IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996

1769

Oblivious Transfers and Intersecting Codes

Gilles Brassard, Claude Crépeau, and Miklés Sdntha

Abstract—Assume A owns ¢ secret k-bit strings. She is willing
- to disclose one of them to 5, at his choosing, provided he does
not learn anything about the other strings. Conversely, 5 does not
want A to learn which secret he chose to learn. A protocol for
the above task is said to implement One-out-of-¢ String Oblivious
Transfer, denoted ({)-OTS. This primitive is particularly useful in
a variety of cryptographic settings. An apparently simpler task
corresponds to the case £k = 1 and ¢ = 2 of two 1-bit secrets:
this is known as One-out-of-two Bit Oblivious Transfer, denoted
(2)-OT>. We address the question of implementing (!)-OT%
assuming the existence of a (f)-OTg. In particular, we prove
that unconditionally secure (*)-OT5 can be implemented from
O(k) calls to (7)-OTs. This is optimal up to a small multiplicative
"~ constant. Our solution is based on the notion of self-intersecting
codes. Of independent interest, we give several efficient new
constructions for such codes. Another contribution of this paper
is a set of information-theoretic definitions for correctness and
privacy of unconditionally secure oblivious transfer.

Index Terms— Cryptography, oblivious transfer, intersecting
codes, algebraic-geometric codes, information theory.

1. INTRODUCTION

HE equivalence between cryptographic primitives is a
major research topic [6], [11], [16], [30], [12], [25], [13],
[311, [18], [15], and [17]. A large number of cryptographic
protocols have been shown equivalent to one another.
One-out-of-two String Oblivious Transfer, denoted (%)-OT5
is a primitive that originates with [43] (under the name of
“multiplexing”), a paper that marked the birth of quantum
cryptography. According to this primitive, one party A owns
two secret k-bit strings wo and w1, and another party B wants
to learn w,. for a secret bit ¢ of his choice. A is willing to
collaborate provided that B does not learn any information
about wg, but B will not participate if .4 can obtain information
about c. Independently from [43] but inspired by [39], a natural
restriction of this primitive was introduced subsequently in
[20] with applications to contract signing protocols: One-out-
of-two Bit Oblivious Transfer, denoted (f)-OTQ, concerns
the case £ = 1 in which wy and w; are single-bit secrets,
generally called by and b, in that case. In the other direction,
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a natural extension of (f)—OT’Qc called ANDOS (for All-or-
Nothing Disclosure of Secrets) was introduced in [6] but is
denoted (%)-OT} in the current paper: here A owns ¢ secret
k-bit strings wg, w1, -+, w1 and B wants to learn w,
for a secret integer 0 < ¢ < t of his choice. It must be
impossible for B to obtain information on more than one w;
and for A to obtain information about which secret B learned.
ANDOS has applications to mental poker [10], voting [38],
zero-knowledge proofs [2], [33], [41], exchange of secrets [7],
and identification [21], [17], to name just a few.

The main contribution of [6] was a reduction of (;)-OT’; to
(?) -OTjy, i.e., an efficient two-party protocol to achieve ANDOS
based on the assumption of the existence of a protocol for
the simpler type of oblivious transfer. The fact that the more
general ANDOS can be reduced to (f)-OTg is not surprising
because a number of authors [23], [24], [30], [12], [25], and
[15], have later shown that ()-OTs is sufficient to implement
any two-party computation. Nevertheless, our direct reductions
are interesting because of their greater efficiency. Even more
efficient direct reductions of this kind were subsequently
given in [19]. In the remainder of this section, we review
the basic intuition behind the reductions presented in [6].
Section II defines formally the type of functions needed to
achieve our goal, which we call zigzag functions, and it gives
formal definitions for oblivious transfer based on information-
theoretic considerations. Section III reduces the problem of
finding efficient zigzags to the notion of self-intersecting codes
[8]. Section IV surveys techniques for the construction of
efficient self-intersecting codes based on our earlier work in
[19]. Finally, Section V discusses open problems together
with a new research direction we are currently investigating:
an alternative approach based on privacy amplification [4]
to the problem considered in this paper and to a natural
generalization. The Appendixes contain proofs of the main
theorems of this paper.

A. Oblivious String Transfer: The Basic Reduction

For any n-bit string 2, let z* denote the ith bit of z. For a set
I={i1, 42, -, im}suchthat 1 <¢ <ip < - <ty <,
we define 2 to be the concatenation %t 22 - .. x'm. Assume
A and B dispose of a safe protocol to accomplish (2)-OTs.
They wish to perform (?)-OT5 over the two k-bit strings wo
and w,. First observe that performing (%)-OT; on each pair
wh, wi, 1 < i < k, in order to implement a (f)—OT’QC fails
dramatically since a cheating B can get w} and w? for instance,
i.e., partial information about both wo and w;.

Assume instead that we have a function f: {0, 1}" —
{0, 1}* with the property that for every two input strings
%o, 1 and every disjoint sets I, J C {1, 2, ---, n}, seeing
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the bits x) and z{ releases information on at most one of
f(xzo) or f(z1). We could then use the following protocol to
achieve (2)-OTS.

Protocol 1.1: (%)-OT’;(wg, wi)(¢)

1) A picks random xg, z1 € {0, 1}™ such that
f(@o) = wo and f(z1) = wy.

2) DO A transfers 2t (3)-0Ta (=, zi)(c) to B.

3) B recovers w, by computing f(z).

This protocol works since an honest B gets 2™ and

22, which gives him full information on w, and no information
on we. By the deﬁnmon of f, on the other hand, a cheating B
who gets z{ and z{ for some I # § # I cannot get information
on both f(zq) and f(z;) simultaneously.

Based on the above protocol, one of the main purposes of
this paper is-to discuss efficient solutions to the problem of
building such functions f.

1) A Simple Example: Consider the following function f:
{0, 1}3 — {0, 1}? that can be used to accomplish (%)-OTj3
from (2)-OT,, where & is used to denote the exclusive—or.

= (z' @ 2% 2* @ 2®).

If we use this function with the above protocol, we see
that if B gets z}, 22, =3 at Step 2) he will be able to
compute (wo, wg) = f (wo, %3, xo) and, similarly if he gets
z1, 22, z}. But if he gets 2§ and z{ for some I # 0 # I, then
one of I or I (call it Y) must be such that #Y = 1. Note that
the partial functions f(z!, *, %), f(*, 22, *), and f(x, *, z°)
give all four possible outputs given the four possible inputs.
Therefore, given only one bit of z, nothing is known about
the output of £, i.e., the corresponding w.

