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Oblivious Transfers and Intersecting Codes 
Gilles Brassard, Claude CrCpeau, and Mikl6s S6ntha 

Abstract-Assume A owns t secret k-bit strings. She is willing 
to disclose one of them to 13, at his choosing, provided he does 
not learn anything about the other strings. Conversely, B does not 
want A to learn which secret he chose to learn. A protocol for 
the above task is said to implement One-out-of-t String Oblivious 
Transfer, denoted ( 4 )  -0T;. This primitive is particularly useful in 
a variety of cryptographic settings. An apparently simpler task 
corresponds to the case k = 1 and t = 2 of two 1-bit secrets: 
this is known as One-out-of-two Bit Oblivious Transfer, denoted 
(?)-OTz. We address the question of implementing (i)-OT,” 
assuming the existence of a (?)-OTz. In particular, we prove 
that unconditionally secure (;) -OT,k can be implemented from 
0 ( k )  calls to (2)  -0Tz. This is optimal up to a small multiplicative 
constant. Our solution is based on the notion of self-intersecting 
codes. Of independent interest, we give several efficient new 
constructions for such codes. Another contribution of this paper 
is a set of information-theoretic definitions for correctness and 
privacy of unconditionally secure oblivious transfer. 

codes, algebraic-geometric codes, information theory. 
Index Terms- Cryptography, oblivious transfer, intersecting 

I. INTRODUCTION 

HE equivalence between cryptographic primitives is a T major research topic [6], [ill, 1161, 1301, [121, [25l, 1131, 
[31], [18], [15], and [17]. A large number of cryptographic 
protocols have been shown equivalent to one another. 

One-out-of-two String Oblivious Transfer, denoted (4) -0Tk 
is a primitive that originates with [43] (under the name of 
“multiplexing”), a paper that marked the birth of quantum 
cryptography. According to this primitive, one party A owns 
two secret k-bit strings wo and wl, and another party B wants 
to learn w, for a secret bit c of his choice. A is willing to 
collaborate provided that B does not learn any information 
about wF, but B will not participate if A can obtain information 
about e. Independently from [43] but inspired by [39], a natural 
restriction of this primitive was introduced subsequently in 
[20] with applications to contract signing protocols: One-out- 
of-two Bit Oblivious Transfer, denoted ( 9 )  -OTz, concerns 
the case k = 1 in which WO and w1 are single-bit secrets, 
generally called bo and bl  in that case. In the other direction, 
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a natural extension of (P)-OTk called ANDOS (for All-or- 
Nothing Disclosure of Secrets) was introduced in [6] but is 
denoted (f)-OT; in the current paper: here A owns t secret 
k-bit strings WO,  w1, ..., wt-l and B wants to learn w, 
for a secret integer 0 5 c < t of his choice. It must be 
impossible for B to obtain information on more than one w, 
and for A to obtain information about which secret B learned. 
ANDOS has applications to mental poker [lo], voting [38], 
zero-knowledge proofs [2], [33], [41], exchange of secrets [7], 
and identification 1211, [17], to name just a few. 

The main contribution of [6] was a reduction of ( 4 )  -0Tk to 
(;) -0T2, i.e., an efficient two-party protocol to achieve ANDOS 
based on the assumption of the existence of a protocol for 
the simpler type of oblivious transfer. The fact that the more 
general ANDOS can be reduced to (?)-OT2 is not surprising 
because a number of authors 1231, [24], [30], [12], [25], and 
[15], have later shown that (9)-OT2 is sufficient to implement 
any two-party computation. Nevertheless, our direct reductions 
are interesting because of their greater efficiency. Even more 
efficient direct reductions of this kind were subsequently 
given in [19]. In the remainder of this section, we review 
the basic intuition behind the reductions presented in 161. 
Section I1 defines formally the type of functions needed to 
achieve our goal, which we call zigzag functions, and it gives 
formal definitions for oblivious transfer based on information- 
theoretic considerations. Section I11 reduces the problem of 
finding efficient zigzags to the notion of self-intersecting codes 
[8]. Section IV surveys techniques for the construction of 
efficient self-intersecting codes based on our earlier work in 
[19]. Finally, Section V discusses open problems together 
with a new research direction we are currently investigating: 
an alternative approach based on privacy amplification [4] 
to the problem considered in this paper and to a natural 
generalization. The Appendixes contain proofs of the main 
theorems of this paper. 

A. Oblivious String Transfer: The Basic Reduction 

For any n-bit string x,  let x2 denote the ith bit of x.  For a set 
I = { i l ,  i 2 ,  ..., im} such that 15 i l  < i z  < ... < i, 5 n, 
we define XI to be the concatenation xZ1 x22 . . . xzm . Assume 
A and B dispose of a safe protocol to accomplish (9)-OT2. 
They wish to perform (?)-OT: over the two k-bit strings WO 

and w1. First observe that performing (9)-OT2 on each pair 
wh, w i ,  1 5 i 5 k ,  in order to implement a (?)-OT$ fails 
dramatically since a cheating B can get w i  and w: for instance, 
i.e., partial information about both wo and w1. 

Assume instead that we have a function f :  ( 0 ,  l}” + 
( 0 ,  l}k with the property that for every two input strings 
xo, 2 1  and every disjoint sets I ,  J C {I, 2 ,  . . . , n}, seeing 
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the bits x i  and x{ releases information on at most one of 
f ( s 0 )  or f (x1) .  We could then use the following protocol to 
achieve (5) -0T;. 

value 1 when true and 0 when false. For simplicity, from now 
on we denote w' = WO, w1, ..., wt-1. 

Protocol 1.1: ( ~ ) - o T ~ ( w ~ ,  wl)(c) 

1) A picks random 20, XI E (0, 1)" such that 

2) DO A transfers z2 

3) B recovers w, by computing f ( z ) .  

This protocol works since an honest B gets xi1' . I"' and 
x!, which gives him full information on w, and no information 
on we. By the definition of f ,  on the other hand, a cheating B 
who gets x i  and xf for some I # 0 # 7 cannot get information 
on both f(x0) and f (x1)  simultaneously. 

Based on the above protocol, one of the main purposes of 
this paper is to discuss efficient solutions to the problem of 
building such functions f .  

1)  A Simple Example: Consider the following function f :  
(0, 1}3 i (0, 1}2 that can be used to accomplish (;)-OTf 
from (?)-OT2, where @ is used to denote the exclusive-or. 

f ( x o )  = W O  and f(xi)  = wi. 
n 

2=1 
(?>-OT2(22,, x i ) ( c )  to B. 

f(x1, 2 2 ,  x3) = (x' @ 2, x2 a3 x3). 

If we use this function with the above protocol, we see 
that if B gets x i ,  xg, x i  at Step 2) he will be able to 
compute (w;, w,") = f ( x i ,  xg, xi], and, similarly if he gets 
x!, IC:, x:. But if he gets x; and x: for some I # 0 # 1, then 
one of I or 1 (call it Y )  must be such that #Y = 1. Note that 
the partial functions f (d ,  *, *), f ( * ,  x2, *), and f ( * ,  *, z3) 
give all four possible outputs given the four possible inputs. 
Therefore, given only one bit of IC, nothing is known about 
the output of f ,  i.e., the corresponding w. 

