Provably Unbreakable Hyper-Encryption In the
Limited Access Model

Michael O. Rabin
DEAS Harvard University
Cambridge, MA 02138
Email: rabin@deas.harvard.edu

Abstract— Encryption is a fundamental building block for
computer and communications technologies. Existing encryption
methods depend for their security on unproven assumptions. We
propose a new model, the Limited Access model for enabling a
simple and practical provably unbreakable encryption scheme.
A voluntary network of tens of thousands of computers each
maintain and update random pages, and act as Page Server
Nodes. A Sender and Receiver share a random key K. They
use K to randomly select the same PSNs and download the same
random pages. These are employed in groups of say 30 pages to
extract One Time Pads common to S and R. Under reasonable
assumptions of an Adversary’s inability to monitor all PSNs, and
easy ways for S and R to evade monitoring while downloading
pages, Hyper Encryption is clearly unbreakable. The system has
been completely implemented.

I. INTRODUCTION
A. Background

Modern encryption methods depend for their security on
assumptions concerning the intractability of various computa-
tional problems such as the factorization of large integers into
prime factors or the computation of the discrete log function
in large finite groups. Even if true, there are currently no
methods for proving such assumptions. At the same time, even
if these problems will be shown to be of super-polynomial
complexity, there is steady progress in the development of
practical algorithms for the solution of progressively larger
instances of the problems in question. Thus there is no firm
reason to believe that any of the encryptions in actual use
is now safe, or an indication as to how long it will remain
so. Furthermore, if and when the current intensive work on
Quantum Computing will produce actual quantum computers,
then the above encryptions will succumb to these machines.

At present there are three major proposals for producing
provably unbreakable encryption methods. Quantum Cryp-
tography [1] employs properties of quantum mechanics to
enable a Sender and Receiver to create common One Time
Pads (OTPs) which are secret against any Adversary. The
considerable research and development work as well as the
funding invested in this effort are testimony to the need felt for
an absolutely safe encryption technology. At present Quantum
Cryptography systems are limited in range to a few tens of
miles, are sensitive to noise or disturbance of the transmission
medium, and require rather expensive special equipment.

The Limited Storage Model was proposed by U. Maurer
[2]. It postulates a public intensive source of random bits. An

0-7803-9491-7/05/$20.00 ©2005 IEEE

34

example would be a satellite or a system of satellites containing
a Physical Random Number Generator (PRNG) beaming down
a stream « of random numbers, say at the rate of 100GB/sec.
S and R use a small shared key K to extract a relatively small
number of common bits from the stream and use those bits
and the key to form OTPs which are subsequently employed
in the usual manner to encrypt messages. The Limited Storage
Model further postulates that for any Adversary or group of
Adversaries it is technically or financially infeasible to store
more than a fraction, say half, as many bits as there are in . It
was proved in [3], [4], [5] and [6] that under the Limited Stor-
age Model assumptions, one can construct schemes producing
OTPs which are essentially random even for a computationally
unbounded (but storage limited) Adversary. The critique of
the Limited Storage Model is three-fold. It requires a system
of satellites, or other distribution methods, which are very
expensive. The above rate of transmission for satellites is right
now outside the available capabilities. More fundamentally,
with the rapid decline of cost of storage it is not clear that
storage is a limiting factor. For example, at a cost of $1 per
GB, storing the above mentioned stream of bytes will cost
about $3 Billion per year. And the cost of storage seems to go
down very rapidly.

B. The Limited Access Model

The Limited Access Model postulates a system comprising
a multitude of sources of random bytes available to the Sender
and Receiver. Each of these sources serves as a Page Server
Node (PSN) and has a supply of random pages. Sender and
Receiver initially have a shared key K. Using K, Sender
and Receiver asynchronously in time access the same PSNs
and download the same random pages. The Limited Access
assumption is that an Adversary cannot monitor or compromise
more than a fraction of the PSNs while the Sender or Receiver
download pages. After downloading sufficiently many pages, S
and are make sure that they have the same pages by employing
a Page Reconciliation Protocol. They now employ the common
random pages according to a common scheme in groups of,
say, 30 pages to extract an OTP from each group. Let us
assume that the extraction method is simply taking the XOR
of these pages. The common OTPs are used for encryption in
the usual manner.

