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Abstract—In the bounded-storage model (BSM) for function f she applied. In the BSM one usually assumes
information-theoretically secure encryption and key-agreement that Alice and Bob initially share a short secret key that
one makes use of a random string? whose lengtht is greater  yatarmines which bits o they need to access and how they

than the assumed bounds on the adversary Eve's storage . . . .
capacity. The legitimate parties, Alice and Bob, execute a combine the accessed bits to result in the secretikein this

protocol, over an authenticated channel accessible to Eve, to model, which we call the standard BSM, the goal of a key-
generate a secret keyK about which Eve has essentially no agreement protocol is that the derived kEyis much longer
information even if she has infinite computing power. The than the initial key; in other words, the goal is key expansion
string R is either assumed to be accessible to all parties or rather than key generation. A long sequence of papers on key

communicated publicly from Alice to Bob. While in the BSM .
one often assumes that Alice and Bob initially share a short expansion [16], [2], [1], [9], [10], [12], [14], [19] has led

secret key, and the goal of the protocol is to generate a much from partial security proofs (for special adversary strategies)
longer key, we consider in this paper thebare BSM without to complete security proofs, and to the understanding that a

any initially shared secret key. It is proved that in the bare scheme secure in the BSM is a special type of randomness
BSM, secret key agreement is impossible unless Alice and BObextractor.

have themselves very high storage capacity, namel9(1/t). This . .
proves the optimality of a scheme proposed by Cachin and One can also consider a model, which we call tee

Maurer. BSM, where Alice and Bob share no secret key initially. This
. ) ) . model was first considered by Cachin and Maurer [5] who

Index Terms—cryptography, information-theoretic security, . . . : -
bounded-storage model, key agreement, lower bounds proposed a scheme in this model which requires Alice and

Bob to each acces®(v/t) bits of R, much more than in
the standard BSM with a short secret key. In this paper we

o prove that this is essentially optimal, i.e., that no secure key-
The bounded-storage model, proposed initially by Maurgfeement protocol for the bare BSM exists in which Alice

in 1992 [15], [16], is an approach to achieving provablgng gopb access fewer thal(v/%) bits of R. Such lower
security of cryptographic schemes even against an adversgtying proofs, apart from being of general scientific interest,

with unlimited computational resources. This is called uncoRe jmportant because they prevent the search for schemes that
ditional or information-theoretic security. The only assumptiogy ot exist.

is that the adversary’s storage capacity is bounded, say by 1he BSM was also studied in the context of oblivious
bits, wheres can be very large. No computational hardness,sfer [4], [7] and time-stamping [18].

assumption, like the hardness of factoring large integers, is

needed. The basic idea is to assume that a randoinstring

R is either temporarily available to the public (e.g. the signal !l THE BARE BOUNDED-STORAGE MODEL AND THE

of a deep space radio source) or broadcast by a satellite or CACHIN-MAURER SCHEME

by one of the legitimate parties. i < ¢, then the adversary, Key agreement in the BSM, from the adversary’s viewpoint,
called Eve, can store only partial information absytout she consists of two phases.

I. INTRODUCTION

is allowed to apply an arbitrary functioh: {0,1}* — {0,1}* | the first phase, the string is available to all parties.
to R in order to compute the value she stores. No assumptigice and Bob execute a protocol over a public channel,
about the feasibility of computing is made. resulting in transcrip” which Eve obtains. Then, based on

The legitimate parties, called Alice and Bob, can eaGfe transcript, Alice and Bob each store some information
access a small fraction of the strifyand execute a protocol, ahoutR. The protocol can be randomized, whdtg and Ry
over an authenticated channel accessible to Eve, to generaizgote their respective (independent) random strings. More
secret keyK about which Eve has essentially no '”format'orbrecisely Alice stores\/, = fa(R,T,R4), and Bob stores
even if she has infinite computing power, and no matter whicfy,, — fs(R,T, Rp), for some functiong4 and f. Eve also

The results of this paper were presented at Eurocrypt 2004 [11] stores some informatiohl = fr(R,T, Rp) aboutR, where
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valuesM 4 and Mg, resulting in a second transcript. Then two sequences, ..., 4, andi,...,i, of distinct indices we

Alice and Bob compute a secret kéy,, and K 5, respectively. have

It is not necessary to formalize this further, i.e., to make the

functions used to comput& 4 and K 5 explicit. Y Ziy i Ziny Y 215
The two security requirements are: 2

