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Abstract

Secret sharing and multiparty computation (also called “secure function evaluation”) are fun-
damental primitives in modern cryptography, allowing a group of mutually distrustful players to
perform correct, distributed computations under the sole assumption that some number of them will
follow the protocol honestly. This paper investigates how much trust is necessary – that is, how
many players must remain honest – in order for distributed quantum computations to be possible.

We present a verifiable quantum secret sharing (VQSS) protocol, and a general secure multiparty
quantum computation (MPQC) protocol, which can tolerate any ⌊n−1

2
⌋ cheaters among n players.

Previous protocols for these tasks tolerated ⌊n−1

4
⌋ and ⌊n−1

6
⌋ cheaters, respectively. The threshold

we achieve is tight – even in the classical case, “fair” multiparty computation is not possible if any
set of n/2 players can cheat.

Our protocols rely on approximate quantum error-correcting codes, which can tolerate a larger
fraction of errors than traditional, exact codes. We introduce new families of authentication schemes
and approximate codes tailored to the needs of our protocols, as well as new state purification
techniques along the lines of those used in fault-tolerant quantum circuits.
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1 Introduction

Secure multiparty computation has been studied extensively in the classical setting and has been
extended to the quantum setting by [CGS02]. A secure quantum multiparty protocol (or secure function
evaluation) allows n participants P1, . . . , Pn to compute an n input quantum circuit where each player
Pi is responsible for providing one of the input states. The output of the circuit is broken into n
components H1 ⊗ . . .⊗Hn and Pi receives the output Hi. Note that the inputs are arbitrary (possibly
entangled) quantum states and each player simply has his input in his possession — he does not need
to know the classical description of it. Informally we wish to achieve the same functionality as if each
player were to hand his input to a trusted third party who would evaluate the circuit and distribute
the outputs. Moreover we wish to do so even when up to t players are faulty.

In the quantum setting it seemed at first that the best one could hope for is to tolerate t < n/4
faulty players simply because (exact) quantum error correcting codes (QECC) cannot recover from
more errors. Indeed the best previously known verifiable quantum secret sharing protocol can tolerate
t < n/4 faulty players, and the best secure quantum multiparty protocol can operate only t < n/6
faults [CGS02]. In fact approximate QECCs exist [CGS05] that can recover (with high probability)
from the corruption of t < n/2 shares, and their discovery paved the way to this paper.

Main Result Assuming pairwise quantum channels and a classical broadcast channel between n players,
we present a universally composable, information theoretically statistically secure multiparty quantum
computation protocol, that can tolerate an adaptive adversary controlling up to t < n/2 faulty players.
The complexity of the protocol is polynomial in the number of players and the size of the circuit.

Note: Tolerating t ≥ n/2 faulty players is not possible even in the classical setting, regardless of
computational assumptions. This follows from the impossibility of two-party coin flipping [Cle86].

In this setting universally composable classical secure multiparty computation is possible [RB89,
Can01, KLT06] and our protocols make extensive use of this classical cryptographic primitive. One
strategy we use extensively is to reduce the quantum multiparty computation to a secure computation
on classical keys.

A verifiable secret sharing is the first step in developing a secure multiparty computation (MPC)
and our protocol for this is similar in structure to the classical VSS of [Rab94, RB89]. There are
however major obstacles we must overcome in the quantum case. Both protocols use authentication
codes but in the quantum setting authentication requires encryption and we must develop techniques
to work with encrypted data (section 3). Another important difference is that in the quantum setting
the dealer cannot keep a copy of the input state in case there is trouble. To solve this, the protocol
first generates a shared EPR pair (in section 4), half held by the dealer and the other half being shared
correctly among the players. Then the dealer can introduce the input state to the computation via
teleportation.

While we can base the authentication used in our protocols on any CSS approximate QECC tol-
erating t < n/2 errors, it is easier to use QECCs based on self dual codes and our first contribution
is the construction of a family of such codes based on polynomial QECC. The authentication keys are
classical. An important and useful property of our codes is the ability to perform Clifford operations
on coded data when some other party holds the classical keys.

Our quantum verifiable secret sharing protocols (sections 5,6) inherit the ability to perform Clifford
operations on shared quantum data when the keys are handled and manipulated by the classical MPC.
To obtain universal computation it is sufficient to generate correctly shared Toffoli states [Sho96]. We
choose one player at random to create the shared states, but do a collective testing and purification
procedure to guard against the possibility that the chosen player is faulty (section 7).
Simulation

We have taken extra care to guarantee that our protocols will be universally composable. The
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protocols we present are quite involved and might not have optimal complexity. They do have one
surprising proprety — the simulation (section 8) required for their correctness proof is simple and
straightforward.

2 Preliminaries

The Network Model

We will assume that pairwise secure quantum channels exist between any two players, and a classical
broadcast channel between all players.
The Adversary

We would like to use the strongest possible adversary. We will therefore assume that the adversary
is computationally unbounded, and that she fully coordinates the actions of all faulty players. We will
also let the adversary be adaptive, and limit her in only two ways:

1. At most t < n
2 players may become faulty during the course of the computation.

2. The adversary has access only to the information of the corrupted players she currently controls.

We call the non-faulty players honest players.
All protocols we present have a success probability exponentially close to one (also called an expo-

nentially good probability) in some security parameter1.

3 Quantum Authentication

In our construction of Multiparty Quantum Computation (MPQC) we use a quantum authentication
scheme (QAS), such as that proposed in [BCGST02]. Any Quantum Authentication Scheme based
on a quantum CSS code can be used, but it is simpler to use a self-dual code. Therefore our first
contribution is a family of self-dual Quantum Authentication Schemes. We will build a scheme which
is exponentially secure in some arbitrary security parameter m = 2d+ 1, where d is a parameter of the
code.

When using this scheme in the computation, we will assume that m is larger than the security
parameter of the Multiparty Computation times the number of players. Let p be a prime, m < p < 2m.
All the algorithms we propose will manipulate qudits in Zp.