B. All-or-Nothing Disclosure of Secrets 

Assume now A and B dispose of a safe protocol to 
accomplish ( 9 )  -0T;. They wish to perform (i) -0T; over the 
k-bit strings WO, w1, . . . , wt-1. The idea is for A to choose 
t - 2 random k-bit strings 2 1 ,  x2,  . . ., xt-2. Using (f)-OTi, 
A offers B to choose to learn one of WO or x1. Then, she 
offers him to choose between w1 @ x1 or x2 XI, and then 
between ~ 2 ~ 3 x 2  or ~ 3 ~ 3 x 2 ,  and so on. (A special case is made 
for wt-l--see the formal description of the protocol below.) 
If B wants to learn WO, he must do so in the first instance 
of (P)-OT;, but then all information about 2 1  is lost, which 
precludes learning anything about the other ~0,'s. If B wants 
to learn w1 instead, he must obtain x1 in the first instance 
of (2) -0Ti-thus forsaking all information about wo-and 
then w1 @ 2 1  in the second instance: this enables him to 
compute w1 = x1 @ (w1 @ 21) but at the cost of losing all 
information about 2 2 ,  and therefore about all subsequent w,'s. 
Similarly, B can learn any w, at the expense of A's other 
secrets. Clearly, A does not learn anything about which secret 
B chose. A formal description of the protocol follows, in which 
we consider Boolean expressions such as c # i to take binary 

Protocol 1.2: (~)-oT$(G)(c) 

1) A sets 50 t O k ,  xt-l t wt-l and picks random 

2) 56 A transfers to B 

3) 23 sets E t min {t - 2, e}  and recovers w, by 

21, . - - ,  xt-2 E (0, l}k .  

zz t (;)-OT;(wz C3 xz, &+1 @ xz)(c # i) . 
,=O 

E 

z = o  
computing @ z,. 

We formally prove in Appendix I that Protocols 1.1 and 1.2 
accomplish the task they were designed for in a very strong 
sense defined in Section 11-B. 

11. FORMAL DEFINITIONS 

of zigzag functions. This notion is crucial to understanding 
the connection between oblivious transfer and self-intersecting 
codes. Section 11-B introduces information-theoretic defini- 
tions for correctness and privacy of a protocol for oblivious 
transfer. We prove in Appendix I that the protocols of Section 
I are correct and private implementations of their respective 
version of oblivious transfer. 

A. Dejinition of Zigzag Functions 

In this section, we first give a formal defi 

Let F be a finite set. 
Dejinition 2.1: Consider function f :  F" 4 F k .  A subset 

I C (1, 2, ... 

3 wo1 ~1 €Fk, x E F" [#(z E FnlzI = x', f ( z )  = WO} 

n} biases f if 

# #{z E F";zI = X I ,  f ( z )  = Wl}].  

(1) 

Intuitively, I biases f if knowledge of the entries xr of an 
otherwise unknown vector x E F" may give information on 

DeJinition 2.2: An (n, k)-zigzag (over F )  is a function 
f :  F" + Fk such that 

V I ,  J C (1, 2, ... , n}[ InJ  = 0 3 1 or J does not bias f ]  

f ( x ) .  

(2) 

or equivalently 

V I  C (1, 2,  . . . , n} [I or 1 does not bias f]. (3)  

Dejinition 2.3: Consider a function g :  IN 4 IN. A family of 
functions { f , } z , ~  is a g(k)-zigzag family if for each integer 
k there exists at least one z such that fz :  P@) ---f F k  is a 
( g ( k ) ,  k)-zigzag. This zigzag family is good if g(k )  E O ( k )  
and is eJjCicient if there exists an efficient algorithm D to find at 
least one such i for any given k .  Moreover, D must produce an 
efficient algorithm ,Ez to compute f, and an efficient algorithm 
C, to produce random preimages of fi chosen according to the 
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uniform distribution. Thus for any w E F k  and II: E Fg(’”), 
II: may be produced from a call on C,(w) only if f , (z)  = w ,  
in which case it is produced with probability 2’-g(’). Note 
that algorithm C, must be probabilistic for this notion to make 
sense. In all cases, algorithms are considered efficient provided 
their expected running time is upper-bounded by a polynomial 
in the value of k .  

In general, algorithm 27 may be probabilistic: there may 
exist several different ( g ( k ) ,  k)-zigzags for each k and D ( k )  
may produce a different one each time it is invoked. Among 
probabilistic zigzag families, we distinguish between Monte 
Carlo and Las Vegas families. A Las Vegas zigzag family 
respects the above definition unconditionally: no matter which 
probabilistic choices are taken by D ( k ) ,  it is guaranteed that 
the resulting function is a ( g ( k ) ,  k)-zigzag. A Monte Carlo 
zigzag family allows for a small probability of failure: it may 
happen that a call on D ( k )  produces a function that is not 
a zigzag. No warning is generally given when this occurs. 
However, the probability of failure must be exponentially 
small in k .  

In the special case of a deterministic zigzag family, for 
which algorithm 27 is deterministic, there is no reason for 
i to be different from k and we may as well require that 
f k :  F g ( k )  + F k  be a ( g ( k ) ,  k)-zigzag for each k.  

Our goal is to find efficient g(k)-zigzag families for the 
smallest possible function g( k ) .  Note that efficient zigzag 
families are precisely what is needed to implement Protocol 
1.1 efficiently. Given k ,  which is the length of the two strings 
W O  and w1 that A wants to involve in the protocol, A and B 
use D ( k )  to agree on f , ,  &%, and C,; A uses C, to produce I I : ~  

and 2 1  from W O  and w1 at Step 1); and B uses E, to compute 
w, from z at Step 3). 

B. Information-Theoretic Dejinition of Oblivious Transfer 

A cryptographic protocol is a multiparty synchronous pro- 
gram that describes for each party the computations to be 
performed or the messages to be sent to some other party at 
each point in time. The protocol terminates when no party 
has any message to send or information to compute. The 
protocols we describe in this paper all take place between 
two parties A and B. We denote by A and the honest 
programs to be executed by A and B: honest parties behave 
according to A and 8 and no other program. In the following 
definitions of correctness and privacy we also consider alter- 
native dishonest programs d and @ executed by A or 23 in an 
effort to obtain unauthorized information from one another. 
The definitions specify the result of honest parties interacting 
together through a specific protocol as well as the possible 
information leakage of an honest party facing a dishonest 
party. We are not concerned with the situation where both 
parties may be dishonest as they can do anything they like 
in that case; we are only concerned with protecting an honest 
party against a dishonest party. At the end of each execution 
of a protocol, each party will issue an “accept” or “reject” 
verdict regarding their satisfaction with the behavior of the 
other party. Two honest parties should always issue “accept” 
verdicts at the end of their interactions. An honest party will 

issue a “reject” verdict at the end of a protocol if he received 
some message from the other party of improper format or 
some message not satisfying certain conditions specified by 
the protocol. We also implicitly assume certain time limits for 
each party to issue messages to each other: after a specified 
amount of time, a party will give up interacting with the other 
party and issue a “reject” verdict. 