. . . forall y, z1, ..., zw.
® groerrgi(;greesni]—smeoSlr((j)tl)aaeblr?égjiéi[giz 7 Kp) that the keys In other words, the distribution ofY, Z,,,...,Z;,) does
(i) Secrecy:The amount of information] (K 4; MgT"), ob- not depend on the choice of the indicgs. .. , i

. Lemma 1:If Z,,...,Z, are symmetric with respect o,
tained by Eve about the secret key (sAy;), must be then there exists « {0....n) such that

B Zw) = PY’Zf'/l"“’Z”’iu (y7 21y Zw)7

negligible.
A scheme for key-agreement in the bare BSM was proposed I(Y: 202y Z;) < H(Y).
by Cachin and Maurer in [5]. In their protocol, both Alice T on+1
and Bob store an (independent) random subset bits of Proof: The chain rule for conditional informatidimplies
R, wherer is on the order ofy/t. After R has disappeared it
for all parties, they publicly agree on which bits they have n

both stored. With very high probability, Eve has only partial ZI(Y§Zi|Z7Z—17 o Z)=1(Y: Z0,..., Z0),  (3)
information about these bits, and therefore Alice and Bob can =0
apply privacy amplification (i.e., randomness extraction usin

a strong extractor with a public extractor parameter) to disti hich is at most(Y). Therefore there must exissuch that

. . . H(Y
an essentially perfect kei(. We prove in Section Ill that the (Y) > 1Y 2l 2o, Z)
protocol of [5] is essentially optimal. n+1

By the symmetry condition (2) this last value can be replaced
[II. L IMITATIONS OF KEY-AGREEMENT IN THEBARE BSM by I(Y'; Zy|Z1, ..., Z;). This completes the proof. [ ]
A. Statement of the Lower Bound A simple example of such symmetric variables is given

We prove the following result, which shows that the pra@elo;v (we Wi" u§e i Iaterdin tge proccj)f of the_- tgleorem).
ticality of such an approach without shared initial key isho se(;vanon 1.IE)<|atY an ZZ € random \I/aga} des. SL(ijpolse
inherently limited: Alice or Bob must have storage capaci € gan Odea”a ehgl’d',' : ,'bn_are samrp])e Independently,
around./s. The proof is given in Section 1lI-B. Lek be the a?ec syani(rfertrlizgvvtict)htr:splesgltgtmﬁz‘y. Thenz,z,.... Zy
binary entropy function defined = —pl —(1- :

») 1Ogy(1 B p[))y ap) plogs(p) = ( The following observation will also be useful.
2 . . ) . .

Theorem 1:For any key-agreement protocol secure in the Observation 2:If ZO_’ -5 Zn are symmetric with rgspect

BSM for which I(K .; MpT') < 6 and P (K4 # Kg) < e to Y, then for an arbitrary functio the random variables

Con Zo, ..., Z, are symmetric with respect t@(Y").
the entropy of the secret ki enerated by Alice is upper 07> “n
by a9 y PP Proof: For everyy’ from the domain ofy, all sequences

bounded b . A
4 s i1,...,4, anddf, ... 4., of distinct indices, and every se-
H(K4) < A°B h(e) +€sa+ 0, (1) quencez,...,z, we have
S
wheres4 andsg are Alice’s and Bob’s required storage ca- Pg(Y),Zil,...,Ziw W, Ziys -5 i)
pacities, respectively, andis Eve’s assymed storage capacity. Z Py, oz, (U Zins s 7)) = 4)
Observe that for smakt and §, the right hand side of (1) oy’
becomes approximately equal {e4sg)/s, and hence in any e
secure key agreement at least one of the parties needs to have Z PY,Zi/17--.,Zi;J, (v, SARERE zi,) =
memory of a size at leasy's. yig9(y)=y’'
We note that this bound also implies a bound on the memory Pyvy,z, .2, (W' Ziys oo Zin)s
1 w

of the adversary in the protocol for the oblivious transfer in )
the bounded-storage modeNamely, if the memory of the where (Af) fo_IIows from the assumption tha, ..., Z, are
honest parties is4, then the memory of a cheating party haSymmetric with respect 19’ u
to be much smaller thas?. This shows that the protocol of _1© Prove Theorem 1, recall thats, s5, and s are the

[7] is essentially optimal and answers the question posedﬁﬁ)rage capa_cities of Alice, Bob, and Eve, _respecti_vely._We
[7], [8] have to specify a strategy for Eve to store information (i.e.,

the functionfz). Such an admissible strategy is the following.