A crucially important point is that a Page Server Node sends
out a requested random page at most twice, then destroys and

replaces it by a new page. Opportunity knocks only twice!

Why is this scheme absolutely secure? Assume that we have
25,000 voluntary participants acting as PSNs. Assume that
a, possibly distributed, Adversary can eavesdrop, monitor or
corrupt (including by acting as imposter) no more than 5000 of
these nodes. Thus the probability that in the random choice of
the 30 PSNs from which a group of 30 pages are downloaded
and XORed, all 30 pages will be known to the Adversary is
smaller than (1/5)3°, i.e., totally negligible. But if an Adversary
misses even one page out of the 30 random pages that are
XORed into an OTP then the OTP is completely random for
him.

The “send at most twice, then destroy” policy prevents a
powerful Adversary from asking for a large number of pages
from each of the PSNs and thereby gain copies of pages
common to S and R. The worst that can happen is that, say,
S will down load a page P from PSN; and the Adversary (or
another user of Hyper-Encryption) has or will download the
same page P from PSN,;. When R now requests according
to the key K the same page from PSN;, he will not get
it. So R and S never have a page P in common if P was
also downloaded by a third party. The only consequence of
an Adversary’s downloading from too many PSNs is denial of
service to the legitimate users of the system. This is a problem
for any server system and there are ways of dealing with this
type of attack.

What if an Adversary eavesdrops onto the Sender and or Re-
ceiver while they are downloading pages from PSNs. Well, S
and R can go to an Internet café or one of those establishments
allowing a customer to obtain an Internet connection. They
can use a device that does not identify them and download
thousands of pages from PSNs within a short time. The salient
point is that S and R need not, in fact preferably should not,
time-synchronize their access to the PSNs. Once S and R
have common OTPs, they can securely communicate from their
fixed known locations with immunity against eavesdropping or
code breaking.

The initial key K is continually extended and updated by
S and R using common One Time Pads. Each pair of random
words from K is used to select a PSN and a page from that
PSN only once and then discarded. This is essential for the
absolute security of Hyper Encryption.

With all these provisions Hyper Encryption in the Limited
Access Model also provides Ever Lasting Secrecy. Let us
make a worst case assumption that the initial common key
K or its later extensions were lost or stolen after their use
to collect common random pages from PSNs. Those pages
are not available any more as a result of the send only twice
and destroy policy. Thus the extracted OTPs used to encrypt
messages cannot be reconstructed and the encryption is valid
in perpetuity. By contrast, all the existing public or private key
encryption methods are vulnerable to the retroactive decryption
attack if the key is lost or algorithms come up that break the
encryption algorithm.

In Section III we shall describe an additional scheme based
on the use of search engines for the generation of OTPs and

0-7803-9491-7/05/$20.00 ©2005 IEEE

35

of unbreakable encryption.

Our systems were fully coded in Java for distribution as
freeware amongst interested users. All the protocols described
below are running in the background on the participating
computers and impose negligible computational and storage
overheads on the host computer.

II. THE PAGE SERVER SYSTEM AND ITS
PROTOCOLS

A. The Page Server Node and its Protocols

Every PSN has a name and an IP. We shall refer to the
PSN named j as PSN; and to its IP address as IP(j) .
It has a physical generator of random numbers PRNG;.
In one implementation we use a cheap radio plugged into
the microphone port. The radio produces random white noise
which is sampled a few tens of thousands of times a second.
The lowest binary digit of the amplitude of a sample point is
fairly random. To enhance randomness we XOR those bits in
groups of six. In this way we produce a stream of random bits
at a rate of about 10K/sec.

The random bits are assembled into pages of 4000 bytes
each. At any given time PSN; maintains a list of about a
thousand random pages P, - - -, Piggo. It also maintains a list
of 32-bit words w1, wa, - - - , W representing past uncompleted
requests for pages. A Hyper Encryption user U requests a page
from PSN; by sending in a 32-bit word u.