As discussed in the Introduction, a (;)-OTz is a crypto- 
graphic protocol for two participants that enables a sender A 
to transfer one of two bits bo or bl to a receiver B who chooses 
secretly which bit b, he gets. This is done in an all-or-nothing 
fashion, which means that B cannot get partial information 
about bo and bl at the same time, however malicious or 
(computationally) powerful he is, and that A finds out nothing 
about the choice c of B. Generalization of (;)-OTz include 
the (;)-OTi, in which the bits bo and bl are replaced by k-bit 
strings W O  and w1, and (i)-OT;, in which A has several k-bit 
strings W O ,  w1, . . . , wt-l from which B is given to choose 
one. The choice c is now from the set T = (0, 1, ... , t - l}. 

Formally speaking we describe a two-party protocol that 
satisfies the following constraints of correctness and privacy. 
These notions have been defined before for general protocols 
by Crkpeau [13], Micali and Rogaway [36], and Beaver [l] 
using simulators. In this paper, we use the language of infor- 
mation theory to express definitions similar to those introduced 
by CrCpeau [14]. Our goal is not to discuss definitions for 
general two-party protocols: we restrict our study to oblivious 
transfers. 

1 )  Correctness: Let [Po, PI] ( U )  ( b )  be the random variable 
(since Po and Pl may be probabilistic programs) that de- 
scribes the outputs obtained by A and 8 when they execute 
together the programs Po and PI on respective inputs a and 
b. Similarly, let [PO, Pl]*(u) (b)  be the random variable that 
describes the total information (including not only messages 
received and issued by the parties but also the result of any 
local random sampling they may have performed) acquired 
during the execution of protocol [Po, P I ]  on inputs a ,  b. Let 
[PO, PI]  ( U )  ( b )  and [Po, PI]  > ( a )  ( b )  be the marginal random 
variables obtained by restricting the above to only one party P. 
The latter is often called the view of P [26]. In the following 
definition, the equality sign (=) means that the distributions 
on the left-hand side and the right-hand side are the same. The 
symbol “E” stands for the empty string. 

Dejinition 2.4 Correctness: Protocol [A, B] is correct for 
(;)-OT; if 

VG E F t k ,  c E T 

Prob{[A, 8 ] ( G ) ( c )  # ( E ,  w c ) }  = 0 (4) 

for any program d there exists a probabilistic program 
s.t. VG E F t k ,  c E T 

([d, B ] a ( w ’ ) ( c ) l ~  accepts) 
= ([A, B ] a ( S ( t ~ ) ) ( c ) l ~  accepts). (5 )  

Intuitively, (4) means that if the protocol is executed as 
described, it will accomplish the task it was designed for: B 
receives word w, and A receives nothing. Condition (5) means 
that in situations in which B does not abort, A cannot induce 
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a distribution on B's output using a dishonest d that she could 
not induce simply by changing the input words and then being 
honest (which she can always do without being detected). This 
second condition, called awareness in [36], is concerned with 
the future use of the outputs of a protocol. If the output of 
a protocol is to be used later in another protocol we wish 
to guarantee that the output distribution of the first protocol 
corresponds to the expected output distribution prescribed 
by the task definition. Otherwise, trouble may force a party 
to abort and thus disclose situational information about past 
executions of the protocol. Although some authors [36] insist 
that correctness and privacy must be defined together in the 
general case, the particular case of oblivious transfers allows 
for independent definitions. Here, no correctness condition 
involving B is necessary since A receives no output. 

2) Privacy: Let @ = WO, W1, . . .  , Wt-l and C be the 
random variables taking values over Ftk and T that describe 
A's and B's inputs. We assume that both A and B are aware 
of the joint probability distribution of these random variables 
P$, c. A sample 6, c is generated from that distribution and 
w' is provided as A's secret input while c is provided as B's 
secret input. 

We assume for the next definition that the reader is familiar 
with the notion of entropy H ( X )  of a random variable X .  The 
mutual information of two random variables X ,  Y is given by 
I ( X ;  Y )  = N ( X )  - H(X1Y)  and conditioned by a third 
random variable Z 

I ( X ;  Y I Z )  = N ( X / Z )  - H(XIY,  2). 

Dejinition 2.5 Privacy: Protocol [A, E] is private for (E)-  

* for any program Ji 
OT; i f V @  E F ~ ~ ,  c E T 

* for any program B there exists a random variable C = 
E(C) E T s.t. 

I ( @ ;  [A, B&(@)(C)IC, We) = 0. (7) 

The above two conditions are designed to guarantee that 
each party is limited to the information he or she should get 
according to the honest task definition. Condition (6) means 
that A cannot acquire any information about C through the 
protocol. Condition (7) means that B may acquire information 
about only one of WO, W1, . . . , Wt-l through the protocol. 
In particular, no joint information about the t words may be 
obtained by the protocol. This is why our condition assumes 
that is given one of the words. We do not require that B 
be given WC because there is no way to prevent him from 
obtaining any other WE through otherwise honest use of the 
protocol. 

One of the main results of this paper is to provide a 
transformation of any protocol for (?)-OT~ satisfying the 
above constraints into a protocol for (f)-OT; also satisfying 
these constraints. Please consult Appendix I for proofs that 
Protocols 1.1 and 1.2 are correct and private when based on 
a correct and private (;)-OTa. 
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Nevertheless, few protocols for ( 9 )  -0T2 actually satisfy the 
above constraints perfectly. In general, the above constraints 
are only satisfied statistically; statistical versions of constraints 
(4), (6), and (7) are obtained by replacing the right-hand side 
zero by an exponentially decreasing function in a security 
parameter s and by changing the equality (=) in constraint 
(5 )  by statistical indistinguishability (for a precise definition 
of this notion, consult [26], for instance). Protocols 1.1 a d  
1.2 may also be used to transform a protocol for (?)-OTz 
satisfying statistical correctness and privacy into a protocol 
for (t) -0T; also satisfying these statistical constraints. 

111. LINEAR ZIGZAGS 

In order to generalize the simple example of Section I-A1, 
we shall look at linear families of functions, i.e., functions 
f :  IF" -+ Fk that are dejined by a k x n matrix M over 
field IF as f ( x )  = Mx, where both input x E F" and output 
f (x) E Fk are considered as column vectors. For instance, the 
function f of Section I-A1 is defined by 

1 1 0  
M = ( 0  1 1) 

over the field IF2 of integers modulo 2 in which addition and 
multiplication correspond to the Boolean exclusive-or and 
conjunction, respectively. 

The use of linear functions has the advantage that it is 
efficient to compute them and to compute random preimages of 
arbitrary points in IF'. Therefore, families of linear functions 
are eficient in the sense of Definition 2.3 provided they can 
be constructed efficiently. In other words, there must be an 
efficient algorithm 2) that produces (the encoding of) a k x g ( k )  
matrix over F that defines a ( g ( k ) ,  k)-zigzag for each integer 
k .  Different matrices may be produced on different calls on 
D ( k )  if the zigzag family is probabilistic, and it may happen 
with vanishingly small probability that a call on D ( k )  produces 
a matrix that does not define a zigzag at all if the family is 
allowed to be Monte Carlo. 