B. All-or-Nothing Disclosure of Secrets

Assume now A and B dispose of a safe protocol to
accomplish @) —OT’;. They wish to perform (D —OT"zc over the
" k-bit strings wo, wy, - - -, we_1. The idea is for A to choose
t — 2 random k-bit strings z1, 2, - - -, T1z. Using ( )- -OTE,
A offers B to choose to learn one of wq Or xi. Then, she
offers him to choose between wy @ 21 or 2 ® z1, and then
between wo D xo Or L3P 2, and so on. (A special case is made
for wy_1—see the formal description of the protocol below.)
If B wants to learn wg, he must do so in the first instance
of G) —OT’Z“, but then all information about x; is lost, which
precludes learning anything about the other w;’s. If B wants
to learn w; instead, he must obtain x; in the first instance
of (3)-OT5—thus forsaking all information about wo—and
then wy @ z1 in the second instance: this enables him to
compute wy = x1 B (wy ® z1) but at the cost of losing all
information about x5, and therefore about all subsequent w;’s
Similarly, B can learn any w; at the expense of A’s other
secrets. Clearly, A does not learn anything about which secret
B chose. A formal description of the protocol follows, in which
we consider Boolean expressions such as ¢ # ¢ to take binary
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value 1 when true and 0 when false. For simplicity, from now
on we denote W = wg, w1, -, Wr_1-

Protocol 1.2: (1)-OT§ (w’)(c)
1) A sets zg < 0%, z,_1 < w,_1 and picks random ‘
.’171, , Tg—o € {0 1}k
2) DO A transfers to B

G )-OTS (w: & 1, 7141 ® 5 a)(c£1) .
3) B sets ¢ < min {t—2, c} and recovers w, by

computing ED %.

We formally prove in Appendix I that Protocols 1.1 and 1.2
accomplish the task they were designed for'in a very strong

-sense defined in Section II-B.

II. FOrRMAL 'DEFINITIONS

In this section, we first give a formal definition for the notion
of zigzag functions. This notion is crucial to understanding
the connection between oblivious transfer and self-intersecting .
codes. Section II-B . introduces information-theoretic defini-
tions for correctness and privacy of a protocol for oblivious
transfer. We prove in Appendix I that the protocols of Section
I are correct and private implementations of their respective
version of oblivious transfer.

A. Definition of Zigzag Functions

Let F' be a finite set.
Deﬁnmon 2.1: Consider function f Fr — s F*. A subset
I C{1,2,---, n} biases f if

Jwg, wi €F*, zeF™ [#{z € F*|2f = 2!, f(2) = wo}
£ 4z e Pl = o, f(2) = wi}]
- )
Intuitively, I biases f if knowledge of the entries zf of an
otherwise unknown vector x € F™ may give information on
f(@).

Definition 2.2: An (n, k)-zigzag (over F) is a function
f: F* — F* such.that

n}INJ =0 = I or J does not bias f]

VI, JC{1,2,---,
2
or equivalently ‘
VIC{1,2, -, n}[lorl does not bias f]. (3)

Definition 2.3: Consider a function g: IN — IN. A family of
functions {f;}iew is a g(k)-zigzag family if for each integer
k there exists at least one 7 such that f;: F9*) — FF isa.
(g{k), k)-7igzag. This zigzag family is good if g(k) € O(k)
and is efficient if there exists an efficient algorithm D to find at
least one such 4 for any given k. Moreover, D must produce an
efficient algorithm &; to compute f; and an efficient algorithm
C; to produce random preimages of f; chosen according to the
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uniform distribution. Thus for any w € F kEand z € Fg(k),
x may be produced from a call on C;(w) only if fi(z) = w,
in which case it is produced with probability 2¢—9(%) Note
that algorithm C; must be probabilistic for this notion to make
sense. In all cases, algorithms are considered efficient provided
their expected running time is upper-bounded. by a polynomial
in the value of k.

In general, algorithm D may be probabilistic: there may
exist several different (g(k), k)-zigzags for each k and D(k)
may produce a different one each time it is invoked. Among
probabilistic zigzag families, we distinguish between Monte
Carlo and Las Vegas families. A Las Vegas zigzag family
respects the above definition unconditionally: no matter which
probabilistic choices are taken by D(k), it is guaranteed that
the resulting function is a (g(k), k)-zigzag. A Monte Carlo
zigzag family allows for a small probability of failure: it may
happen that a call on D(k) produces a function that is not
a zigzag. No warning is generally given when this occurs.
However, the probability of failure must be exponentially
small in k.

In the special case of a deterministic zigzag family, for
which algorithm D is deterministic, there is no reason for
i to be different from & and we may as well require that
Ju: F9%) — F* be a (g(k), k)-zigzag for each k.

Our goal is to find efficient g(k)-zigzag families for the
smallest possible function g(k). Note that efficient zigzag
families are precisely what is needed to implement Protocol
1.1 efficiently. Given k, which is the length of the two strings
wg and w; that A wants to involve in the protocol, .4 and B
use¢ D(k) to agree on f;, &;, and C;; A uses C; to produce zg
and z; from wg and w; at Step 1); and B uses &; to compute
w, from z at Step 3).

B. Information-Theoretic Definition of Oblivious Transfer

A cryptographic protocol is a multiparty synchronous pro-
gram that describes for each party the computations to be
performed- or the messages to be sent to some other party at
each point in time. The protocol terminates when no party
has any message to send or information to compute. The
protocols we describe in this paper all take place between
two parties A and B. We denote by .A and B the honest
programs to be executed by .4 and B: honest parties behave
according to A and B and no other program. In the following
definitions of correctness and privacy we also consider alter-
native dishonest programs A and B executed by A or B in an
effort to obtain unauthorized information from one another.
The definitions specify the result of honest parties interacting
together through a specific protocol as well as the possible
information leakage of an honest party facing a dishonest
party. We are not concerned with the situation where both
parties may be dishonest as they can do anything they like
in that case; we are only concerned with protecting an honest
party against a dishonest party. At the end of each execution
of a protocol, each party will issue an “accept” or “reject”
verdict regarding their satisfaction with the behavior of the
other party. Two honest parties should always issue “accept”
verdicts at the end of their interactions. An honest party will
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issue a “reject” verdict at the end of a protocol if he received
some message from the other party of improper format or
some message not satisfying certain conditions specified by
the protocol. We also implicitly assume certain time limits for
each party to issue messages to each other: after a specified
amount of time, a party will give up interacting with the other
party and issue a “reject” verdict.

As discussed in the Introduction, a (7)-OTs is a crypto-
graphic protocol for two participants that enables a sender A
to transfer one of two bits by or by to a receiver /3 who chooses
secretly which bit b, he gets. This is done in an all-or-nothing
fashion, which means that B cannot get partial information
about by and by at the same time, however malicious or
(computationally) powerful he is, and that .A finds out nothing
about the choice ¢ of B. Generalization of (?)'OTQ include
the (2)-OT%, in which the bits by and b are replaced by k-bit
strings wo and wy, and (})-OT}, in which A has several k-bit
strings wg, wi, -+, wy—1 from which B is given to choose
one. The choice ¢ is now from the set T'= {0, 1, ---, ¢ — 1}.

