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Abstract. First we show that the assumption behind the Two-Prover
* Zero-knowledge Interactive proof of BenOr, Goldwasser, Kilian and Wigder-
son 18 too weak and need be upgrated to preserve soundness of their
construction. Secondly, we introduce a Two-Prover Zero-knowledge In-
teractive proof similar to theirs and demonstrate that classically it 1g
egually secure as the original. However, we later show that if the provers *
are allowed to share quantum entanglement, they are able to suces-
fully prove false statements to the verifier with probability one. Then
we demonstrate that a small variation on the BGKW Two-Prover 7ero-
Anowledge Interactive proof 1s classically secure with probability nearly
one but obiviously quantum insecure with probability nearly one. We
finally show that another variation of the original scheme of BGKW 1%
guantumly secure.

/ Introduction
The notion of Multi-Prover Interactive proofs was introduced by BenOr, Gold-
wasser, Kilian and Wigderson [?] together with the Zero-knowledge property ot
such proofs. In the Two-prover scenario, we have two provers, Peggy and Paula,
that are allowed to share arbitrary information before the proof, bHut They ve-
come physically separated and isolated during the execution of the proof 1n oxdex
to prevent them from communicating.
The Two-prover Interactive proofs of BGKW rely on thelr construction of a
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Gilles Brassard *
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Abstract

Assume that a party, Alice, has a bit z 1n mind, to
which she would like to be committed toward another
party, Bob. That 1s, Alice wishes, through a proce-
dure commit(z), to provide Bob with a piece of evi-
dence that she has a bit £ in mind and that she cannot
change 1t. Meanwhile, Bob should not be able to tell
from that evidence what z is. At a later time, Alice
can reveal, through a procedure unveil(z), the value
of £ and prove to Bob that the piece of evidence sent
earlier really corresponded to that bit. Classical bit
commitment schemes (by which Alice’s piece of ev-
idence 1s classical information such as a bit string)
cannot be secure against unlimited computing power
and none have been proven secure against algorith-
mic sophistication. Previous quantum bit commit-
ment schemes (by which Alice’s piece of evidence is
quantum nformation such as a stream of polarized
photons) were known to be invulnerable to unlimited
computing power and algorithmic sophistication, but
not to arbitrary measurements allowed by quantum
physics: perhaps more sophisticated use of quantum
physics could have defeated them.

We present a new quantum bit commitment
scheme. The major contribution of this work 1s to
provide the first complete proof that, according to
the laws of quantum physics, neither participant in
the protocol can cheat, except with arbitrarily small
probability. In addition, the new protocol can be im-
plemented with current technology.
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Fellowship and Québec’s FCAR.
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1 Introduction

Assume that a party, .Alice, has a bit £ in mind, to
which she would like to be committed toward another
party, Bob. That is, Alice wishes, through a proce-
dure commit(z), to provide Bob with a piece of evi-
dence that she has a bit £ i1n mind and that she cannot
change it. Meanwhile, Bob should not be able to tell
from that evidence what = is. At a later time, Alice
can reveal, through a procedure unvetl(z), the value
of z and prove to Bob that the piece of evidence sent
earlier really corresponded to that bit.

Bit commitment schemes have several applications
in the field of cryptographic protocols. In particular
one can 1implement zero-knowledge proofs of a variety
of statements using bit commitment schemes [GMRS89,
GMW91, BCC88]. The first implementations of bit
commitment schemes were given in a computational
complexity scenario {Blu82]. Unfortunately, proofs of
their (computational) security have always required
an unproved assumption since otherwise they would
imply very strong results such as P # N'P.

Over the last two decades a number of researchers
have investigated the connection between cryptogra-
phy and quantum physics, starting with the work of
Wiesner in the late 1960’s (though published much
later [Wie83]), and continuing with the work of Ben-
nett and Brassard [BBBW83, BB84, BB85, BBRSS,
BB89, BBBSS92] and later of Crépeau [CK88, Créd0,
BC91, BBCS92, Cré93]. The security of these proto-
cols would not be compromised if a cheater had un-
limited computing power, but in essentially all cases it
has not yet been ruled out that still more sophisticated
use of quantum physics might defeat them.

The first quantum bit commitment scheme ever
proposed is due to Bennett and Brassard [BB84] (ac-
tually, the protocol they describe is only claimed to
implement coin tossing, but implicitly it implements
bit commitment). Their scheme had two major flaws:
it was impossible to use in practice because faint pulses

OClaude Crépeau 2002-2006
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We present a new quantum bit commitment
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Multi-Prover Interactive Proofs:
How to Remove Intractability Assumptions

Michael Ben-Or* Shafi Goldwasser!

