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Abstract

Interactive Hashing has featured as an essential ingredient in protocols realizing
a large variety of cryptographic tasks. We present a study of this important
cryptographic tool in the information-theoretic context. We start by presenting
a security definition which is independent of any particular setting or application.
We then show that a standard implementation of Interactive Hashing satisfies all
the conditions of our definition. Our proof of security improves upon previous
ones in several ways. Despite its generality, it is considerably simpler. Moreover,
it establishes a tighter upper bound on the cheating probability of a dishonest
sender. Specifically, we prove that if the fraction of good strings for a dishonest
sender is f , then the probability that both outputs will be good is no larger than
15:6805�f . This upper bound is valid for any f and is tight up to a small constant
since a sender acting honestly would get two good outputs with probability very
close to f .

We illustrate the potential of Interactive Hashing as a cryptographic primi-
tive by demonstrating efficient reductions of String Oblivious Transfer with string
length k to Bit Oblivious Transfer and several weaker variants. Our reductions
incorporate tests based on Interactive Hashing that allow the sender to verify the
receiver’s adherence to the protocol without compromising the latter’s privacy.
This allows a much more efficient use of the available entropy without any ap-
preciable impact on security. As a result, for Bit OT and most of its variants
n = (1 + �)k executions suffice, improving efficiency by a factor of two or more
compared to the most efficient reductions that do not use Interactive Hashing.
As it is theoretically impossible to achieve an expansion factor n=k smaller than
1, our reductions are in fact asymptotically optimal. They are also more general
since they place no restrictions on the types of 2-universal hash families used
for Privacy Amplification. Lastly, we present a direct reduction of String OT to
Rabin OT which uses similar methods to achieve an expansion factor of 2 + �

which is again asymptotically optimal.
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Résumé

Le hachage interactif figure parmi les ingrédients essentiels de plusieurs protocoles
accomplissant tout un éventail de tâches cryptographiques. Cette thèse présente,
dans le contexte de la théorie de l’information, une étude de cet important outil
cryptographique. Tout d’abord, nous définissons la sécurité indépendamment du
cadre de toute application particulière. Ensuite, nous démontrons qu’un protocole
standard réalisant le hachage interactif satisfait à toutes les conditions de notre
définition. Notre preuve de sécurité constitue une amélioration significative par
rapport aux preuves antérieures. Malgré sa généralité, elle est considérablement
plus simple. De plus, elle établit une borne supérieure plus serrée sur la probabilité
de succès d’un expéditeur malhonnête. Plus précisément, nous prouvons que si
l’expéditeur commence avec un ensemble de bonnes chaînes de bits représentant
une fraction f du total, la probabilité que les deux valeurs de sortie soient bonnes
ne dépasse pas 15:6805 � f . Cette borne supérieure vaut pour toute fraction f

et est juste à une petite constante près puisqu’un expéditeur suivant le protocole
obtiendrait deux bonnes valeurs de sortie avec probabilité presque f .

À titre d’exemple du potentiel, en tant que primitive cryptographique, du
hachage interactif, nous démontrons des réductions efficaces de String OT avec
longueur k à Bit OT et quelques unes de ses variantes plus faibles. Nos réductions
font appel à des tests dérivés du hachage interactif pour permettre à l’expéditeur
de vérifier l’adhésion du receveur au protocole, tout en respectant la confiden-
tialité de la valeur d’entrée de ce dernier. Les réductions qui en résultent font un
usage sécuritaire bien plus efficace de l’entropie disponible du côte du receveur.
Pour Bit OT et la plupart de ses variantes, n = (1 + �)k exécutions suffisent,
ce qui double l’efficacité de nos réductions par rapport aux meilleures réductions
qui n’utilisent pas le hachage interactif. Comme il est théoriquement impossible
d’avoir un facteur d’expansion n=k plus petit que 1, nos réductions sont en fait
asymptotiquement optimales. Elles sont aussi plus générales puisqu’elles perme-
ttent l’utilisation de toute famille universelle–2 de fonctions de hachage pour la
phase de Privacy Amplification. Enfin, nous présentons une réduction directe de
String OT à Rabin OT utilisant des méthodes semblables pour obtenir un facteur
d’expansion de 2 + � qui est, lui aussi, optimal.
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1
Introduction

An Interactive Hashing protocol allows a sender Alice to input a string w which,

in the course of the protocol, will be transmitted to a receiver Bob along with a

second output string w 0 6= w . In a nutshell, the protocol should guarantee that

(any dishonest) Bob cannot guess which of w;w 0 was the original input, while at

the same time, it should ensure that at least one of the two output strings must

be chosen effectively at random, and beyond (any dishonest) Alice’s control.

Interactive Hashing has found many applications in computational as well as

information-theoretic contexts. Various implementations of Interactive Hashing

appear in protocols achieving a multitude of cryptographic tasks, ranging from

zero-knowledge proofs to bit commitment and oblivious transfer [OVY93, OVY94,

NOVY98, OVY92, CCM98, DHRS04]. The versatility and wide applicability of

Interactive Hashing suggest that a more thorough investigation of this crypto-
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graphic tool is in order. This thesis sets out to present a study of Interactive

Hashing in the information-theoretic context, namely under the assumption that

any (dishonest) party may be computationally unbounded. The properties that

are typically required of Interactive Hashing protocols in this context are distilled

and formalized independently of any particular application. This application in-

dependence sets the stage for viewing Interactive Hashing as a cryptographic

primitive in its own right rather than simply as a class of sub-protocols within a

larger application, with security properties defined on an ad-hoc basis according

to the specific needs of the given setting. It is our hope and belief that this

encapsulation of Interactive Hashing as a stand-alone primitive with well-defined

properties will lead to a greater appreciation of its potential as a cryptographic

tool. At the same time, it will render Interactive Hashing more accessible to

designers of cryptographic protocols, who will be able to incorporate it in their

constructions as a self-contained building block with several implementations to

choose from, each with security properties that have (ideally) been independently

and rigorously scrutinized.

Regarding practicality, we demonstrate that Interactive Hashing as we defined

it can be efficiently implemented in practice. Specifically, we prove that one of

the Interactive Hashing protocols that appeared in the literature [OVY93] in a

computational context actually satisfies all our information-theoretic security re-

quirements as well. Our proof of security is one of the major contributions of

this thesis, as it improves in several important ways upon a previous proof for

a slight variant of this protocol [CCM98]: besides its application-independence,
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our proof takes a different, more natural approach to establishing that the prob-

ability of successfully cheating for any dishonest receiver is small. The resulting

upper bound on this probability is much tighter and the proof is considerably less

complicated overall.

Another major goal of this thesis is to illustrate the power of Interactive

Hashing as a cryptographic protocol. To this end, we demonstrate its applicability

to reductions between Oblivious Transfer variants [Rab81, EGL85]. In short, a

protocol for String Oblivious Transfer allows a sender Alice to send to a receiver

Bob one of two strings x0; x1. The protocol should guarantee that (honest)

Bob can receive the string of his choice xc without (dishonest) Alice being able

to obtain information about Bob’s choice bit c . On the other hand, (honest)

Alice is assured that (dishonest) Bob can receive information about exclusively

one of the two strings. Bit Oblivious Transfer can be seen as a special case of

String OT, with both strings having length 1. We show that Interactive Hashing

can lead to efficient reductions of String Oblivious Transfer to Bit Oblivious

Transfer and several of its variants. The novelty of our reductions arises from tests

based on Interactive Hashing that are incorporated into well-known reductions

[BCW03, Cré87] based on Privacy Amplification [BBR88]. These tests allow

the sender (in String OT) to query the receiver on a small subset of the bits

he received. Without compromising the honest receiver’s privacy concerning his

choice bit, these tests ensure that a dishonest receiver cannot deviate much

from the protocol without getting caught. Consequently, as our reductions need

only allow for a small potential deviation in the case of a dishonest receiver, they
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make much more efficient use of the receiver’s entropy about the transmitted bits.

Compared to the best known reductions that do not use Interactive Hashing, our

reductions are at least twice as efficient, and in most cases provably asymptotically

optimal. Moreover, they are more general since they can use any 2-universal family

of hash functions to perform Privacy Amplification.

Remark: The nature of our subject matter calls for a modular presentation

of the material covered in this thesis. We thus defer a more detailed technical

treatment of all the notions and results presented above, as well as a thorough

review of prior work, to the introductory sections of Chapters 2 through 5.

1.1 Structure of this thesis

Each of the following chapters is as self-contained as possible. Chapter 2 presents

our study of Interactive Hashing in the information-theoretic context. Chapter 3

introduces the notion of Oblivious Transfer in detail and defines the variants we

will be encountering in the rest of the thesis. The reductions of String Oblivious

Transfer to Bit Oblivious Transfer and several weaker variants are the subject of

Chapter 4. Chapter 5 shows how the techniques behind the reductions of Chap-

ter 4 can be adapted to provide a direct reduction of String Oblivious Transfer

to Rabin Oblivious Transfer. The conclusion, along with a brief summary of

our results, is given in Chapter 6. Finally, a brief Appendix lists some useful

mathematical tools and notions.
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2
Interactive Hashing

Interactive Hashing (IH) is a cryptographic primitive that allows a sender Alice

to send a bit string w to a receiver Bob who receives two output strings, labeled

w0; w1 according to lexicographic order. The primitive guarantees that one of

the two outputs is equal to the original input. The other string is guaranteed to

be effectively random, in the sense that it is chosen beyond Alice’s control, even

if she acts dishonestly. On the other hand, provided that from Bob’s point of

view w0; w1 are equiprobable inputs for Alice, the primitive guarantees that Bob

cannot guess which of the two was the original input with probability greater than

1=2. We remark that typically both outputs are also available to Alice. See Figure

2.1.

In this Chapter we provide a study of Interactive Hashing in the information

theoretic setting. We follow a modular approach, whereby we study Interactive
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Figure 2.1: Interactive Hashing: the sender Alice sends string w to Bob, who
receives two strings w0; w1, labeled according to lexicographic order. One of the
two (in our example, w0) is equal to the input string while the other is effectively
randomly chosen. Bob cannot distinguish which of the two was the original input.

Hashing independently of the context of any specific application where it may

be used as a sub-protocol. Our application-independent analysis opens the way

to a better appreciation of the power of Interactive Hashing as a cryptographic

primitive in its own right.

We start by identifying and formalizing the information theoretic security prop-

erties of Interactive Hashing in Section 2.2. Then, in Section 2.3 we turn our

attention to the Interactive Hashing implementation that appeared as a sub-

protocol in [OVY93] and demonstrate that despite its simplicity, it meets all

security properties set forth in Section 2.2. Our new proof of security is an im-

portant improvement over the proof that appeared in [CCM98] where the authors

demonstrate that a slight variant of the IH protocol of [OVY93] could be securely

used in their specific scenario.

Since it does not rely on the specific context of any application, our new

proof is more general. Moreover, it is significantly simpler and more intuitive.

Lastly, our proof establishes an easier to use and much tighter upper bound on
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the probability that the protocol fails to ensure that one of the two strings is

sufficiently random.

2.1 Previous work

Various implementations of Interactive Hashing have appeared as sub-protocols in

the cryptographic literature, first in computational contexts where at least one of

the participants is polynomially bounded and later also in contexts where security

is unconditional (information theoretic).

While reviewing the previous work, the reader should bear in mind that so

far, Interactive Hashing has never been presented as an independent primitive.

Instead, it only appears within the context of larger protocols achieving a variety

of different cryptographic tasks. Not surprisingly, the properties it is expected to

have can vary significantly from one application to the next, and thus the proof

of security in each case depends on the specific setting.

2.1.1 Uses of Interactive Hashing in computational con-

texts

Interactive Hashing first appeared as a sub-protocol within a protocol achieving

oblivious transfer from an unbounded sender to a polynomial-time bounded re-

ceiver [OVY93]. Soon thereafter, Interactive Hashing was deployed in various

other scenarios, such as zero-knowledge proofs [OVY94] and bit commitment

schemes [OVY92, NOVY98], where at least one of the participants was compu-
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tationally bounded.

An illustrative example of its applications in such computational contexts is the

bit commitment scheme of Naor et al. [NOVY98]. We briefly remind the reader

that a bit commitment scheme allows a player, Alice, to send a commitment to

a bit b of her choice to some other player Bob. The scheme should guarantee

that, on one hand, the value of b remains hidden from (dishonest) Bob until the

decommitment phase, when Alice opens the commitment and reveals the value

of b she had committed to. On the other hand, the scheme should also guarantee

that after the commitment phase, (dishonest) Alice is only able to decommit to

one value. In the bit commitment scheme of [NOVY98], Alice commits to a bit

b by choosing uniformly at random a string m 2 f0; 1gt , computing w = �(m)

where � is a one-way permutation1, and sending the image w to Bob using

Interactive Hashing. Alice then announces a labeling of the two outputs w0; w1

such that wb = w (this labeling allows her to later decommit to the right value).

Note that b remains perfectly hidden even from a computationally unbounded2

Bob since, by the properties of Interactive Hashing, Bob cannot tell which of

w0; w1 was Alice’s original input since they are both equally likely to be the

image of Alice’s uniformly chosen string m (recall that � is a permutation). At a

later time, Alice decommits to b by announcing m, namely the pre-image under �

of one of w0; w1. As Interactive Hashing guarantees that one of the two outputs

is chosen effectively at random, cheating would imply having to invert � on an
1In short, a one-way permutation � has the property that it can be efficiently evaluated on

any input x , yet given an image y chosen uniformly at random, it is computationally infeasible
to compute the pre-image x such that �(x) = y , except with negligible probability.

2A computationally unbounded player can be thought of as having infinite computational
power at his disposal.
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effectively random string in f0; 1gt . Therefore, if � is one-way, Alice can only

cheat a negligible fraction of the time. Indeed, the security of this commitment

scheme is formally proved via a reduction showing that if (polynomially-bounded)

Alice can decommit both ways a non-negligible fraction of the time, then there

exist efficient algorithms that invert �, thereby contradicting its one-wayness.

2.1.2 Uses of Interactive Hashing in information theoretic

contexts

Beside the computational scenarios in which it was originally used, Interactive

Hashing proved to be an important tool in information theoretic contexts as well.

Its first such use was in protocols for oblivious transfer which are information the-

oretically secure under the sole assumption that the receiver’s memory is bounded

[CCM98, ADR02, Din01, DHRS04]. Interactive Hashing was later used to op-

timize reductions between oblivious transfer variants [CS06] (see also Chapter

4).

We remark that while some of the security properties required of Interactive

Hashing in information theoretic settings bear a very close resemblance to their

counterparts in computational settings, some other properties are substantially

different. Moreover, the transition from computational to information theoretic

settings requires a re-evaluation of all security properties of any protocol. For

this reason, starting with [CCM98], the security properties of the underlying In-

teractive Hashing sub-protocol have been re-evaluated in the light of the specific,

information theoretic context in which it was used.
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2.2 Information theoretic security definition of

Interactive Hashing

We now formalize the security properties that Interactive Hashing is expected

to satisfy in information theoretic contexts3. As these properties do not depend

on any specific application, they allow us to define Interactive Hashing as an

independent cryptographic primitive.

Definition 2.1. Interactive Hashing is a cryptographic primitive between two

players, the sender and the receiver. It takes as input a string w 2 f0; 1gt from

the sender, and produces as output two t–bit strings one of which is w and the

other w 0 6= w . The output strings are available to both the sender and the

receiver, and satisfy the following properties:

1. The receiver cannot tell which of the two output strings was the original

input. Let the two output strings be w0; w1, labeled according to lexico-

graphic order. Then if both strings were a priori equally likely to have been

the sender’s input w , then they are a posteriori equally likely as well4.

2. When both participants are honest, the input is equally likely to be paired

with any of the other strings. Let w be the sender’s input and let w 0 be the

second output of interactive hashing. Then provided that both participants

follow the protocol, w 0 will be uniformly distributed among all 2t�1 strings

3In some specific applications, one or more of the security properties may actually be relaxed.
4Note that if we want this property to hold for all possible outputs, then w must be uniformly

chosen. Otherwise, this property will only hold whenever w happens to be paired with a string
w 0 having the same a priori probability as w .
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different from w .

3. The sender cannot force both outputs to have a rare property. Let G be

a subset of f0; 1gt representing the sender’s “good set”. Let G be the

cardinality of G and let T = 2t . Then if G=T is “small”, the probability that

a dishonest sender will succeed in having both outputs w0; w1 be in G is

comparably “small”.

Remark: In the computational contexts of Section 2.1.1, similar properties to

Properties 1 and 2 were also required. On the other hand, the computational

counterpart to Property 3 is usually stated quite differently, as there is no pre-

determined good set G. For instance, in [NOVY98] (see Section 2.1.1) where

the inputs and outputs of Interactive Hashing are interpreted as images under

a one-way permutation �, one of the two outputs is required to be sufficiently

random so that any polynomial-time algorithm that can compute pre-images to

both outputs a significant fraction of the time can be used to efficiently invert �

on a randomly chosen string with non-negligible probability.

2.3 A Protocol for Interactive Hashing and a new

proof of its security

We will be examining the implementation of Interactive Hashing given in Proto-

col 2.1. This standard implementation was originally introduced in a computa-

tional context by Ostrovsky, Venkatesan, and Yung [OVY93]. In Section 2.3 we

will see that this very simple protocol actually meets all our information theoretic
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security requirements as well.

Protocol 2.1 Interactive Hashing

Let w be a t-bit string that the sender wishes to send to the receiver. All
operations below take place in the binary field F2.

1. The receiver chooses a (t � 1) � t matrix Q uniformly at random among
all binary matrices of rank t � 1. Let qi be the i thquery, consisting of the
i throw of Q.

2. For 1 � i � t � 1 do:

(a) The receiver sends query qi to the sender.