The scheme will be based on a classical key which will be composed of two parts: k1, . . . , km ∈R {±1}
and a string x ∈R {0, 1}2m log2(p). The dealer will then apply two transformations:

First, in a way quite similar to the stretched polynomial code, the dealer will apply

|Sa〉 → p−d/2
∑

deg(f)≤d,f(0)=a

|k1 × f(α1), . . . , km × f(αm)〉,

where α1, . . . , αm ∈ Zp are distinct nonzero points known to all players.
Then, very much like the Quantum Authentication Code of [BCGST02], the dealer will encrypt the

state by applying a random Pauli operation on each part of the state. This will create a stretched and
shifted polynomial-like code. The encryption will be denoted as Ex, so we will have ψ = ExAk(φ).

1As proved in [CGS02], Verifiable Quantum Secret Sharing and Multiparty Quantum Computation with more than
n/4 faulty players must have some probability of failure. Therefore, the Multiparty Computation protocol we present will
have an exponentially small probability of failure in some security parameter. Let S be the value of this parameter, and
C the size of the quantum circuit we want to securely evaluate. Our algorithms will be polynomial n, S and C. Setting
a security parameter s = S + n2 + log C + O(1) in all our subprotocols is sufficient to guarantee that the overall failure
probability will be bounded by 2−S .
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Note that the authentication (without the encryption) is self-dual. To see this, we apply the Fourier
transform on the code transversely as in [AB99], getting:

Fourier(|Sa〉) = p−1/2
∑

b

ωab|Sb〉.

This gives:

|S′
b〉 = p−d/2

∑

deg(f)≤d,f(0)=b

|k−1
1 × f(α1), . . . , k

−1
m × f(αm)〉,

which is equal to |Sb〉, as k−1
i = ki. The combined code ExAk remains self dual — the Fourier transform

on Ex is equivalent to a change in the classical key x.
Security of the Quantum Authentication Scheme

After the encoding, an adversary can try to tamper with the information as she likes, but without
knowledge of (x, k) = K.

Finally the receiver takes as input the system ρ′, and tries to return to the encoded state based
on k, x. We will apply definitions 1 and 2 of [BCGST02], and say that the receiver’s output lies in a
Hilbert space M ⊗ V , where M has a size of m qubits (the size of the original state) and V is a Hilbert
space of dimension 2, with basis states |ACC〉, |REJ〉. Define projectors

P
|ψ〉
1 = |ψ〉〈ψ| ⊗ IV + IM ⊗ |REJ〉〈REJ | − |ψ〉〈ψ| ⊗ |REJ〉〈REJ |

P
|ψ〉
0 = (IM − |ψ〉〈ψ|) ⊗ |ACC〉〈ACC|

Lemma 3.1. With exponentially good probability (that is probability exponentially close to one) on k
and x, for any encoded state and for any action taken by the adversary, the receiver’s output has expo-

nentially good fidelity to the space spanned by P
|ψ〉
1

2. If the adversary did not change the authenticated
state the output will be the original state tensored with |ACC〉.
The proof of this lemma appears in appendix A.

Actually, this security definition is not quite sufficient for our purposes, since we need the authenti-
cation to remain secure in a variety of contexts. We can adopt the Universally Composable definition
of [HLM] with a TTP : That is, the sender passes the state to the TTP . The adversary then gets to
decide whether the TTP gives the correct state to the receiver, or instead the state |REJ〉. Luckily,
[HLM] show that the class of QAS described in [BCGST02] remain secure with respect to this stronger
definition3.

We also need for the authentication scheme to remain secure when it is applied to many states
authenticated with the same k but different x’s. The proof is essentially the same: we can treat the
combined system as a single large authentication scheme which fails if even one of the states fails the
authentication test. It is again sufficient to consider attacks where the adversary applies a Pauli matrix,
and the argument above shows that she is likely to be caught if she attacks even a single state in this
way.
Operations on Authenticated Quantum Data

A key advantage of the code we present is that it is possible to perform Clifford operations on
coded data when one party holds the classical keys and the other party holds the data. In appendix B
we show how to perform these operations. In general, these operations require transversal operations
on the quantum state (that is, separate quantum gates on each share), plus cause a straightforward
transformation of the encryption key x. A few properties of the code are:

2Note that demanding only exponentially good probability and not probability one is redundant because we only want
high fidelity to the state spanned by P

|ψ〉
1

3Our codes are not optimal in terms of the redundancy error-probability tradeoff (because the ki’s belong to {±1}),
but provide sufficient security for our purposes.
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1. The new states are still correctly authenticated.

2. Only the correct gate leaves the states correctly authenticated (since a different gate would require
a different transformation of x).

3. Performing any of these operations does not give any new data on the keys. This is important
in the case of CNOT, where knowing the key x′ of one of the states after the operation does not
give any information on the key y′ of the other state.

Measuring an authenticated state according to the standard basis yields a random codeword which
is multiplied and shifted. Changes to the codeword without the knowledge of keys is equivalent to
applying X operations on the quantum state, and has the same probability of getting caught.
Handling keys

In the following sections we will want to manipulate the classical keys in many ways. We will use
an imaginary classical Trusted Third Party, which implements classical multiparty computation. From
now on, all classical keys of authenticated data will be sent immediately to this Third Party, which will
tell the players the meaning of their actions based on those keys. While such a TTP does not exist, we
can simulate it using (for example) the classical multiparty computation of [RB89].

