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Abstract—In the bounded-storage model (BSM) for
information-theoretically secure encryption and key-agreement
one makes use of a random stringR whose lengtht is greater
than the assumed bounds on the adversary Eve’s storage
capacity. The legitimate parties, Alice and Bob, execute a
protocol, over an authenticated channel accessible to Eve, to
generate a secret keyK about which Eve has essentially no
information even if she has infinite computing power. The
string R is either assumed to be accessible to all parties or
communicated publicly from Alice to Bob. While in the BSM
one often assumes that Alice and Bob initially share a short
secret key, and the goal of the protocol is to generate a much
longer key, we consider in this paper thebare BSM without
any initially shared secret key. It is proved that in the bare
BSM, secret key agreement is impossible unless Alice and Bob
have themselves very high storage capacity, namelyO(

√
t). This

proves the optimality of a scheme proposed by Cachin and
Maurer.

Index Terms—cryptography, information-theoretic security,
bounded-storage model, key agreement, lower bounds

I. I NTRODUCTION

The bounded-storage model, proposed initially by Maurer
in 1992 [15], [16], is an approach to achieving provable
security of cryptographic schemes even against an adversary
with unlimited computational resources. This is called uncon-
ditional or information-theoretic security. The only assumption
is that the adversary’s storage capacity is bounded, say bys
bits, wheres can be very large. No computational hardness
assumption, like the hardness of factoring large integers, is
needed. The basic idea is to assume that a randomt-bit string
R is either temporarily available to the public (e.g. the signal
of a deep space radio source) or broadcast by a satellite or
by one of the legitimate parties. Ifs < t, then the adversary,
called Eve, can store only partial information aboutR, but she
is allowed to apply an arbitrary functionf : {0, 1}t → {0, 1}s

to R in order to compute the value she stores. No assumption
about the feasibility of computingf is made.

The legitimate parties, called Alice and Bob, can each
access a small fraction of the stringR and execute a protocol,
over an authenticated channel accessible to Eve, to generate a
secret keyK about which Eve has essentially no information,
even if she has infinite computing power, and no matter which
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function f she applied. In the BSM one usually assumes
that Alice and Bob initially share a short secret key that
determines which bits ofR they need to access and how they
combine the accessed bits to result in the secret keyK. In this
model, which we call the standard BSM, the goal of a key-
agreement protocol is that the derived keyK is much longer
than the initial key; in other words, the goal is key expansion
rather than key generation. A long sequence of papers on key
expansion [16], [2], [1], [9], [10], [12], [14], [19] has led
from partial security proofs (for special adversary strategies)
to complete security proofs, and to the understanding that a
scheme secure in the BSM is a special type of randomness
extractor.

One can also consider a model, which we call thebare
BSM, where Alice and Bob share no secret key initially. This
model was first considered by Cachin and Maurer [5] who
proposed a scheme in this model which requires Alice and
Bob to each accessO(

√
t) bits of R, much more than in

the standard BSM with a short secret key. In this paper we
prove that this is essentially optimal, i.e., that no secure key-
agreement protocol for the bare BSM exists in which Alice
and Bob access fewer thanO(

√
t) bits of R. Such lower

bound proofs, apart from being of general scientific interest,
are important because they prevent the search for schemes that
do not exist.

The BSM was also studied in the context of oblivious
transfer [4], [7] and time-stamping [18].

II. T HE BARE BOUNDED-STORAGE MODEL AND THE

CACHIN-MAURER SCHEME

Key agreement in the BSM, from the adversary’s viewpoint,
consists of two phases.

In the first phase, the stringR is available to all parties.
Alice and Bob execute a protocol over a public channel,
resulting in transcriptT which Eve obtains. Then, based on
the transcript, Alice and Bob each store some information
aboutR. The protocol can be randomized, whereRA andRB

denote their respective (independent) random strings. More
precisely, Alice storesMA = fA(R, T, RA), and Bob stores
MB = fB(R, T, RB), for some functionsfA andfB . Eve also
stores some informationME = fE(R, T, RE) aboutR, where
RE denotes her randomness (which is, of course, independent
of (RA, RB)).