Formally speaking we describe a two-party protocol that
satisfies the following constraints of correctness and privacy.
These notions have been defined before for general protocols
by Crépeau [13], Micali and Rogaway [36], and Beaver [1]
using simulators. In this paper, we use the language of infor-
mation theory to express definitions similar to those introduced
by Crépeau [14]. Our goal is not to discuss definitions for
general two-party protocols: we restrict our study to oblivious
transfers.

1) Correctness: Let [Py, P1](a)(b) be the random variable
(since Py and P, may be probabilistic programs) that de-
scribes the outputs obtained by A and B when they execute
together the programs F, and P; on respective inputs ¢ and
b. Similarly, let [Py, P1]*(a)(b) be the random variable that
describes the total information (including not only messages
received and issued by the parties but also the result of any
local random sampling they may have performed) acquired
during the execution of protocol [Py, P;] on inputs a, b. Let
[Po, Pi]p(a)(b) and [Py, P1]p(a)(b) be the marginal random
variables obtained by restricting the above to only one party P.
The latter is often called the view of P [26]. In the following
definition, the equality sign (=) means that the distributions
on the left-hand side and the right-hand side are the same. The
symbol “¢” stands for the empty string.

Definition 2.4 Correctness: Protocol [A, B] is correct for
(1)-OTS if |

eV e Ftk ceT

Prob {[A, B)(@)(c) # (¢, we)} = 0 @

 for any program A there exists a probabilistic program S
st VYo e Ftf o ceT

(IA, Bls(@)(c)|B accepts)
= (lA4, B]s(S(@))(c)|B accepts). (5)

Intuitively, (4) means that if the protocol is executed as
described, it will accomplish the task it was designed for: B
receives word w,. and A receives nothing. Condition (5) means
that in situations in which B does not abort, A cannot induce
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a distribution on B’s output using a dishonest A that she could
not induce simply by changing the input words and then being
honest (which she can always do without being detected). This
second condition, called awareness in [36], is concerned with
the future use of the outputs of a protocol. If the output of
a protocol is to be used later in another protocol we wish
to guarantee that the output distribution of the first protocol
corresponds to the expected output distribution prescribed
by the task definition. Otherwise, trouble may force a party
to abort and thus disclose situational information about past
executions of the protocol. Although some authors [36] insist
that correctness and privacy must be defined together in-the
general case, the particular case of oblivious transfers allows
for independent definitions. Here, no correctness condition
involving B is necessary since A receives no output.

2} Privacy: Let W = Wy, Wi, -+, Wi_q and C be the
random variables taking values over Ftk and T that describe
A’s and B’s inputs. We assume that both A and B are aware
of the joint probability distribution of these random variables
Py o A sample 10, c is generated from that distribution and
@ is prov1ded as A’s secret input while ¢ is provided as B’s
secret input.

We assume for the next definition that the reader is familiar
with the notion of entropy H(X) of a random variable X. The
mutual information of two random variables X, Y is given by
I(X;Y) = H(X) — H(X|Y) and conditioned by a third
random variable Z

I(X;Y|Z)

= H(X|%) — H(XY, Z).

Definition 2.5 Privacy: Protocol [A,
OTh it VW € F* C e T
» for any program A

I(C; [A, Bl4(

B] is private for (})-

W)(C)IW) =0 ©®

o for any program B there exists a random variable C' =
EC) e T st

I(W; [4, Bls(W

The above two conditions are designed to guarantee that
each party is limited to the information he or she should get
according to the honest task definition. Condition (6) means
that .4 cannot acquire any information about C through the
protocol. Condition (7) means that B may acquire information
about only one of Wy, Wy, ---, W;_4 through the protocol.
In particular, no joint information about the ¢ words may be
obtained by the protocol. This is why our condition assumes
that B is given one of the words. We do not require that B
be given W because there is no way to prevent him from
obtaining any other We through otherwise honest use of the
protocol.

One of the main results of this paper is to provide a
transformation of any pretocol for (f) -OTy satisfying the
above constraints into a protocol for (})-OT% also satisfying
these constraints. Please consult Appendix I for proofs that
Protocols 1.1 and 1.2 are correct and private when based on
a correct and private (%)-OTs.

V)(©O)IC, We) = )
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Nevertheless, few protocols for (7)-OTj actually satisfy the
above coustraints perfectly. In general, the above constraints
are only satisfied statistically; statistical versions of constraints -
(4), (6), and (7) are obtained by replacing the right-hand side
zero by an exponentially decreasing function in a security
parameter s and by changing the equality (=) in constraint
(5) by statistical indistinguishability (for a precise definition
of this notion, consult [26], for instance). Protocols 1.1 and
1.2 may also be used to transform a protocol for (2)-OT,
satisfying statistical correctness and privacy into a protocol
for (£)-OT$ also satisfying these statistical constraints.

III. LINEAR ZIGZAGS

In order to generalize the simple example of Section I-Al,
we shall look at linear families of functions, i.e., functions
f: F* — F* that are defined by a k x n matrix M over
field F as f(z) = M=z, where both input z € F™ and eutput
f(z) € F* are considered as column vectors. For instance, the
function f of Section I-Al is defined by

110
M‘<011>

over the field Fy of integers modulo 2 in which addition and
multiplication correspond to the Boolean exclusive—or and
conjunction, respectively.

The use of linear functions has the advantage that it is
efficient to compute them and to compute random preimages of
arbitrary points in F*. Therefore, families of linear functions
are efficient in the sense of Définition 2.3, provided they can
be constructed efficiently. In other words, there must be an
efficient algorithm D that produces (the encoding of) a kx g{k).
matrix over [~ that defines a (g(k), k)-zigzag for each integer
k. Diffefent matrices may be produced on different calls on
D(k) if the zigzag family is probabilistic, and it may happen
with vanishingly small probability that a call on D(k) produces
a mafrix that does not define a zigzag at all if the family is
allowed to be Monte Carlo.

A. Matrix Characterization

Given a k X n matrix M over field F and integer 4,
1<i<m,let M be the ith column of M. For a set of indices
I={i1,19, -, im}psuch that 1 <4y <ip < - <iy <.,
we define M7 to be the matrix obtained by the concatenatiOn'
of columns M*M? ... Mim.  Remember that we defined
earlier a similar notion 2z’ for vectors that restricts z to its
components specified by I. Zigzag characterization (3) for
f(z) = Mz is equivalent to the characterization given by
the following proposition. ,

Proposition 3.1: A k x n matrix M over F defines a 11near

zigzag if and only if
VIC{L,2 -, nl[M fofohasrankk] ®)

Proof: We show that for all I, I does not blas Mz &
MT has rank k.