4 Verified Quantum State Authentication

In this section, we force the dealer to send each honest player a correctly authenticated message, using
the QAS of section 3. A dealer who does not comply will be revealed as faulty in front of all the
players and is kicked out. In the first subsection, we show how to force the dealer to send correctly
authenticated zero states to every honest player. We later transform the zero states to EPR pairs shared
between players, and then pass other states using quantum teleportation. The algorithms succeed only
with high probability.
Sending “Verifiable” Authenticated Zeros

Let D be a dealer, who should send states of the form Auth(k,x)(|0〉) to all players. The problem
is that later in the protocol, players are required to present states which have been authenticated by
the dealer. There would then be no way to distinguish between an honest player who was originally
given bad states by a faulty dealer and a corrupted player who changed the states she received from an
honest dealer. To solve this problem we incorporate the following protocol, which guarantees that with
exponentially good probability either the dealer is caught, or every honest player has a large number
of |0〉 states authenticated by the dealer:

Protocol Zero-Share (Dealer D, r-copies to each player)

1. D chooses one random key k, and creates many states of the form Auth(k,x)(|0〉) for many
different x’s (all x’s are chosen at random).

2. D sends each player many ((r + 2s)(t+ 1)) such states.

3. D sends all the keys to the classical TTP .

4. Each player Pi performs purification on his states. A purity testing protocol for zeros which
spends 2s states is given later. The results of the measurements are sent to the TTP .

5. The TTP returns each player a bit indicating whether everything was alright with her states.
This gives fidelity4 of 1 − p−s to the statement that either Pi’s states are authenticated zeros

4In calculating the fidelity we assume that all the authentication checks succeeded.
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or the dealer is caught by Pi
5.

6. For each player i, if Pi caught the dealer she complains about him. If there are more than t
complaints the dealer is faulty.

7. Each player who did not complain distributes r + 2s of her states to each player who did
complain.

8. Each complainer Pi does the following: for all j, using the zero purity test protocol and with
the help of the TTP (as before Pi only measures and the TTP tells him if the states are good),
go over the states you got from Pj . Find a player Pj who you can trust (i.e., Pj gave Pi states
which were correctly authenticated by the dealer).

Lemma 4.1. In the last stage of the protocol, with high probability every honest player will have zero
states which were authenticated by the dealer.

Proof. At most t players complained about the dealer in step 6. This means that at least one honest
player got authenticated zeros, and she will pass them to all the complainers. Therefore, if after the
last step a player complains that she doesn’t have any authenticated states she is faulty.

Lemma 4.2. The adversary has no new information about the key k used by the dealer or about the
x’s in the surviving zero states.

Proof. For all i, all the measurements made by Pi give random values, and players are only told by the
TTP that the check succeeded.

Note that the protocol has an exponentially low probability to fail completely. This could happen
(for example) if the dealer sends non-zero states, but a single honest player is fooled by the dealer. This
will mean that the dealer will not be considered faulty in step 6, and all the honest players will fail in
the last step.

The protocol requires a method of testing that a set of states are (close to) correctly authenticated
zeros. We present such a zero purity test in appendix C.
Generating Authenticated EPR pairs

To share an authenticated EPR pair with the dealer, Pi takes two authenticated zeros, and using
the classic TTP , performs a transversal Fourier on one of them, and then a SUM. Pi then sends D one
half of the pair.

In order to see the security of the protocol we need to look at two cases:

1. Pi is honest but the dealer is faulty: Pi holds zeros which were authenticated by the dealer (as
the dealer was not kicked out of the protocol Zero-Share). The rest of the protocol depends on
Pi.

2. The dealer is honest but Pi is faulty: The EPR pairs which are authenticated by the dealer will
be used to pass information from the dealer to Pi using quantum teleportation. A faulty Pi could
send the dealer a state which is not part of an EPR pair (say by destroying the other half or
passing some junk), but this does not add cheating power, as it is equivalent to destroying the
data the dealer is trying to give to Pi

6.

5A more formal definition can be cast by letting Pi output |ACC〉, |REJ〉 as before and then we have high fidelity to
the state of authenticated zeros tensored with |ACC〉 or anything else tensored with |REJ〉

6As we saw, the dealer can not fail this protocol. Therefore, after using it, Pi will be considered responsible if anything
goes wrong. This alone makes the protocol secure against a faulty Pi and an honest dealer.
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5 Weak Quantum Secret Sharing (WQSS)

Weak Secret Sharing [Rab94, RB89] is a protocol with two phases. In the first phase, the dealer shares
a (quantum) state (the secret), among all the players, such that the faulty players have no information
about the state. In the second phase, the (quantum) data is sent to a reconstructor (sometimes called
the receiver), who reconstructs the secret. We demand that if the dealer is honest the reconstructor can
reconstruct the secret shared. If the dealer is faulty during the sharing phase some state must still be
determined. However, if the dealer is faulty during the reconstruction phase the bad players can make
sure that no state is reconstructed. In the case where no state is reconstructed the reconstructor will
know that the dealer is faulty. At the end of the sharing phase, the players have a state encoded in the
quantum error-tolerant secret sharing scheme of [CGS05], but with an additional security guarantee
in the case where the dealer is faulty. As before, we only want our protocol to succeed with high
probability.

We give a formal definition using a TTP :

1. The dealer D sends TTP a state ρ, or no state at all. If D did not send a state the TTP notifies
all the players that this is the case and the protocol ends.

2. Otherwise, at the reconstruction phase, a reconstructor R is chosen.

3. If D is honest, the TTP sends the state ρ to R. If D is faulty, she can tell the TTP not to send
the state. In this case the TTP tells the reconstructor that D is faulty.

The difference between this variant and Verifiable Secret Sharing lies in step 3 of the definition,
where D has a chance to ruin a previously shared state.
Protocol

Before the protocol starts (this will be a prerequisite to all our protocols from now on) we assume
that the dealer has some secret authentication key kdealer. The dealer will use this authentication key
with many random encryption keys.

We maintain the invariant that an honest player will never (with high probability) think that another
honest player is faulty. Therefore if more than t players blame the dealer, she is truly faulty and can
be kicked out of the protocol.

We give the detailed sharing protocol for WQSS in appendix D. The outline of the procedure is as
follows:

1. The dealer encodes a number of zero states using a quantum polynomial code, and transmit the
shares to the players using the authenticated channel from section 4.