If u = wy, for some 1 < m < k, then PSN; sends to U the
page P,,, removes P, from the list, wipes P,, from memory
and replaces this page by a new random page appended at
the end of the list of pages. The word w,, is also removed
from the list of words. If u does not appear in the current list
of words then PSN; appends w41 = u at the end of the
word-list and sends Py to U (in this order!).

These procedures enforce the “send a page at most twice”
regime. The PSN also scrubs the lists from a page requested
once if that page was not requested again within a set time.

B. The User Device and its Protocols

Let U be a user device that is one of a pair of partners Alice
and Bob who employ Hyper Encryption. Alice and Bob share
a key K = uj,ug, -+, u2s—1,U2s, -+, of randomly chosen
32-bit words. They also share a list of the current PSNs,
PSNy,---,PSNj,--- . If available, they also store the IPs
IP(j) of those PSNs.

B1. Requesting and Downloading Random Pages

When U, which is either Alice or Bob, prepares to download
a page to be locally called PUs it uses the pair uss_1, ugs out
of K. There is a mapping F so that F'(ugs—1) = j is a name of
a server PSN;. U sends ugs to PSN; , gets back a page Py,
and sets PU; = P,,. If PSN; is not responding , U will use
other pairs of words and re-use the pair ugs_1, uss a specified
number of times within a specified time interval until success
or discarding of the pair.

B2. Page Reconciliation Protocol

The ”send a page at most twice” regime, and the asynchrony
of the download procedures of Alice and Bob, imply that for
a given s and at a given time, PA; # PB, or PA, = nil,
are possible. We thus need a Page Reconciliation Protocol.

From time to time Alice scans the list of downloaded
and not yet used pages PAy,PAg:,--- . Using a common
hash function H, Alice computes and sends the list of pairs
(s, H(PA)),(s",H(PAg)),- -, to Bob. Bob scans his list
of downloaded and not yet used pages PB, ,PB,n, --- .
Computing hash values of these pages and comparing, Bob
prepares a list of indexes t',t”, - - -, of pages common to Alice’s
and his list of not yet used pages and sends these indexes to
Alice.

The pairs (¢, PAy), (t", PAy/),---, of verified common
random pages are appended, in ascending order of the indexes,
by Alice and by Bob to their lists of verified common pages.
The above process is also started from time to time, indepen-
dently of Alice, by Bob according to some internal schedule.

B3. Secrecy of the Exchange of Page Reconciliation Messages

The use of the hash function H is not intended to hide
information about the pages to be reconciled. Absolute secrecy
for these pages is assured by Alice and Bob employing an
existing common OTP to Hyper Encrypt their page reconcil-
iation messages. To enable getting off the ground, the initial
shared key K contains sufficiently many random bytes some
of which are used as OTPS for the first few page reconciliation
messages.

B4. Forming One Time Pads

According to the above, at any given time after the first page
reconciliation round, Alice and Bob have a common ordered
list of common random pages. From time to time Alice and
Bob, independently of each other, remove pages in groups of
30 starting at the beginning of the list. They form an OTP
from each group by byte-wise XORing the pages within the
group. Thus for pages Pi,---, P3p :

OTP=P &P, ®---@ Py

The thus obtained One Time Pads are distributed according
to a fixed rule, common to Alice and Bob, into four groups.
The bytes from Pads within each group are appended in a
prescribed manner to one of four corresponding arrays of
random bytes: (1) AtoB[] ; (2) BtoA[] ; (3) SYSTEM]]
(4) KEY[1.

B5. The Key K

We note that according to B1 and B4 the common key K is
actually an array KEY[] treated as a FIFO queue from which
bytes are removed from the beginning in groups of eight bytes
treated as pairs of 32-bit words. Additional data needs to be
incorporated to serve as the identifier s of a pair of words used
to download the page referred to in Bl as PUg. The salient
point is that every pair of words from K is used only once.

0-7803-9491-7/05/$20.00 ©2005 IEEE

36

B6. Sending and Receiving Encrypted Messages

Every participating user device has a Hyper-Encrypted Mail
utility, also supplied in Java code in our system. When Alice
wishes to send an encrypted message M comprising m bytes
to Bob, she selects an interval [k, m+ k — 1] and sends to Bob
the byte-wise XORed message C = M@ AtoB [k, m+k — 1]
as well as the relevant interval [k, m + k — 1]. The bytes AtoB
[k,m 4+ k — 1] used to encrypt M are removed by Alice from
AtoBJ[] after Bob acknowledges receipt of C.