In the second phase,R has disappeared. Alice and Bob
execute a second (probabilistic) protocol based on the stored



valuesMA andMB , resulting in a second transcriptT ′. Then
Alice and Bob compute a secret key,KA andKB , respectively.
It is not necessary to formalize this further, i.e., to make the
functions used to computeKA andKB explicit.

The two security requirements are:
(i) Correctness:The probabilityP (KA 6= KB) that the keys

are different should be negligible.
(ii) Secrecy:The amount of information,I(KA;MET ′), ob-

tained by Eve about the secret key (sayKA), must be
negligible.

A scheme for key-agreement in the bare BSM was proposed
by Cachin and Maurer in [5]. In their protocol, both Alice
and Bob store an (independent) random subset ofr bits of
R, wherer is on the order of

√
t. After R has disappeared

for all parties, they publicly agree on which bits they have
both stored. With very high probability, Eve has only partial
information about these bits, and therefore Alice and Bob can
apply privacy amplification (i.e., randomness extraction using
a strong extractor with a public extractor parameter) to distill
an essentially perfect keyK. We prove in Section III that the
protocol of [5] is essentially optimal.

III. L IMITATIONS OF KEY-AGREEMENT IN THEBARE BSM

A. Statement of the Lower Bound

We prove the following result, which shows that the prac-
ticality of such an approach without shared initial key is
inherently limited: Alice or Bob must have storage capacity
around

√
s. The proof is given in Section III-B. Leth be the

binary entropy function defined ash(p) = −p log2(p)− (1−
p) log2(1− p).

Theorem 1:For any key-agreement protocol secure in the
BSM for which I(KA;MET ′) ≤ δ and P (KA 6= KB) ≤ ε,
the entropy of the secret keyKA generated by Alice is upper
bounded by

H(KA) ≤ sAsB

s
+ h(ε) + εsA + δ, (1)

wheresA and sB are Alice’s and Bob’s required storage ca-
pacities, respectively, ands is Eve’s assumed storage capacity.

Observe that for smallε and δ, the right hand side of (1)
becomes approximately equal to(sAsB)/s, and hence in any
secure key agreement at least one of the parties needs to have
memory of a size at least

√
s.

We note that this bound also implies a bound on the memory
of the adversary in the protocol for the oblivious transfer in
the bounded-storage model.1 Namely, if the memory of the
honest parties issA, then the memory of a cheating party has
to be much smaller thans2

A. This shows that the protocol of
[7] is essentially optimal and answers the question posed in
[7], [8].

B. Proof of Theorem 1

Definition 1: A list Z0, . . . , Zn of random variables are
symmetric with respect to a random variableY if for every

1This is because there exists a black-box reduction of the key-agreement
problem to the oblivious transfer problem [13]. (It is easy to see that the
reduction of [13] works in the bounded-storage model.)

two sequencesi1, . . . , iw andi′1, . . . , i
′
w of distinct indices we

have

PY,Zi1 ,...,Ziw
(y, z1, . . . , zw) = PY,Zi′

1
,...,Zi′w

(y, z1, . . . , zw),
(2)

for all y, z1, . . . , zw.
In other words, the distribution of(Y,Zi1 , . . . , Ziw

) does
not depend on the choice of the indicesi1, . . . , iw.

Lemma 1: If Z0, . . . , Zn are symmetric with respect toY ,
then there existsi ∈ {0, . . . , n} such that

I(Y ;Z0|Z1 · · ·Zi) ≤ H(Y )
n + 1

.

Proof: The chain rule for conditional information2 implies
that

n∑
i=0

I(Y ;Zi|Zi−1, . . . , Z0) = I(Y ;Z0, . . . , Zn), (3)

which is at mostH(Y ). Therefore there must existi such that

H(Y )
n + 1

≥ I(Y ;Zi|Zi−1, . . . , Z0)

By the symmetry condition (2) this last value can be replaced
by I(Y ;Z0|Z1, . . . , Zi). This completes the proof.