Ywg, w; € F* ,wEF”[#{zEF”|z =zl Mz—wo}
=#{z e F2f = 2!, Mz =w1}]
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k 516 |7

10 |11 ] 12 |13 [ 14} 15| 17

1(3 13|15 | 21

N(*)

25

29130 |41 |46 | 51 [ 53|54 | 63

Fig. 1. Small values of ((k). Bold values are known to be exact.

o #{zeF )2 =2, M2+ MTZT = we)
= #{z e F*|d =2, MT2" + MT2T = wi}
o #{ze FY! =4, Mzt + M7 = wp }
=#{z € Frlz! = 27, Mg+ M1 = wi }
& #{z e P2l =27, M2 = wy — MTz"}
=#{z e F"l =2’ MT2T = w; — MTz!}
s #{z e Fr M1zl = wo)
=#{z € F*|MT2T = wy}
since w — MTz! is a cyclic
permutation of the elements of F*
& M7 has rank k.

B.. A Trivial Lower Bound

Since our goal is to determine the smallest function ¢ for
which we can find efficient g(k)-zigzag families, we now give
a simple lower bound.

Proposition 3.2: For any linear g(k)-zigzag family, it must
be that g(k) > 2k — 1. ‘

- Proof: For any matrix of size k x n for n < 2k — 1,
any subset I such that #I = k — 1 cannot have rank k, nor
can I since

#l=n—F#l=n—-k+1<2k-1-k+1=k.

Note that the bound g(k) > 2k — 1 applies for any field F.

C. Code Characterization

We now introduce a new characterization of the matrices
that define zigzag functions in terms of the words of a code
generated by the rows of the matrix. For this purpose we need
the following definition. '

Definition: We say that two vectors vg, v1 € F™ intersect
if they have at least one nonzero component in common, i.e.,
if there exists an 4, 1 < 4 < n, such that v§v¢ # 0.

Proposition 3.4: A kxn matrix M satisfies characterization
(8) if and only if M satisfies

Ya, be F*\ {0*}[aM and bM intersect]. ©)
Proof: We actually show —(8) & —(9).

= Suppose 31 such that M and M’ have rank less than k.
Then there exists a nonzero vector a such that aM’ =
0#! and a nonzero vector b such that bM! = 0"~#1,
For those two vectors we have that M and M do not
intersect because for all ¢, (aM)* = 0, or (bM)? = 0.

Suppose that Ja, b € F* \ {0*} such that for all 1,
(aM)? = 0 or (bM)? = 0. Let I be the set of indices
such that (aM)* = 0. Clearly, aM! = 0% which
implies that M7 has rank less than k. Similarly, we
have that (bM)* = 0 for i € [. This means that

bMT = on—#I which implies that M7 has rank less
than k. ]

A Simple Family: The matrix M of Section I-Al is the
generating matrix of a [3, 2, 2] code C with the above in-
tersecting property. Using iterated direct product on C, a
family of [3%, 2%, 2°] .intersecting codes C*° was obtained by
Miklés [37], Cohen and Lempel [8], and Brassard, Crépeau,
and Robert [6]. The following section is devoted to the general
study of these codes.

IV. INTERSECTING CODES

Consider M as the generating matrix of a linear code.
Proposition 3.4 states that M defines an (n, k)-zigzag exactly
if the {n, k, d] code generated by M is such that any two
codewords c1, ce must intersect (not counting the zero code-
word). The minimal distance d of the code is uniquely defined
by M but is irrelevant at this point.

Such self-intersecting codes' [8] have been studied in the
past. For instance, Cohen and Lempel [8] have shown that
the dual of BCH codes of length n = 2™ — 1 and design
distance 2¢ + 1 < £2™/2 + 3 are intersecting. Retter [40]
showed that most (classical) Goppa codes (see [34]) of rate
less than 0.0817 are intersecting.

Define (k) min {n: there exists a binary [n,k,d]
intersecting code. Katona and Srivastava [28] have tabulated
the value of (k) for 1 < k& < 5, while Sloane [42] followed
by Cohén and Zemor [9] have provided upper bounds -on
several extra values, as shown in Fig. 1.

Katona and Srivastava also derived a lower bound on
the asymptotic behavior of [\(k)/k by combining the
McEliece-Rodemich—Rumsey—Welch bound for binary linear
codes with the simple bound obtained by observing that if
M defines an [n, k, d] intersecting code then d > k. A
corresponding upper bound was given by Komlés (reported
in [8] and [37]). These bounds are the following:

() “u (k)

A m sup 5 < 4.8188.
These bounds imply that, asymptotically, binary [ck, k, d]
intersecting codes exist for ¢ > 4.8188 but not for ¢ < 3.5277.
Nevertheless, no efficient zigzag family can be inferred from
the above results because even if most codes satisfy the
property, it is not clear how to obtain efficiently one that is
guaranteed to satisfy it.

The current section focuses on the polynomial-time con-
structability of such zigzag families. First we use in Section
IV-A the fact proven in Appendix II that for a = log, /3 4~
4.8188 and any v > «, a random k X vk binary matrix defines
a (vk, k)-zigzag with probability asymptotically close to 1,

3.5277 < likm inf

k— oo

IFor the remainder of this paper we omit the word “self” as no other
type of intersecting codes are considered. We have considered using pairs of
intérsecting codes but asymptotically we get the same results.
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while a random k£ x Ak binary matrix for any A < « defines a
(Mk, k)-zigzag with probability asymptotically close to 0. In
both cases, the convergence is exponentially fast in k. (The first
part of this result is implied by the proof of Cohen and Lempel
[8] of Komlés’ bound.) This yields an obvious ©(k?)-time
Monte Carlo binary -yk-zigzag family for any v > «.

Then, we show that the concatenation of intersecting codes
yields an intersecting code, and we use this fact in three
constructions. Section IV-C applies this technique to the
Monte Carlo family derived in Section IV-A to improve it
to a ©(k?)-time Las Vegas binary 2vk-zigzag family for
any v > «. Section IV-D presents an “efficient” O(k?)-
time deterministic binary O(k)-zigzag family based on the
algebraic—geometric codes of Goppa [27]. Finally, Section IV-
E uses the concatenation method in a construction reminiscent

of that of Justesen codes to obtain an O(k*)-time deterministic .

binary O(k)-zigzag family.

A. Monte Carlo Construction

In this section, we determine precisely the size of random
matrices over o that define binary linear zigzags. If k denotes
the number of rows, then there is a threshold function #(k),
which is linear in k, such that a random binary matrix with
more than ¢(k) columns defines a linear zigzag with high
probability, whereas a random binary matrix with less than
t(k) columns does not define a linear zigzag, also with high
probability.

Theorem 4.1: Set o = log4/34 and let M be a random
k x n matrix over Fq. Then for every constant € > 0, there
exists a constant 0 < 1 < 1 such that we have the following
two propositions:

1) Ifn> (1+€)ozk then Prob {M defines a linear zigzag}

> 1 —nF, and

2) Ifn < (1—¢)ak, then Prob { M does not define a linear

zigzag} > 1 — ¥,

The proof of this theorem may be found in Appendix IL.
Although the first part of this result is implied by the proof
of Cohen and Lempel [8] of Komlés® bound, we nevertheless
include it in our proof since it is only one line.