For the fixed observed randomizdt = r and transcript
B. Proof of Theorem 1

Definition 1: A list Z,...,Z, of random variables are 2Recall that the chain rule for information (see eg. [6], Theorem 2.5.2)

. . . . states that for arbitrary random variables, ..., V;,, andU we have
symmetric with respect to a random varialife if for every y B "
n
1This is because there exists a black-box reduction of the key-agreement I(U; Vo, ..., Vo) = ZI(U§ VilVi—1,..., Vo)
problem to the oblivious transfer problem [13]. (It is easy to see that the i=0

reduction of [13] works in the bounded-storage model.)



T = t, consider{ s/s | independent copie¥/, . . ., ME/SBJ [5]
of what Bob stores, sampled independently according to the
distribution Py, | r—r,7—- (Clearly such sampling can be done
by a computationally-unbounded Eve.)

Lemma 2:The random vrclriablesMB,Mé,,...,ME“BJ
are symmetric with respect tdf 4.

Proof: Recall that M4 is a randomized function of
(R,T), namelyM4 = fa(R,T,R,) for a randomR,4. By
Observation 1 the random variablés{B,Mé,,...,ME/SBJ
are symmetric with respect tqR,7), and hence also
with respect to (R,T,R4) since R4 — (R,T)
MB,M}3,...,ME/SBJ form a Markov chain. Thus by Ob-
servation 2 the random variabléd, M35, .. .,ME/SBJ are
symmetric also with respect ttf4 = fa(R, T, Ra). [ ]

Hence Lemma 1 implies that there exists €
{0,...,s/sg]} such that

(6]
(7]

(8]
El

—

(10]

(11]

(12]

H(MA) <H(MA) SASB

=] +1
The last step follows fronfl (M 4) < s4. Clearly an infinitely
powerful Eve can compute such an indeXVe hence assume
that Eve storesMg := M4,..., M52 Now we can apply
Theorem 1 in [17] which considers exactly this setting, wheti%]
Alice, Bob, and Eve have some random variabldg, Mg,

and Mg, respectively, jointly distributed according to some
distribution Pas, a7, 01, The theorem states that the entropﬂzm]

of a secret keyi( that can be generated by public discussiof
is upper bounded as

H(KA) < I(MA;MB‘ME)+H(KA|KB)—|—I(KA;MET/)
—_—— ~—

<é

I(Ma; Mp|Mg, ..., Mp) < [13]

SB

(14]

(18]

<3A5B
— s

[19]
Now, by Fano’s lemma (cf. [3], p. 156)

H(KA|Kp) < h(e) + elogy(2°4 — 1) < h(e) + €sa,

and we obtain (1). This concludes the proof of Theorem 1.

ACKNOWLEDGEMENTS

C. Cachin and U. Maurer. Unconditional security against memory-
bounded adversaries. Advances in Cryptology — CRYPTO ;9%cture
Notes in Computer Science, Springer-Verlag, vol. 1294, pp. 292-306,
1997.

T. M. Cover and J. A. ThomasElements of Information Thearyohn
Wiley and Sons, Inc., 1991.

Y. Z. Ding. Oblivious transfer in the bounded storage model.
Advances in Cryptology — CRYPTO 20QEcture Notes in Computer
Science, Springer-Verlag, vol. 2139, pp. 155-170, 2001.

Y. Z. Ding. Provable Everlasting Security in the Bounded Storage
Model PhD thesis, Harvard University, 2001.

Y. Z. Ding and M. O. Rabin. Hyper-encryption and everlasting security.
In STACS 2002, 19th Annual Symposium on Theoretical Aspects of
Computer Sciengep. 1-26, 2002.

S. Dziembowski and U. Maurer. Tight security proofs for the bounded-
storage model. IfProceedings of the 34th Annual ACM Symposium on
Theory of Computingpp. 341-350, 2002.

S. Dziembowski and U. Maurer. On generating the initial key in the
bounded-storage model. lAdvances in Cryptology — EUROCRYPT
2004 Lecture Notes in Computer Science, Springer-Verlag, vol. 3027,
pp. 126-137, 2004.

S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the
bounded-storage moddburnal of Cryptology 17(1):5-26, 2004.

Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan.
Relationship between public key encryption and oblivious transfer. In
Proc. 41st Annual Symposium on Foundations of Computer Sgience
IEEE Computer Society, pp. 325-339, 2000.