2. The players and the classical TTP collectively test that the states are zeros, and are correctly
encoded via transversal random sums.

3. The players use the shared zero states to create an shared EPR pair. Half of it is returned to the
dealer, who decodes it and teleports his state through the EPR pair.

The protocols we present later use the WQSS but will never use its reconstruction. Therefore we
present a naive protocol which relies on revealing the keys. Reconstructing the secret can be made by
sending all the quantum data to the reconstructor, as well as the key k and the relevant computed x keys.
The reconstructor will open up the authentication of all the states, measure the second qubit (|ACC〉
or |REJ〉) and use only the correctly authenticated points. If they are all from a degree t polynomial
code she will reconstruct |ψ〉; otherwise the dealer is faulty. This sort of reconstruction, however, spoils
the secrecy of key kdealer, which we need throughout the entire quantum computation. Therefore we
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will not use the WQSS as presented here. Still, for completeness of the paper we temporarily assume
this naive reconstruction, and discuss the security of the protocol. We also assume the reconstructor is
honest, because she gets all the data anyway.

Lemma 5.1. If the dealer is honest, the protocol is secure.

Proof. We first prove that the protocol works, and then prove the secrecy of the data. As the dealer is
honest, encoded zeros are being sent by the established authenticated channels. With high probability,
all the measurement results which are sent to the TTP are either the right results or they will be
discarded (because of the authenticated channels). This means that with high probability an honest
dealer will pass the test done by the classical TTP .

In the final step, the dealer will get a state encoding half an EPR pair, and she can decode as there
are at least t+ 1 correctly authenticated shares (given by the honest players). The honest dealer can
then transmit her qubit.

Reconstruction of the secret is possible, when considering the initial encoding with a t degree
polynomial as an erasure code, and discarding shares which are not correctly authenticated7 as these
shares came from bad players. The reconstructor has at least t + 1 points which define the secret
(the points held by the honest players), she can retrieve the original state8. Secrecy follows from the
no-cloning theorem and the ability of the reconstructor to reconstruct the right state. See [CGS05] for
a more complete proof of secure reconstruction.

Lemma 5.2. If the dealer is faulty, the protocol is secure.

Proof. Security in this context only means that after the sharing phase the state has been set, and can
no longer be changed by the dealer. This means (for example) that the adversary knows the secret
(he can choose it in the beginning of the protocol) and the only thing we should actually take care
of is that the adversary will not be able to change the secret after the sharing phase (although he is
allowed to prevent its decoding). To see that this is the case we follow the paths of the shares held by
the players who are honest in the reconstruction phase. If the dealer passes the purity test done by
the classical TTP , the two shared states have high fidelity to shared zeros. Therefore, in step 5 (the
last step of the preparation), the honest players hold a state which has a high fidelity to an EPR-half
encoded in a degree t quantum polynomial code. Whether or not the dealer teleports a quantum state,
there is an invariant: namely, that the state the honest players hold form t+ 1 points of some degree
t polynomial code, where each such point is authenticated by the dealer. (Note that if, for example,
the dealer measures her half of the EPR pair, the state collapses, but we still have a polynomial code
encoding a classical state where all the points are authenticated.) Therefore, in the reconstruction
phase there are only two things which can happen:

1. The state reconstructed is the state encoded by the honest players’ shares of the polynomial code,
which was established in the sharing phase.

2. An authenticated share which does not sit on this polynomial code appears. In this case, w.h.p. no
secret will be reconstructed (as there is no degree t polynomial code which fits all the authenticated
points) and the reconstructor knows that the dealer is faulty.

7Formally, the first thing the receiver is doing is to open the authentication using the help of the classic TTP . The
receiver then measures the last qubit (|ACC〉 or |REJ〉).

8Actually the reconstructed state has exponentially good fidelity to the original state tensored with |ACC〉.
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6 Verifiable Quantum Secret Sharing (VQSS)

Verifiable Quantum Secret Sharing is also a protocol with two phases. In the first phase, the dealer
shares a quantum state (the secret) among all the players, such that the faulty players have no informa-
tion about the state. In the second phase, the quantum data is sent to a reconstructor, who reconstructs
the secret. We demand that the value which the reconstructor reconstructs is set during the sharing
phase of the algorithm. As before, we only want our protocol to succeed with high probability.

The main difference between VQSS and WQSS is the dealer’s capability to ruin the secret after
it has been shared. Our main technique in solving this problem is based on the 2-Good-Trees of
[CCD88, CGS02] or the VQSS of [RB89]. The idea is to share a secret using a WQSS, and then share
each one of the shares using WQSS. This means that the faulty players no longer have control of their
shares. They can eliminate their shares by causing the WQSS reconstruction to fail, but cannot change
them to some other state which could spoil the dealer’s original state. Note that one of the last steps
of the protocol we present, in which the authentication of the first layer is removed, is only needed for
the full MPQC protocol.

We give a definition of Verifiable Quantum Secret Sharing using a TTP :

1. The dealer D sends TTP a state ρ, or no state at all. If D did not send a state the TTP notifies
all the players that this is the case and the protocol ends.

2. Otherwise, at the reconstruction phase, a reconstructor R is chosen and the TTP sends her the
state.

Protocol

As in WQSS, the sharing phase will have a long preparation part and then a simple sharing part.
During the preparation the dealer will use a temporary authentication key kdealer in addition to the
standard authentication channels we’ve established. As a preliminary step to the algorithm an authen-
ticated channel is created with this key, and the key will be revealed to all the players at the end of the
preparation. To sum up, the protocol for VQSS will demand two kinds of secret authentication keys:

1. The dealer has a temporary key kdealer for the first level of the tree. When sharing more than
one secret in the MPQC each secret will have a new random key.

2. Each player Pi will have a constant secret authentication key ki for the second level of the tree.
These keys will be constant throughout MPQC.

