaller than
improvement of the proposed method. The details of finding
such a map are described in [2, Chapter VII].
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6. Conclusion

We examined a countermeasure using isogeny against the
ZVP attack. We showed that a class of curves (including
some SECG curves) is still insecure against the ZVP attack
despite the countermeasure—it can be never mapped to an
efficient curve that is secure against the ZVP attack. This
class satisfies the following three conditions: a = −3, E
has odd order, and (−3/p) = −1. The condition a = −3
and E has prime order are important for security or effi-
ciency. Thus the base field Fp with (−3/p) = 1 may be
recommended.

In the addition, we compare some efficient methods
of computing a scalar multiplication for each curve from
SECG in consideration of the resistance against the ZVP at-
tack. Finally we proposed a positive use of Goubin’s point.
If Goubin’s point is used for a base point of scalar multipli-
cation, we can improve about 11% for the double-and-add-
always method.
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