Remark: A similar analysis for the case of matrices over
F, shows: that for any & > 0, a random I, matrix of size
k x (2 + €)k has asymptotic probability 1 of being a zigzag,
as g — oo. This is optimal according to Proposition 3.2.

Time Complexity: As mentioned before, Proposition 1)
yields an efficient Monte Carlo binary vk-zigzag family for
any 4 > «. The running time of this construction is ©(k?).
On the other hand, Proposition 2) shows that this bound is

optimal in the sense that this technique cannot yield a binary"

Ak-zigzag family for any A < «.

B. Intersecting Concatenated Codes

In the remainder of this section, we consider several con-
structions of intersecting codes based on concatenation [22]
and [34]. We need the following Lemma, first used implicitly
in [19]:

Lemma 4.1: Let C, be an [n,, ko, d,| intersecting . code
over Fym and C; be an [n,, ki, d;] intersecting code over F,
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with m = k;. The Concatenated code C = C, » C; over [F is
an [non;, kok;, >d,d;] intersecting code.

Proof: The fact that the resulting code has parameters ~
[ons, koki, > dod;] is well known. Consider two nonzero
codewords cg and c; of the concatenated code C. By construc-
tion, both ¢g and ¢; are made of n, blocks of n; [, symbols
and must have been obtained through nonzero codewords cg
and ¢§ of the outer code C,. By assumption, ¢ and c{ intersect
in at least one position 7, thus block j of both ¢y and ¢; are
nonzero codewords of the inner code C;. By assumption, these
blocks intersect and thus ¢g and ¢; intersect as well. [ |

The following constructions are based on a simple observa-
tion of [19]: if M defines an [n, k, d] code for some d > n/2
then it must intersect (by a pigeon-hole argument: any two.
codewords of such a code intersect). Unfortunately, for binary
codes, Plotkin’s bound [34] implies that [n, k, n/2 + 1] codes
can only exist for n > 2%, which would result in terribly
wasteful zigzags. But for larger fields we can exploit this idea
and then combine it with concatenatlon to build intersecting
codes over Fs.

C. Las Vegas Construction

Although the result of Section IV-A implies that binary
linear (O(k), k)-zigzags exist and can be obtained easily by
picking one at random, it does not provide an efficient way
of building a guaranteed zigzag. The problem of checking
if a random matrix defines a zigzag seems rather hard: it
is trivially solvable in exponential time but no polynomial-
time algorithm for this problem is known. Nevertheless, using
concatenation we can build from a random matrix defining a
zigzag, new matrices exponentially. larger with no extra effort
to check if they also define a zigzag. Therefore, the exponential
time necessary to check.if a random matrix defines a zigzag
becomes negligible with respect to the full size of the matrix.
Kilian [32] inspired by the concatenation method of [19] has
exploited this into a Las Vegas construction of intersecting
codes that we now describe.

Construction: Consider any v > o = log, /34

s Use a [2m, 2™~ 2m=1 4 ] extended Reed—Solomon
code over Fom as outer code C,.

» Pick random m X ~ym binary matrices until one is found
that defines an intersecting code (this is. checked by an
exhaustive verification procedure) and use it as inner code
C;. '

The resulting C' = C, xC; is a [2vk, k, d] binary intersect-

ing code for & = m2™ ! and some d. Thus for any ‘choice
of v > «, this yields a (2vk, k)-zigzag when k = m2m~1,
Although this construction is limited to values of & of that
precise form, a similar construction using an incomplete outer -
Reed—Solomon code yields a similar expansion factor for any
value of k. Details of this generalization are left to the reader.

As observed by Cohen and Lempel ‘in [8], since the

Reed-Solomon codes are minimum-distance-separable, it is
impossible that similar codes with a smaller minimal ‘distance
intersect. Since the size of the random inner code is also
optimal in the sense of the previous section, we conclude that
this technique cannot yield (2Ak, k)-zigzag for X < o
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Time Complexity: By the result of Section IV-A, m x ym
matrices defining an intersecting code always exist and for
sufficiently large m, at least half of these matrices have this
property. Thus only a constant number of matrices must be
tested on the average.

Checking whether or not a matrix M has the property
requires to find all the codewords generated by M, which takes
time in O(m2™), and to check that each pair of codewords
intersect, which takes time in O(m2%™). The total average
running time is, therefore, in O(k?) since k = m2m—1,

D. Deterministic Construction a la Goppa

An alternative to Reed-Solomon codes for getting outer
codes with d > n/2, first put forward by Crépeau and Santha
[19], is to use algebraic-geometric (AG) codes of Goppa [27].
We rely on the work of Katsman, Tsfasman, and VIidut [29]
for their polynomial construction.

Proposition 4.2 [35]: If ¢ = p*>™ for some prime p, it is
possible to construct in polynomial time [N, K, D] codes over
F, with parameters everywhere along the line of equation

K D 1
St —=1- .
NS

N N

Corollary 4.3: For q > 9, some AG code of length N has
minimal distance at least N/2 + 1.
~ Construction: Let ¢ = 2?™ for m > 1, and let Tj =
3 - 1/Va-1).

* Use an [N, T'yN, N/2 + 1] AG code over F, for outer

code C,. )

e Use any [n;, 2m, d;] intersecting binary code as inner

code C;.

The result C = C, x C; is an [n;N, 2mI',N, d] binary
intersecting code with d > d;(N/2 + 1).

Examples: With m = 2 this construction yields [27k/2,
k, d] binary intersecting codes for k = 2N/3, if we. use the
[9, 4, 4] inner code of the simple family defined in Section
III-C. If, as in [19], we restrict our attention to inner codes
that are members of that family, the best field is Fgs6 with
an expansion factor of 7.7885, that is m = 4 yiclding
[405k /52, k, d] binary intersecting codes for k = 52N/15.
More recently, through this same construction, Cohen and
Zémor [9] have obtained a better expansion factor (6.4138)
for m = 5 using the binary [30, 10, 11] intersecting inner
code of the dual BCH code type [8].

Time Complexity: This is the drawback of this approach:
current constructions of AG codes require O(k>?) operations.
Thus although the construction is polynomial-time, it is quite
impractical. '

E. Deterministic Construction a la Justesen

We now take a deterministic approach similar to the con-
struction of Justesen [34] for efficiently constructable good
families of codes. Consider for a1, az, -+, aq € Fgm \{0™}
the following codes of length n = (a + 1)m over F:

Coi an, e, an = {u, a1, au, -+, aqu]: u € Fgm }.
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Denote h,(z) the g-ary entropy function
hg(z) = zlog, (¢ —1) — zlog, z — (1 — z)log, (1 — z).

Theorem 4.4: Some of the codes Cy, q,,...,a, Of length
n = (a + 1)m have minimal distance larger than yn as long
as hy(v) < af(a + 1) and m is large enough.