(b) The sender responds with ci = qi � w .

3. Given Q and c (the vector of Bob’s responses), both parties compute the
two values of w consistent with the linear system Q � w = c . These
solutions are labeled w0; w1 according to lexicographic order.

Remark: One way of choosing the matrix Q is to choose a (t � 1)� t binary

matrix uniformly at random and test whether it has rank t � 1, repeating the

process if necessary. Note that a later variation of the protocol [NOVY98] chose

Q in a canonical way to guarantee that it has rank t � 1, which results in a

somewhat more practical implementation. However, this appears to complicate

the proof of security.

Theorem 2.1 establishes the security of Protocol 2.1.

Theorem 2.1. Protocol 2.1 satisfies all three information theoretic security prop-

erties of Definition 2.1. Specifically, for Property 3, it ensures that a dishonest

sender can succeed in causing both outputs to be in the “good set” G with

probability at most 15:6805 � G=T .
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Theorem 2.1 follows from Lemmas 2.1 and 2.2, which we prove in Sec-

tions 2.3.1 and 2.3.2, respectively.

Lemma 2.1. Protocol 2.1 satisfies Properties 1 and 2 of Definition 2.1.

Lemma 2.2. Protocol 2.1 ensures that a dishonest sender can succeed in causing

both outputs to be in the “good set” G with probability at most 15:6805 � G=T .

2.3.1 Satisfying Properties 1 and 2

Lemma 2.1 is rather straightforward to prove. Protocol 2.1 essentially builds the

linear system of equation (2.1) in a row-by-row manner.
: : : q1 : : :

: : : q2 : : :
...

...
...

: : : qt�1 : : :


︸ ︷︷ ︸

Q

�


...
w
...

 =


c1
c2
...

ct�1

 : (2.1)

The properties of the linear system easily establish that Property 1 of Definition

2.1 is met, in other words, that the receiver cannot guess which of the two output

strings was the sender’s original input to the protocol. Let V be the receiver’s

(marginal) view at the end of the protocol and let w0; w1 be the corresponding

output strings. Note that V would be identical whether the sender’s input was

w0 or w1, as the responses obtained after each challenge would be the same

in both cases. Consequently, if before the protocol begins the sender is equally

likely to have chosen w0 and w1 as input — both with some typically very small

probability � — then at the end of the protocol, given the view V, each of these

two strings has equal probability 1=2 of having been the original input string. We
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observe that a dishonest receiver would have nothing to gain by selecting a matrix

Q of queries in a non-random fashion or by selecting a matrix with rank less than

t � 1.

As for Property 2, let w be the sender’s input and let w 0 be the second

output of Interactive Hashing. We first note that since the linear system has two

distinct solutions, it is always the case that w 0 6= w . To see that w 0 is uniformly

distributed among all strings in f0; 1gt nw , it suffices to observe that Q is chosen

uniformly at random among all rank t � 1 matrices and that the number of such

Q’s satisfying Q(w) = Q(w 0), Q(w � w 0) = 0 is the same5 for any w 0 6= w .

2.3.2 Satisfying Property 3

The bulk of the proof is devoted to the considerably more ambitious undertak-

ing of proving Lemma 2.2 establishing that Property 3 is also met. Note that

Property 3 would be rather easy to satisfy when G 2 o(
p
T ) as in this case, the

probability that a matrix Q selected uniformly at random will lead to collisions6

within G is negligible. Consequently, in this scenario there would not even be a

need for interaction since the sender could simply send the whole of Q in one

round. Interaction only becomes necessary for larger sets G for which the prob-

ability of collision becomes significant because of the Birthday Paradox7. What

5To be more specific, to each such pair w;w 0 correspond exactly
∏t�2

i=0

(
2t�1 � 2i

)
matrices

Q. To see this, let v = w �w 0. As v 6= ~0, the equation q � v = 0 has 2t�1 solutions. A matrix
Q of rank t�1 satisfying Q(v) = 0 must have rows q1; : : : ; qt�1 that are non-zero and linearly
independent of all previous rows.

6A collision occurs when there exist strings w0; w1 2 G such that Q �w0 = Q �w1. In other
words, when w0�w1 = w where w is the unique non-zero solution to the equation Q(w) = ~0.

7According to the Birthday Paradox, it is almost certain that there will be collisions if
G 2 !(

p
T ).
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we will show is that interaction in effect “beats” the Birthday Paradox, in the

sense that a dishonest sender can only produce a collision in G with probability

O(G=T).

Notation

Table 2.1 presents the notation we will be using for the rest of the proof.

Remark: at the beginning of Protocol 2.1, Gi ; Pi , etc. are random variables

whose exact value will only be determined at the beginning of round i . The

intended interpretation of statements such as Pi = Gi (Gi�1)
2

or Pi <
G2

i

2
is that

the relation holds in all executions of the protocol once the corresponding values

are fully determined. When we say that we condition on a given value of Gi ,

say, the intended interpretation is that we are setting Gi to a specific value gi .

All associated variables determined at the same round (such as Pi) are then also

implicitly set to the specific values corresponding to gi , but variables such as

Gi+1, whose exact value will depend on future queries, still remain undetermined.

Alice’s cheating strategy

At the beginning of round i , Alice has Gi good strings which are then split into

G0
i ; G

1
i by query qi . It is tempting to assume that the optimal cheating strategy

for Alice is to always choose the value of ci that allows her to carry the larger

of the two sets into the next round. This would simplify our analysis since it

would allow us to establish both an upper and a lower bound on the expected

size of Gi for all i . However intuitively obvious it may be, though, proving that
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Table 2.1 Notation

T = 2t The number of all strings in f0; 1gt .
G The set of Alice’s good strings at the beginning of Protocol 2.1.

We will denote its cardinality jGj by G.

2�u The fraction of Alice’s good strings at the beginning, namely G=T .

Gi The number of Alice’s (remaining) good strings at the beginning

of round i , right before query i is sent. Note that there are G1 = G

good strings at the beginning of Protocol 2.1 and Gt good strings

at the end (after t � 1 rounds). We say that a dishonest sender

succeeds in cheating if and only if Gt = 2 (i.e., if both output

strings are good).

Pi The number of pairs of good strings remaining at the beginning

of round i . Note that Pi = Gi (Gi�1)
2

and that a dishonest sender

succeeds in cheating if and only if Pt = 1.

G0
i ; G

1
i The number of strings in Gi that are mapped to 0; 1 respectively,

by query i . Note that G0
i + G1

i = Gi .

Gm
i ; G

n
i Respectively, max (G0

i ; G
1
i ) and min (G0

i ; G
1
i ). Note that Gm

i +

Gn
i = Gi and that Gm

i G
n
i = G0

i G
1
i .
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choosing the maximum subset is indeed the optimal strategy for Alice is not that

straightforward8. To avoid this difficulty, we will consider an imaginary Alice

to whom we grant extra powers compared to real Alice, subject to the following

condition: after query qi splits the Gi remaining strings into two sets of cardinality

G0
i and G1

i , imaginary Alice can choose and announce either value for ci , and

must then construct a new set of good strings to be carried forward into the

next round. This new set must be of cardinality Gi+1 = max (G0
i ; G

1
i ) and its

contents can be chosen arbitrarily among all strings that satisfy Equation (2.1)

up to and including the row containing qi . We remark that intuitively, it would

be in imaginary Alice’s best interest to choose the value of ci and the contents of

the set so as to maximize the probability that two good strings will remain at the

end of the protocol. However, for the purposes of our proof, we do not need to

assume anything about imaginary Alice’s actual strategy; it suffices to argue that

imaginary Alice is no less powerful than real Alice. This is true because whatever

strategy real Alice uses, imaginary Alice can always copy it by choosing the same

value for ci in each round, and by defining the set she carries into the next round

to contain all the strings that real Alice would carry, plus some arbitrarily chosen

strings to reach the size imposed by our condition. Thus, if we were to run the

two Alices in parallel, with the same queries, then for all i , imaginary Alice’s Gi

would be a superset of real Alice’s Gi . It is easy to see that real Alice cheats only

if imaginary Alice copying real Alice’s strategy cheats.

8The structure of the subsets may have an impact on the future probability of cheating. For
example, sets consisting of linear subspaces are probably undesirable to dishonest Alice, as each
incoming query would break them into two subsets of equal cardinality. It is thus conceivable
that in some cases, the smaller subset might be preferable to the larger one.
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Therefore, real Alice is no more likely to cheat than imaginary Alice, so if we

show that any strategy followed by imaginary Alice can succeed with probability

no larger than p, the same bound will apply to any strategy followed by real Alice

as well. From this point on, we will assume that we are dealing with imaginary

Alice.

Some preliminary results

Lemma 2.3. Alice’s strategy implies the following relations for all i :

Gi � 1 (2.2)

Gi � G

2i�1
(2.3)

Gi+1 = Gm
i =

Gi

2
+

√
(Gi)

2

4
� G0

i G
1
i (2.4)

Pi+1 =
Gm
i (Gi � 1)� G0

i G
1
i

2
(2.5)

Pi+1 � Pi � G0
i G

1
i : (2.6)

Proof.

(2.2) For some i , let Gi � 1. Then, as query qi separates Alice’s good strings

into those that evaluate to 0 and those that evaluate to 1 and Alice’s

strategy is to carry into the next round a subset of cardinality equal to

that of the larger set, it will necessarily be the case that Gi+1 = Gm
i � 1.

Consequently, provided that G1 � 1, it follows by induction that for all i

we have Gi � 1.
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(2.3) It follows from Alice’s strategy that for all i , Gi+1 � Gi=2. We then apply

this bound i � 1 times to get from G1 = G to Gi .

(2.4) We can write (Gm
i )

2 = Gm
i (Gi�Gn

i ) = Gm
i Gi�Gm

i G
n
i . As Gm

i G
n
i = G0

i G
1
i ,

this implies

(Gm
i )

2 � GiG
m
i + G0

i G
1
i = 0:

Equation (2.4) gives the larger of the two solutions to this quadratic equa-

tion (the smaller one would be Gn
i = Gi

2
�
√

(Gi )
2

4
� G0

i G
1
i ).

(2.5) We have: 2Pi+1 = Gm
i (G

m
i � 1) = (Gm

i )
2 � Gm

i . Substituting (Gm
i )

2 =

GiG
m
i � G0

i G
1
i we get

2Pi+1 =
(
GiG

m
i � G0

i G
1
i

)� Gm
i = Gm

i (Gi � 1)� G0
i G

1
i :

(2.6) Note that G0
i G

1
i can be interpreted as the number of pairs in Pi that are

separated by query qi (one element of the pair is mapped to 0 and the

other to 1). These pairs will be separated no matter what value Alice

announces for ci . It is thus intuitively obvious that Pi+1 cannot be any

larger than Pi � G0
i G

1
i . For a more rigorous proof, we will prove that
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Pi � G0
i G

1
i � Pi+1 � 0. We have

2Pi � 2G0
i G

1
i � 2Pi+1 = Gi(Gi � 1)� 2Gm

i G
n
i � Gm

i (G
m
i � 1)

= (Gm
i + Gn

i )(Gi � 1)� Gm
i (G

m
i � 1)� 2Gm

i G
n
i

= Gm
i (Gi � 1� Gm

i + 1� 2Gn
i ) + Gn

i (Gi � 1)

= �Gm
i G

n
i + Gn

i (Gi � 1)

= Gn
i (Gi � Gm

i � 1)

= Gn
i (G

n
i � 1)

� 0 since Gn
i is always a non-negative integer.

Lemma 2.4. Conditioning on a given (specific) value of Gi the expected value

of G0
i G

1
i satisfies

E
[
G0
i G

1
i j Gi

]
=

(
2t�1

2t � 2i�1

)
Pi (2.7)

� 1

2
Pi : (2.8)

Proof. Let Gi be any set having cardinality Gi . We can arbitrarily enumerate all

its strings and write

G0
i =

Gi∑
j=1

zj and G1
i =

Gi∑
j=1

nj

where zj (resp. nj) is an indicator random variable taking on the value of 1
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whenever the corresponding string in Gi is mapped to 0 (resp. 1) by query qi

(which has not been sent yet). Then we have

G0
i G

1
i =

(
Gi∑
j=1

zj

)
�
(

Gi∑
j=1

nj

)

= z1n1 + z2n2 + � � �+ zGi
nGi︸ ︷︷ ︸

Gi terms (A)

+ z1n2 + z1n3 + � � �+ zGi
nGi�1︸ ︷︷ ︸

G2
i
� Gi terms (B)

=

Gi∑
j=1

Gi∑
k=j+1

(zjnk + zknj)︸ ︷︷ ︸
(G2

i
� Gi )=2 = Pi terms

: (2.9)

The last step follows by observing that part A vanishes since 8j; zjnj = 0 and by

grouping the terms in B into the sum of Pi terms of type zjnk + zknj with k > j .

We will now show that 8j; k (j 6= k) E [zjnk + zknj ] =
2t�1

2t�2i�1
. Note that

we are still conditioning on the same Gi . Fix j; k such that 1 � j; k � Gi and

j 6= k . Let wj ; wk be the corresponding strings in Gi .There are two cases to

consider:

Case 1: wj ; wk 6= ~0. Let’s count the queries that result in zjnk = 1. These

queries must satisfy

(
: : : wj : : :

: : : wk : : :

)
�


...
qi
...

 =

(
0

1

)
: (2.10)

As wj ; wk are different and non-zero, they are linearly independent. Consequently,

there are exactly 2t�2 solutions for qi . Note that all such solutions are linearly

independent of all previous queries. This is because both wj ; wk satisfy the linear

system of Equation (2.1) up to the row containing qi�1, which makes it impossible
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for a linearly dependent query qi to map them to different values.

At this round there are 2t � 2i�1 valid queries qi for Bob to choose from

(since the 2i�1 queries that are linearly dependent on q1; : : : ; qi�1 are excluded).

Therefore E [zjnk ] =
2t�2

2t�2i�1
and by symmetry the same holds for E [zknj ]. Con-

sequently by linearity of expectation we have:

E [zjnk + zknj ] =
2t�1

2t � 2i�1
:

Case 2: one of wj ; wk is ~0. Without loss of generality, suppose it is wj . Then

no query can result in zknj = 1. Let’s count the queries that produce zjnk = 1.

These must satisfy the system

(
: : : wj : : :

: : : wk : : :

)
�


...
qi
...

 =

(
0

1

)
: (2.11)

This system has (effectively) one equation with t unknowns and hence 2t�1

solutions for qi , all of which are linearly independent of all previous queries9.

As in Case 1, Bob has 2t � 2i�1 possible values for qi to choose from, from

which it follows that E [zjnk ] =
2t�1

2t�2i�1
. Since E [zknj ] = 0, we have that again,

E [zjnk + zknj ] =
2t�1

2t � 2i�1
:

9This is because as wj = ~0, we must have had c1 = c2 = � � � = ci�1 = 0 and so a linearly
dependent query would necessarily map wk to 0. For the special case of the first round, observe
that q1 = ~0 (the only disallowed query) would map wk to 0.
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Combining the two cases, we see that all Pi terms in (2.9) satisfy

E [zjnk + zknj ] =
2t�1

2t � 2i�1
� 1

2

and so, by linearity of expectation

E
[
G0
i G

1
i j Gi

]
=

(
2t�1

2t � 2i�1

)
Pi �

(
1

2

)
Pi : (2.12)

Lemma 2.5. Using Lemma 2.4 we can establish the following bounds:

E [Gi+1 j Gi ] � Gi +
p
Gi

2
(2.13)

E [Pi+1 j Pi ] � 1

4

(
1 +

2
i+1
2p
G

)
Pi (2.14)

E [Pi+1 j Pi ] � 1

2

(
2t � 2i

2t � 2i�1

)
Pi : (2.15)

Proof. We first remark that conditioning on a specific value of Pi (i.e. setting

Pi = p) is equivalent to conditioning on the corresponding value of Gi and vice

versa as the value of one uniquely10 determines the other.

10Gi uniquely determines Pi =
Gi (Gi�1)

2 . On the other hand, given Pi there are two solutions
to the corresponding quadratic equation for Gi of which only the larger is valid since the smaller
one is either negative or zero, in violation of (2.2).
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(2.13) From (2.4) we have

E [Gm
i j Gi ] =

Gi

2
+ E

√(Gi)
2

4
� G0

i G
1
i j Gi


� Gi

2
+

√√√√E

[
(Gi)

2

4
� G0

i G
1
i j Gi

]
by Jensen’s Inequality

=
Gi

2
+

√
(Gi)

2

4
� E

[
G0
i G

1
i j Gi

]
by linearity of expectation

� Gi

2
+

√
(Gi)

2

4
� Gi(Gi � 1)

2

1

2
using (2.8)

=
Gi +

p
Gi

2
:

(2.14) Using (2.5), we get the following:

E [Pi+1 j Gi ] =
1

2
E
[
Gm
i (Gi � 1)� G0

i G
1
i j Gi

]
(2.16)

=
1

2
(Gi � 1) E [Gm

i j Gi ]� 1

2
E
[
G0
i G

1
i j Gi

]
(2.17)

� 1

2
(Gi � 1)

Gi +
p
Gi

2
� 1

2

Gi(Gi � 1)

4
(2.18)

=
Gi(Gi � 1)

8

(
1 +

2p
Gi

)
(2.19)

=
1

4

(
1 +

2p
Gi

)
Pi (2.20)

� 1

4

(
1 +

2
i+1
2p
G

)
Pi : (2.21)

Note that (2.17) follows by linearity of expectation, (2.18) follows from

bounds (2.2), (2.8), (2.13) while (2.21) is obtained by applying Inequality

(2.3).
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(2.15) From (2.6) we have

E [Pi+1 j Pi ] � Pi � E
[
G0
i G

1
i j Pi

]
= Pi � Pi

(
2t�1

2t � 2i�1

)
using (2.7)

=
1

2

(
2t � 2i

2t � 2i�1

)
Pi :

Lemma 2.6. Let 1 � b � t � 1 be a positive integer. Let R def
= 2

u�b

2 . Then the

expected number of pairs at the end of Protocol 2.1 satisfies

E [Pt ] � G

T
� 2

2� 2�b
� R�2 �

1∏
j=0

(
1 +

R

2j=2

)
︸ ︷︷ ︸

Y

: (2.22)

Proof. Taking expectations on both sides11 of (2.14) we get

E [Pi+1] � 1

4

(
1 +

2
i+1
2p
G

)
E [Pi ]

=
1

4

(
1 + 2(i+1�t+u)=2

)
E [Pi ] replacing G = 2t�u

=
1

4
(1 + Ri) E [Pi ] writing Ri

def
= 2(i+1�t+u)=2 . (2.23)

11This can alternatively be seen as follows:

1∑
p=0

E [Pi+1 j Pi = p] � Pr [Pi = p] �
1∑
p=0

1

4

(
1 +

2
i+1

2p
G

)
� p � Pr [Pi = p])

E [Pi+1] �
1

4

(
1 +

2
i+1

2p
G

)
E [Pi ] :
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Similarly, taking expectations on both sides of (2.15), we get

E [Pi+1] � 1

2

(
2t � 2i

2t � 2i�1

)
E [Pi ] : (2.24)

Note that (2.23) and (2.24) are both valid upper bounds on E [Pi+1] for any i .