Upon receipt of C' and [k, m + k — 1], Bob decrypts by
forming C® AtoB [k,m + k — 1] = M and acknowledges
receipt to Alice. He also removes from AtoB[] the bytes AtoB
[k,m + k — 1] used in the encryption/decryption.

The above procedure, augmented by careful book-keeping
steps to ensure that the array AtoB[] always remains syn-
chronized between Alice and Bob, ensures that any sequence
of random bytes employed as an OTP for encryption is used
only once.

The use-only-once requirement is also the reason for having
two arrays AtoB[] and BtoA[]. If Alice and Bob were to
employ the same array of random bytes then a situation could
arise where Alice sends to Bob a message M and Bob sends
to Alice a message N, and the intervals of random bytes used
as OTPs by Alice to encrypt M and by Bob to encrypt N are
overlapping. This creates a breach in security. If an OTP is
used to encrypt two different messages, partial information on
the messages can be derived.

The Hyper-Encrypted Mail utility is also employed auto-
matically in the above procedure B3 to maintain secrecy in
the exchange of page reconciliation messages.

B7. Message and Sender Authentication

Hyper Encryption can be augmented by absolute authen-
tication procedures. An efficient way for doing this employs
fingerprinting by an irreducible polynomial [7]. We require a
fifth common random array AUTHJ] for Alice and Bob, or
else we can employ bytes from the arrays they use as OTPs,
being careful to do proper book-keeping of consumed bytes to
avoid ambiguities.

Let us employ irreducible polynomials of degree 31. Ac-
cording to [7], since 31 is a prime, once we have a single
irreducible polynomial of degree 31, f(z) € Fy[z] , we can
efficiently compute random irreducible polynomials g(x) of
degree 31 from random words w in {0, 1}. Le. there is
an efficiently computable function I(w) = g, (z) so that if
w € {0,1}32 (and w unequal 00000001 or 00000000) then
gw(x) is irreducible of degree 31.

To authenticate a message M, Alice pads M on the left
with 31 0’s. Assuming M to be already padded, M =
apay -+ ay, € {0,131 We consider M as a polynomial
in Fy[z]. Note that we are viewing M as a sequence of bits,
not bytes. This is done just for convenience of the presentation.
Thus,

Fy(z)=as+ a1z + -+ apaz™

Alice now selects the four bytes AUTH][r, + 3]. Disregard-
ing the last bit, she obtains a 31-bit word w. If w is not one
of the above two exceptions, Alice computes the irreducible
polynomial I(w) = g, (). The fingerprint of M with respect
to gy () is the residue of Fj;(z) when divided by g, (z):

FING(M, g(z)) = Fp(x) mod gy (z).

Alice forms My = M*FING(M, g,,(x)) , where * denotes
concatenation. She Hyper Encrypts M; as in B6 and sends the
cipher text C; with the indexes defining the OTP used, and
with the above r to Bob.

Bob decrypts C as in B6. To authenticate M, he recovers
w = AUTH][r,r + 3] (discarding the last bit). Bob computes
I(w) = gy(x) and FING(M, g,,(x)) = G. He now verifies
that the decrypted C; is indeed M * G.

It can be proved that an Adversary cannot produce any
cipher text Cy different from one sent by Alice, which will
pass this test with probability > /231, Now, this probability
is smaller then m10~°, where m is the length of the message
M. Thus both the message and the Sender Alice are robustly
authenticated. For the faint of heart: The use of two random
polynomials of degree 31 will reduce the probability of cheat-
ing below m210~18,

It is worthwhile noting that the production and listing of
the random irreducible polynomials g,,(x) of degree 31 can
be done by Alice and Bob off line, ahead of encrypting or
decrypting messages. This reduces authentication of messages
at send/receive time to computations of fingerprints using a
given g, (x). This is a very rapid computation involving only
one XOR operation per message bit.