Proof: Notice that if

(ala Q2,00 aa) 7é (O/la O‘IZa T 01:1)

then
Call’o‘lz’ o = {On}

Cayaz, -+, aa

since any vector [u, v1, vg, - - - , Us] With nonzero v uniquely

defines

1 -1
, UV2U 7y -0

- -1
(a1, ag, -+, aq) = (v1u , Vgt ).

Therefore, a given vector [u # 0, vy, v2, -« , U] belongs to a
single Cy, s, -, o, - The number of nonzero words of length

n = (a + 1)m and weight less or equal to yn is [34]

y(a+1)m
(a+D)m\  \i o (a+Dmbg(v)
2 ( ; (g=1)<gq .

Since each such word belongs to a single code, only
g(@tDmha(Y) of these codes may have minimal distance
smaller than or equal to yn. The total number of Cy ay, -, o
is (g™ — 1)®. Therefore, codes Cy, a,, -, a, With minimal
distance at least yn exist provided (g™)(@tDha(™ <
(g™ — 1)®. This is guaranteed whenever hy(y) < a/(a + 1)
and m is large enough that (¢™)° < ¢™ — 1, where § =
(a4 Dhg(y)/a < 1. [
Corollary 4.5: From the above we get the following for
large enough m:
» For ¢ > 60, some [n = 3m, m, d] code C, s achieves
d > n/2.
e For g > 3, some [n = 10m, m, d] code Cu, as, -, a0
achieves d > n/2.
These codes are intersecting.
Construction: Let g = 2% for some b > 0 and a be such
that h4(1/2) < a/(a+ 1). Consider any m large enough that

q(a+l)mhq(1/2)/a < qm 1.

Take N = mq™.

e Use a [¢"™, ¢™/2, ¢™/2 + 1] extended Reed—Solomon
code over F,~ as primary outer code C,.

e Search through all the Cq, 4, ... ,a, Of length n =
(a+ 1)m over F, until an intersecting [(a + 1)m, m, d;]
code is found and use it as primary inner code C;.

e Use any [n;, b, d;] intersecting binary code as secondary
inner code Cj.



1776

The result Co = C, x C; is an [(a + 1)N, N/2, do]
intersecting code over F,, while C = Cp * Cr is a binary
[(@+ 1)n;N, bN/2, d] intersecting code for some do and d.

Examples:

« For b =6 we get that C, is a [64™, 64™ /2, 64™ /2 + 1]
code, C; a [3m, m, d;] code, and Cr a [15, 6, 6] code,
yielding a [15k, k, d] binary mtersectrng code, for k =
3m64™.

» For b =2 we getthat C, isa [4™, 4™ /2, 4™ /241] code,
C; a [10m, m, d;] code, and Cy a [3, 2, 2] code, yielding
a [30k, k, d] binary intersecting code, for k = m4™.

As in Section IV-C, a construction using an incomplete outer
Reed-Solomon code yields a similar expansion factor for any
value of k. Details of this generalization are left to the reader.

Time Complexity: The first example above is the fastest
“deterministic ‘construction known to the authors of a good
family of intersecting codes and thus of a good zigzag family.
For k = 3m64™, in the worst case only (64™ — 1)? <
(k/1gk)? codes C,, g will be tested for self-intersection.
Testing each such code requires comparing 642™ pairs of
codewords of length 3m. This requires O(k?/lg k) operations.
Therefore, the total running time is in O(k*/(1gk)®) in the
worse case. '

V. ONGOING RESEARCH AND OPEN QUESTIONS

‘We have shown how to construct linear-size zigzags both by
probabilistic and deterministic polynomial-time methods. The
exact complexity of the decision problem “Given a matrix M,
is it the generator of a zigzag?” still has to be determined (the
best we can say is that it is in co-NP). Another open problem
is to construct over F, some zigzag that will do better than
the asymptotic bounds of Section IV-A. Finally, we ask if
nonlinear functlons can generate smaller zigzags than linear
functions.

An important fact about the method based on zigzag func-
tions considered in this paper is that, by definition of the
zigzag, there is no way for 5 to learn information about both
wo and wy even though the zigzag function is known before
he gets to choose which bits to obtain through the (3)-OT,
instances in Protocol 1.1 (unless a Monte Carlo zigzag family
is used). We are currently investrgatmg [5] another approach
to the problem of reducing (2)-OT§ to (3)-OTs, in which A
does not reveal the function to 55 until after the necessary
( ) OTy’s have been performed.

Our new approach is based on privacy amplification, a
technique invented in [4] and refined in [3]. Assume A
knows a random n-bit string z about which B has partial
information. Privacy amplification allows A to shrink z to a
shorter string y about which B has an arbitrarily small amount
of information even if he knows'the recipe used by A to
transform x into y. Intuitively, this can be used to implement
(3)-OT% (wo, w1)(c) from (3)-OT; because A can offer B
to read one of two random strings zo or z; by a simple
sequence of (2)-OTa(xh, #1)(c;). Subsequently, A tells B
how to transform x into wg and x; into wy by way of privacy
amplification. An honest B who accessed all the bits of x, can
reconstruct w, from this information. But a dishonest B who
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accessed some of the bits of 2y and some of the bits of z
will not have enough information on at least one of them to
infer any information on the corresponding w- or even joint
information on both wg and w;.

Privacy amplification allows for a protocol that is srmpler
more general, and more efficient than the zigzag-based solution
investigated in this paper, but at the cost of a vanishingly
small failure probability. More specifically, 2k + s instances
of (2)-OT; are sufficient to implement (?)-OT% so that the
probability that a cheating B may learn information on both
strings is exponentially small in s. This is significantly better
than all the methods based on zigzag functions provided a
probability of failure is tolerable. Moreover, it allows the
implementation of (2)-OT} at no extra cost if the underlying
(?) -OT5 goes in the other direction, i.e., from B to A4, or
if it permits B to choose not only one bit or the other, but
also their exclusive—or. A drawback of this approach is that a
new function must be generated and transmitted at each run
of the protocol. We postpone our detailed exposition of this
alternative technique because our research is still ongoing [5].
In particular, we wish to investigate the extent of its generality.

APPENDIX I
PROOFS OF CORRECTNESS AND PRIVACY

Both Protocols 1.1 and 1.2 were described for the specific
set F' = {0, 1}. As a matter of fact, they would work equally
well for any finite set £. Thus in the proofs we do not consider
any particular F'.

A. Protocol 1.1

We show that given that f is an (n, k)-zigzag, Protocol 1.1
is correct and private. We assume the existence of a correct
and private subprotocol [/, V] for (3)-OTs.

Theorem Al: Protocol 1.1 is correct.

Proof:

Condition (4): Since [U, V] is correct for ( )-OT, by as-
sumption, B gets the desired values 7, at Step 2). By definition
of zp, =1 at Step 1), it is clear that the value computed at Step
3) is indeed w, = f(z¢).