Note also that these two inequalities remain valid if E [Pi ] on the right hand side

is replaced by any upper bound for E [Pi ].

Let a = (t � 1) � b. Suppose that we start by sequentially applying (2.23)

a times. Then,

E [Pa+1] � E [P1] � 1
4a

a∏
i=1

(1 + Ri)

= P1
1

4a

a∏
i=1

(1 + Ri) since E [P1] = P1

= P1 � 1
4a

a�1∏
i=0

(
1 +

Ra

2i=2

)
using Ri=Ri�1 =

p
2

= P1 � 1
4a

a�1∏
i=0

(
1 +

R

2i=2

)
since Ra = R = 2

u�b

2

� P1 � 1
4a

1∏
i=0

(
1 +

R

2i=2

)
since all terms are at least 1. (2.25)

Now suppose we sequentially apply (2.24) for the last b rounds to get an upper
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bound for E [Pt ] in terms of E [Pt�b]. Then

E [Pt ] � E [Pt�b] � 1
2b

t�1∏
i=t�b

(
2t � 2i

2t � 2i�1

)
= E [Pt�b] � 1

2b

(
2t � 2t�b

2t � 2t�b�1

)(
2t � 2t�b+1

2t � 2t�b

)
: : :

: : :

(
2t � 2t�2

2t � 2t�3

)(
2t � 2t�1

2t � 2t�2

)
= E [Pt�b] � 1

2b

(
2t � 2t�1

2t � 2t�b�1

)
= E [Pt�b] � 1

2b

(
1

2� 2�b

)
= E [Pa+1] � 1

2b

(
1

2� 2�b

)
(2.26)

where Equation (2.26) follows from the fact that t � b = a + 1. Combining

(2.25) and (2.26), we have

E [Pt ] � P1 � 1
4a

1

2b

(
1

2� 2�b

) 1∏
i=0

(
1 +

R

2i=2

)

� G2

2
2�2a�b

(
1

2� 2�b

) 1∏
i=0

(
1 +

R

2i=2

)
(2.27)

= 22t�2u�1�2a�b
(

1

2� 2�b

) 1∏
i=0

(
1 +

R

2i=2

)
(2.28)

= 2b+1�2u
(

1

2� 2�b

) 1∏
i=0

(
1 +

R

2i=2

)
(2.29)

= 2�u � 2 � 2b�u
(

1

2� 2�b

) 1∏
i=0

(
1 +

R

2i=2

)

=
G

T
� 2 � R�2

(
1

2� 2�b

) 1∏
i=0

(
1 +

R

2i=2

)
: (2.30)
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Note that for Equation (2.27) we used the fact that P1 = G(G�1)
2

. For Equation

(2.28) recall that G = 2t�u. Equation (2.29) uses 2t � 2a = 2b + 2 while

Equation (2.30) follows from G=T = 2�u and R = 2
u�b

2 .

We are now ready to prove Lemma 2.2, which, along with Lemma 2.1 estab-

lishes Theorem 2.1.

Proof of Lemma 2.2. Since Pt = 1 if the two output strings are both good

and Pt = 0 otherwise, it follows that the probability that Alice cheats satisfies

Pr [Pt = 1] = E [Pt ]. Similarly, the upper bound on E [Pt ] established by (2.22)

is also an upper bound on the probability of successful cheating. Note that any

integer value of b in (2.22) establishes a valid upper bound. We can fix12 b =

du + 0:03e in which case part Y becomes a function of u only. The probability of

cheating is thus upper bounded by min (G=T � Y (u); 1) = G=T � min (Y (u); T=G).

Recalling that G=T = 2�u, we set

Z(u) = min (Y (u); 2u) :

A graph of Z(u) (see Figure 2.2) shows that it never exceeds 15:6805. It

therefore holds that for all ratios G=T the probability that Alice cheats is upper

bounded by 15:6805 � G=T .

Remark: The maximum of Z(u) cannot occur beyond the first few peaks

depicted in Figure 2.2. To see this, recall that R = 2
u�b

2 where b = du + 0:03e,
12This value of b was chosen with the help of at a 3-D graph of part Y of Equation (2.22).

We remind the reader that however b is chosen, it establishes a valid upper bound.
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Figure 2.2: Graph of Z(u) vs u, showing that the maximum value of Z(u) =

min (Y (u); 2u) does not exceed 15:6805. This maximum is attained at the
intersection of Y (u) with 2u, occurring near u1 = 3:9709. Note that Z(u) = 2u

for u � u1 while Z(u) = Y (u) for u > u1.
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while Y (u) from Equation (2.22) can be expressed as the product of two factors,

A and B, as follows:

Y (u) =
2

2� 2�b︸ ︷︷ ︸
A

�R�2 �
1∏
j=0

(
1 +

R

2j=2

)
︸ ︷︷ ︸

B

: (2.31)

Note that factor B of Equation (2.31) depends entirely on R, which, within any

interval of length 1 of u, takes on all the values in (R0; R1] where R0 = 2�1:03=2

and R1 = 2�0:03=2. This explains the oscillations, whose peaks are decreasing due

to the fact that A(u) is decreasing, converging to 1 as u ! 1. For any u; u0

such that u0 = u + 1, we have R0 = R while b0 = b + 1. As A(u0) < A(u) and

B(u0) = B(u), we have Y (u0) < Y (u). This shows that the maximum cannot

occur after the first two13 peaks of the graph.

2.3.3 Contributions of our new proof

Cachin, Crépeau, and Marcil [CCM98] proved a similar property to Property 3

for a slight variant of Protocol 2.1 in the context of memory-bounded Oblivious

Transfer where again, the goal of a dishonest sender is to force both outputs of the

protocol to be from a subset G of cardinality G (out of a total T = 2t). While

their approach relies on upper-bounding the number of the sender’s remaining

good strings during the various rounds of the protocol, ours focuses instead on

13Our reasoning does not allow us to claim that the global maximum cannot occur after the
first peak of Z(u), as is in fact the case. This is because the first peak does not necessarily
correspond to a peak of Y (u), but might be determined by the intersection of Y (u) with 2u .
It is thus conceivable that this first intersection is lower than the peak of Y (u) immediately
following it.
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following the evolution of the number of pairs of good strings remaining after

each round. This seems to be a more natural choice for this scenario, as there is

exactly one such pair remaining at the end of the protocol if the sender succeeds

in cheating and none otherwise (as opposed to two strings versus zero or one).

Consequently, the probability of cheating is simply equal to the expected number

of remaining pairs. Thanks to the nature of the protocol, it is relatively easy to

establish an upper bound on the expected number of remaining pairs after each

incoming query, and to keep track of its evolution through the protocol.

Our approach not only leads to a simpler and more robust proof of security,

but more importantly, it also allows us to establish a more general and much

tighter upper bound on a dishonest sender’s probability of cheating. Specifically,

it allows us to show that any strategy a dishonest sender might employ can

succeed with probability no larger than 15:6805 � G=T , for all fractions G=T of

good strings. The corresponding upper bound in [CCM98] is
p
2 � 8
√

G=T and is

only valid provided that G=T < (16t8)
�1. It should be noted that our upper bound

is in fact tight up to a small constant. Indeed, the probability of succeeding in

cheating using an optimal strategy is lower-bounded by the probability of getting

two good output strings when the sender chooses w 2 G as input and then acts

honestly. By Property 2 of Interactive Hashing, w is equally likely to be paired

with any of the remaining strings. It follows that the probability of w being

paired with one of the other G � 1 good strings is exactly G�1=T�1. Assuming

that G � 2, our upper bound is larger than this lower bound by a factor of at

most 15:6805�(G
T

) (
T�1
G�1

)
< 15:6805

(
G

G�1

) � 2�15:6805. This establishes that
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our upper bound is tight up to a small constant in all cases where the possibility

of cheating exists (cheating is impossible when G < 2).

2.3.4 An alternative implementation

Ding et al. [DHRS04] make use of a new, constant-round Interactive Hashing

protocol to achieve Oblivious Transfer with a memory-bounded receiver. The

main idea behind their protocol, which requires only four rounds of interaction

(compared to t�1 rounds in Protocol 2.1), is that if the receiver sends a random

permutation � to the sender (Round 1) who then applies it to his input string

w and announces a certain number of bits of �(w) (Round 2), then two more

rounds suffice to transmit the remaining part of �(w) so that only 1 bit remains

undetermined: in Round 3, the receiver chooses a function g uniformly at random

from a family of 2–wise independent 2–1 hash functions, and in Round 4 the

sender announces the value of the function applied to the remaining bits of �(w).

The output of the Interactive Hashing protocol consists of the two possible inputs

to the permutation � consistent with the values transmitted at rounds 2 and 4.

The security of this scheme is based on the observation that the permutation � in

the first round divides the (dishonest) sender’s good set G into buckets (indexed

by the bits transmitted at Round 2), so that with high probability, in each bucket

the fraction of good strings is below the Birthday Paradox threshold. This allows

regular 2–1 hashing to be used in Rounds 3 and 4 to complete the protocol.

It should be noted that since a random permutation would need exponential

space to describe, the construction resorts to almost t-wise independent permu-
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tations, which can be efficiently constructed and compactly described.

Unfortunately, the protocol of [DHRS04] is less general than Protocol 2.1 for

a variety of reasons: first, its implementation requires that the two parties know a

priori an upper bound on the cardinality of the dishonest receiver’s good set G, as

this will determine the number of bits of �(w) announced in Round 2. Secondly,

the upper bound for the probability that Property 3 is not met is, according to

the authors’ analysis, 
(t � G=T) and only applies when G � 4t. Moreover, the

protocol does not fully satisfy Property 2, but only a slight relaxation14 of it.

Lastly, the protocol is very involved, and probably prohibitively complicated to

implement in practice. We leave it as an open problem to improve upon this

construction.

2.4 A sample application

In order to illustrate the power of Interactive Hashing in information theoretic

contexts, we will consider its application to the following problem: suppose that

a sender Alice and a receiver Bob wish to implement 1-out-of-k Bit Oblivious

Transfer (more on Oblivious Transfer in later chapters), which we will denote as(
k
1

)
–Bit OT. For the purposes of our example, suffice it to say that Alice would

like to make available k randomly chosen bits to Bob, who must be able to choose

to learn any one of them, with all choices being equally likely from Alice’s point

of view. Alice is only willing to participate provided that (dishonest) Bob learns

information about exclusively one bit, while Bob must receive the assurance that

14it approximates the uniform distribution over the remaining strings within some � < 2�t .
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(dishonest) Alice cannot obtain any information about his choice. Suppose that

all that is available to Alice and Bob is an insecure version of
(
k
1

)
–Bit OT, denoted

(k � 1)–faulty
(
k
1

)
–Bit OT, which allows honest Bob to receive (only) one bit

of his choice but might allow a dishonest Bob to learn up to k � 1 bits of his

choice. Over the past few years, Crépeau and Kilian [CK] have made repeated but

unsuccessful attempts to find a satisfactory reduction of
(
k
1

)
–Bit OT to (k � 1)–

faulty
(
k
1

)
–Bit OT. Protocol 2.2 shows how Interactive Hashing makes such a

reduction almost trivial.

Remark: For simplicity, Protocol 2.2 reduces
(
2
1

)
–Bit OT to (k � 1)–faulty(

k
1

)
–Bit OT without any loss of generality since

(
k
1

)
–Bit OT can in turn be re-

duced to
(
2
1

)
–Bit OT using the well-known reduction in [BCR86]. For simplicity,

we will also assume that k is a power of 2.

It is relatively straightforward to see that when both participants are honest,

Protocol 2.2 allows Bob to obtain the bit of his choice since he knows Rd =⊕n
i=1 rici and can thus decrypt e�c . In case Alice is dishonest, Bob’s choice �c is

perfectly hidden from her when she obtains f at Step 6. This is because at the

beginning of the protocol, Bob is equally likely to make the choices encoded by

w0 as those encoded by w1. Consequently, by Property 1 of Interactive Hashing,

given the specific outputs, the probability of either of them having been the

original input is exactly 1=2. Hence d is uniformly distributed from Alice’s point

of view and so f = d � �c carries no information about �c . As for the case where

Bob is dishonest, we can assume that he always avails himself of the possibility

of cheating afforded by (k � 1)–faulty
(
k
1

)
–Bit OT, and obtains k � 1 out of k
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Protocol 2.2 Reduction of
(
2
1

)
–Bit OT to (k � 1)–faulty

(
k
1

)
–Bit OT

Let �b0; �b1 and �c be the inputs of Alice and Bob, respectively, for
(
2
1

)
–Bit OT.

1. Alice and Bob agree on a security parameter n.

2. For 1 � i � n do:

(a) Alice selects at random bits ri1; ri2; : : : ; rik while Bob selects at ran-
dom ci 2R f1; : : : ; kg.

(b) Alice uses (k � 1)–faulty
(
k
1

)
–Bit OT to send her k bits to Bob, who

chooses to learn rici .

3. Bob encodes his choices during the n rounds of (k � 1)–faulty
(
k
1

)
–Bit OT

as a bit string w of length n � log(k) by concatenating the binary represen-
tations of c1; c2; : : : ; cn.

4. Bob sends w to Alice using Interactive Hashing. Let w0; w1 be the output
strings labeled according to lexicographic order, and let d 2 f0; 1g be such
that w = wd .

5. Let p1; p2; : : : ; pn be the positions encoded in w0 and let q1; q2; : : : ; qn be
the positions encoded in w1. Alice computes

R0 =

n⊕
i=1

ripi R1 =

n⊕
i=1

riqi :

6. Bob sends f = d � �c to Alice.

7. Alice sends e0 =�b0 � Rf and e1 =�b1 � R�f to Bob.

8. Bob decodes �b�c = e�c � Rf��c = e�c � Rd .
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bits every time. Then, by the end of Step 2, it is always the case that among all

encodings of positions, only
(
k�1
k

)n
< e�n=k are “good”, in the sense that they

represent positions that are all known to him (along with their exclusive OR). By

Property 3 of Interactive Hashing, Bob cannot force both w0 and w1 to be among

these “good” encodings except with probability no larger than 15:6805 � e�n=k .

This probability can be made arbitrarily small by an appropriate choice of the

security parameter n.

2.5 Conclusion and open problems

We have provided a rigorous definition of Interactive Hashing by distilling and for-

malizing its security properties in an information theoretic context, independently

of any specific application. This opens the way to recognizing Interactive Hashing

as a cryptographic primitive in its own right, and not simply as a sub-protocol

whose security properties, as well as their proof, depend on the specifics of the

surrounding application. We have also demonstrated that there exists a simple

implementation of Interactive Hashing that fully meets the above-mentioned se-

curity requirements, and gave a proof of correctness that significantly improves

upon previous results in the literature. We have also provided a simple example

that offers a glimpse into the power of Interactive Hashing as a cryptographic

primitive, as a preview to the more elaborate applications that we will be encoun-

tering in Chapters 4 and 5.
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Open problems The interested reader is encouraged to consider the following

open problems:

1. Devise a more appropriate name for Interactive Hashing which better cap-

tures its properties as a cryptographic primitive rather than the mechanics

of its known implementations.

2. Investigate how much interaction, if any, is really necessary in principle to

implement Interactive Hashing.

3. Explore ways to implement Interactive Hashing more efficiently, especially

regarding the amount of interaction. To this end, the constant-round Inter-

active Hashing protocol of [DHRS04] we briefly described in Section 2.3.4 is

an important step in the right direction. We invite the interested reader to

improve on this construction so that it meets all the security requirements.

51



52



3
Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive of paramount importance,

especially in the context of multi-party computation. One of its early variants had

been studied by Wiesner [Wie70] under the name of “multiplexing” but his work

was only published post-facto. The notion of Oblivious Transfer was introduced

to cryptography by Rabin [Rab81]. Rabin OT is a primitive that allows a sender

Alice to send a bit b to a receiver Bob who receives either b or � (the erasure

symbol), each with probability 1=2. The primitive guarantees that Alice does not

learn which of the two events occurred.

Another, more frequently encountered variant of Oblivious Transfer is one out

of two Bit Oblivious Transfer [EGL85], denoted
(
2
1

)
–Bit OT or simply Bit OT.