In addition, each authentication has a random encryption key x associated with it, as usual a
different one for each state.

We give the detailed VQSS protocol in appendix E. Briefly, it consists of the following steps:

1. The dealer shares encoded zero states using WQSS, and then each player further shares the state
he receives, again using WQSS. The players and the classical TTP collectively check whether the
states have been correctly shared and if they are in fact zeros.

2. The players use the shared zero states to create an shared EPR pair. Half of it is decoded and
returned to the dealer.

3. Remove the top-level authentication (which uses the temporary key kdealer) from the EPR pair
using transversal Clifford group operations.

4. The dealer teleports his state through the EPR pair.
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We note that it is possible to perform transversal Clifford operations between two shared secrets.
The proof of this is very similar to the possibility of performing transversal Clifford operations on coded
states. The only subtle point is that secrets shared by different dealers are actually protected in the
same way (as we remove kdealer).

We describe the reconstruction protocol here, and defer the security proof of both protocols to ap-
pendix E. Like the sharing protocol the reconstruction uses a one-time authentication key kreconstructor
(with appropriate authenticated quantum channels), and the same player keys ki.

Protocol Reconstruct-VQSS (Reconstructor R, Key for the reconstruction kreconstructor, Player Keys
ki for 1 ≤ i ≤ n)

1. Reconstructor: Create an EPR pair and share it as in Share-VQSS. This includes a tree of
height 2 and taking out the top level authentication, but excludes the final teleportation step.

2. All players and Reconstructor: Use quantum teleportation on the secret shared before and on
the reconstructor’s shared EPR pair half to transfer the secret to the reconstructor’s EPR-half
which is still held by her. This is possible as after the removal of kreconstructor the codes of
the dealer and reconstructor are actually identical, and it thus is possible to perform Clifford
operations between their secrets.

Again we begin by assuming that the reconstructor is honest. We have two lemmas which together
prove the security of the combined sharing-reconstruction protocol.

Lemma 6.1. If the dealer is honest, with exponentially good probability the faulty players cannot affect
the reconstruction of the secret. Moreover, no player but the receiver learns anything (in the information
theoretic sense) about the secret.

Lemma 6.2. If the dealer is faulty, with exponentially good probability he can not change the secret he
shared. Moreover the faulty players do not learn ki values for honest players.

Both lemmas are proved in appendix E.
If the reconstructor is faulty, the only secret we are trying to protect is the player keys ki. Their

security stems from the security of performing Clifford group operations on coded states.

7 Multiparty Quantum Computation (MPQC)

Our VQSS scheme already resembles Multiparty Quantum Computation in the ability to share a few
secrets in parallel (all with the same player authentication keys ki), and use Clifford operations between
them. In order to complete this to a Multiparty Quantum Computation we need to add a Toffoli gate.
We base the creation of the Toffoli gate on a shared Toffoli state a la [Sho96], and the sharing of our
Toffoli state on the ideas of the Power-Tables in [RB89].

Let 1
p

∑
a,b |a, b, ab〉 be the Toffoli State. In appendix F we show that it is possible to perform a

Toffoli on any state using Clifford operations and this state.
Sharing the Toffoli state can be done by our protocol for VQSS. We begin by sharing many Toffoli

states which are only polynomially good9 and then use a fault-tolerant multiparty computation (for
example [AB99]) to create an exponentially good Toffoli state from an encoded zero. The polynomially

9It might be possible to use Bravyi and Kitaev’s technique in [BK04] and thus obtain exponential fidelity after passing
a constant barrier. However, using their technique would require us to describe the entire calculation in F2q instead of in
Zp as we did here.
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good states are created by some arbitrary player. If the player fails to create polynomially good Toffoli
states she is faulty and is kicked out of the protocol.

Protocol Create-Toffolis (Arbitrary Dealer Pi, Player Keys ki for 1 ≤ i ≤ n)

1. Pi: Share a polynomially large number of Toffoli states.

2. All players: Run state tomography on all but a polynomial fraction of the shared states to
check the states sent by Pi. If Pi is caught not sending Toffoli states, she is kicked out.
Otherwise, the states sent have a polynomial fidelity to the Toffoli state.

3. All players: Using the states which were left (many states were opened up in the previous step),
create an error correcting computation which creates a Toffoli state with exponential fidelity
from the polynomially good Toffoli states. This can be done using the protocol described
below, which uses standard techniques of noisy computation such as [AB99].

In appendix G we present a protocol especially designed to purify Toffoli states.

8 Simulations of the protocol

Proving the Universal Composability of our algorithm may seem at first like a daunting task. Surpris-
ingly, this is not the case, and the simulation turns to be almost trivial. We sketch the main details of
the simulation in appendix H. Here we simply note a few key features which we use:

1. We rely heavily on the universal composability of classical multiparty computation, and therefore
use an ideal Classical Trusted Third Party (called here C − TTP to stress that it’s classical) in
our simulation.

2. The preparation step of the protocol is generic and independent of the inputs (and even the
function we evaluate). This makes its simulation trivial.

3. Using teleportation enables us to avoid passing quantum data in the input and output phases
of the protocol. Instead, the players only pass (and obtain) classical data to (and from) the
C − TTP . Moreover, this data is uniformly distributed and independent of the quantum data in
the computation.

4. For any group containing ≤ t players, the results of any transversal measurement done during the
computation are random, uniformly distributed, and independent of the encoded quantum state
which is being measured.
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A Proof of Lemma 3.1

With exponentially good probability (that is probability exponentially close to one) on k and x, for any
encoded state and for any action taken by the adversary, the receiver’s output has exponentially good

fidelity to the space spanned by P
|ψ〉
1 . If the adversary did not change the authenticated state the output

will be the original state tensored with |ACC〉.

Proof. Assume the adversary operated on the coded word. By [BCGST02, HLM], it is enough to con-
sider Pauli operations done by the adversary, and if we can catch each such operation with exponentially
good probability, then the code is secure. We can view such an attack as adding some set of values
(mod p) to the qudits of the code in the computational basis and another set in the Fourier-transformed
basis.