Condition (5): By assumption U, V]is correct for (3)-0T,
and therefore for any program U there exists a probabilistic
program S; s.t. Vb3, b% € F, ¢ € {0, 1}

([ths, V)5 (bh, b2)(c)|B accepts)

= ([i4, V|5 (S(f b)) (c)|B accepts).  (10)

We now descrrbe the program for S as a functlon of A
On input (wg, w), for 1 <4 < n, run protocol [A, B] on
inputs (wo, wi)(0) until the ith execution of (3)-OT,. Call
U; the behavior of A from that point on umntil the end of
that execution. Let b§, b be the inputs to ( ) OT;, used by
A if such inputs exist. and otherwise let b, b be anything as
they are irrelevant anyway. By assumption, there exists S; that
satisfies (10). S sets (2§, 21) «— S;(bh, bi). If at any point B
aborts then S aborts as well. Finally, S returns f(zo), f(z1).
If A runs S and then A instead of running A then B will see
the same output distribution. - . : : |
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Theorem A2: Protocol 1.1 is private.

Proof: First notice that neither Step 1) nor Step 3)
involve information transfers from either parties. Thus the only
possible step.in which A or B could learn something about
their respective inputs is Step 2).

Condition (6): By assumption [/, V] is private for (})-OT,

and thus V X3, Xi € F, C € {0, 1} and any program U
I(C; [U, VIu(X5, X1)(O)| X5, Xi) = 0.

Therefore, 4 learns nothing about C through any of the
iterations of Step 2) either. Which means that YWy, W1 €
F*, C € {0, 1} and for any program A

I(C; [A, BJ34(Wo, W1)(C)|Wo, W1) = 0.

Condition v( 7): By assumption [/, V] is private for (7)-OTs
and therefore for each 4, VX§, Xi € F, C € {0, 1} and for
any program ) there exists a random variable C; = &,(C) €
{0, 1} s.t.

I((X5, X1); U, VIE(X5, XD(O)IC, X5) =0
and therefore

I((X()a Xl)ﬂ

4, Blg(Wo, W1)(O)|C, XE,, XE,, -+, X&) =0
which implies
I(Wo, W1);

[A7 B]Z;(W(), Wl)(C)IC7 Xév17 Xéz’ M) Xgn) =0
which is the same as

H((Wo, Wh)|[A, Bls(Wo, W1)(C),
1 2 n
C, XY, X3, XE)
= H((WO7 Wl)|07 Xé'17 Xévza ) ngn) (11)

From here on, we omit C as everything is conditioned by it.
Let C be the random variable such that

¢ = 0, if {i: C; = 1} does not bias f
1, otherwise.
Since f is a zigzag only W is biased by the Xé_ ’s and thus
there exists a random variable Wé = ®(Wg) such that
) = H((Wo, W1)|Wg).
(12)

H((Wo, Wh)|X§ , X%, X2

Now suppose

H((Wo, W1)|[A, Bls(Wo, W1)(C), W)
< H((Wo, Wy)|We).

This would imply by (11) and (12)

H((Wo, W1)|[A, Blg(Wo, w1)(©), We)
< H((Wo, W1)|[A, Blg(Wo, W1)(C),

1 2 n
XC‘1’ Xég’ R X(?n)
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which is impossible since Wé can be deduced from
Xél, Xa, ~++, Xg . Thus we also have
H((Wo, W)I[A, Ba(Wo, W1)(C), We)
= H((Wo, W1)[We).
Now using on both sides of the eq\iality a property of the
entropy function
HX|Y)=HY|X)+ HX)—-H(®Y)
we obtain
H([A, Bs(Wo, W1)(O), Wg|(Wo, W1))
— H([A, B5(Wo, W1)(O), Wg) + H((Wo, W1))
= H(Ws|(Wo, Wh)) - H(Wg) + H((Wo, W1))
and thus
H([A, Bl(Wo, Wi)(C)|(Wo, W1)) A A
= H([A, Bls(Wo, W1)(C), W) - HWg).
But by definition of the right-hand side

| H{([A, BJs(Wo, W1)(C)|(Wo, W1))

= H([A4, BI5(Wo, W1)(O)|We).
This clearly implies that the same is true for Wg
H(A, Bls(Wo, W2)(O)|(Wo, W1))

= H([A, Blg(Wo, W1)(C)|[W¢)
leading by inversion of the previous steps to the result

I((Wm Wl); [“Zta B]*B(Woa Wl)(o)|07 WC‘) =0. n

B. Protocol 1.2

We assume the existence of a correct and private subprotocol
i, V) for (3)-OTS.
Theorem A3: Protocol 1.2 is correct.
Proof-
Condition (4): Let A and B be as in Protocol 1.2. From the
description of the protocol we find

[A, Bl(wo, w1, -+, wi—1)(c) = (e, @%)

=0

é
Thus we have to show € z = w.. Remember from the

=0
protocol that _
_Jwidz;, ifc=1
7= Tip1 Dz, ifc#i

First, consider the case ¢ = ¢ < t — 1.

D==P

i=0 i=0
=2.P 21D - D2
=W BT BT PLe—1D---DX2D X1 D21 D To
=w. D xo )

= wWe.
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Second, consider the case ¢ = ¢t — 1.
P = 69 %
=0
—il’?t—l DL 2@ Tt2@xt-3D---
SR AN A

=Zt-1 D Zo

=Wt—1

69:?269371

= w,.
Therefore, we find

[A, Bl(wo, w1, -+, we—1)(c) =

(€, we)

as required.

Condition (5): By assumption [, V] is correct for (2) OTk
and therefore for any program U; there exists a probabilistic
program S; st. Vi, yi € F*, e € {0,1}

(s, V1s(yh, vi)(e)|B accept~s)
= ([td, VI5(Si(u5, v1))(e)|B accepts).

We now describe the program for S as a function of A.
On input @, for 0 < i < t — 2, run protocol [A, B] on
inputs («7)(0) until the ith execution of (%)-OTE. Call
the behavior of A from that point on until the end of that
execution. Let y§, 4 be the inputs to (2)-OT§ used by A
if such inputs exist and otherwise let y, 34 be anything as
they are irrelevant anyway. By assumption, there exists S; that
satisfies (13). S sets (25, 28) — S;(ud, y4). If at any pomt B
aborts then S aborts as well. Flnally, S retuns 20, 2} ® 2§,

2 @28, 2 S @t L @zél 2o I A
runs S and then A instead of running A then B will see the
same output distribution. [ |

Theorem A4: Protocol 1.2 is private.

Proof: As for Protocol 1.1 neither Step 1) nor Step 3)
involve information transfers from either parties. Thus the only
possible stép in which 4 or B could learn something about
their respective inputs is Step 2).