Here, the sender Alice sends two bits b0; b1 to Bob, who can choose to learn

the bit of his choice c , namely bc . This primitive guarantees that on one hand,
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Bob learns nothing about the other bit while on the other hand Alice doesn’t

find out what c was. Despite the differences in appearance between Bit OT and

Rabin OT, the two variants are in fact equivalent cryptographic primitives, as was

demonstrated by Crépeau [Cré87].

The apparent simplicity of Oblivious Transfer belies its surprising power as

a cryptographic primitive. Its applicability to multi-party computation was first

studied by Even, Goldreich and Lempel [EGL85]. Ever since, Oblivious Transfer

has featured as a main ingredient in an array of protocols implementing a large

variety of cryptographic tasks, such as bit commitment, zero-knowledge proofs,

and general secure multi-party computation [Yao86, GMW87, Gol04]. Kilian

[Kil88] demonstrated that this primitive is in and of itself sufficient to securely

implement any two-party computation.

String OT is a generalization of Bit OT that allows Alice to send one of

two k–bit strings to Bob. In the next two Chapters, we will see how Interactive

Hashing, which was presented in Chapter 2, enables String OT to be efficiently

reduced to Bit OT and other related but weaker primitives (Chapter 4), as well

as to the original Rabin OT (Chapter 5). The rest of the present chapter is

devoted to introducing the various types of Oblivious Transfers that we will later

encounter.

3.1 String OT and Bit OT

One-out-of-two String Oblivious Transfer, denoted
(
2
1

)
–String OTk , is a primitive

that allows a sender Alice to send one of two bit strings, x0; x1 2 f0; 1gk to a
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receiver Bob who receives xc for a choice bit c 2 f0; 1g. It is assumed that the

joint probability distribution Px0x1c from which the inputs are generated is known

to both parties. The primitive offers the following guarantees:

1. (Correctness) When both parties are honest, Bob obtains xc while Alice

obtains nothing.

2. (Security for Bob) Any (dishonest) Alice cannot learn any extra information

about Bob’s choice c beyond what can be inferred from her inputs x0; x1

and the distribution Px0x1c .

3. (Security for Alice) Any (dishonest) Bob can learn information concerning

exclusively one of x0; x1. This excludes any joint information about the two

strings except what can be inferred from Bob’s input, (legitimate) output,

and Px0x1c .

Bit OT can then simply be viewed as a special case of
(
2
1

)
–String OTk with

k = 1.

3.2 Weaker variants of Bit OT

XOR OT1, Generalized OT and Universal OT are weaker variants of
(
2
1

)
–Bit OT

obtained by relaxing the security guarantees against a dishonest receiver (Bob), as

1As a brief historical aside, we mention that XOR OT was originally studied in the context of
reversing the direction of Oblivious Transfer. Crépeau and Sántha [CS91] showed that it is very
easy to obtain XOR OT in one direction if

(
2
1

)
–Bit OT in the reverse direction is available. Using

their approach, obtaining
(
2
1

)
–Bit OT itself required a more elaborate construction involving

several executions of
(
2
1

)
–Bit OT in the reverse direction. These results were obviated by a

more recent approach [WW06] that fully reverses
(
2
1

)
–Bit OT using just one execution.
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described below. Note that in all cases, b0; b1 denote Alice’s input bits. Whatever

extra choices may be available to Bob, he always has the option of acting honestly

to obtain bc for a choice c 2 f0; 1g. As in “regular”
(
2
1

)
–Bit OT, Alice never

obtains information about Bob’s choice c , or learns whether Bob actually made

use of his expanded choices.

XOR OT (XOT) Bob can choose to learn one of b0; b1; b� where b�
def
= b0�b1.

Generalized OT (GOT) Bob can choose to learn f (b0; b1) where f is any of

the 16 possible one-bit functions of b0; b1.

Universal OT (UOT) Bob can choose to learn 
(b0; b1) where 
 is any arbi-

trary discrete memoryless channel whose input is a pair of bits and whose

output satisfies the following information theoretic constraint: let B0; B1 2
f0; 1g be uniformly distributed random variables and let � � 1 be a con-

stant. Then,

H(B0; B1 j 
(B0; B1)) � �:

Note that we do not consider channels with � > 1 as this would disallow Bob to

act honestly.

3.3 Rabin OT

In this incarnation of Oblivious Transfer, which, as already noted, was the first

one to appear in the cryptographic literature [Rab81], the sender Alice sends a bit

b to the receiver Bob over an erasure channel with erasure probability 1=2 and is
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then oblivious to what transpired during the transmission. In Chapter 5 where we

deal with this variant of OT, we will only be concerned with the case where the

bits sent by Alice are chosen independently and uniformly at random. In other

words, as the bits are uncorrelated with any information that Bob might have in

his possession, whenever he receives the erasure symbol �, he cannot guess thee

value of b with probability greater than 1=2.

3.4 Randomized OT

(
2
1

)
–ROTk is a randomized variant of

(
2
1

)
–String OTk where Alice makes avail-

able to Bob two strings r0; r1 2 f0; 1gk chosen uniformly at random and inde-

pendently. Bob learns rc for a randomly chosen c 2R f0; 1g. The fact that the

inputs are random and uncorrelated greatly simplifies the security requirements

of
(
2
1

)
–ROTk . Specifically, this primitive offers the following guarantees:

1. (Correctness) When both parties are honest, Bob obtains rc while Alice

obtains nothing.

2. (Security for Bob) Bob’s choice bit c is uniformly distributed in (dishonest)

Alice’s view.

3. (Security for Alice) Any (dishonest) Bob can learn information concerning

exclusively one of r0; r1. Specifically, at the end of every execution there

must exist some c 0 2 f0; 1g such that, given (dishonest) Bob’s view as

well as rc 0 (provided by an oracle), r�c 0 is uniformly distributed in f0; 1gk .
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Despite its simplicity,
(
2
1

)
–ROTk is in fact equivalent to

(
2
1

)
–String OTk . In-

tuitively, it is easy to see that
(
2
1

)
–ROTk reduces to

(
2
1

)
–String OTk . Protocol 3.1

shows that there exists a straightforward reduction in the reverse direction as well.

For a more formal proof of the equivalence of these two variants, see Section 3.5.3.

Protocol 3.1 Reduction of String OT to Randomized OT

Let the inputs to
(
2
1

)
–String OTk be x0; x1 2 f0; 1gk for the sender and c 2

f0; 1g for the receiver.

1. The sender uses
(
2
1

)
–ROTk to send �r0;�r1 2R f0; 1gk to the receiver, who

receives �r�c for some randomly chosen �c 2 f0; 1g.

2. The receiver sends d = c � �c to the sender.

3. The sender sets e0 = x0 � �rd and e1 = x1 � �r �d and sends e0; e1 to the
receiver.

4. The receiver decodes xc = ec ��r�c .

Remark: Step 1 can be performed before the two parties’ inputs to(
2
1

)
–String OTk have been determined and its results stored for later use.

The simplicity of
(
2
1

)
–ROTk compared to

(
2
1

)
–String OTk makes it consider-

ably easier to work with. For this reason, in Chapters 4 and 5 where our goal

is to provide efficient reductions of
(
2
1

)
–String OTk to other Oblivious Trans-

fer variants, we actually resort to reductions of
(
2
1

)
–ROTk , without any loss of

generality.
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3.5 Information-theoretic definitions of OT

Although the formulation of the properties of
(
2
1

)
–String OTk is quite intuitive

and rather straightforward even for the general case where the inputs of the

two parties may be correlated, a corresponding formal definition in the language

of information theory is rather elusive. Indeed, over the past decades, several

attempts have been made to capture the security properties of
(
2
1

)
–String OTk

in such an information theoretic definition. Most of the resulting definitions

are either too restrictive in scope and thus applicable to only a few specialized

scenarios, or suffer from subtle (and sometimes not so subtle) flaws. An overview

of some of these definitions and their shortcomings appears in [CSSW06], along

with a new information theoretic definition of
(
2
1

)
–String OTk which is shown

to be equivalent to a widely accepted security definition of general two-party

computation in the real/ideal model paradigm and will thus hopefully stand the

test of time.

We present this new definition of
(
2
1

)
–String OTk in Section 3.5.1 and its

counterpart for
(
2
1

)
–ROTk in Section 3.5.2. Finally, in Section 3.5.3 we pro-

vide a formal proof establishing that
(
2
1

)
–String OTk and

(
2
1

)
–ROTk are indeed

equivalent using these definitions.

3.5.1 Definition of
(
2
1

)
–String OTk

In what follows, X = X0X1 is a random variable denoting the sender’s input, C

is a random variable denoting the receiver’s choice bit and Z is a random variable

denoting the environment. U; V are random variables denoting the outputs of the
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sender and receiver, respectively.

Theorem 3.1 ([CSSW06]). A protocol between Player 1 and Player 2 securely

computes
(
2
1

)
–String OTk perfectly if and only if for every pair of algorithms

A = (A1; A2) such that at least one of A1; A2 follows the protocol, and for all

inputs (X;C) and auxiliary input Z, A produces outputs2 (U; V ) such that the

following conditions are satisfied:

1. (Correctness) If both players are honest, then (U; V ) = (?; XC).

2. (Security for Player 1) If Player 1 (the sender) is honest, then we have

U = ? and there exists a random variable C 0, such that

I(X;C 0 j ZC) = 0 and I(X; V j ZCC 0XC0) = 0:

3. (Security for Player 2) If Player 2 (the receiver) is honest, then we have

I(C;U j ZX) = 0:

3.5.2 Definition of
(
2
1

)
–ROTk

We provide an information theoretic definition of
(
2
1

)
–ROTk along the lines of

Theorem 3.1. Let R0; R1 2 f0; 1gk be two uniformly distributed, independently

chosen random variables corresponding to Alice’s input and let R = R0R1. Let

C 2 f0; 1g be a binary, uniformly distributed random variable corresponding

2We remark that the output of a dishonest party can, without loss of generality, be assumed
to contain the party’s marginal view of the protocol’s execution.
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to Bob’s choice bit. Theorem 3.2 captures the information theoretic security

requirements for
(
2
1

)
–ROTk .

Theorem 3.2. A protocol between Player 1 and Player 2 securely computes(
2
1

)
–ROTk perfectly if and only if, for every pair of algorithms A = (A1; A2)

such that at least one of A1; A2 follows the protocol, and for randomly and

independently chosen inputs (R;C) and auxiliary input Z, A produces outputs

(U; V ) such that the following conditions are satisfied:

1. (Correctness) If both players are honest, then (U; V ) = (?; RC).

2. (Security for Player 1) If Player 1 (the sender) is honest, then we have

U = ? and there exists a random variable C 0, such that

I(R;C 0 j ZC) = 0 and H(R �C0 j ZCC 0RC0V ) = k:

3. (Security for Player 2) If Player 2 (the receiver) is honest, then we have

H(C j ZRU) = 1 :

Intuitively, Theorem 3.2 guarantees that from the point of view of any dis-

honest receiver, one of R0; R1 is uniformly distributed, even if the other string

is provided to the receiver by an oracle (this ensures that no joint information is

available). In other words, there exists some C 0, which must not depend on R,

such that H(R �C0) = k after conditioning on RC0 and all information available

to the receiver. Likewise, from the point of view of a dishonest sender, C is
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uniformly distributed, namely H(C) = 1, given all available information.

3.5.3 Equivalence of
(
2
1

)
–String OTk and

(
2
1

)
–ROTk

In this section we show that
(
2
1

)
–ROTk can be implemented using

(
2
1

)
–String OTk

and vice versa.

Reducing
(
2
1

)
–ROTk to

(
2
1

)
–String OTk

Lemma 3.1. If a
(
2
1

)
–String OTk Protocol satisfying the security conditions of

Theorem 3.1 is used with uniformly and independently chosen inputs (R = R0R1

and C for the sender and receiver, respectively), then the security conditions of

Theorem 3.2 will also be met.

Proof. It is easy to see that if both players are honest and the protocol for(
2
1

)
–String OTk satisfies Condition 1 of Theorem 3.1, then it also satisfies Condi-

tion 1 of Theorem 3.2. As for Condition 2 of Theorem 3.2, we first observe that

there exists C 0 such that I(R;C 0 j ZC) = 0 since the corresponding condition in

Theorem 3.1 guarantees it. Moreover, since it holds that I(R; V j ZCC 0RC0) = 0,

we have

H(R j ZCC 0RC0V ) = H (R j ZCC 0RC0) (3.1)

which implies that

H(R �C0 j ZCC 0RC0V ) +

=0︷ ︸︸ ︷
H(RC0 j ZCC 0RC0R �C0V ) =

H (RRC0 j ZCC 0)� H(RC0 j ZCC 0) :

(3.2)
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From (3.2) it follows that

H(R �C0 j ZCC 0RC0V ) = H (R j ZCC 0)� H(RC0 j ZCC 0)

= H (R j ZC)� H(RC0 j ZC) (3.3)

= 2k � k (3.4)

= k:

Note that 3.3 follows from I(R;C 0 j ZC) = 0 while 3.4 is follows from the fact

that R0; R1 2 f0; 1gk are chosen uniformly at random and independently of ZC.

Finally, for Condition 3 (protecting the honest receiver from a dishonest

sender), observe that the corresponding condition for
(
2
1

)
–String OTk guaran-

tees that I(C;U j ZR) = 0 =) H(C j ZRU) = H (C j ZR) = 1 since C is

chosen uniformly at random and independently of ZR.

Reducing
(
2
1

)
–String OTk to

(
2
1

)
–ROTk

Lemma 3.2 proves the security of the reduction of
(
2
1

)
–String OTk to

(
2
1

)
–ROTk

presented in Protocol 3.1.

Note on notation: In order to make the distinction between the variables for(
2
1

)
–String OTk and

(
2
1

)
–ROTk , we will place a small circle above all the latter

ones, whether they have a similarly-named counterpart in
(
2
1

)
–String OTk or not.

Lemma 3.2. If the
(
2
1

)
–ROTk subprotocol used in Protocol 3.1 satisfies the con-

ditions of Theorem 3.2, then the conditions of Theorem 3.1 for
(
2
1

)
–String OTk
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are also met.

Proof. Let �R = �R0
�R1 and �C be random variables corresponding to the two

parties’ random inputs for the
(
2
1

)
–ROTk subprotocol. Let �U;�V be the two

parties’ outputs, and let �Z be the auxiliary string (which honest parties always

ignore). Similarly, let X = X0X1 and C be the two parties’ respective inputs to

the String OT protocol and let U; V be the corresponding outputs. Let D = C��C

and let E0 = X0 � �RD, E1 = X1 � �R �D. Let Z be the auxiliary string denoting

the environment. Since no new auxiliary information is made available during

Protocol 3.1, we will assume that Z = �Z.

Condition 1 If the
(
2
1

)
–ROTk subprotocol satisfies Condition 1 then it is easy to

see that Condition 1 for
(
2
1

)
–String OTk will also be met. Indeed, in Step 2

the receiver sends to the sender a “flip bit” d which effectively allows him to

invert the order in which the input strings of
(
2
1

)
–String OTk are encrypted

and thus to eventually output the string xc of his choice regardless of his

initial random choice of �c in Step 1. Clearly, the honest sender will not

output anything. Therefore, (U; V ) = (?; XC).

Condition 2 We first note that indeed, if the sender is honest then U = �U = ?.

For the subprotocol, there must exist a random variable �C 0 such that

I(�R; �C 0 j �Z�C) = 0. Let C 0 = �C 0 � D. Note that by Step 2 when �C;D

have been determined, the (honest) sender has not made any use of his

input X. As only the value of C, which is known to the dishonest receiver

at the beginning of the protocol, could have influenced Steps 1 and 2, it
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must be the case that C 0 contains no information about X beyond what is

already included in C and thus I(X;C 0 j ZC) = 0.

We now need to show that I(X; V j ZCC 0XC0) = 0 or equivalently, that

H(X �C0 j ZCC 0XC0) = H (X �C0 j ZCC 0XC0V ) :

Notice that the dishonest receiver’s output (or view) V can, without loss

of generality, be assumed to be V = �V E0E1 = �V EC0E �C0 . It is clear that

I(�V ;X j C) = 0 since �V is unrelated to X given C. Since we condition

on XC0 , EC0 adds no further information on X. As for E �C0 , it corresponds

to X �C0 after encryption using �RD� �C0 = �R ��C0
as a one-time pad. Since it

holds that H
(
�R ��C0

j �Z�C�C 0�R�C0
�V
)
= k , by the properties of the one-time

pad no information about X �C0 is made available through E �C0 . It follows

that H(X �C0 j ZCC 0XC0V ) = H (X �C0 j ZCC 0XC0).

Condition 3 The only information made available to the dishonest sender after

Step 1 is the value of D. We can thus assume that U = �UD. Since

D = C � �C and H
(
�C j �Z�R�U

)
= 1, D contains no information about C.

Since X is available to the dishonest sender at the beginning of Protocol

3.1, it is conceivable that the subprotocol was influenced by X. However,

�U cannot carry any information beyond X since the honest receiver never

made any use of C during the
(
2
1

)
–ROTk subprotocol. It follows that

I(C;U j ZX) = 0.
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4
Reducing String OT to Bit OT variants

As mentioned in Chapter 3,
(
2
1

)
–Bit OT is by itself sufficient to securely implement

any two-party computation [Kil88]. It should thus not come as a surprise that(
2
1

)
–String OTk can be reduced to

(
2
1

)
–Bit OT, at least in principle. However, as

such generic reductions are typically inefficient and impractical, many attempts

at finding direct and efficient reductions have been made in the past. Besides

increasing efficiency, an orthogonal goal of some of these reductions has been to

reduce
(
2
1

)
–String OTk to weaker variants of Bit OT such as XOR OT, General-

ized OT and Universal OT. As we shall see in this Chapter, Interactive Hashing

can supplement some of the techniques used in reductions of
(
2
1

)
–String OTk to

the above-mentioned variants. This gives rise to enhanced reductions that are

both more efficient — in fact, most of them can be proved to be asymptotically

optimal — and more general than reductions that do not make use of Interac-
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tive Hashing [CS06]. Note that as
(
2
1

)
–ROTk and

(
2
1

)
–String OTk are equivalent

(see Section 3.5.3), without loss of generality, our goal in this Chapter and the

next will be to present reductions of
(
2
1

)
–ROTk to Bit OT and its variants. This

choice is motivated by the fact that the randomized nature of
(
2
1

)
–ROTk and the

independence of the two parties’ inputs yield simpler constructions with easier to

prove security.