A simple example of such symmetric variables is given
below (we will use it later in the proof of the theorem).

Observation 1:Let Y andZ be random variables. Suppose
the random variablesZ1, . . . , Zn are sampled independently,
each according to the distributionPZ|Y . ThenZ,Z1, . . . , Zn

are symmetric with respect toY .
The following observation will also be useful.
Observation 2:If Z0, . . . , Zn are symmetric with respect

to Y , then for an arbitrary functiong the random variables
Z0, . . . , Zn are symmetric with respect tog(Y ).

Proof: For everyy′ from the domain ofg, all sequences
i1, . . . , iw and i′1, . . . , i

′
w of distinct indices, and every se-

quencez1, . . . , zw we have

Pg(Y ),Zi1 ,...,Ziw
(y′, zi1 , . . . , ziw

) =∑
y:g(y)=y′

PY,Zi1 ,...,Ziw
(y, zi1 , . . . , ziw

) = (4)

∑
y:g(y)=y′

PY,Zi′
1
,...,Zi′w

(y, zi′1
, . . . , zi′w) =

Pg(Y ),Zi′
1
,...,Zi′w

(y′, zi1 , . . . , ziw),

where (4) follows from the assumption thatZ0, . . . , Zn are
symmetric with respect toY .

To prove Theorem 1, recall thatsA, sB , and s are the
storage capacities of Alice, Bob, and Eve, respectively. We
have to specify a strategy for Eve to store information (i.e.,
the functionfE). Such an admissible strategy is the following.
For the fixed observed randomizerR = r and transcript

2Recall that the chain rule for information (see eg. [6], Theorem 2.5.2)
states that for arbitrary random variablesV1, . . . , Vn, andU we have

I(U ; V0, . . . , Vn) =

n∑
i=0

I(U ; Vi|Vi−1, . . . , V0)

2



T = t, considerbs/sBc independent copiesM1
B , . . . ,M

bs/sBc
B

of what Bob stores, sampled independently according to the
distributionPMB |R=r,T=t. (Clearly such sampling can be done
by a computationally-unbounded Eve.)

Lemma 2:The random variablesMB ,M1
B , . . . ,M

bs/sBc
B

are symmetric with respect toMA.
Proof: Recall that MA is a randomized function of

(R, T ), namelyMA = fA(R, T, RA) for a randomRA. By
Observation 1 the random variablesMB ,M1

B , . . . ,M
bs/sBc
B

are symmetric with respect to(R, T ), and hence also
with respect to (R, T, RA) since RA → (R, T ) →
MB ,M1

B , . . . ,M
bs/sBc
B form a Markov chain. Thus by Ob-

servation 2 the random variablesMB ,M1
B , . . . ,M

bs/sBc
B are

symmetric also with respect toMA = fA(R, T, RA).
Hence Lemma 1 implies that there existsi ∈

{0, . . . , bs/sBc} such that

I(MA;MB |M1
B , . . . ,M i

B) ≤ H(MA)⌊
s

sB

⌋
+ 1

≤ H(MA)
s

sB

≤ sAsB

s
.

The last step follows fromH(MA) ≤ sA. Clearly an infinitely
powerful Eve can compute such an indexi. We hence assume
that Eve storesME := M1

B , . . . ,M i
B .3 Now we can apply

Theorem 1 in [17] which considers exactly this setting, where
Alice, Bob, and Eve have some random variablesMA, MB ,
and ME , respectively, jointly distributed according to some
distribution PMAMBME

. The theorem states that the entropy
of a secret keyK that can be generated by public discussion
is upper bounded as

H(KA) ≤ I(MA;MB |ME)︸ ︷︷ ︸
≤ sAsB

s

+H(KA|KB) + I(KA;MET ′)︸ ︷︷ ︸
≤δ

Now, by Fano’s lemma (cf. [3], p. 156)

H(KA|KB) ≤ h(ε) + ε log2(2
sA − 1) ≤ h(ε) + εsA,

and we obtain (1). This concludes the proof of Theorem 1.
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