A. Matrix Characterization 
Given a IC x n matrix M over field IF and integer i, 

1 5 z 5 n, let Mi be the zth column of M .  For a set of indices 
I = (21, 22, e - . ,  z,} such that 15 il < i 2  < < i, 5 n, 
we define M I  to be the matrix obtained by the concatenation 
of columns M"Mzz M%m. Remember that we defined 
earlier a similar notion z' for vectors that restricts z to its 
components specified by 1. Zigzag characterization (3) for 
f(x) = M x  is equivalent to the characterization given by 
the following proposition. 

Proposition 3.1: A k x n matrix M over IF defines a linear 
zigzag if and only if 

V I  2 (1, 2 ,  . . .  , n}[M' or M'has rank k ] .  (8) 

Proofi We show that for all I ,  I does not bias Mx 
M' has rank 5. 

vwo, W1 E P, x E IF" [# ( z  E V I Z 1  = z1, M z  = WO} 

= # { z  E F"lzI = X I ,  M z  = W l } ]  
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IC 1 2 3  4 5 6 7 8 9 

n ( k )  1 3 6 9 13 15 21 25 29 30 41 46 

1 0 1 1 1 2 1 3 1 4 1 5 1 7  

51 53 54 63 

Fig. 1. Small values of n ( k ) .  Bold values are known to be exact. 

e # { z  E = X I ,  M'zI + M'z' = WO} 

e # { z  E F"l2 = 2, MIXI + MTz' = WO} 

e # { z  E P l z I  = X I ,  MIz I  - - WO - M I X I }  

e # { z  E PlM'z' = WO} 

= # { z  E lFnlzI = XI, MIzI  + M'z' = W I }  

= # { z  E P l z I  = X I ,  M I X I  + M'z' = W I }  
_ _  

= # { z  E P l z I  = 21, MTzT = w1 - M I X I }  

= # { z  E IFnpf'z' = W l }  

since w - M I X I  is a cyclic 
permutation of the elements of I F k  

e M' has rank k .  

B. A Trivial Lower Bound 
Since our goal is to determine the smallest function g for 

which we can find efficient g(k)-zigzag families, we now give 
a simple lower bound. 

Proposition 3.2: For any linear g(k)-zigzag family, it must 
be that g ( k )  2 2k - 1. 

Proof: For any matrix of size k x n for n < 2k - 1, 
any subset I such that # I  = k - 1 cannot have rank 5 ,  nor 
can 7 since 

# I =  n - # I  = n - k + 1 < 2k - 1 - k +  1 = k .  w 

Note that the bound g ( k )  2 2k - 1 applies for any field IF. 

C. Code Characterization 

We now introduce a new characterization of the matrices 
that define zigzag functions in terms of the words of a code 
generated by the rows of the matrix. For this purpose we need 
the following definition. 

Dejinition: We say that two vectors VO,  VI E IF" intersect 
if they have at least one nonzero component in common, i.e., 
if there exists an i, 1 5 i 5 n, such that V;V; # 0. 

Proposition 3.4: A k x n matrix M satisfies characterization 
(8) if and only if M satisfies 

V u ,  b E I F k  \ {O'}[aM and bM intersect]. (9) 

Proo) We actually show 1 (8) e 7 (9). 
+ Suppose 31 such that M I  and M r  have rank less than k .  

Then there exists a nonzero vector a such that aMI = 
O#I and a nonzero vector b such that bMI = On-#'. 
For those two vectors we have that aM and bM do not 
intersect because for all i ,  (uM)' = 0, or (bM)' = 0. 

-e Suppose that 3a, b E Fk \ { O L }  such that for all i ,  
(uM)' = 0 or (bM)' = 0. Let I be the set of indices 
such that (uM)' = 0. Clearly, aM' = O#' which 
implies that MI has rank less than k.  Similarly, we 
have that (bM)' = 0 for i E 1. This means that 

bM' = On-#' which implies that M' has rank less 
than k .  w 

A Simple Family: The matrix M of Section I-A1 is the 
generating matrix of a [3,  2, 21 code C with the above in- 
tersecting property. Using iterated direct product on C, a 
family of [3', 2", 2'1 ,intersecting codes C" was obtained by 
Miklds [37], Cohen and Lempel 181, and Brassard, Crkpeau, 
and Robert [6]. The following section is devoted to the general 
study of these codes. 

IV. INTERSECTING CODES 

Consider M as the generating matrix of a linear code. 
Proposition 3.4 states that M defines an (n,  k)-zigzag exactly 
if the [n, k ,  d] code generated by M is such that any two 
codewords c1, cz must intersect (not counting the zero code- 
word). The minimal distance d of the code is uniquely defined 
by M but is irrelevant at this point. 

Such self-intersecting codes' [SI have been studied in the 
past. For instance, Cohen and Lempel [8] have shown that 
the dual of BCH codes of length n = 2" - 1 and design 
distance 2t + 1 < $2"/' + 3 are intersecting. Retter [40] 
showed that most (classical) Goppa codes (see [34]) of rate 
less than 0.0817 are intersecting. 

Define n ( k )  = min{n: there exists a binary [ n , k , d ]  
intersecting code. Katona and Srivastava [28] have tabulated 
the value of n ( k )  for 1 5 k 5 5 ,  while Sloane [42] followed 
by Cohen and Zemor [9] have provided upper bounds on 
several extra values, as shown in Fig. 1. 

Katona and Srivastava also derived a lower bound on 
the asymptotic behavior of n ( k ) / k  by combining the 
McEliece-Rodemich-Rumsey-Welch bound for binary linear 
codes with the simple bound obtained by observing that if 
M defines an [n, k,  d] intersecting code then d 2 k .  A 
corresponding upper bound was given by Komlds (reported 
in [8] and [37]). These bounds are the following: 

These bounds imply that, asymptotically, binary [ck,  k ,  d] 
intersecting codes exist for c > 4.8188 but not for c < 3.5277. 
Nevertheless, no efficient zigzag family can be inferred from 
the above results because even if most codes satisfy the 
property, it is not clear how to obtain efficiently one that is 
guaranteed to satisfy it. 

The current section focuses on the polynomial-time con- 
structability of such zigzag families. First we use in Section 
IV-A the fact proven in Appendix I1 that for a = 1og4/3 4 = 
4.8188 and any y > a, a random k x yk binary matrix defines 
a (yk, k)-zigzag with probability asymptotically close to 1, 

'For the remainder of this paper we ormt the word "self' as no other 
type of intersecting codes are considered. We have considered using pairs of 
intersecting codes but asymptotlcally we get the same results. 
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while a random k x Xk binary matrix for any X < a defines a 
( A k ,  k)-zigzag with probability asymptotically close to 0. In 
both cases, the convergence is exponentially fast in k .  (The first 
part of this result is implied by the proof of Cohen and Lempel 
[8] of Komlbs’ bound.) This yields an obvious @(/?)-time 
Monte Carlo binary yk-zigzag family for any y > a. 