4.1 Previous work

All reductions of
(
2
1

)
–ROTk to Bit OT fall within two major categories: reductions

based on Self-intersecting Codes [BCS96] (Section 4.1.1) and reductions based

on Privacy Amplification [BBR88] (Section 4.1.2).

4.1.1 Reductions based on Self-intersecting Codes

Self-intersecting Codes are a special class of error-correcting codes encoding k-bit

input strings into n-bit codewords. They have the extra property that any two

non-zero codewords c0; c1 always have at least one non-zero position in common.

In other words, there exist some position i such that c i0c i1 6= 0. This property

turns out to be relevant to Oblivious Transfer, since it can be shown that it

guarantees that if I is the set of n positions and v0; v1 are any two disjoint

subsets of I, then there exists d 2 f0; 1g such that the following always holds

about vd : if R 2 f0; 1gn is randomly chosen among all encodings that decode to

any specific r 2 f0; 1gk , then announcing the bits of R at positions vd provides

no information at all about r .
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Consequently, to achieve
(
2
1

)
–ROTk , the sender Alice first selects two random

strings R0; R1 from f0; 1gn, which are decoded into r0; r1 2 f0; 1gk by the code.

Alice sends R0; R1 pairwise through n executions of Bit OT to the receiver Bob.

If Bob is honest, he will receive Rc for some choice bit c , which he can then

easily decode into rc . On the other hand, if Bob is dishonest he will receive the

bits of R0 at positions v0 and the bits of R1 at positions v1 with v0 \ v1 = ;. By

the properties of the code, then, he learns nothing about rd for some d 2 f0; 1g.

Note that this would remain true even if Bob were given r �d by an oracle.

Advantages and Disadvantages

The main advantage of these reductions is that the self-intersecting code can be

chosen ahead of time and embedded once and for all in the protocol for future

use. One of the main disadvantages is the rather large expansion factor n=k , the-

oretically lower-bounded by 3:5277 [Sti99] and in practice ranging from roughly

4:8188 to 18 depending on the type of code. Another important limitation is

that this approach does not lend itself to generalizations to weaker forms of Bit

OT, such as XOT, GOT and UOT.

For more information on Self-intersecting Codes and their use in String OT

reductions we refer the reader to [BCS96].

4.1.2 Reductions based on Privacy Amplification

Privacy Amplification [BBR88] is a technique that allows a partially known string

to be hashed to a shorter string about which almost nothing is known. This
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shorter string can then be used in cryptographic contexts where guaranteeing

an (almost) uniform distribution from the point of view of an eavesdropper or

adversary is crucial as, for example, in the case where the string is to be used as

a one-time pad. For more information on Privacy Amplification, see Section A.3.

In Protocol 4.1 we introduce the construction of [BCW03] upon which our

own construction (Protocol 4.2) builds and expands using Interactive Hashing.

Protocol 4.1 Reduction of
(
2
1

)
–ROTk to Bit OT

1. Alice selects R0, R1 2R f0; 1gn. Bob selects c 2R f0; 1g.

2. Alice sends R0; R1 to Bob using n executions of Bit OT, where the i thround
contains bits Ri

0; R
i
1. Bob receives Ri

c .

3. Let k = n=2� s where s is a security parameter. Alice randomly chooses
two k � n binary matrices M0;M1 of rank k and sets r0 = M0 � R0 and
r1 = M1 � R1.

4. Alice sends M0;M1 to Bob, who sets rc = Mc � Rc .

It is easy to see that when both parties are honest, Protocol 4.1 always

succeeds in achieving
(
2
1

)
–ROTk . The properties of Bit OT guarantee that (dis-

honest) Alice cannot obtain any information on Bob’s choice bit c at Step 2. On

the other hand, at the end of Step 2, (dishonest) Bob is guaranteed to be missing

at least n=2 bits of Rd for some d 2 f0; 1g. This is exploited at Step 3 by using

matrices M0;M1 as hash functions to perform Privacy Amplification with output

length k = n=2 � s . This guarantees that rd is uniformly distributed in f0; 1gk

and independent of r �d except with probability exponentially small in the security

parameter s . Quite importantly, this property remains true even if Bit OT is
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replaced with weaker variants such as XOR OT, Generalized OT and Universal

OT — albeit at the cost of having to further reduce the size of k in the last two

cases.

Advantages and disadvantages

Besides its apparent simplicity and straightforward implementation, the reduc-

tion of Protocol 4.1 has two main advantages over reductions based on Self-

intersecting Codes:

1. Using n executions of Bit OT one can achieve
(
2
1

)
–ROTk for k slightly less

than n=2. This translates into an expansion factor n=k of 2 + �, which is

smaller than that of any reduction based on Self-intersecting Codes.

2. Using the 2-universal family of Hash Functions defined at Step 3, the re-

duction works without any modification when Bit OT is replaced with XOT

and requires only a decrease in the size of k to work with GOT and UOT.

The construction suffers from two disadvantages:

1. The proof of security relies heavily on the properties of matrices in F2 that

are used as hash functions for Privacy Amplification in Step 3. A general

result for any universal class of hash functions was left as an open problem.

2. In every run of the protocol a new set of matrices M0;M1 must be selected

and transmitted, thereby increasing the amount of randomness needed as

well as the communication complexity by �(n2) bits.
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4.2 Reduction of
(
2
1

)
–ROTk to

(
2
1

)
–Bit OT using

Interactive Hashing

We now demonstrate how Interactive Hashing allows us to augment Protocol 4.1

of [BCW03] with tests that check the receiver’s adherence to the protocol. As

we shall see, these tests limit a dishonest receiver’s ability to deviate from the

protocol, thus allowing our reduction to be about twice as efficient in terms of

the expansion factor n=k , without any appreciable sacrifice of security.

4.2.1 Preliminaries

Encoding of Subsets as Bit Strings

Let x be a very small positive constant. In our reductions we will need to encode

subsets of xn elements out of a total of n as bit strings. Let K =
(
n
xn

)
be the

number of such subsets. There exists a simple and efficiently computable bĳec-

tion between the K subsets and the integers 0; : : : ; K�1, providing an encoding

scheme with output length m = dlog (K)e � nH(x). See [CCM98] (Section

3.1) for details on its implementation. Note that in this encoding scheme, the

bit strings in f0; 1gm that correspond to valid encodings, namely the binary rep-

resentations of numbers 0; : : : ; K � 1, could potentially make up only slightly

more than half of all strings. In order to avoid having to deal with invalid en-

codings (which could cause the parties to abort the protocol), we modify the

encoding of [CCM98] so that any string w 2 f0; 1gm encodes the same subset
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as w (mod K), which is always a valid encoding in the original scheme1. Thus

in our modified encoding scheme each string in f0; 1gm is a valid encoding of

some subset, while to each of the K subsets correspond either 1 or 2 bit strings

in f0; 1gm. This imbalance2 in the number of encodings per subset will turn out

to be of little importance in our scenario thanks to Lemma 4.1 below.

Lemma 4.1. Assume the modified encoding of Section 4.2.1 mapping subsets

to bit strings in f0; 1gm. If the fraction of subsets possessing a certain property

is f , then the fraction f 0 of bit strings in f0; 1gm that map to subsets possessing

that property satisfies f 0 � 2f .

Proof. Let P be the set containing all subsets possessing the property, and let

Q be its complement. Then f = jP j
jP j+jQj

. The maximum fraction of strings in

f0; 1gm mapping to subsets in P occurs when all subsets in P have two encodings

each, while all subsets in Q have only one. Consequently, f 0 � 2jP j
2jP j+jQj

�
2jP j

jP j+jQj
= 2f .

Notation and conventions

In the reduction of Protocol 4.2, two randomly chosen strings T0; T1 2R f0; 1gn

are transmitted pairwise using n executions of Bit OT. We denote by t i0; t
i
1 the

1An alternative would be to reduce the fraction of invalid encodings to an arbitrarily small
fraction by adding redundancy to the encoding. Indeed, as was shown in [DHRS04], at the
modest cost of increasing the encoding length from m to m + `, one can guarantee that the
proportion invalid encodings is no larger than 2�`. While this scheme does not completely
eliminate invalid encodings, it has the advantage of assigning an equal number of encodings to
each subset.

2We remark that the imbalance could be further reduced, if necessary, at the cost of a slight
increase in the encoding length. Let M � m and let every w 2 f0; 1gM map to the same
subset as w (mod K). Then each of the K subsets will have at least b 2M

K
c and at most

⌈
2M

K

⌉
different encodings.

73



bits at position i of T0; T1, respectively. Let I be the set of all n positions. For a

subset s � I let T (s) be the substring of T consisting of the bits at all positions

i 2 s in increasing order of position. Note that T (I) = T . Subsets of I of

cardinality xn will be mapped to bit strings of length m =
⌈
log
((

n
xn

))⌉
using

the encoding/decoding scheme of Section 4.2.1. Let w 2 f0; 1gm be such a bit

string, encoding a subset s . We will let T (w) denote the same substring as T (s).

4.2.2 The reduction

Protocol 4.2 presents our reduction of
(
2
1

)
–ROTk to

(
2
1

)
–Bit OT.

Intuition behind Protocol 4.2

At Step 1, the two parties agree on the value of x , namely the proportion among

the n bit positions that will be sacrificed for tests. This also determines the

encoding length m for subsets of xn positions. At Step 2, Alice selects the two

random n-bit strings that are to be transmitted to Bob using n executions of

Bit OT. At Step 3, Bob randomly chooses his choice bit c 2 f0; 1g. He also

selects a small subset s � I of cardinality xn. The selection is made by first

choosing an encoding w uniformly at random in f0; 1gm and then mapping it to

the corresponding subset s . This ensures that all strings in f0; 1gm are equally

likely to be Bob’s initial choice w , a fact which will become important at Step 5

when w is sent to Alice using Interactive Hashing. Note that s is not uniformly

chosen, as some subsets might have two encodings in f0; 1gm while others only

have one. Nonetheless, as we shall see, it is random enough for our needs. At
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Protocol 4.2 Reduction of
(
2
1

)
–ROTk to Bit OT using IH

1. Alice and Bob select x to be a (typically very small) positive constant
less than 1. They let m =

⌈
log
((

n
xn

))⌉
be the encoding length for the

encoding scheme of Section 4.2.1.

2. Alice chooses two random strings T0; T1 2R f0; 1gn.
3. Bob chooses a random c 2R f0; 1g. Bob selects w 2R f0; 1gm uniformly

at random and decodes w into a subset s � I of cardinality xn.

4. Alice transmits T0; T1 to Bob using n executions of Bit OT, with round i

containing bits t i0; t i1. Bob chooses to learn t ic if i =2 s and t i�c if i 2 s .

5. Bob sends w to Alice using Interactive Hashing (Protocol 2.1). Alice and
Bob compute the two output strings, labeled w0, w1 according to lexi-
cographic order, as well as the corresponding subsets s0; s1 � I. Bob
computes b 2 f0; 1g s.t. wb = w .

6. Alice checks that js0 \ s1j � 2x2n and aborts otherwise.

7. Both parties compute s 00 = s0 n (s0 \ s1) and s 01 = s1 n (s0 \ s1).

8. Bob announces a = b�c to Alice. He also announces T0(s 01�a) and T1(s 0a).

9. Alice checks that the strings announced by Bob are consistent with a and
contain no errors. Otherwise she aborts the protocol.

10. Alice and Bob discard the bits at positions s0 [ s1 and concentrate on the
remaining positions in J = I n(s0 [ s1). Let j = jJj and R0 = T0(J); R1 =

T1(J).

11. Alice chooses two functions h0; h1 randomly and independently from a 2-
universal family of hash functions with input length j and output length
k = j � 6xn � n � 8xn. She sends h0; h1 to Bob and sets r0 = h0(R0)

and r1 = h1(R1).

12. Bob sets rc = hc(Rc).
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Step 4, Alice transmits T0; T1 in pairs, using n executions of Bit OT. Bob selects

to learn t ic at all positions except at the few positions in s where his choice is

reversed. As a result he knows most bits of Tc and only xn bits of T�c . This is

depicted in Figure 4.1.

The goal of the protocol at Step 5 (see Figure 4.2) is to select a second,

effectively random subset. Bob starts by sending w to Alice using Interactive

Hashing, the output of which will be w0; w1 with wb = w . As both strings

are equally likely to have been Bob’s original choice at Step 3, Property 1 of

Interactive Hashing guarantees that from (dishonest) Alice’s point of view, the

value of b is uniformly distributed. At the same time, Property 3 guarantees that

the choice of one of w0; w1 was effectively random and beyond (dishonest) Bob’s

control. We will see that this implies that among the corresponding subsets,

s0; s1, which will be used for tests at Step 9, one is random enough to ensure

that a dishonest Bob who deviates “too much” from the protocol will get caught

with overwhelming probability.

At Step 6, Alice makes sure that the intersection of s0; s1 is not too large as

this would interfere with the proof of security against a dishonest Bob. At Step 7,

the two parties exclude the bit positions contained in the intersection from the

tests that will follow since Bob cannot be expected to know both T0(s0\ s1) and

T1(s0 \ s1). What remains of s0; s1 is denoted s 00; s
0
1. At Step 8, (honest) Bob

announces Tc(s 0�b) and T�c(s
0
b). Note that he can do so since s 0�b \ s = ; and so he

knows all of Tc(s 0�b). As for T�c(s
0
b), it is also known to him since s 0b � s . Observe

that the only information related to c which is implied by the choice of which
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substrings to announce is the value of a, which is already made available to Alice

at the beginning of this step. Alice can thus correctly guess c = a�b if and only

if she can correctly guess b which, as mentioned above, is uniformly distributed

given her view. At Step 9, Alice checks that the strings were announced correctly

and are consistent with the value of a — see Figure 4.3. If that is the case then

Alice is convinced that Bob has not deviated much from the protocol at Step 4.

In a nutshell, the idea here is that Interactive Hashing guarantees that even if Bob

behaves dishonestly, at least one of s0; s1 — say, without loss of generality, s1

— was chosen effectively at random. Therefore, if Bob can announce all bits in

T0(s
0
0); T1(s

0
1), it must have been the case that he knew most bits in T1 to begin

with and consequently few bits in T0. In fact, we prove that if (dishonest) Bob

learns more than 5xn bits of both T0 and T1 during Step 4 then he gets caught at

this Step with overwhelming probability during these tests. At Step 10, the two

players discard the bits at positions s0[s1 that were used for tests and concentrate

on the remaining j positions. Note that j � n� 2xn. As Bob passed the tests of

Step 9, Alice is convinced that for some d 2 f0; 1g, Bob knows at most 5xn bits

of Td and thus at most 5xn bits of Rd . This implies that he is missing at least

j�5xn bits of Rd . At Step 11, she thus sets k = (j�5xn)�xn � n�8xn and

performs Privacy Amplification (with security parameter xn) on R0; R1 to get

r0; r1. See Figure 4.4. At Step 12, honest Bob obtains the string of his choice

by applying the appropriate hash function to Rc , which is known to him entirely.
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Figure 4.1: During the n Bit OT executions Bob chooses t ic at positions i 2 I n s ,
and t i�c at positions i 2 s . In the Figure, c = 0 so in the end Bob knows T0(I n s)
and T1(s). Note that while s � I is shown here as a contiguous block, in reality
the positions it represents occur throughout the n executions.

Figure 4.2: Honest Bob uses Interactive Hashing to send the encoding w of his
subset s to Alice. Alice does not know which of the two outputs was Bob’s input
w . These two outputs correspond to subsets s0; s1 of which one is s and the
other is effectively randomly chosen. The intersection of s0; s1 is later excluded
to form s 00; s

0
1.
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Figure 4.3: After establishing sets s 00; s 01, Alice expects Bob to announce either
T0(s

0
0) and T1(s

0
1) or T0(s 01) and T1(s

0
0), depending on the value of a. If, for

example, Bob’s choice is c = 0 as in Figure 4.1 and s = s0 after Interactive
Hashing, then he would choose the latter option.

Figure 4.4: After Bob has passed the tests in Step 9, both players ignore the
bits at positions s0 [ s1 and form strings R0; R1 from the remaining bits. Then
independent applications of Privacy Amplification on R0; R1 give rise to r0; r1 2
f0; 1gk .
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Gains in efficiency

As k � n�8xn where x is a very small constant less than 1, the expansion factor

n=k is 1 + � for � = 8x
1�8x

� 8x . As one cannot do better than n=k = 1 (see

[DM99] for a formal proof of this fact), our expansion factor is asymptotically

optimal and represents a two-fold improvement over the corresponding reduction

in [BCW03] where the expansion factor is at least 2 + �0.

4.2.3 Proof of Security and Practicality

Theorem 4.1 establishes that Protocol 4.2 rarely needs to be aborted when both

participants are honest while Theorems 4.2 and 4.3 establish the protocol’s secu-

rity against a dishonest sender and a dishonest receiver, respectively.

Theorem 4.1. The probability of failure of Protocol 4.2 when both participants

are honest is exponentially small in n.