Hebrew University MIT

Abstract

Quite complex cryptographic machinery has been
developed based on the assumption that one-way
functions exist, yet we know of only a few possi-
ble such candidates. It 1s important at this time
to find alternative foundations to the design of se-
cure cryptography. We introduce a new model of
generalized interactive proofs as a step in this di-
rection. We prove that all NP languages have per-
fect zero-knowledge proof-systems in this model,
without making any intractability assumptions.

The generalized interactive-proof model con-
sists of two computationally unbounded and un-
trusted provers , rather than one, who jointly
agree on a strategy to convince the verifier of the
truth of an assertion and then engage in a polyno-
mial number of message exchanges with the veri-
fier in their attempt to do so. To believe the va-
lidity of the assertion, the verifier must make sure
that the two provers can not communicate with
each other during the course of the proof process.
Thus, the complexity assumptions made in previ-
ous work, have been traded for a physical separa-
tion between the two provers.

*Supported by Alon Fellowship.

T Supported in part by NSF grant 865727-CCR, ARO
grant DAALO3-86-K-017, and US-Israel BSF grant 86-
00301, Jerusalem, Israel.

{Supported by a Fannie and John Hertz Foundation
fellowship.
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copy otherwise, or to republish, requires a fee and/or specfic
permission.
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We call this new model the multi-prover
interactive-proof model, and examine its proper-
ties and applicability to cryptography.

1 Introduction

The notion of randomized and interactive proof
system, extending NP, was introduced in [GMR]
and in [B]. An interactive proof-system consists of
an all powerful prover who attempts to convince a
probabilistic polynomial-time bounded verifier of
the truth of a proposition. The prover and verifier
receive a common input and can exchange upto
a polynomial number of messages, at the end of
which the verifier either accepts or rejects the in-
put. Several examples of interactive proof-system
for languages not known to be in NP (e.g graph
non-isomorphism) are known.

In [GMW1] Goldreich, Micali and Wigderson
show the fundamental result that that if “"non-
uniform” one-way functions exist (i.e no small cir-
cuits exist for the function inverse computation),
then every NP language has a computationally
zero-knowledge interactive proof system. This has
far reaching implications concerning the secure de-
sign of cryptographic protocols. It also seems to
be the strongest result possible. Results in (F] and
[BHZ] imply that if perfect zero-knowledge inter-
active proof-systems for NP exist, (i.e which do
not rely on the fact that the verifier is polynomial
time bounded) then the polynomial time hierarchy
would collapse to its second level. This provides
strong evidence that it will be impossible (and at
least very hard) to unconditionally show that NP
has zero-knowledge interactive proofs.

In light of the above negative results, it is inter-
esting to examine whether the definition of inter-
active proofs can be modified so as to still capture

29
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MAIN THEOREM

Let 0 and 1 be POVMs such that outputs x, and X,

one could obtain by applying one of them to the
state shared among the two provers.

Suppose the success probability of unveiling 1s
Pytp; > 1+0,

then the [prediction probability of y,Lly,] > 0.

This prediction probability 1s achieved by first
applying 0 to the shared state followed by 1 on the
leftover system or the other way around.
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Recently

AN THEOREM

Let O a1 be POVMs such that outputs x5 and X,

one could octain by applying one of~them to the
state shared among the two prover

Suppose the success probdoility of unveiling 1s
PotP{ > 0,

This pred:Ction probability 1s achieved
applyi1zz 0 to the shared state followed by
lettgver system or the other way around.
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Yesterday

MAIN THEOREM

Let 0 and 1 be POVMs such that outputs x, and X,

one could obtain by applying one of them to the
state shared among the two provers.

Suppose the success probability of unveiling 1s
Pytp; > 1+0,

then the [prediction probability of y,Uy,] > poly(0).

This prediction probability 1s achieved by first
applying O to the shared state followed by 1 on the

leftover system (after mostly undoing 0) or the

other way around. STRONG Q_BGKW”

©Claude Crépeau 2002-2006
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Oblivious
Transter
message multiplexing
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Oblivious
Transfer

message multiplexing
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rassard, Crépeau, Mayers, Salvail 9
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Mutual
Identification
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Mutual
Identification

SUCCESS!
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Mutual
Identification

FAILURE'
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Bit Commitment[]
Strikes Back

Claude Crepeau

School of Computer Science F+¥
McGill University

Joint work with J-R Simard and A Ta
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