Note that if the adversary applies a non-identity Pauli operation which acts on at most d qudits
he will be caught (that is, the output on V is going to be |REJ〉) with probability 1, as the code can
detect up to d errors. If the adversary applies a Pauli operation which acts non-trivially on more than
d qubits, the adversary succeeds only if he adds a signed degree ≤ d polynomial in each basis, with the
correct sign factors ki.

To see that he cannot reliably do this, assume without loss of generality that α1, . . . , αr are the
points which were not changed by the adversary, r ≤ d+ 1, and suppose that he adds |β1, . . . , βm〉 in
one of the bases (so βi = 0 for i ≤ r and βi 6= 0 for i > r). There will be exactly one polynomial f of
degree at most d which is consistent with the equations kif(αr) = βi for i ≤ d+1. The probability that
any further non-zero point βi (i > d + 1) is consistent with this polynomial is at most 1/2, as it will
be inconsistent with at least one of ki = +1 or ki = −1. Therefore the probability that the adversary
is detected is at least 1 − 2−d.

The second part of the claim is trivial — if the adversary applies an identity the original state will
be reconstructed.

B Clifford Operations on Encoded States

In this appendix we describe how to perform Clifford operations on encoded states. Similar techniques
for gates on encrypted states were used in [Chi05].

The basic setting here is again a dealer which authenticates the data and holds the keys, an adversary
who holds the quantum data and a receiver which at the final stage of the protocol gets the data as
well as the keys and outputs a state in M ⊗ V .
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Applying a Pauli operation on the encoded state is equivalent to applying a transversal Pauli
operation on the encoding of the state, which is equivalent to a shift in the classical vector x where
the key is k, x. In a very similar manner, multiplying the encoded state with a constant also maps to
a change in x.

Measurement in the computational basis is straightforward. Measuring each qudit results in a
classical word, encrypted using part of the key x, of the form (k1 × f(α1), . . . , km × f(αm)), with f a
polynomial of degree at most d, random except for f(0), which tells us the decoded outcome of the
measurement.

Applying the Fourier transform on encoded states is also possible because the code is self-dual.
We apply the transversal Fourier transform as above, and adjust the encryption key x appropriately.
In particular, x = (x0, x1), giving shifts in the computational and Fourier bases, must be adjusted to
x′ = (x1, x0). We can also perform the phase gate |j〉 → ωj(j−1)/2|j〉 transversally, although we will not
actually need it in any of our circuits.

Finally, the code enables us to perform the modp SUM operation between states authenticated by
the same k, with different x keys. Let ψ be a state authenticated using k and x, and φ using k and
y. Then marking the authentication with Ak and the encryption by Ex and Ey, a transversal SUM
on Ak(ψ) and Ak(φ) maps to SUM on the data, but with new encryption keys Ex′ and Ey′ . The
transformed encryption keys can be determined using the Gottesman Knill algorithm (see [NC00]).

Ex(Ak(|ψ〉)) + Ey(Ak(|φ〉)) =

(Ex′ ⊗ Ey′)[Ak(|ψ〉) +Ak(|φ〉)] =

(Ex′Ak ⊗ Ey′Ak)(|ψ + φ〉)

In particular, x = (x0, x1), y = (y0, y1) become x′ = (x0, x1 − y1) and y′ = (x0 + y0, y1).

C A Zero Purity Test

We describe a simple zero purity test for states |φ0〉, . . . |φw〉 (for some w), to test if they are all
authenticated correctly and are encoding the qudit |0〉. Choose a0, . . . aw ∈R {0, 1, . . . , p} and calculate
the transformation

∑
ai|φi〉 → |φ0〉 where the sum is done by using SUM. Then, open up (i.e. measure)

the new state |φ0〉. Correct the state you have using the keys, applying shifts and multiplications. You
should be holding a polynomial of degree ≤ d with free coefficient 0. Run the same check (with new
random numbers and without |φ0〉 which was already spent) on the Fourier transform of the states.
Iterating this s times spends 2s states and gives the desired fidelity. All the operations (multiplying
with constants, SUM’s and measurements) are done with the help of the classical TTP , as only the
TTP holds the classical keys.

In a way similar to the definitions of authenticated states, let M be the Hilbert space which holds
the remaining states |φ0〉, . . . , |φw−2s〉, let |ψ〉 = |Auth(0)〉 ⊗ |Auth(0)〉 ⊗ · · · ⊗ |Auth(0)〉 ∈ M , and let
V be a Hilbert space of dimension 2, with basis states |ACC〉, |REJ〉. Define projectors

P
|ψ〉
1 = |ψ〉〈ψ| ⊗ IV + IM ⊗ |REJ〉〈REJ | − |ψ〉〈ψ| ⊗ |REJ〉〈REJ |

P
|ψ〉
0 = (IM − |ψ〉〈ψ|) ⊗ |ACC〉〈ACC|

Lemma C.1. The result of the zero purity test has fidelity 1 − O(p−s) to the space spanned by P
|ψ〉
1 .

If the adversary did not change the authenticated state the output will be |ψ〉 ⊗ |ACC〉.

Proof. Again according to [CGS02] and [BCGST02] it is enough to see that with very high probability
our check finds Pauli operations on the encoded states. (Note that we assume the authentication goes
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well and only discuss the encoded data.) The first check finds an X operation with probability 1− 1/p,
and the second one finds a Z operation with the same probability. As the checks commute, iterating
them s times finds any Pauli operation with probability 1 − p−s assuming all authentication tests
succeeded.

D Weak Quantum Secret Sharing

In this appendix, we give the detailed protocol for sharing states using WQSS.