Proof. If both parties are honest then Protocol 4.2 can only fail at Step 6. We

will show that for any (fixed) w 2 f0; 1gm that Bob inputs to Interactive Hashing

at Step 5, the probability that the second output w 0 is such that js \ s 0j > 2x2n

is exponentially small in n. Let s be the subset corresponding to Bob’s choice of

w . We will call a subset s 0 bad if js \ s 0j > 2x2n. Likewise, we will call a string

w 0 2 f0; 1gm bad if it maps to a bad subset.

We start by showing that the fraction of bad subsets is exponentially small in n.

Suppose s 0 � I is randomly chosen among all subsets of cardinality xn. One way

to choose s 0 is by sequentially selecting xn positions uniformly at random without
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repetition among all n positions in I. The probability qi that the i thposition thus

chosen happens to collide with one of the xn positions in s satisfies

qi <
xn

n � xn
=

x

1� x
:

As a thought experiment, suppose that one were to choose xn positions inde-

pendently at random, so that each position collides with an element of s with

probability exactly q = x
1�x

. Since 8i ; qi < q, this artificial way of choosing

xn positions can only increase the probability of ending up with more than 2x2n

collisions. We can use the Chernoff bound (Equation (A.2)) to upper bound this

(larger) probability. Assuming x < 1=2 and setting � = 1� 2x we get

Pr

[
B(xn;

x

1� x
) > 2x2n

]
� �0

where �0 = e�
(1�2x)2x2

4(1�x)
n. This in turn guarantees that when s 0 is selected in the

appropriate way, the event js \ s 0j > 2x2n occurs with probability � < �0. In

other words, the fraction of bad subsets is upper bounded by � < �0.

By Lemma 4.1, the fraction of bad strings in f0; 1gm is at most 2�. As w

itself is bad, it follows that among all 2m�1 strings other than w the fraction of

bad strings is no larger than 2�. Since by Property 2 of Interactive Hashing, w

is paired with some uniformly chosen w 0 6= w , the probability that the protocol

aborts at Step 6 is upper bounded by 2� < 2 � e� (1�2x)2x2

4(1�x)
n, which is exponentially

small in n.
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Remark: Theorem 4.1 establishes that Condition 1 (Correctness) of The-

orem 3.2 defining the information theoretic properties of a perfect protocol for

Randomized Oblivious Transfer is met except with exponentially small probability.

Indeed, unless the protocol aborts, the honest sender does not output anything

and the honest receiver always succeeds in recovering one of the two strings.

Theorem 4.2. Alice learns nothing about (honest) Bob’s choice bit c .

Proof. During Bob’s interaction with Alice, his choice bit c comes into play only

during the Bit OT executions of Step 4 and later at Step 8 when Bob announces

a = b�c . As Bit OT is secure by assumption, Alice cannot obtain any information

about c in Step 4. As for Step 8, since (honest) Bob chooses w uniformly at

random in f0; 1gm, both w0 and w1 are a priori equally likely choices. By Property

1 of Interactive Hashing (see Section 2.2), the a posteriori probabilities of w0; w1

having been Bob’s input are then equal as well. Consequently, Alice cannot guess

b with probability higher than 1=2 and the same holds for c = a � b.

Remark: Theorem 4.2 establishes that Condition 3 (Security for Player 2) of

Theorem 3.2 is perfectly met in all cases since given all available information, the

sender’s entropy about the receiver’s choice bit c is 1 bit.

Security against a dishonest Bob

The proof of Theorem 4.3 establishing the protocol’s security against a dishonest

Bob is considerably more involved. The main idea is that if Bob deviates from

the protocol more than a small fraction of the time, then he must be missing

“too many” bits of both T0 and T1 and will thus fail to pass the tests at Step
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8 with overwhelming probability. If, on the other hand, he deviates only a small

fraction of the time, then Privacy Amplification at Step 11 will effectively destroy

the illegal information he may have obtained. We start with some definitions and

lemmas that will help to prove Theorem 4.3.

Definition 4.1. For a bit string T , define up(T ) to be the number of bits in T

that can be guessed correctly with probability at most p < 1. These bits will be

referred to as unknown bits.

Definition 4.2. Let s � I. Assuming Definition 4.1, we call s good for T 2
f0; 1gn if up(T (s)) � 3x2n, namely if T (s) does not contain more than 3x2n

unknown bits. Otherwise, we call s bad for T . We say that s is good for either

T0 or T1 if at least one of up(T0(s)); up(T1(s)) does not exceed 3x2n.

Definition 4.3. Let w be a string in f0; 1gm. We call w good for T if the subset

s it encodes is good for T according to Definition 4.2. Otherwise, w is bad for

T .

Lemma 4.2. Let up(T ) � 5xn. Then among all subsets s � I of cardinality xn

the fraction of good subsets for T is less than e�x
2n=8.

Proof. We will use the Probabilistic Method to show that the probability that a

randomly chosen subset s is good for T is less than e�x2n=8. One way of choosing

s would be to sequentially choose xn positions in I at random and without

replacement. Note that regardless of previous choices, for all 1 � i � xn the

probability qi of position i being chosen among the up(T ) positions of unknown
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bits always satisfies

qi >
up(T )� xn

jIj � 5xn � xn

n
= 4x:

This implies that the probability of choosing a good subset for T would be greater

if we were to choose the xn positions independently at random so that each

position corresponds to an unknown bit with probability q = 4x . In this artificial

case the distribution of the number of unknown bits is binomial with parameters

xn; 4x and mean � = 4x2n. Applying the Chernoff bound (Equation A.1) with

� = 1=4 we get

Pr
[
B(xn; 4x) � 3x2n

] � e�x
2n=8:

We conclude that a subset s chosen randomly in the appropriate way has proba-

bility smaller than e�x
2n=8 of being good for T , which establishes the claim.

Lemma 4.3. Let both up(T0); up(T1) � 5xn. Then the fraction of strings in

f0; 1gm that are good for either T0 or T1 is no larger than 4 � e�x2n=8.

Proof. It follows from Lemma 4.2 and the Union Bound that the proportion of

good subsets for either T0 or T1 is no larger than 2 � e�x2n=8. Lemma 4.1 in turn

guarantees that the fraction of strings in f0; 1gm that are good for either T0 or

T1 is at most 4 � e�x2n=8.

Lemma 4.4. Let both up(T0); up(T1) � 5xn. Then the probability that (dis-

honest) Bob will clear Step 9 is exponentially small in n.

Proof. By Lemma 4.3, the proportion of good strings in f0; 1gm for either T0

or T1 is at most 4 � e�x2n=8. By Theorem 2.1, Interactive Hashing guarantees
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that the probability that both w0; w1 will be good at Step 5 of the protocol is no

larger than

�1 = 15:6805 � 4 � e�x2n=8:

Consequently, with probability at least 1� �1, at least one of the two bit strings

(without loss of generality, w1) is bad for both T0 and T1. In other words, w1

corresponds to a subset s1 with both up(T0(s1)); up(T1(s1)) � 3x2n. Moreover,

as Alice did not abort at Step 6 it must be the case that js0 \ s1j � 2x2n.

It follows that both up(T0(s
0
1)); up(T1(s

0
1)) � 3x2n � 2x2n = x2n. Therefore,

however Bob decides to respond in Step 8, he must correctly guess the value of at

least x2n unknown bits in one of T0; T1. As the bits were independently chosen,

the probability of guessing them all correctly is no larger than �2 = px
2n.

Bob will clear Step 9 only if he got two good strings from Interactive Hashing

or got at least one bad string and then correctly guessed all the relevant bits.

This probability is upper bounded by �1 + �2, which is exponentially small in n.

Theorem 4.3. The probability of (dishonest) Bob successfully cheating in Pro-

tocol 4.2 is exponentially small in n.

Proof. Let v0 � I be the subset of all positions i where (dishonest) Bob obtained

t i0 during Step 4. Let v1 be defined analogously. Note that v0 \ v1 = ;. We

distinguish two cases, which taken together establish the claim.

Case 1: Both jv0j ; jv1j � n � 5xn.
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In this case u1=2 (T0) ; u1=2 (T1) � 5xn, so by Lemma 4.4 (dishonest) Bob will

fail to clear Step 9 except with exponentially (in n) small probability.

Case 2: One of jv0j ; jv1j is greater than n � 5xn.

Without loss of generality, let jv0j > n�5xn. Then Bob knows less than 5xn

bits about T1, and consequently, less than 5xn bits about R1 = T1(J). Note that

as T0; T1 are independently chosen, even if an oracle were to provide to Bob all

the bits of T0 (or R0, or r0), he would obtain no new information about R1. As

u1=2 (R1) � j�5xn, Privacy Amplification with output length k = (j�5xn)�xn

destroys all but an exponentially (in n) small amount of information about r1,

with probability exponentially close to 1.

Remark: Theorem 4.3 shows that Protocol 4.2 comes arbitrarily close to

satisfying Condition 2 (Security for Player 1) of Theorem 3.2 defining the in-

formation theoretic properties of a perfect protocol for Randomized Oblivious

Transfer. Recall that in Case 1, dishonest Bob is caught except with exponen-

tially small probability while in Case 2, there always exists some “effective” c 0

such that jvc 0j > n�5xn, determined by the end of Step 4. Since Alice’s random

strings r0; r1 are only determined after applying the hash functions h0; h1 cho-

sen at Step 11, c 0 is independent of r0; r1. Moreover, as we have seen, Privacy

Amplification guarantees that the entropy of r�c 0 given all available information is

exponentially close to k .
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4.3 Extension to weaker variants of Bit OT

We demonstrate that Protocol 4.2 can accommodate certain weaker versions of

Bit OT, specifically XOT, GOT and UOT as described in Section 3.2. We show

that the Protocol requires no modification at all if Bit OT is replaced with XOT,

while a virtually imperceptible decrease in the output length k guarantees its

security with GOT. Decreasing k even further allows us to prove the Protocol’s

security when Bob has access to UOT with � � 1. As in all three cases honest

Bob’s choices during Step 4 are identical to the case of Bit OT and remain equally

well hidden from Alice’s view, the proofs of Theorems 4.1 and 4.2 (establishing the

Protocol’s practicality and security against dishonest Alice) carry over verbatim

to the new settings.

On the other hand, arguing that the Protocol remains secure against dishonest

Bob becomes even more involved and requires a separate analysis in each case.

However, the basic idea remains the same as in the case of Bit OT and consists

in showing that if Bob has deviated “significantly” from the protocol then he gets

caught with overwhelming probability, and if he has not, then Privacy Amplifica-

tion effectively eliminates any illegal information he may have accumulated.

4.3.1 Security against a dishonest Bob using XOT

Theorem 4.4. The probability of (dishonest) Bob successfully cheating in Pro-

tocol 4.2 is exponentially small in n even if the Bit OT protocol is replaced with

XOT.

Proof. Let v0; v1; v� � I denote the sets of positions i where (dishonest) Bob
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requested t i0; t
i
1; t

i
� = t i0 � t i1, respectively, during Step 4. As in the proof of

Theorem 4.2, we distinguish two cases, in both of which the probability of cheating

is exponentially small in n, as desired.

Case 1: One of jv0j ; jv1j is greater than n � 5xn.

Without loss of generality, let jv0j > n � 5xn. Then jv1 [ v�j < 5xn.

Consequently, Bob knows less than 5xn bits about R1 even if he is provided with

all the bits of T0 by an oracle after Step 4. We note in passing that such oracle

information can only be helpful for the positions in v�. Since u1=2 (R1) > j�5xn,

Privacy Amplification with output length k = (j � 5xn) � xn destroys all but

an exponentially (in n) small amount of information about r1, with probability

exponentially close to 1.

Case 2: Both jv0j ; jv1j � n � 5xn.

This implies that both jv1 [ v�j and jv0 [ v�j are at least 5xn and conse-

quently both u1=2 (T0) and u1=2 (T1) are at least 5xn. By Lemma 4.4, Bob will

fail to clear Step 9 except with exponentially (in n) small probability.

Gains in efficiency

The expansion factor is identical to the case of Bit OT (and optimal). The

reduction of String OT to XOT using Protocol 4.2 is thus again twice as efficient

compared to the one in [BCW03].
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4.3.2 Security against a dishonest Bob using GOT

In the case of Generalized OT, during round i of Step 4 dishonest Bob can choose

to obtain f (t i0; t
i
1) for any of the 16 functions f : f0; 1g2 7! f0; 1g. Without

loss of generality, we will assume that Bob never requests the two constant

functions as this would provide him with no information. It is not difficult to

see that in our context, the information content of each of the remaining 14

functions is equivalent to that of one of the four functions f0; f1; f�; fAND defined

in Equation (4.1) below. We will thus assume that Bob always requests the output

of one of these functions. In keeping with the notation of previous sections we

let v0; v1; v�; vAND � I be the positions where Bob requested f0; f1; f�; fAND,

respectively.

f0(t0; t1) = t0 f�(t0; t1) = t0 � t1

f1(t0; t1) = t1 fAND(t0; t1) = t0 ^ t1:

(4.1)

A necessary modification to Protocol 4.2

Our proof of security requires that the output length of the hash functions used

for Privacy Amplification be slightly shorter than in the case of Bit OT and XOT.

Specifically, in Step 11 we let k = (j � 8xn)� xn � n � 11xn.

The security analysis of the Protocol in this setting is somewhat more com-

plicated compared to the case of Bit OT and XOT. This is due to the fact that

requesting fAND may or may not result in loss of information about (t0; t1): with

probability 1/4 the output of fAND is 1 and so Bob learns both bits, while with

complementary probability 3/4 the output is 0 in which case the input bits were
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(0; 0); (0; 1); (1; 0), all with equal probability. Note that in this latter case both

t0; t1 are unknown as each can be guessed correctly with probability at most 2=3.

Complications arising from adaptive strategies

If dishonest Bob’s requests could be assumed to be fixed ahead of time, our anal-

ysis would be quite straightforward since we could claim that among all requests

in vAND, with high probability a fraction 3=4 � � would produce an output of 0

and thus both t0; t1 would be added to the set of unknown bits in T0; T1. Our

task is complicated by the fact that Bob obtains the output of the function he

requested immediately after each round and can thus adapt his future strategy

to past results. For example, Bob may be very risk-averse and start by asking for

fAND in the first round. If he is lucky and the output is 1, he asks for fAND again,

until he gets unlucky in which case he starts behaving honestly. This strategy

makes it almost impossible to catch Bob cheating while it allows Bob to learn

both r0; r1 with some nonzero — but admittedly quite small — probability. This

example illustrates that we cannot assume that jvANDj is known ahead of time

and remains independent of results obtained during the n executions of Step 4.

Dealing with adaptive strategies

In order to prove the security of the protocol for any conceivable strategy that

dishonest Bob might use, we start by observing that at the end of Step 4 one of

the following two cases always holds:

Case 1: One of jv0j ; jv1j > n � 8xn.
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Case 2: Both jv0j ; jv1j � n � 8xn.

Note that these two cases refer only to the types of requests issued by Bob

during Step 4 and do not depend in any way on the results obtained along the

way. Given any (adaptive) strategy S for Bob, one can construct the following

two strategies: Strategy S1 begins by making the same choices as S but ensures

that eventually the condition in Case 1 will be met: it “steps on the brakes” just

before this constraint becomes impossible to meet in the future and makes its

own choices from that point on in order to meet its goal. Similarly, Strategy S2

initially copies the choices of S but if necessary, stops following them to ensure

that the condition of Case 2 is met. Let �; �1; �2 be the probabilities of successfully

cheating using Strategies S; S1; S2, respectively. We will argue that � � �1+ �2.

To see this, imagine three parallel universes in which Bob is interacting with

Alice using strategies S; S1; S2, respectively. Note that by the end of Step 4,

the universe of Strategy S is identical either to the Universe of Strategy S1 or

to the Universe of Strategy S2 (one of S1; S2 never had to “brake”). Therefore,

Strategy S succeeds only if one of S1; S2 succeeds and so � � �1 + �2.

Remark: this upper bound is not unreasonably large: S1 and S2 might be

successful in disjoint events. As S has more flexibility than either of them during

Step 4, it is conceivable that � > max (�1; �2).

It remains to prove that both �1; �2 are exponentially small in n. To do this,

we let �1;�2 be any adaptive strategies ensuring that the conditions of Case

1 and Case 2, respectively, are met. We will show that for any such strategies

(thus, for S0; S1 as well), the probabilities of success �1;�2 are exponentially
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small in n, and therefore so is � (since � � �1 + �2 � �1 + �2).

Theorem 4.5. The probability of (dishonest) Bob cheating in (modified) Proto-

col 4.2 is exponentially small in n even if Bit OT is replaced with GOT.

Proof. We will prove that �1;�2 are both exponentially small in n.

Probability of cheating using any Strategy �1 Without loss of generality,

let jv0j > n�8xn at the end of Step 4. Then Bob knows at most 8xn bits about

T1, even if he is provided with all the bits of T0 by an oracle. Consequently,

u1=2 (R1) > j �8xn and therefore using Privacy Amplification with output length

k = (j � 8xn)� xn � n � 11xn will result in Bob having only an exponentially

small amount of information about r1 (even given r0), except with an exponentially

small probability �1.