Then, we show that the concatenation of intersecting codes 
yields an intersecting code, and we use this fact in three 
constructions. Section IV-C applies this technique to the 
Monte Carlo family derived in Section IV-A to improve it 
to a 0(k2)-time Las Vegas binary 2yk-zigzag family for 
any y > a. Section IV-D presents an “efficient” O(k3’)- 
time deterministic binary 0(k)-zigzag family based on the 
algebraic-geometric codes of Goppa [27]. Finally, Section IV- 
E uses the concatenation method in a construction reminiscent 
of that of Justesen codes to obtain an O(k4)-time deterministic 
binary O(k)-zigzag family. 

A. Monte Carlo Construction 

In this section, we determine precisely the size of random 
matrices over IF2 that define binary linear zigzags. If k denotes 
the number of rows, then there is a threshold function t ( k ) ,  
which is linear in k ,  such that a random binary matrix with 
more than t ( k )  columns defines a linear zigzag with high 
probability, whereas a random binary matrix with less than 
t ( k )  columns does not define a linear zigzag, also with high 
probability. 

Theorem 4.1: Set Q = log,/, 4, and let M be a random 
k x n matrix over IF2. Then for every constant E > 0, there 
exists a constant 0 < q < 1 such that we have the following 
two propositions: 

1) If n 2 ( l + ~ ) a k ,  then Prob { M  defines a linear zigzag} 

2) If n 5 (1 - e ) a k ,  then Prob { M  does not define a linear 

The proof of this theorem may be found in Appendix 11. 
Although the first part of this result is implied by the proof 
of Cohen and Lempel [8] of Koml6s’ bound, we nevertheless 
include it in our proof since it is only one line. 

Remark: A similar analysis for the case of matrices over 
IF, shows that for any E > 0, a random IF, matrix of size 
k x (2 + ~ ) k  has asymptotic probability 1 of being a zigzag, 
as q + 00. This is optimal according to Proposition 3.2. 

Time Complexity: As mentioned before, Proposition 1) 
yields an efficient Monte Carlo binary yk-zigzag family for 
any y > a. The running time of this construction is O ( k 2 ) .  
On the other hand, Proposition 2) shows that this bound is 
optimal in the sense that this technique cannot yield a binary 
Xk-zigzag family for any X < Q. 

B. Intersecting Concatenated Codes 

In the remainder of this section, we consider several con- 
structions of intersecting codes based on concatenation [22] 
and [34]. We need the following Lemma, first used implicitly 
in [19]: 

Lemma 4.1: Let CO be an [no, k,, do] intersecting code 
over IFym. and C, be an [n,, k,, d,] intersecting code over IF, 

> 1 - vk ,  and 

zigzag} > 1 - v k .  

with m = k?. The concatenated code C = CO C, over IF, is 
an [non;, kokz ,  >dOd,] intersecting code. 

Proofi The fact that the resulting code has parameters 
[non;, kok,, 2 dad,] is well known. Consider two nonzero 
codewords CO and c1 of the concatenated code 6. By construc- 
tion, both CO and c1 are made of no blocks of n, IF, symbols 
and must have been obtained through nonzero codewords cg 
and ci’ of the outer code Co. By assumption, c: and cy intersect 
in at least one position j ,  thus block j of both CO and c1 are 
nonzero codewords of the inner code C,. By assumption, these 
blocks intersect and thus CO and c1 intersect as well. II 

The following constructions are based on a simple observa- 
tion of [19]: if M defines an [n, k ,  d] code for some d > n/2 
then it must intersect (by a pigeon-hole argument: any two 
codewords of such a code intersect). Unfortunately, for binary 
codes, Plotkin’s bound [34] implies that [n, k ,  n/2 + 11 codes 
can only exist for n > 2 k ,  which would result in terribly 
wasteful zigzags. But for larger fields we can exploit this idea 
and then combine it with concatenation to build intersecting 
codes over Fa. 

C. Las Vegas Construction 

Although the result of Section IV-A implies that binary 
linear ( O ( k ) ,  k)-zigzags exist and can be obtained easily by 
picking one at random, it does not provide an efficient way 
of building a guaranteed zigzag. The problem of checking 
if a random matrix defines a zigzag seems rather hard: it 
is trivially solvable in exponential time but no polynomial- 
time algorithm for this problem is known. Nevertheless, using 
concatenation we can build from a random matrix defining a 
zigzag, new matrices exponentially larger with no extra effort 
to check if they also define a zigzag. Therefore, the exponential 
time necessary to check if a random matrix defines a zigzag 
becomes negligible with respect to the full size of the matrix. 
Kilian [32] inspired by the concatenation method of [19] has 
exploited this into a Las Vegas construction of intersecting 
codes that we now describe. 

Construction: Consider any y > Q = log,/,4. 
Use a [am, 2m-1, 2”p1 + 11 extended Reed-Solomon 
code over IFz- as outer code Co. 
Pick random m x ym binary matrices until one is found 
that defines an intersecting code (this is checked by an 
exhaustive verification procedure) and use it as inner code 
C Z  . 

The resulting C = CO C, is a [2yk,  k ,  d ]  binary intersect- 
ing code for k = m2m-1 and some d. Thus for any choice 
of y > a, this yields a (2yk, k)-zigzag when k = m2”-‘. 
Although this construction is limited to values of k of that 
precise form, a similar construction using an incomplete outer 
Reed-Solomon code yields a similar expansion factor for any 
value of k .  Details of this generalization are left to the reader. 

As observed by Cohen and Lempel in [8], since the 
Reed-Solomon codes are minimum-distance-separable, it is 
impossible that similar codes with a smaller minimal distance 
intersect. Since the size of the random inner code is also 
optimal in the sense of the previous se n, we conclude that 
this technique cannot yield (2Ak ,  k)-zigzag for X < a. 
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Time Complexity: By the result of Section IV-A, m x y m  
matrices defining an intersecting code always exist and for 
sufficiently large m, at least half of these matrices have this 
property. Thus only a constant number of matrices must be 
tested on the average. 

Checking whether or not a matrix M has the property 
requires to find all the codewords generated by M ,  which takes 
time in O(mam),  and to check that each pair of codewords 
intersect, which takes time in O ( ~ n 2 ' ~ ) .  The total average 
running time is, therefore, in O ( k 2 )  since k = m2"-'. 

D. Deterministic Construction a la Goppa 

An alternative to Reed-Solomon codes for getting outer 
codes with d > n / 2 ,  first put forward by Crtpeau and Santha 
[19], is to use algebraic-geometric (AG) codes of Goppa [27]. 
We rely on the work of Katsman, Tsfasman, and Vladuf [29] 
for their polynomial construction. 

Proposition 4.2 [35]: If q = pgm for some prime p ,  it is 
possible to construct in polynomial time [ N ,  K ,  D] codes over 
IF, with parameters everywhere along the line of equation 

K D  1 -+ -=1- -  
N N  &- 1' 

Corollary 4.3: For q > 9, some AG code of length N has 

Construction: Let q = 2'" for m > 1, and let I?, = 

Use an [N ,  r n N ,  N /2  + 11 AG code over IF, for outer 

Use any [n,, 2m,  d,] intersecting binary code as inner 

The result C = CO * C, is an [n,N, 2mr ,N ,  d] binary 
intersecting code with d 2 d z ( N / 2  + 1). 