Protocol Weak-Quantum-Secret-Sharing (Dealer D, Dealer Key kdealer)
10

1. Preparation Dealer D: Encode many (2s+2, where s is the security parameter) zeros using the
quantum polynomial code of degree t and length n. For each zero encoded send the ith share
to Pi, using the authenticated channel established in section 4. Note that the authenticated
channel is used with the same kdealer all the time, but with different x’s.

2. All players and classical-TTP : Using random numbers generated by the classical TTP , the
players perform transversal random sums, both in the standard and the Fourier basis. The
players measure 2s of their shares (s checks in each basis) and send the results to the classical
TTP .

3. Classical-TTP : Discard values which do not authenticate correctly. These values must come
from bad players (we are using verified authenticated channels).

4. Classical-TTP : If errors are detected in the outer polynomial code the dealer is faulty. All
players are informed and the protocol is aborted.

5. All players: The players collectively generate an EPR pair from the two remaining zeros and
send one half of the pair to the dealer.

6. Sharing Dealer: Decode the EPR-half you have,11 and using quantum teleportation send the
secret, giving your measurement results to the TTP . This results only in a change of keys —
the players do not need to act on their states or manipulate any new information.

E Details of VQSS

Below is the detailed protocol for sharing in VQSS:

Protocol Share-VQSS (Dealer D, Secret ψ, Key for the secret kdealer, Player Keys ki for 1 ≤ i ≤ n)

1. Preparation Phase Dealer: Prepare many (2s+2) zeros and encode them with the polynomial
code of degree t and length n. Send the i’th share (Ri) to the i’th player using the authenticated
channel using key kdealer.

2. Player Pi: Take each state shared by the dealer, and share it using WQSS and your key ki.
Mark the j’th share as Ri,j. Note that for each zero-share Pi got from the dealer, she has to
generate 2s+ 2 new zeros.

10Underlined and words are the name of the phase. The phase continues until a new phase begins.
11Note that the dealer can perform this step only because he knows all the keys he used in step 1.
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Figure 1: Schematic of weak quantum secret sharing

3. All players and classical-TTP : Perform transversal random sums in both standard and Fourier
basis to check that the zeros shared by the dealer are OK. All results are sent to the classical
TTP . Note that the shares Ri,j are being manipulated here, and that 2s of the original zeros
are being spent.

4. Classical-TTP , operating on the measurement results that were given by the players: If a
measurement result on Ri,j is not authenticated, Pj is faulty and this result should be ignored.
If Ri is not properly reconstructed as a state authenticated by the dealer, Pi is faulty; inform
all players of this. If the top level does not decode to |0〉 (when ignoring faulty Ri’s), the dealer
is faulty. If the dealer is faulty the classical TTP tells that to all the players and the dealer is
kicked out.

5. Generating EPR All players Pj with the help of classical-TTP : Using transversal operations
on two shared zeros generate an EPR pair. This is done by acting on Ri,j shares.

6. Sending the EPR Half to the Dealer Player Pj : Send half of the pair created from the Ri,j’s
to Pi.

7. Player Pi: Using the shares you received (using only ones which are correctly authenticated
by you) decode Ri and send it back to the dealer. Note that Pi knows ki, and does not need
the help of the classical TTP here.

8. Dealer: Decode the state you received, discarding any incorrectly authenticated shares.

9. Getting Rid of kdealer Players Pj with the help of classical-TTP : Using transversal Clifford
operations remove the top level authentication. This is possible as each Ri was authenticated
and the qudits were shared by Pi. Using transversal operation on these qudits we can decode
Ri and leave this coordinate protected only by WQSS using ki. This step is not essential for
VQSS but only for MPQC.

10. Sharing Dealer: Share your secret using quantum teleportation, passing measurement results
to the classical TTP . This only results in changes of x keys (just like the sharing in WQSS).
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We now sketch proofs of lemmas 6.1 and 6.2. Again we begin by assuming that the reconstructor
is honest. The two lemmas together prove the security of the protocol.

If the dealer is honest, with exponentially good probability the faulty players cannot affect the re-
construction of the secret. Moreover, no player but the receiver learns anything (in the information
theoretic sense) about the secret.

Proof. The proof of this lemma is very similar to that of lemma 5.1, and is actually quite simple. The
only subtle point is the fact that removing the top level authentication from the shares given to bad
players does not endanger the secret. This is true however as when the Ri shares were in the hands of
the bad players they were still authenticated, and when the authentication is removed these shares are
distributed via WQSS and can thus be eliminated by the bad players but not changed. Eliminating
the Ri shares which were once given to faulty player does not prevent reconstruction, as we have an
erasure code which can correct t erasures.

If the dealer is faulty, with exponentially good probability he can not change the secret he shared.
Moreover the faulty players do not learn ki values for honest players.

Proof. The second part of the lemma stems from the security of Clifford operations on encoded states.
As for the first part, if the dealer passed the tests, the state has a high fidelity to a 2-Good tree encoding
zeros shared by all the players. Creating a transversal EPR pair from the zeros succeeds because it
relies on the shares on the good players. As in the proof of lemma 5.2, quantum teleportation would
now result in creating an authenticated state, even if the dealer is faulty. This state can not be changed
— the coordinated Ri shared by honest players will be reconstructed correctly, and faulty players can
destroy at most t Ri coordinates, but not change any of them. As the top level encoding was an erasure
code which can correct t erasures this is ok.

F Performing Toffoli Using Toffoli States

Assume |x〉, |y〉 and |z〉 were authenticated by the same player. We will want to perform the Toffoli
gate z → z ⊕ x ∗ y. The problem is that we can only perform local Clifford operations and SUM’s. We
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will show how to implement Toffoli with Clifford operations and a known initial state using a technique
from [Sho96, NC00].