Probability of cheating using any Strategy �2 We start by showing that

Pr
[
u2=3 (T1) � 5xn

]
is small. Since any such strategy guarantees that jv1j � n�

8xn, it follows that jv0 [ v� [ vANDj � 8xn. Given this constraint, the probability

that u2=3 (T1) � 5xn is maximized if jvANDj = 8xn; jv0j = jv�j = 0. This is

because each request in v0 and v� results with certainty in the corresponding

bit in T1 being unknown, while a request in vAND produces an unknown bit in

T1 with probability 3=4 (moreover, in this case the unknown bit can be guessed

correctly with probability 2=3 instead of 1=2). Using the Chernoff bound (Equation

A.1) with (n; p; �) 7! (8xn; 3=4; 1=6) gives

Pr
[
u2=3 (T1) � 5xn

] � Pr

[
B(8xn;

3

4
) � 5xn

]
� e�xn=12:
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By the same reasoning, this also holds for u2=3 (T0) and so, by the Union

Bound, u2=3 (T0) and u2=3 (T1) are both at least 5xn except with probability at

most 2 � e�xn=12. In this case, Lemma 4.4 guarantees that Bob will only manage

to clear Step 9 with some exponentially (in n) small probability �. We conclude

that using any Strategy �2, Bob can successfully cheat with probability �2 �
2 � e�xn=12 + � which is also exponentially small in n.

Probability of successfully cheating using any adaptive strategy S As

argued above, for any adaptive strategy S, the probability � of cheating is upper

bounded by �1 + �2 � �1 + �2 and hence � is exponentially small in n.

Gains in efficiency

As k � n� 11xn where x is a very small positive constant, the expansion factor

n=k is 1+�0 for �0 = 11x
1�11x

� 11x . This factor is only slightly larger than the one

for the case of Bit OT and XOT and remains asymptotically optimal. Compared

to the corresponding reduction in [BCW03], ours improves efficiency by a factor

of about 4:8188.

4.3.3 Security against a dishonest Bob using Universal OT

In the case where Bit OT is replaced with UOT, at each execution during Step 4

dishonest Bob can choose to obtain the output of any discrete, memoryless

channel subject to the following constraint: let B0; B1 be independent, uni-

formly distributed random variables corresponding to Alice’s input bits and let


 = 
(B0; B1) be the channel’s output to Bob. Then for some constant � � 1
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the following holds:

H((B0; B1) j 
) � �: (4.2)

Note that we require � to be at most 1, since otherwise the channel would

disallow honest behavior as well. Let � < 1=2 be a (very small) positive constant.

We can partition all possible channels satisfying the constraint of Equation 4.2

into the following three categories.


0: All channels satisfying H(B0 j 
) < �� and H(B1 j B0
) > (1� �)�.


1: All channels satisfying H(B1 j 
) < �� and H(B0 j B1
) > (1� �)�.


b: All channels satisfying H(B0 j 
) ;H(B1 j 
) � ��.

Let �(�) be the unique solution to the equation h(x) = � for x 2 [0; 1=2].

Let p0 = p1 = � ((1� �)�) and pb = � (��). Then from Fano’s inequality and

Lemma A.1 (Section A.2) we can assert the following:

• p0 is a lower bound on the error probability when guessing the value of B1

after using a channel of type 
0 and this is true even if the value of B0 is

known with certainty (via an oracle, say). There thus exists an indicator

random variable �0 (provided as side information by an oracle) which leads

to an erasure of B1 with probability 2p0. Note: when there is no erasure

(�0 = 0) it is not necessarily the case that B1 is known with certainty.

• Likewise, p1 lower bounds the error probability when guessing B0 given the

output of a channel of type 
1 and the value of B1. This implies the
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existence of side information in the form of an indicator random variable

�1 that leads to an erasure of B0 with probability 2p1 = 2p0.

• When using a channel of type 
b, the probability of guessing B0 incorrectly

given the channel’s output is at least pb, and the same holds when guessing

the value of B1. Thus, there exists an indicator random variable �0
b (resp.

�1
b) which, if provided by an oracle, would lead to an erasure of B0 (resp.

B1) with probability 2pb. Note that this statement is true only if the oracle

provides one of �0
b;�

1
b each time. To see why this is so, suppose both

were provided at the same time, with �0
b = 1. Since the value of �1

b

along with that of 
 might convey more information about B0 than would

otherwise be available in 
 alone, one can no longer assume that this event

corresponds to an erasure of B0.

In order to simplify our analysis we will assume that after each round of UOT in

Step 4, an oracle supplies Bob with the following side information, depending on

the type of channel that Bob used:


0: The exact value of B0, as well as the value of �0. Note that this leads to

B1 being erased with probability 2p0.


1: The exact value of B1, as well as the value of �1. Note that this leads to

B0 being erased with probability 2p1 = 2p0.


b: One of �0
b;�

1
b, chosen at random with equal probability. Note that this

leads to each of B0; B1 being erased with probability pb in each round (not

independently, though: B0 and B1 cannot be erased at the same time).
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Another modification to Protocol 4.2

Our proof of security will require that we reduce k even further at Step 11, by

setting k = 2p0(j � 8pbn). For convenience, we will also set x = p2b at Step 1.

Theorem 4.6. The probability of dishonest Bob successfully cheating in (mod-

ified) Protocol 4.2 is exponentially small in n even if the Bit OT protocol is

replaced with UOT satisfying the constraint of Equation (4.2).

Proof. Let v0; v1; vb � I be the positions in Step 4 where Bob selected a channel

of type 
0;
1;
b, respectively. Then, at the end of Step 4 one of the following

two cases always holds:

Case 1: One of jv0j ; jv1j > n � 6pbn.

Case 2: Both jv0j ; jv1j � n � 6pbn.

As in the proof of security for GOT in Section 4.3.2, we will assume the

existence of two strategies S1; S2 initially following the choices of Bob’s strategy

S, but ensuring that Case 1 and Case 2 respectively always holds. We will

show that the probabilities of successfully cheating of any adaptive strategies

�1;�2 satisfying the constraints of Case 1 and Case 2, respectively, are both

exponentially small in n and thus so is their sum, which in turn upper bounds

the probability that any adaptive strategy S that dishonest Bob may use will

successfully cheat.

Probability of successfully cheating using any Strategy �1 Without loss

of generality, let jv0j > n � 6pbn at the end of Step 4. This implies that at
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least j � 6pbn of the bits of R1 were received over a channel of type 
0. Let �1

be the expected number of erasures in R1, resulting from the side information

�0 provided by the oracle in each round. Then �1 � 2p0 (j � 6pbn). From

the Chernoff bound (Equation A.3) we deduce that with probability exponen-

tially close to 1 there will be at least 2p0 (j � 7pbn) erasures, in which case

u1=2 (R1) � 2p0 (j � 7pbn). Applying Privacy Amplification with output length

k = 2p0 (j � 8pbn) will thus produce an almost uniformly distributed k-bit string

r1 (independent of r0), except with exponentially (in n) small probability.

The probability of any strategy �1 successfully cheating is at most equal

to the probability that there are too few erasures to begin with (fewer than

2p0 (j � 7pbn)) plus the probability that there are enough erasures but Privacy

Amplification fails to produce an almost uniformly distributed string. As both

probabilities are exponentially small in n, so is their sum.

Probability of successfully cheating using any Strategy �2 We show that

with near certainty, both u1=2 (T0) and u1=2 (T1) are at least 5xn, which by Lemma

4.4 guarantees that Bob will fail to clear Step 9 with probability exponentially

close to 1. We start by upper bounding the probability that u1=2 (T1) � 5xn.

Since jv1j � n � 6pbn, there are at least 6pbn bits that were either sent over

a channel of type 
0 or 
b. We will assume that exactly 6pbn bits were sent

over a channel of type 
b, as this choice minimizes the expected number of

erasures in T1 given our constraints, and hence maximizes the probability that

u1=2 (T1) � 5xn. Note that the expected number of erasures of B1 in this case is
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pb � 6pbn = 6p2bn = 6xn. By the Chernoff bound (Equation A.1)

Pr
[
u1=2 (T1) � 5xn

] � Pr
[
B(6pbn; pb) � 5p2bn

] � �

where � is exponentially small in n.

The same argument applies to u1=2 (T0). Therefore, except with probability at

most 2�, both u1=2 (T0) ; u1=2 (T1) � 5xn in which case, by Lemma 4.4 Bob fails

to clear Step 9 with probability 1 � �0 where �0 is exponentially small in n. We

conclude that using any Strategy �2, Bob can successfully cheat with probability

at most 2�+ �0 which is exponentially small in n.

Probability of cheating using any adaptive strategy S As argued in Section

4.3.2, the probability of successful cheating for any adaptive strategy S is upper

bounded by the sum of the largest possible probabilities of success of strategies

of type �1;�2. We have shown that both of these are exponentially small.

Gains in efficiency

In both our reduction and that of [BCW03], the expansion factor n=k is a function

of �. In our case

k = 2p0 (j � 8pbn)

� 2p0 (n � 2xn � 8pbn)

= 2p0
(
n � 2p2bn � 8pbn

)
:
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Since p0 = �((1 � �)�); pb = �(��), for � ! 0 we get p0 ! �(�); pb ! 0

and therefore k � 2�(�)n, which translates to an expansion factor of 1
2�(�)

+ �0.

The corresponding expansion factor in [BCW03] is at least 4 ln 2
pe

where pe is the

unique solution in (0; 1=2] to the equation h(pe) + pe log2 3 = �. Thus our

expansion factor is about 4 ln 2
pe

� 2�(�) > 8 ln 2 = 5:545 times smaller than the

one in [BCW03]. Note that the inequality follows from the fact that �(�) > pe .

This can be seen by observing that h(�(�)) = � = h(pe) + pe log2 3 and thus

h(�(�)) > h(pe). Since both �(�) and pe are at most 1=2 and the entropy

function h is strictly increasing in the range [0; 1=2], it follows that �(�) > pe .

Remark: in the special case where � = 1 we have �(�) = 1=2 and therefore

the expansion factor is 1 + �0, which is optimal. Proving optimality for other

values of � is left as an open problem.

4.4 Conclusion, open problems and possible av-

enues of further research

In this Chapter, we have demonstrated how tests based on Interactive Hashing

can be embedded in reductions of String OT to Bit OT and various weaker

primitives in order to ensure the receiver’s adherence to the protocol. By severely

limiting a dishonest receiver’s ability to deviate from the protocol without getting

caught, these tests allow our reductions to be much more efficient than others

in the literature, without any appreciable impact on security. Our reductions are

provably asymptotically optimal for the case of Bit OT, XOT and GOT, as well
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as for the special case of UOT where � = 1. Moreover, our reductions are more

general since they can use any 2-universal family of hash functions to perform

Privacy Amplification.

We end this chapter by listing some problems that our current work leaves

open, as well as some suggestions for further research.

• Modify Protocol 4.2 so that it never aborts when both participants are

honest. One possibility to go about this is to abolish Step 6 and show that

Interactive Hashing at Step 5 would be effective in preventing dishonest

Bob from obtaining subsets s0, s1 that have too large an intersection.

• Prove that our reduction is optimal for all � in the case of UOT, or modify

it accordingly to achieve optimality.

• Replace the Interactive Hashing Protocol (Protocol 2.1) with an appropri-

ately adapted implementation of the constant round Protocol of [DHRS04]

(see Section 2.3.4) and prove that the ensuing reduction (Protocol 4.2)

remains secure.
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5
Reducing String OT to Rabin OT

As we have seen in Chapter 4,
(
2
1

)
–String OTk can be efficiently reduced, via(

2
1

)
–ROTk , to Bit OT and other weaker variants. As Bit OT is in turn equivalent

to Rabin OT (see [Cré87]), it follows that a reduction of
(
2
1

)
–String OTk to

Rabin OT is also possible. In fact, the main technique behind the reduction of

Bit OT to Rabin OT in [Cré87] can be used in conjunction with later results

on Privacy Amplification [BBR88] to provide a direct reduction of
(
2
1

)
–ROTk

requiring n = (4 + �)k executions of Rabin OT.

In the present Chapter we will be concerned with providing an optimal re-

duction of
(
2
1

)
–ROTk to Rabin OT. Our reduction (Protocol 5.1) employs tests

based on Interactive Hashing similar to those used in the reduction of
(
2
1

)
–ROTk

to
(
2
1

)
–Bit OT (Protocol 4.2) in order to prevent a dishonest receiver from de-

viating “too much” from the prescribed behavior. This allows us to implement
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(
2
1

)
–ROTk with only n = (2 + �0)k executions of Rabin OT. We observe that

after n executions of Rabin OT, the expected entropy of the receiver about the

transmitted bits is n=2. This precludes reductions with an expansion factor n=k

smaller than 2 (see [DM99] for a formal proof) and suggests that this reduction,

just like the one in Protocol 4.2, is asymptotically optimal.

Remark: As in Chapter 4, we will be focusing on reducing
(
2
1

)
–ROTk rather

than
(
2
1

)
–String OTk since the former is easier to work with even though the two

are in fact equivalent (see Section 3.5.3).

5.1 Optimally reducing
(
2
1

)
–ROTk to Rabin OT

using Interactive Hashing

Notation and conventions

Unless otherwise noted, our notation is consistent with that of Chapter 4, in par-

ticular Section 4.2.1. In our reduction (Protocol 5.1), Alice transmits n randomly

chosen bits to Bob using n executions of Rabin Bit OT. We will call the positions

of bits received by Bob “good” while the “bad positions” will be those of bits

that were erased during the transfer. Let G and B be the set of all good and bad

positions, respectively, with each element being an integer in the interval [1; n].

Alice and Bob choose x to be a (very small) positive constant that will determine

the fraction of bits that will be sacrificed for tests. Let y = 1=2 � 2x and let I

denote the set of all positions 1; : : : ; yn. Let R be a bit string of length yn. For

any subset s � I, we will let R(s) be the substring consisting of the bits of R at
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the positions in s , in increasing order of position. Using this notation, note that

R(I) = R.

Encoding of Subsets as Bit Strings

Alice and Bob will use the modified encoding scheme of Section 4.2.1 to en-

code subsets s � I of cardinality xn (out of yn) as bit strings of length m =⌈
log
((

yn
xn

))⌉
.

5.1.1 The reduction

Protocol 5.1 presents our reduction of
(
2
1

)
–ROTk to Rabin OT.

Intuition behind Protocol 5.1

At Step 1 Alice and Bob agree on the value of x which determines the number

of bits that will eventually be used for tests. At Step 2 Alice uses n executions of

Rabin OT to transmit n randomly chosen bits to Bob. As erasures occur inde-

pendently with probability 1=2 at every execution, with overwhelming probability

Bob will receive no more than (1=2+ x)n bits and no less than (1=2� x)n by the

end this step. At Step 3, Bob ensures that enough bits have been received for

the needs of the rest of the protocol, and aborts otherwise. The good and bad

positions are collected in sets G and B, respectively. At Step 4, Bob chooses

c 2R f0; 1g at random and defines two bit strings R0; R1 of length yn each

so that Rc is composed exclusively of good positions. As for R�c , the protocol

requires that it has at least xn good positions spread randomly throughout R�c
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Protocol 5.1 Reduction of
(
2
1

)
–ROTk to Rabin Bit OT using IH

1. Alice and Bob select a (typically very small) positive constant x < 1=4 and
set y = 1=2� 2x .

2. Alice transmits n random bits using n executions of Rabin OT.

3. Bob collects the good and bad positions in sets G and B, respectively. He
aborts if jGj < (1=2� x)n = yn + xn.

4. Bob chooses at random c 2R f0; 1g as well as w 2R f0; 1gm, where
m =

⌈
log
((

yn
xn

))⌉
. He decodes w into a subset s of cardinality xn (out of

yn) using the encoding scheme of Section 4.2.1. He then defines two yn–
bit strings Rc and R�c as follows: yn positions from G are chosen at random
and without repetition. The corresponding bits, in the order chosen, make
up Rc . For R�c , xn (new) positions are chosen at random from G, and
define substring R�c(s). For the remainder, yn� xn positions are randomly
chosen from G [ B.

5. Bob announces the bit positions making up R0 and R1. Alice checks that
no bit position appears more than once.

6. Bob sends w to Alice using Interactive Hashing (Protocol 2.1). Let w0; w1

be the output strings, let s0; s1 � I be the corresponding subsets of cardi-
nality xn and let b 2 f0; 1g be such that wb = w .

7. Bob announces a = b � c as well as R0(s1�a) and R1(sa).

8. Alice checks that the substrings announced contain no errors.

9. Alice announces h0; h1, chosen randomly and independently from a 2-
universal family of hash functions with input length yn and output length
k = yn � 6xn. She sets r0 = h0(R0) and r1 = h1(R1).

10. Bob sets rc = hc(Rc).
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— see Figure 5.1. To this effect, Bob chooses a substring s of cardinality xn.

This choice is done by first choosing an m–bit string w uniformly at random and

then using the encoding scheme of Section 4.2.1 to map it into s . The fact that

the choice of w was uniform will be crucial in ensuring that Bob’s choice bit c

remains hidden from Alice at later steps. We observe that s is not entirely uni-

formly selected since the encoding scheme maps some subsets to two bit strings

and others to only one. This, however, will turn out not to be important in our

scenario.

At Step 5, Bob provides a description of R0; R1 to Alice, who makes routine

checks to ensure that both strings are properly constructed. As from the point of

view of (dishonest) Alice both R0 and R1 are equally likely to consist entirely of

good positions for Bob, she cannot guess which of the two is Rc with probability

greater than 1=2 and thus (honest) Bob’s choice bit c is perfectly hidden.

Steps 6 through 8 introduce tests based on Interactive Hashing that are de-

signed to catch a dishonest Bob who deviates from the prescribed behavior at

Step 5 by putting “too many” good positions in both R0 and R1. The tests allow

Alice to verify that Bob has indeed used almost exclusively good bits to construct

one of R0; R1. If so, then Bob has very little information about the other string

(a fact that will be used later at Step 9 to set the parameters for Privacy Am-

plification). More specifically, at Step 6 Bob uses Interactive Hashing to send

to Alice string w encoding s � I (recall that, if Bob is honest, then he knows

all of R�c(s)). The output of Interactive Hashing consists of two strings w0; w1

encoding subsets s0; s1 — see Figure 5.2 — and there must exist b 2 f0; 1g such
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that wb = w . While the value of b is known to Bob, it is completely hidden from

(any dishonest) Alice thanks to Property 1 of Interactive Hashing and the fact

that both w0 and w1 are equally likely to have been chosen by Bob at Step 4. At

Step 7, (honest) Bob effectively announces substrings Rc(s�b) and R�c(sb), both

of which consist entirely of good positions — see Figure 5.3. Note that Bob’s

choice of which substrings to announce does not carry any information related to

c beyond the value of a = b � c which was announced at the beginning of the

step. Consequently, as long as Alice cannot guess b, Bob’s choice bit c remains

perfectly hidden from her.