Examples: With m = 2 this construction yields [27IC/2, 
k ,  d] binary intersecting codes for k = 2N/3 ,  if we use the 
[9, 4, 41 inner code of the simple family defined in Section 
111-C. If, as in [19], we restrict our attention to inner codes 
that are members of that family, the best field is E256 with 
an expansion factor of 7.7885, that is m = 4 yielding 
[405k/52, k ,  d] binary intersecting codes for IC = 52N/15. 
More recently, through this same construction, Cohen and 
ZCmor [9] have obtained a better expansion factor (6.4138) 
for m = 5 using the binary [30, 10, 111 intersecting inner 
code of the dual BCH code type [8]. 

Time Complexity: This is the drawback of this approach: 
current constructions of AG codes require O ( k 3 2 )  operations. 
Thus although the construction is polynomial-time, it is quite 
impractical. 

minimal distance at least N / 2  + 1. 

3 - 1/(v4 - 1). 

code Co. 

code C,. 

E. Deterministic Construction a la Justesen 
We now take a deterministic approach similar to the con- 

struction of Justesen [34] for efficiently constructable good 
families of codes. Consider for al, ag, . . . , a, E Fqm \ { O m }  
the following codes of length n = (a + 1)m over IF,: 

Ca,,,,, ... , a ,  = {[U, Q l U ,  agu, . . . , a,u]: U E F q m } .  

Denote h,(x) the q-ary entropy function 

hq(5 )  = d o g ,  ( q  - 1) - zlog,x - (1 - z)log, (1 - x). 

Theorem 4.4: Some of the codes Cal,,2,... , a a  of length 
n = ( a  + 1)m have minimal distance larger than yn as long 
as h4(y)  < a/(. + 1) and m is large enough. 

Pro08 Notice that if 

since any vector [U,  V I ,  wp, . . . , wa] with nonzero U uniquely 
defines 

1 (a1, 0.2, . . . , a,) = (w,u- , vgu-1, . . . , v,u-l). 

Therefore, a given vector [U # 0, w1, wz, . . . , v,] belongs to a 
single C,, , a z ,  , The number of nonzero words of length 
w = (a + 1)m and weight less or equal to yn is 1341 

Since each such word belongs to a single code, only 
q("+l)mhq(y) of these codes may have minimal distance 
smaller than or equal to yn .  The total number of Gal, a z ,  ... , aa 
is (qm - l),. Therefore, codes Cal,olz,. .  with minimal 
distance at least yn exist provided (q")("+l )hq(y)  < 
(qm - l )a .  This is guaranteed whenever h q ( y )  < a / ( .  + 1) 
and m is large enough that (4")' < qm - 1, where S = 

H 

Corollary4.5: From the above we get the following for 

For q > 60, some [n = 3m, m, d] code C a , p  achieves 

For q > 3, some [n = 10m, m, d] code C,,,,,, . . , a s  

These codes are intersecting. 
Construction: Let q = 2b for some b > 0 and a be such 

that h,(1/2) < a/(. + 1). Consider any m large enough that 

(a + l)h,.(r)/a < 1. 

large enough m: 

d > n / 2 .  

achieves d > n/2. 

Take N = mqm. 
Use a [qm, q m / 2 ,  q m / 2  + 11 extended Reed-Solomon 
code over I F q m  as primary outer code Co. 
Search through all the Cal,az, . . ,  , a ,  of length n = 
(a+ 1)m over F, until an intersecting [(a + l )m ,  m, d,] 
code is found and use it as primary inner code C,. 
Use any [n,, b ,  d,] intersecting binary code as secondary 
inner code C,. 
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The result CO = CO * C, is an [ ( U  + 1)N, N/2, d o ]  
intersecting code over IF,, while C = CO * C, is a binary 
[ ( U  + l)n,N, bN/2, d]  intersecting code for some do and d. 

Examples: 
0 For b = 6 we get that CO is a [64m, 64"/2, 64"/2 + 11 

code, C, a [3m, m, d,] code, and CI a [15, 6, 61 code, 
yielding a [15k, k ,  6] binary intersecting code, for k = 
3m64". 

0 For b = 2 we get that CO is a [4", 4m/2, qm/2+l]  code, 
C, a [lOm, m, d,] code, and CI a [3, 2, 21 code, yielding 
a [30k,  k ,  d ]  binary intersecting code, for k = m4". 

As in Section IV-C, a construction using an incomplete outer 
Reed-Solomon code yields a similar expansion factor for any 
value of k .  Details of this generalization are left to the reader. 

Time Complexity: The first example above is the fastest 
deterministic construction known to the authors of a good 
family of intersecting codes and thus of a good zigzag family. 
For k = 3m64", in the worst case only (64" - 1)2 < 
(k/lg k ) 2  codes Ca, p will be tested for self-intersection. 
Testing each such code requires comparing 642m pairs of 
codewords of length 3m. This requires O(k2/lg k )  operations. 
Therefore, the total running time is in O(k4/(lgk)3) in the 
worse case. 

v. ONGOING RESEARCH AND OPEN QUESTIONS 

We have shown how to construct linear-size zigzags both by 
probabilistic and deterministic polynomial-time methods. The 
exact complexity of the decision problem "Given a matrix M ,  
is it the generator of a zigzag?" still has to be determined (the 
best we can say is that it is in CO-NP). Another open problem 
is to construct over F, some zigzag that will do better than 
the asymptotic bounds of Section IV-A. Finally, we ask if 
nonlinear functions can generate smaller zigzags than linear 
functions. 

An important fact about the method based on zigzag func- 
tions considered in this paper is that, by definition of the 
zigzag, there is no way for B to learn information about both 
WO and wl even though the zigzag function is known before 
he gets to choose which bits to obtain through the (?)-OTz 
instances in Protocol 1.1 (unless a Monte Carlo zigzag family 
is used). We are currently investigating [SI another approach 
to the problem of reducing ( 9 )  -0Tk to ( 9 )  -OTz, in which A 
does not reveal the function to B until after the necessary 
(2) -0Tz's have been performed. 

Our new approach is based on privacy ampl$cation, a 
technique invented in [4] and refined in [3] .  Assume A 
knows a random n-bit string IC about which B has partial 
information. Privacy amplification allows A to shrink IC to a 
shorter string y about which B has an arbitrarily small amount 
of information even if he knows the recipe used by A to 
transform IC into y. Intuitively, this can be used to implement 
( ~ ) - O T ~ ( w o ,  w1)(c) from (9)-OTz because A can offer B 
to read one of two random strings ICO or I C ~  by a simple 
sequence of (2) -0Tz (zb , IC; )(e,). Subsequently, A tells B 
how to transform ICO into W O  and I C ~  into w1 by way of privacy 
amplification. An honest B who accessed all the bits of 2,  can 
reconstruct we from this information. But a dishonest B who 

accessed some of the bits of 20 and some of the bits of 51 
will not have enough information on at least one of them to 
infer any information on the corresponding w or even joint 
information on both wo and wl. 