IIT. SEARCH ENGINE BASED HYPER ENCRYPTION

Search engines can serve as another source of random OTPs
in the Limited Access model for Hyper Encryption. We shall
give a brief outline of a search engine based system. Consider
a typical search engine, to be called Pimpernel.

Alice and Bob share a random key K = wi,ws, -, from
which they consume a few bytes at a time to download a
random page from a random server on the Web.

Asynchronously in time, they employ w1, we, w3 to look up
a common ordinary dictionary and obtain an English word or
phrase such as “’blue sky”.

Alice’s (and similarly Bob’s) computer U Pimpernels “blue
sky” and gets a list of web pages. Using w4, U randomly
selects and downloads one of the first 20 pages. Using ws, U
randomly selects one of the links of the downloaded page and
downloads the page referred to in the link. This process is
repeated to depth six.

So now U has a web page P. This page in not a string of
random bytes. There are well studied randomness extractors
for producing a highly random string of bytes from a weakly
random source [8]. As a practical matter we first compress P
and then encrypt using a private key common to Alice and
Bob. The resulting page, call it P; (because w; was used to
initiate its production) is appended by U to the list of random
downloaded pages.

0-7803-9491-7/05/$20.00 ©2005 IEEE

37

In all other respects the search engine based system is
configured like the page server system of Section II.

In our implementation we combine pages downloaded from
PSNs with pages obtained through the use of a search engine.

The search engine based Hyper Encryption is also imple-
mented at Georgia Tech. by Yan Zong Ding.

IV. CONCLUSIONS

We have introduced the Limited Access Model as a basis for
provably unbreakable encryption. We described two methods
within the Limited Access Model for a Sender and Receiver
to easily and practically create a stream of common random
One Time Pads to be used for encryption and authentication.
Under reasonable practical assumptions the PSN based imple-
mentation is directly shown to be provably unbreakable. The
theoretical analysis of the search engine based system, when
not used in combination with the PSN system is not that clear.
But we believe that in practice the latter system by itself also
provides very high security.

Other sources of randomness within the Web can be em-
ployed for Hyper Encryption in a manner similar to that of
the search engine based system.

ACKNOWLEDGMENT

The following Harvard students have brilliantly worked on
the architecture and implementation of the systems described
in this paper. Y.C. Chang, M. Hamburg, C. Martin, B. Parno,
A. Rampell, M. Scnall-Levin, L. Storzek, K. Venkatram, D.
Xiao.

This research was supported in part by National Science
Foundation grant CNS-0205423 at Harvard University.

REFERENCES

[1] C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distri-
bution and coin tossing,”Proceedings of IEEE International Conference on
Computers, Systems and Signal Processing, Bangalore, December 1984,
pp. 175-179.

U. Maurer, “Conditionally-perfect secrecy and a provably-secure random-
ized ciper,” Journal of Cryptology, 5 1992, pp. 53-66.

Y. Aumann and M.O. Rabin, “Information theoretically secure communi-
cation in the limited storage model,” Advances in Cryptology-Crypto 99,
Lectures in Computer Science 1666, Springer Verlag, 1999, pp. 65-79.
Y. Z. Ding and M.O. Rabin, “Hyper-encryption and everlasting security,”
Proc. of the 19th International Symp. on Theoretical Aspects of Computer
Science (STACS), Springer-Verlag LNCS 2285, 2002, pp. 1-26.

Y. Aumann, Y. Z. Ding and M.O. Rabin, “ Everlasting security in the
bounded storage model”/EEE Transactions on Information Theory, vol.
48, 6, 2002, pp. 1668-1680.

S. Dziembowski and U. Maurer, “Optimal randomizer efficiency in the
bounded-storage model,” Jour. of Cryptology, vol. 17, 1, 2004, pp. 5-26.
M.O. Rabin, “Finger printing by random polynomials,” Computer Science,
DEAS, Harvard University, TR-15-81, 1981.

R. Shaltiel, “Recent developments in extractors (Survey paper),” Current
trends in theoretical computer science. The Challenge of the New Century,
vol 1: Algorithms and Complexity.

[5]

[6]
[7]
[8]