C. Lu. Hyper-encryption against space-bounded adversaries from on-line
strong extractors. Idvances in Cryptology — CRYPTO 20Q2cture
Notes in Computer Science, Springer-Verlag, vol. 2442, pp. 257-271,
2002.

U. Maurer. A provably-secure strongly-randomized ciph&dvances

in Cryptology — EUROCRYPT '9Qecture Notes in Computer Science,
Springer-Verlag, vol. 473, pp. 361-373, 1990.

U. Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipherJournal of Cryptology 5(1):53-66, 1992.

U. Maurer. Secret key agreement by public discussI&EE Transac-
tions on Information Theory39(3):733-742, 1993.

T. Moran, R. Shaltiel, and A. Ta-Shma. Non-interactive Timestamping
in the Bounded Storage Model. kdvances in Cryptology — CRYPTO
2004 Lecture Notes in Computer Science, Springer-Verlag, vol. 3152,
pp. 460-476, 2004.

S. Vadhan. On constructing locally computable extractors and cryp-
tosystems in the bounded storage model. Afvances in Cryptology

— CRYPTO 2003Lecture Notes in Computer Science, Springer-Verlag,
vol. 2729, pp. 61-77, 2003.

In

Stefan Dziembowskiwas born in Warsaw, Poland in 1973. Currently he is a

We would like to thank Louis Salvail and Christianmarie-Curie Fellow at the University of Ronea SapienzaHe is interested
Schaffner for pointing out an error in the proof stated in [11]n theoretical and applied cryptography. o
Dziembowski received his MSc degree in computer science in 1996 from

the Warsaw University, and his PhD degree in computer science in 2001 from
the University ofArhus. He spent 18 months as a post-doctoral fellow at the
) ) ) o Swiss Federal Institute of Technology (ETH), Zurich. Afterwards, for 3 years
[1] Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting security in théhe was an assistant professor at the Warsaw University.

bounded storage modellEEE Transactions on Information Theory  He served as a PC member of several international conferences, including

48(6):1668-1680, 2002. _ _ EUROCRYPT, and the International Colloquium on Automata, Languages and
Y. Aumann and M. O. Rabin. Information theoretically secure commuprogramming (ICALP).

nication in the limited storage space model.Advances in Cryptology

— CRYPTO '99 Lecture Notes in Computer Science, Springer-Verlag,

vol. 1666, pp. 65-79, 1999.

R. E. Blahut. Principles and practice of information theory,

Addison-Wesley Longman Publishing Co., Inc. ) , , , , ) )

C. Cachin, C. Crepeau, and S. Marcil. Oblivious Transfer with aMemoi%e“ Maurgr (S'85, M'90, SM'94, F03)_, born in St. Gallen, Swnzerland,_

Bounded Receiver. Ifroc. of 39th Annual Symposium on Foundationd! 1960, is professor of computer science and head of the Information

of Computer SciencéEEE Computer Society, pp.493-502, 1998. Security and Cryptogrgphy Research G_roup at the SWls_s Feder_al Instltut_e of
Technology (ETH), Zurich. His research interests include information security,

3 . o . e theory and applications of cryptography, information theory, theoretical
ey peepsfock b couner v o ke of i rocper snce, and el mathomacs -

. B Ls/s5 ) o ) viaurer graduated in electrical engineering (1985) and received his Ph.D.
I.e. setMp = Mg - However, in principle it can be the case thalyegree in Technical Sciences (1990) from ETH Zurich. From 1990 to 1991
I(Mgu; MB\ME/SBJ) > I(My; Mp|MY) (for i < |s/sp|) because he was a DIMACS research fellow at the Department of Computer Science
conditioning may actually increase a mutual information between randaah Princeton University, and in 1992 he joined the CS Department at ETH
variables, i.e.](U; V) < I(U; V|W) is possible. Zurich.

REFERENCES

(2]

3] 1987

(4]



He has served extensively as an editor, including as Associate Editor of
the IEEE Transactions on Information Theory, and as a member of program
committees. Currently he is the Editor-in-Chief of the Journal of Cryptology,
Editor-in-Chief of Springer Verlag’s book series in Information Security and
Cryptography, and serves on the Board of Directors of the International
Association for Cryptologic Research (IACR).

Maurer holds several patents for cryptographic systems and has served as a
consultant for many companies and government organisations. He serves on a
few management and scientific advisory boards and is co-founder of Visonys,
a Zurich-based security software company.