Privacy amplification allows for a protocol that is simpler, 
more general, and more efficient than the zigzag-based solution 
investigated in this paper, but at the cost of a vanishingly 
small failure probability. More specifically, 2k + s instances 
of (?)-OTz are sufficient to implement (?)-OTk so that the 
probability that a cheating 8 may learn information on both 
strings is exponentially small in s. This is significantly better 
than all the methods based on zigzag functions provided a 
probability of failure is tolerable. Moreover, it allows the 
implementation of (2) -0Tg at no extra cost if the underlying 
(f)-OTz goes in the other direction, i.e., from I3 to A, or 
if it permits B to choose not only one bit or the other, but 
also their exclusive-or. A drawback of this approach is that a 
new function must be generated and transmitted at each run 
of the protocol. We postpone our detailed exposition of this 
alternative technique because our research is still ongoing [5]. 
In particular, we wish to investigate the extent of its generality. 

APPENDIX I 
PROOFS OF CORRECTNESS AND PRIVACY 

Both Protocols 1.1 and 1.2 were described for the specific 
set F = (0, l}. As a matter of fact, they would work equally 
well for any finite set F .  Thus in the proofs we do not consider 
any particular F .  

A. Protocol 1.1 

We show that given that f is an (n, k)-zigzag, Protocol 1.1 
is correct and private. We assume the existence of a correct 
and private subprotocol [a, VI for (:)-OTz. 

Theorem AI: Protocol 1.1 is correct. 

Condition (4): Since [a, v] is correct for (4)-OT2 by as- 
sumption, B gets the desired values 2: at Step 2). By definition 
of ICO, z1 at Step l), it is clear that the value computed at Step 
3 )  is indeed w, = ~ ( I c , ) .  

Condition (5): By assumption [a, v] is correct for (9)-OTz 
and therefore for any program U, there exists a probabilistic 
program S, s.t. Vb; ,  b; E F, c E (0, l} 

Proo$ 

([G, V I a ( b ; ,  b;)(c)lB accepts) 
= ([a, V ] a ( S z ( b ~ , ,  b",)(c)lB accepts). (10) 

We now describe the program for 3 as a function of A. 
On input (WO,  wl), for 1 5 z 5 n, run protocol [A, E]  on 
inputs (WO, w1)(0) until the ith execution of (4)-OT2. Call 
U, the behavior of d from that point on until the end of 
that execution. Let bb, b; be the inputs to (?)-OTz used by 
d if such inputs exist and otherwise let b", b; be anything as 
they are irrelevant anyway. By assumption, there exists 3, that 
satisfies (10). s sets ( z i ,  z t )  + S,(bb,, b l ) .  If at any point E 
aborts then s aborts as well. Finally, 3 returns f(zo), f(z1). 
If A runs S and then A instead of running d then B will see 
the same output distribution. 
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Theorem A2: Protocol 1.1 is private. 
Pro08 First notice that neither Step 1) nor Step 3) 

involve information transfers from either parties. Thus the only 
possible step in which A or I3 could learn something about 
their respective inputs is Step 2). 

Condition (6): By assumption [a, v] is private for (i) -0Tz 
and thus VXG, X ;  E F, C E (0, 1) and any program U 

I (C;  [U, V]>(X& Xq)(C)Ix;, x;) = 0. 

Therefore, A learns nothing about C through any of the 
iterations of Step 2) either. Which means that VWO, W1 E 
F k ,  C E (0, 1} and for any program 2 

I (C;  [A, BzJlT4(Wo, Wl)(C)lWO, Wl) = 0. 

Condition (7): By assumption [a, v] is private for (?)-OTz 
and therefore for each i, VX;, X i  E F, C E (0, 1} and for 
any program 0 there exists a random variable C, = &(C)  E 
(0, 1) s.t. 

I((%, XZ); [a, VI.l*a(X& x;)(C)lC, X&,) = 0 

and therefore 

which implies 

I((W0, W1); 
[A, B]L(WO, Wl)(C)IC, XA,,  XE,, . . . , X" cn ) = 0 

c, X i l ,  xi,, . . . , XZn) 

which is the same as 

H (  (WO 1 Wl ) I [A, B1; (WO , Wl) (C) ,  

= H((W0, Wl)lC, x&, x;,, . . .  , X & ) .  (11) 

From here on, we omit C as everything is conditioned by it. 
Let 6 be the random variable such that 

e={  0, if {i: C, = 1) does not bias f 

Since f is a zigzag only We is biased by the X &  's and thus 
there exists a random variable l@e = @(We) such that 

1, otherwise. 

Now suppose 

This would imply by (11) and (12) 

which is impossible since can be deduced from 
X &  X i ,  . . . , X z n .  Thus we also have 

H((W0, Wl)l[A, %?(WO, Wl)(C), @c> 
= H((W0, W1)ll@e). 

Now using on both sides of the equality a property of the 
entropy function 

H(X1Y) = H ( Y I X )  + H ( X )  - H ( Y )  

we obtain 

and thus 

B. Protocol 1.2 

[U, VI  for (~)-oT;. 
We assume the existence of a correct and private subprotocol 

Theorem A3: Protocol 1.2 is correct. 

Condition (4): Let A and B be as in Protocol 1.2. From the 
Proof: 

description of the protocol we find 
/ e \  

e 

2=0 
Thus we have to show @ z ,  = w,. Remember from the 

protocol that 

wi $xi, if c =  i 
zi+l @ xi, if c # i .  

First, consider the case c = E < t - 1. 
e C 

@ z; = @ zi 
i =O i = O  
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Second, consider the case c = t - 1. and, therefore, 
: t -2  

I(($?, 2); [A, l3];(v+)(c)p, Y21, YZ2, ' .  . , Yt-2 ) = 0 
c t - 2  

which is the same as - - Wt-1  

as required. 
Condition (5): By assumption [a, v] is correct for (;)-OTt 

and therefore for any program 0, there exists a probabilistic 
program 5% s.t. Vyi ,  y; E Fk) e E (0, 1) 

m 2 ,  %4v;, Y x e ) l B  accepts) 
= ([a, VlB(j;z(Y:, vZ,))(e)lB accepts). (13) 

We now describe the program for S as a function of d. 
On input ?U', for o 5 i 5 t - 2, run protocol [A, B] on 
inputs (w ' ) (O)  until the ith execution of (f)-OTt. Call 2, 
the behavior of d from that point on until the end of that 
execution. Let yh, y: be the inputs to (?)-OTi used by d 
if such inputs exist and otherwise let yg, yl be anythmg as 
they are irrelevant anyway. By assumption, there exists 3, that 
satisfies (13). s sets ( z i ,  2; )  t &(yi,-&). If at any point 
aborts then aborts as well. Finally, S returns zoo, 2: @ z i ,  
runs S and then A instead of running A then B will see the 
z: e3 $, . . . , $3  e3 $2, $2 @ z;-;, 24-2 @ $1. If A 

same output distribution. 
Theorem A4: Protocol 1.2 is private. 