Condition (6): By assumption {{{, V] is private for (%)-OT%
and thus VYZ, Y} € F* C € T and any program U

I(C; U, VIa(Yg, YI)(C #4)|Y5, Yi) = 0.

Therefore, A learns nothing about C through any of the
iterations of Step 2) either. Which means that V WeFF Ce
T and for any program A

1(C; [A, Bl (W)(C)[W) = 0.

Condition (7): By assumption [, V] is private for (%)-0T%
and, therefore, for each i, VY, Y7 € F*, C € T and for any
program V) there exists a random variable C’ &(C)e {0 1}
s.t.

I(Ys, Y7 U, VIs(Ys, Yi)(C #4)|C, YE ) =0

where

ifC,=0

ifC, =1

i _ ) Wie X,
.

C Xi—l—l @ Xi)

(13)
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and, therefore

(W, X); 1A, Bls(W)(©)l, ¥, G Ye, o YER)=0
which means \
IW; |, Bls(W)(O)|C, Y5, YE,, -+ Yét ?)=0
which is the same ars
HOW|A, Bls(W)(C), O, Y3, Y&, - Y
= H(W|C, Y3, YE, , YE2). (4)

Let C be the random variable such that ‘

C=min{C; =0 or i=1-1}

By definition of the Yg_ ’s and because of the fact that the X;’s
are uniformly selectedyz at random we get

HW|C, Y3, Y2, LY 22)
= H(W[O, Xo, Xi, - >'Xéa Wéa YC’—H? e Yét 22
= BH(W|C, Wg). (15)

Now suppose ‘
H(WIIA, Bls(W)(C), C, W) < HW|C, We).

This would imply by (14) and (15) - -

H(W|[A B]E(W)(O), ¢, We)

HW|[A, Bls(W)(C), C, YA, Y, - Yi2)

which is impossible since W can be deduced from

Yt?

1 2
YCl’ Y Ci2

Thus we also have

H(W|IA, Bla(W)(C), G, Wg) = H(W|C, We)

or equivalently

IW; [4, Bis(W)(O)IC, We o) =0 u

APPENDIX II
PROOF OF THEOREM 4.1

Theorem 4.1: Set o = log, 54, and let M be a random
k x n matrix over Fg. Then for every constant ¢ > 0, there
exists a constant 0 < 7 < 1 such that we have the following
two propositions:
1) ¥n > (l—i—e)ock;, then Prob { M defines a linear zigzag}
> 1—n*, and
2) Ifn < (1—e)ak, then Prob {M does not define a linear
zigzag} > 1 — n*.
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Proof: Let a # b be two nonzero binary row vectors
of length %, and set S = {a, b}. Clearly, M defines a linear
zigzag if and only if for every such S, aM, and bM intersect.
Let Dg be the event that aM and bM do not intersect, and
let X5 be the associated indicator random variable. As every
bit in aM and bM is 1 with probability 1/2, we have

E[Xs] = Prob {Ds} = (Z)".

Let us define the random variable X = >~ o Xg. Then M
defines a linear zigzag if and only if X = 0. By linearity of

the expectation,
2k —1Y) [/3\"
w75 (3)

Proposition 1: n > (1 + €)ak. Then we have

Prob{X > 0} < E[X] < 2%* (%)n < (i—)k

Proposition 2: n < (1 — ¢)ak. Then using Chebishev’s
inequality, we have:
Var (X)
Blx]?
We will show that Var (X)) is exponentially small compared
to E[X]?. Let a; # b1 and as # by be nonzero row vectors
of length k, and set S1 = {a1, b1} and Sy = {az, b2}. Since
Xs, and Xg, are 0-1 random variables, we have:

Var(X) = Z cov (Xs,, Xs;)
S1, 52

= Z E[Xsll(E[XS2|XS1 = 1] - E[XS2])
51,852

Prob {X = 0} < Prob {|X — F[X]| > E[X]} <

If the random variables Xg, and Xg, are not indepen-
dent, then we will bound cov(Xs,, Xg,) from above by
E[Xs,|E[Xs,|Xs, = 1]. If Xg, and Xg, are independent,
then cov (Xg,, Xs,) = 0. The proof works out because for

most S; and Ss they are indeed independent. We will prove’

this with the help of the following lemma:
Lemma Al: Let M = (m!) be a random k x n binary

matrix. If for some ¢ > 0, {a1, - -+, a;} is a linearly indepen-
dent family of vectors of length k, then a1 M, ---, a, M are
independent random variables.

Proof: Let us fix ¢ binary vectors {by, --- , b;} of length

n. Let A be the ¢ X k matrix whose ith row is a;, and similarly
let B be the ¢ X n matrix whose ith row is b;. We will show that

Prob {AM = B} =27,

We can suppose without loss of generality that the first ¢
columns of A have rank ¢. Let us choose anyhow ¢! € F for
i=t+1,---, kand § =1, ---, n, and let us fix mf = cZ
Let A be the truncation of A to its first £ columns, and let M
be the truncation of M to its first ¢ rows. Finally, let B = (l;f )

be the ¢ X n matrix where

k
M=t S dd.

I=t+1
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The matrix A is regular; therefore, we have
Prob {AM = B} = 27"

This implies the result since this is true for every choice of

cl. ]

It follows that the random variables Xg, and Xg, are in-

‘dependent when the family of vectors U = {a1, by, a2, ba} is

linearly independent. Thus we have to consider the covariances
of only those random variables Xg, and Xg, where there
is some linear dependence among the vectors of U. We will
distinguish two cases according to the rank of U.

Case I: rank () = 3. Then there exist coefficients o,
B1, a2, B2 € Fa, not all 0, such that

w1a1 + ﬂlbl + anag + ﬂQbQ =0.

The number of such families is O(2%*). Since a; # b1, as #
bs, and the elements of I{ are nonzero vectors, we can suppose
without loss of generality that o; = ag = 1. Therefore, we
are left with the following possible dependencies among the
members of U: as = a; or as = ay + by or ag = a1 + ba
or as = a1 + b1 + ba. -

Let us suppose that a1 M and by M do not intersect. Then
we claim that in case of any of the above dependencies, the
probability that ap M and by M do not intersect either is at
most (%)" The proper analysis is quite similar in the four
cases, let us consider here in details, for example, the case
when ay = a;. Let 1 < i < n be an index. The string a?b}
with probability 1/3 takes each of the values 00,.01, and 10.
Since b5 = 1 with probability 1/2 independently from the
value of aibi, we have

1 1

i » 1 1 1

This is true independently for every 4, and the claim follows.
Therefore, the total contribution to the variance of these
families with respect to E[X]? is

2K ()" (Y
o(FHat) -0 ((57))

Case 2: rank (U) = 2. Then S; = Sa, and thé number of

aq - k_ -
such families is (2 5 1). In this case

E[Xs,]E[Xs,|Xs, = 1] = E[X5,]

and the total contribution to the variance with respect to E[X]?
is at most
1

7]~ 0 () .
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