Let 1
p

∑
a,b |a, b, ab〉 be the Toffoli State. Then:

1

p

∑

a,b

|a, b, ab, x, y, z〉 C
−
1 −X4, C

−
2 −X5, C

+
6 −X3−→

1

p

∑

a,b

|a, b, ab+ z, x− a, y − b, z〉 H6−→

1

p
3
2

∑

a,b,ℓ

ωℓz|a, b, ab+ z, x− a, y − b, ℓ〉 Measure(6)−→

1

p

∑

a,b

ωℓz|a, b, ab + z, x− a, y − b, ℓ〉 C
+
1 −Zℓ2, Z

−ℓ
3 , Zero(6)−→

1

p

∑

a,b

ωℓz+ℓab−ℓ(ab+z)|a, b, ab + z, x− a, y − b, 0〉 Measure(5)−→

1√
p

∑

a

|a, b, ab + z, x− a, y − b, 0〉 X
y−b
2 , C+

1 −X
(y−b)
3 , Zero(5), Measure(4)−→

|a, y, ay + z, x− a, 0, 0〉 X
x−a
1 , C+

2 −X
(x−a)
3 , Zero(4)−→ |x, y, xy + z, 0, 0, 0〉

Performs Toffoli on |x〉, |y〉, |z〉

G Purifying Toffoli States

We present an algorithm to purify Toffoli states, which is interesting in its own right. Each Toffoli state
allows us to perform one Toffoli gate; a perfect Toffoli state gives a perfect Toffoli gate, whereas a state
with error ǫ produces a gate which is ǫ away from a correct Toffoli gate. Then we can use techniques of
fault-tolerant quantum computation to turn these noisy gates into an exponentially more reliable one.

Choose some m and d, with m = 3d+ 1, p > m, m = O(s).
Let Hgood be the space spanned by m Toffoli states which were affected by at most m/8 non-identity

Pauli operations. Then any m Toffoli states coming from players who have passed the polynomial state
tomography phase will have fidelity 1−2−O(s) to their projection on Hgood. We now show how to distill
a single exponentially good Toffoli state from the m states.

Let β1, . . . βm ∈ Zp be distinct nonzero points. Look at the state

∑

a,b

∑

deg(f)≤d

f(0)=a

∑

deg(g)≤d

g(0)=b

∑

deg(h)≤2d

h(0)=0

|f(β1), . . . , f(βm), g(β1), . . . , g(βm), h(β1), . . . , h(βm)〉.

Note that this state can be created exactly by Clifford operations (which are free in the model we
discuss). Now, for 1 ≤ i ≤ m use a polynomially good Toffoli state (one of the m states we have left
after the first part of the purification) to perform a Toffoli gate on coordinates i,m + i, 2m + i. If the
Toffoli states were ideal this should result in the state

|τ〉 =
∑

a,b

∑

deg(f)≤d

f(0)=a

∑

deg(g)≤d

g(0)=b

∑

deg(h)≤2d

h(0)=ab

|f(β1), . . . , f(βm), g(β1), . . . , g(βm), h(β1), . . . , h(βm)〉.
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As the entire m states have exponentially good probability to a state in Hgood, with exponentially good
probability we can correct d/2 mistakes on each one of the three codes, and be in a state which has
exponential good fidelity to |τ〉. Decoding the state using only Clifford group operations we get a state
with exponential fidelity to 1

p

∑
a,b |a, b, ab〉, which is the Toffoli State.

Note that the error rate in this purification step drops from η down to ηO(d). We can select a
(polynomially) large d or iterate the procedure with smaller d to obtain the desired fidelity.

Note that the procedure presented here could have worked for any state which is universal (with
the Clifford group) and not just the Toffoli state. This can be done by replacing the Toffoli’s acting
on coordinates i,m+ i, 2m + i by a short computation using the universal state which does Toffoli on
three qudits.

H Proof Sketch of Simulations

Static Adversary

With these key points in mind, we can present the simulation of the protocol, borrowing settings
and definitions from [Can01] and [BM04]. Let A be an adversary in the real protocol. Given A we define
a simulator S, which operates together with the Q−TTP that evaluates the function and simulates A’s
behavior. We describe S’s behavior in each phase of this simulation (also called the virtual protocol).

Preparation Phase: S runs the protocol simulating all players, with the faulty players acting
according to A. The simulation is exact (and trivial) as no input has been entered by the
honest players. At the end of this phase the simulator holds shared EPR pairs with every
faulty player who was not caught cheating.

Input Phase: Bad players who get caught during the preparation phase in the real protocol do not
enter their inputs to the computation. Therefore the simulator S will not enter their inputs to
the Quantum Trusted Third Party (Q−TTP ), which will inform all players that those players
are faulty. For other bad players, S continues to simulate the teleportation phase, passing the
classical data to the C − TTP computation.

S then decodes each teleported qudit using t+ 1 shares of the simulated QVSS, and passes it
as input to the Q− TTP . At this point S also instructs the honest players to pass their input
to the Q−TTP . To continue the simulation S needs to generate the classical information the
honest players would have sent to the C − TTP during the teleportation, and it does so by
generating uniformly random numbers instead.

Computation: S performs the simulation by running the bad players including their interaction
with the C − TTP and the environment. Note that during this phase the players may pass
outcomes of measurements to the C−TTP but never receive any message back. Inputs to the
C − TTP from the honest players are just random bits.

Output: The Q− TTP passes the outputs of the honest players directly to them, and passes the
outputs of the bad players to S. To deliver the output to a bad player, S first encodes it using
the QVSS and then teleports it as in the protocol. This teleportation uses only the coordinates
of the t+ 1 virtual good players to decode the classical data the C − TTP would send the the
faulty player.

Adaptive Adversaries

The simulation for an adaptive adversary is also quite simple. We only denote the differences
between the simulations:
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1. In the input phase: After decoding the input of a bad player and passing the ”real” input to the
Q − TTP the simulator (who holds at least n − t coordinates) can replace the value entered to
be |0〉 for all players.

2. In the computation phase we simulate all the players (with input |0〉). Note that the simulation is
exact from the point of view of the adversary (as it always holds less than t shares) and therefore
the distribution of the players who get corrupted during the algorithm is correct.
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