Pro08 As for Protocol 1.1 neither Step 1) nor Step 3) 
involve information transfers from either parties. Thus the only 
possible step in which A or B could learn something about 
their respective inputs is Step 2). 

Condition (6): By assumption [a, V ]  is private for (;)-OT: 
and thus VY,",  Y; E F k ,  C E T and any program 

qc; [zi, V]f(Yo",  Y;)(c # z)IYo", Y;) = 0 

Therefore, A learns nothing about C through any of the 
iterations of Step 2) either. Which means that V 6 E Fkt , C E 
T and for any program d 

I (C;  [A, B]>($)(C)I$) = 0. 

Let be the random variable such that 
- I 

C=min{C,=O or i = t - I } .  

By definition of the Y&,'s and because of the fact that the X2's  
are uniformly selected at random we get 

2 

A(v+IC) Yi1, Yg2, . . . , Y:-2 ) 
c t - 2  

. . . , y t - 2  ) = H(v+IG x0, x1, ' . '  , xc, We, Y E + l ,  

= H(v+IC, WE). (15) 
C t - 2  

Now suppose 

< H(v+l[A, B];(@)(c), c, Y21, Yg2, . . . , Y:-2 ct-2 ) 

which is impossible since We can be deduced from 

Thus we also have 

H(@l[s i ,  @];(*)(e)) e, WE) = H(*lC, WE) 

I(?@; [A, B]g(v+)(c)\c, WE) = 0. 

or equivalently 

APPENDIX I1 
PROOF OF THEOREM 4.1 Condition (7): By assumption [a, V ]  is private for (;)-OT! 

and, therefore, for each 2,  V Y,", Y; E F" C E T and for any 
program 9 there exists a random variable 6, = &(C)  E (0, l} 
s t  

4.1: Set = log,/, 4, and let IVT be a 
k x n matrix over IFz. Then for every constant E > 0, there 

L . -. 
exists a constant 0 < q < 1 such that we have the following 
two propositions: 

1) If n 2 (1 + ~ ) a k ,  then Prob {nil defines a linear zigzag} 

2) If n 2 (l-&)ak, then Pro6 {Ad does not define a linear 

I((Y,", Yi); [a, 91m;, Y X C  # %)IC, Y&) = 0 

where > 1 - qk, and 

zigzag} > I - qk .  
W, 69 x,, 
x,+I ex,, 

if C, = o 
if C, = 1 
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Proof: Let a # b be two nonzero binary row vectors 
of length k ,  and set S = {a ,  b) .  Clearly, M defines a linear 
zigzag if and only if for every such S ,  a M ,  and bM intersect. 
Let DS be the event that U M  and bM do not intersect, and 
let X s  be the associated indicator random variable. As every 
bit in aM and bM is 1 with probability 1/2, we have 

E [ X s ]  = Prob { D s }  = (i)". 
Let us define the random variable X = Cs XS. Then M 
defines a linear zigzag if and only if X = 0. By linearity of 
the expectation, 

2 k  - 1 WI = ( 2 ) (:)". 
Proposition 1:  n 2 (1 + €)ah .  Then we have 

ek 

Prob{X > 0) 5 E[X] < 22k (:)" 5 (a) 
Proposition 2: n 5 (1 - E)&. Then using Chebishev's 

inequality, we have: 

We will show that Var(X) is exponentially small compared 
to E[XI2. Let a1 # b l  and a2 # b2 be nonzero row vectors 
of length k, and set S1 = {al, bl)  and S2 = { a 2 ,  b z } .  Since 
X S ,  and X S ,  are 0-1 random variables, we have: 

Var(X) = cov (XS, ,  XS,)  
s1, S, 

= E[Xs1I(~[XszlXs1 = 11 - ~[Xs, I ) .  
s1, sz 

The matrix A is regular; therefore, we have 

Prob {A& = B }  = 2-tn. 

This implies the result since this is true for every choice of 

It follows that the random variables Xsl and X s Z  are in- 
dependent when the family of vectors U = { a1 , b l  , a2, b 2 )  is 
linearly independent. Thus we have to consider the covariances 
of only those random variables Xs l  and Xs2  where there 
is some linear dependence among the vectors of U .  We will 
distinguish two cases according to the rank of U .  

Case 1: rank(U) = 3. Then there exist coefficients al, 
PI, a2, p2 E Fa, not all 0, such that 

4. 

aiai  + Pibi + a2a2 + P 2 b 2  = 0. 

The number of such families is O(23k) .  Since a1 # b l ,  a2 # 
ba, and the elements of U are nonzero vectors, we can suppose 
without loss of generality that a1 = a2 = 1. Therefore, we 
are left with the following possible dependencies among the 
members of U :  a2 = a1 or a2 = a1 + b l  or a2 = a1 + b2 

or a2 = a1 + bl  + b2. 

Let us suppose that alM and blM do not intersect. Then 
we claim that in case of any of the above dependencies, the 
probability that a2M and b2M do not intersect either is at 
most (E)". The proper analysis is quite similar in the four 
cases, let us consider here in details, for example, the case 
when a2 = al. Let 1 5 i 5 n be an index. The string a4b; 
with probability 1/3 takes each of the values 00, 01, and 10. 
Since 4 = 1 with probability 1 /2  independently from the 
value of sib;, we have 

If the random variables x,, and xS, are not indepen- 
dent, then we will bound cov (xS1, xsz) from above by 
EIXsl]EIXszIXs, = 11. If X s Z  and X S ,  are independent, 
then cov ( X S , ,  XS , )  = 0. The proof works out because for 
most S1 and S2 they are indeed independent. We will prove 
this with the help of the following lemma: 

This iS true independently for every i ,  and the claim followS. 
Therefore, the total contribution to the variance of these 

with respect to E[x12 is 

Case 2: rank(U) = 2. Then S1 = Sa, and the number of Lemma A l :  Let M = (m!) be a random k x n binary 
matrix. If for some t > 0, { a1 , . . . , a t )  is a linearly indepen- 
dent family of vectors of length k ,  then alM, . . . , a,M are such families is ("L,'). In this case 

independent random variables. 
Proof: Let us fix t binary vectors { bl , . . . , bt ) of length 

n. Let A be the t x k matrix whose ith row is a,, and similarly 
let B be the t x n matrix whose ith row is b,. We will show that 

Prob { A M  = B }  = 2-tn. 

We can suppose without loss of generality that the first t 
columns of A have rank t. Let us choose anyhow e: E IF2 for 
i = t + 1, . . . , k and j = 1, . . . , n, and let us fix m: = c:. 
Let A be the truncation of A to its first t columns, and let 
be the truncation of M to its first t rows. Finally, let 2 = ( b f )  
be the t x n matrix where 

E 
n .  

bl = b! + 
Z=t+1 

E[Xs,IE[Xs, IXS, = 11 = E[Xs,l 

and the total contribution to the variance with respect to E[XI2  
is at most 

1 
-- - 0 ((t)"". 
E[Xl 
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