While these tests are easy to pass for an honest Bob, a dishonest Bob who

has deviated “significantly” from the protocol will get caught with overwhelm-

ing probability and cause the protocol to abort, while a dishonest Bob who has

deviated only slightly will obtain no advantage in the end. The reasoning is as

follows: by the properties of Rabin OT and the Chernoff bound, Bob receives no

more than (1=2 + x)n bits during Step 4 except with some probability exponen-

tially small in n. Assuming that this is the case, we observe that since R0 and R1

are made up of distinct bit positions and have length yn = (1=2� 2x)n each, at

least one of the two — say, without loss of generality, R0 — will consist mostly

of good positions (Case 1) or else both R0; R1 will have a significant fraction

of bad positions (Case 2). In Case 1, R1 will necessarily consist mostly of bad

positions and so at Step 9, Privacy Amplification with output length k slightly

less than yn will result in an almost uniformly distributed1 string r1 — see Figure

5.4. As for Case 2, recall that Property 3 of Interactive Hashing guarantees that
1Note that r1 would be almost uniform even if Bob were given R0 (or r0) by an oracle.
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the choice of at least one of w0; w1 (say, without loss of generality, w1) was effec-

tively out of Bob’s control. This also holds for the corresponding subset s1 which,

with overwhelming probability, will be such that both R0(s1) and R1(s1) contain

several bad positions each. Consequently, whatever value of a (dishonest) Bob

announces at Step 7, in order to pass the tests he will have to correctly guess

the value of a large number of unknown bits, which can only happen with neg-

ligible probability. It follows that, except with negligible probability, either Bob

has not deviated much from the prescribed behavior and so Privacy Amplification

destroys any illegal information he has gathered, or else Bob gets caught cheating

at Step 8 in which case Alice aborts the protocol.

Lastly, at Step 10 (honest) Bob can easily obtain rc by applying the appropriate

hash function to Rc , which he knows completely.

Gains in efficiency

We first observe that a reduction of
(
2
1

)
–Bit OT to Rabin OT was provided in

[Cré87]. It is not hard to see that the approach of [Cré87] can be combined with

Privacy Amplification [BBR88] to provide a reduction of
(
2
1

)
–ROTk to Rabin OT.

The main difference between this approach and ours is that without the tests

ensuring that one of R0; R1 is made almost exclusively of good positions, one

has to make the assumption that in the worst case, (dishonest) Bob could have

divided the good positions evenly between the two strings. To protect against

this possibility, the output of Privacy Amplification must be reduced to less than

half of the length of each string, yielding an overall expansion factor n=k of at
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Figure 5.1: Bob constructs two strings, R0; R1 by selecting only good positions
for the whole of Rc as well as for a small, random subset s � I of all positions
in R�c . The rest of R�c consists of leftover, mostly bad positions. In the Figure,
c = 0. Note that while s is shown here as a contiguous block, in reality the
positions it represents are generally distributed throughout R�c .

Figure 5.2: Honest Bob sends the string w encoding subset s to Alice through
Interactive Hashing. This procedure produces two outputs w0; w1, encoding two
subsets s0; s1. Alice does not know which of the two outputs was Bob’s input.
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Figure 5.3: Alice expects Bob to announce either R0(s0) and R1(s1) or R0(s1)

and R1(s0), depending on the value of a. If Bob’s choice was c = 0 as in Figure
5.1 and b = 0 at Step 6, then Bob would choose the latter option.

Figure 5.4: Alice performs Privacy Amplification on R0; R1 independently, by
randomly choosing two functions h0; h1 from a 2-universal family. This results in
two shorter strings r0; r1 2 f0; 1gk . If Bob’s choice was c = 0 then he would
know r0 and have practically no information about r1, except with negligible
probability.
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least 4 + �.

In our case, as k = yn � 6xn = (1=2� 8x)n where x is a very small positive

constant, the expansion factor n=k is 2+�0 for �0 = 16x
1=2�8x

� 32x . This represents

a two-fold improvement over the method described above. Moreover, since the n

bits transmitted at Step 2 give rise to n=2 bits of entropy on average and in any

reduction of
(
2
1

)
–ROTk the length of the strings k cannot exceed the amount of

available entropy [DM99], our reduction is in fact asymptotically optimal.

5.1.2 Proof of Security and Practicality

Theorem 5.1 establishes that Protocol 5.1 rarely needs to be aborted when both

participants are honest while Theorems 5.2 and 5.3 establish the protocol’s secu-

rity against a dishonest sender Alice and a dishonest receiver Bob, respectively.

Theorem 5.1. The probability of failure of Protocol 5.1 with honest participants

is exponentially small in n.

Proof. If both parties are honest, Protocol 5.1 can only fail at Step 3, namely if

the n executions of Rabin OT at Step 2 have not produced enough good positions.

Recalling that erasures occur independently with probability 1=2, we can use the

Chernoff bound (Equation A.1) with (n; p; �; �) 7! (n; 1=2; 2x; n=2) to establish

that

Pr [jGj < (1=2� x)n)] � e�x
2n:

Note that in the unlikely event that the protocol is aborted, no private information

of either party has been compromised.
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Theorem 5.2. Alice learns nothing about (honest) Bob’s choice bit c .

Proof. During Bob’s interaction with Alice, c comes into play only at Steps 5

and 7. By the properties of Rabin OT, after each execution at Step 2, Alice

cannot guess with probability greater than 1=2 whether Bob received the bit or an

erasure. Consequently, when Bob announces R0; R1 at Step 5, from Alice’s point

of view both strings have equal probability of corresponding to Rc (namely, of

being made up entirely of good positions). At Step 7 Bob announces a = b� c ,

so Alice can correctly guess c if and only if she can correctly guess the value of

b such that w = wb after Interactive Hashing at Step 6. As the input w was

chosen uniformly at random, Property 1 of Interactive Hashing establishes that

from Alice’s point of view w0; w1 both have probability exactly 1=2 of having been

Bob’s input w and thus b is uniformly distributed and perfectly hides the value

of c .

Security against a dishonest Bob

Theorem 5.3. The probability of (dishonest) Bob successfully cheating in Pro-

tocol 5.1 is exponentially small in n.

The proof of Theorem 5.3 has many similarities to the proof of Theorem 4.3.

In a nutshell, the main idea is that Bob has only about n=2 good positions at the

end of Step 2, except with some probability exponentially small in n. There are

two cases to consider. In Case 1, Bob uses “many” good positions in both R0

and R1, which means that both strings will necessarily have several bad positions

as well. Consequently, with overwhelming probability the subsets produced at
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Step 6 will contain many positions corresponding to bits that are unknown to

Bob. As a result, except in the unlikely event that Bob guesses all the unknown

bits correctly at Step 7, he will fail to clear Alice’s checks at Step 8. In Case 2,

Bob uses only a few good positions in one of R0; R1 (perhaps a few more than

the protocol prescribes). In this case, Bob may well be able to pass the tests at

Step 8 but Privacy Amplification at Step 9 will then effectively destroy the partial

information Bob has about one of the strings, by virtue of having included those

extra good positions in its construction.

We start with some definitions and lemmas that will help us prove Theorem

5.3.

Definition 5.1. For a bit string R, define u1=2 (R) to be the number of bits in R

whose value can only be guessed correctly with probability 1=2.

Definition 5.2. Let s � I. Assuming Definition 5.1, we call s good for R if

u1=2 (R(s)) < x2n. Otherwise, we call s bad for R. Similarly, a string w 2
f0; 1gm is good for R if and only if the subset s it encodes is good for R. We

say that s is good for either R0 or R1 if at least one of u1=2 (R0(s)) ; u1=2 (R1(s))

does not exceed x2n.

Lemma 5.1. Let R 2 f0; 1gyn be such that u1=2 (R) � 2xn. Then the fraction

f of subsets s of cardinality xn that are good for R satisfies f < e�x
2n=4.

Proof. We will use the Probabilistic Method to show that a subset s chosen

uniformly at random would be good for R with probability less than e�x
2n=4.

One way of choosing s would be to sequentially choose at random and without
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replacement xn positions among all yn positions of R. Then for all 1 � i � xn,

the probability qi that position i is chosen among the u1=2 (R) bad positions always

satisfies

qi >
u1=2 (R)� xn

yn
>

2xn � xn

n=2
= 2x:

This implies that the probability of choosing a good subset for R would be strictly

greater if we were to choose the xn positions independently at random so that

each position is bad with probability q = 2x . In this artificial case, the distribution

of the number of unknown bits is binomial and we can apply the Chernoff bound

(Equation A.1) with (n; p; �; �) 7! (xn; 2x; 1=2; 2x2n) to get

Pr
[
B(xn; 2x) � x2n

] � e�x
2n=4:

We conclude that a subset s chosen uniformly at random in the appropriate way

has probability strictly smaller than e�x2n=4 of being good for R, which establishes

the claim.

Lemma 5.2. Let R0; R1 2 f0; 1gyn and let both u1=2 (R0) and u1=2 (R1) be at

least 2xn. Then the fraction of strings in f0; 1gm that are good for either R0 or

R1 is no larger than 4 � e�x2n=4.

Proof. It follows directly Lemma 5.1 and the Union Bound that the fraction of

subsets s that possess this property is no larger than 2 � e�x2n=4. By Lemma 4.1,

the fraction in f0; 1gm of strings that are mapped to such subsets by the encoding

scheme of Section 4.2.1 must be no larger than 4 � e�x2n=4.
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Lemma 5.3. In Protocol 5.1 let both u1=2 (R0) ; u1=2 (R1) � 2xn. Then the

probability that (dishonest) Bob will clear Step 8 is exponentially small in n.

Proof. By Lemma 5.2, the proportion of strings in f0; 1gm that are good for

either R0 or R1 is at most 4 � e�x2n=4. Consequently, at Step 6 by Property 3

of Interactive Hashing the probability that (dishonest) Bob can get both w0; w1

to be good for either R0 or R1 is no larger than �1 = 15:6805 � 4 � e�x2n=4. It

follows that with probability at least 1� �1, at least one of the two bit strings —

say, without loss of generality, w1 — is bad for both R0 and R1. In other words,

w1 corresponds to a subset s1 with both u1=2 (R0(s1)) and u1=2 (R1(s1)) being at

least x2n. Recalling that at Step 7 Bob must announce either R0(s1) or R1(s1),

we see that he can clear the checks of Step 8 only if he correctly guesses the

values of at least x2n unknown bits. As the bits were independently chosen, the

probability of guessing them all correctly is �2 < 2�x
2n.

Bob clears Step 8 only if he either gets two good strings as outputs from

Interactive Hashing or else, if he gets at least one bad string and then correctly

guesses all the relevant bits at Step 7. This probability is upper bounded by

�1 + �2 which is exponentially small in n.

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. During each execution at Step 2, Bob receives an erasure

independently with probability 1=2. From the Chernoff bound (Equation A.1) with

(n; p; �; �) 7! (n; 1=2; 2x; n=2) we obtain jBj � n
2
� xn except with probability

�1 � e�x
2n. We condition on jBj � n

2
� xn and distinguish two cases:
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Case 1: One of u1=2 (R0) ; u1=2 (R1) is smaller than 2xn.

Without loss of generality, let u1=2 (R0) < 2xn. We will show that R1 is

then almost entirely composed of bad positions. Recall that n � 2yn = 4xn bit

positions were never used when defining R0; R1. Since u1=2 (R0) + u1=2 (R1) +

4xn � jBj � n
2
� xn, we have u1=2 (R1) � n

2
� 4xn � 2xn � xn = yn � 5xn.

Consequently, at Step 9 Privacy Amplification with output length k = yn�6xn,

will produce a string r1 which, from Bob’s point of view, is almost uniformly

distributed in f0; 1gk except with some exponentially small (in n) probability �2.

Note that this property holds even if we condition on R0 (or r0) since Alice chose

her bits independently at random at Step 2.

Case 2: Both u1=2 (R0) ; u1=2 (R1) � 2xn.

Then by Lemma 5.3 Bob will fail to clear Step 8 except with some probability

�3 exponentially small (in n).

The probability that either too few erasures occurred or else that Bob has

successfully cheated either in Case 1 or in Case 2 is no larger than �1+max (�2; �3).

As �1; �2; �3 are all exponentially small in n, this establishes the claim.

5.2 Conclusion

We have demonstrated a direct reduction of
(
2
1

)
–ROTk to Rabin OT. As in

Chapter 4, our reduction relies on tests based on Interactive Hashing to verify

the receiver’s adherence to the protocol. The assurance that a dishonest receiver

cannot pass the tests unless he has deviated little from the protocol allows our
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reduction to be twice as efficient as a a similar reduction without such tests,

achieving an expansion factor n=k of only 2 + �. Since the expected entropy of

the receiver about the n bits transmitted using Rabin OT is no larger than n=2,

our reduction is in fact optimal. Our reduction provides yet another example of

the applicability of Interactive Hashing to reductions between Oblivious Transfer

variants.
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6
Summary and Conclusion

The goal of this thesis has been two-fold. First, to provide a study of Interactive

Hashing in the information theoretic context. To this end, we have given a def-

inition formalizing its security properties in isolation of any specific application

setting. This abstraction enables Interactive Hashing to be treated as a crypto-

graphic primitive in its own right rather than as a class of sub-protocols whose

implementation, properties and proof of security all depend, to various extents,

on the surrounding application.

In order to demonstrate the practicality of this primitive, we have shown that

there exists at least one protocol implementing Interactive Hashing which fully

satisfies our security requirements. The corresponding proof of security has been

one of the major contributions of this thesis. As in other proofs in the literature

establishing the security of similar protocols, its most challenging aspect has been,
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by far, showing that if a dishonest sender starts with a small fraction of good

strings, he cannot force both outputs of the protocol to be good except with a

comparably small probability. Unlike the other proofs that focus on bounding the

number of strings remaining after each round, our proof follows the evolution of

the number of pairs of good strings instead. This is a more natural choice for our

setting as the dishonest sender succeeds if and only if exactly one pair remains at

the end. Consequently, the probability of success is simply equal to the expected

number of such pairs remaining when the protocol finishes. This observation

leads to a significantly less complicated proof and results in a simpler, tighter

and more general upper bound on the dishonest sender’s probability of success.

Specifically, it establishes that if the fraction of good strings at the beginning of

the protocol is f , then no dishonest sender can succeed in obtaining two good

strings with probability greater than 15:6805 � f . This upper bound is tight up

to a small constant since a dishonest sender who uses one of the good strings as

input and then acts honestly will succeed with probability slightly less than f .

The second goal has been to highlight the potential of Interactive Hashing

as a cryptographic primitive by demonstrating its applicability to reductions of(
2
1

)
–ROTk to simpler primitives such as

(
2
1

)
–Bit OT. In our reduction we use

tests based on Interactive Hashing to allow the sender in
(
2
1

)
–ROTk to query

the receiver on a small subset of the bits he obtained during the executions of(
2
1

)
–Bit OT. We have shown that the properties of Interactive Hashing guarantee

that on one hand, these tests do not compromise the receiver’s privacy while

on the other hand, they effectively prevent a dishonest receiver from deviating
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significantly from the prescribed behavior without getting caught. This extra

guarantee allows our reduction to take almost full advantage of the receiver’s

entropy of the transmitted bits. Specifically, we show that n = (1+�)k executions

of
(
2
1

)
–Bit OT suffice to securely implement

(
2
1

)
–ROTk , making our reduction at

least twice as efficient as the best known constructions in the literature. As a

reduction with an expansion factor n=k smaller than 1 would be theoretically

impossible, our reduction is asymptotically optimal.

As far as weaker variants of
(
2
1

)
–Bit OT are concerned, we have shown that

the reduction works without any modification if
(
2
1

)
–Bit OT is replaced with

XOR OT, while an imperceptible increase in the expansion factor allows it to

accommodate Generalized OT as well. Further modifications allow the reduction

to also cover the case of Universal OT. In the case of XOR OT and Generalized

OT our reductions remain asymptotically optimal and improve efficiency by a

factor of 2 and 4:8188, respectively. As for Universal OT, the reduction is more

efficient than previous ones by a factor of at least 5:545, but we prove it to be

optimal only for the special case where � = 1, leaving the general case as an open

problem. It should be noted that our reductions can use any 2-universal family of

hash functions in the Privacy Amplification phase. Consequently, besides being

more efficient, they are also more general than previous ones which require special

classes of hash functions.

Lastly, we have shown that our techniques can be adapted to provide a direct

reduction of
(
2
1

)
–ROTk to Rabin OT with an expansion factor of 2 + �0. This

reduction is again asymptotically optimal, and twice as efficient compared to the
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case where Interactive Hashing is not used.
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A
Tools and Mathematical Background

A.1 Tail bounds

Let B(n; p) be the binomial distribution with parameters n; p and mean � = np.

We will use the following versions of the Chernoff bound [Che52] (as they appear

in [Vaz04], p.354) for 0 < � � 1:

Pr [B(n; p) � (1� �)�] � e��
2�=2 (A.1)

Pr [B(n; p) � (1 + �)�] � e��
2�=4: (A.2)

From (A.1) we can also deduce the following inequality

Pr [B(n; p) � �� �n] � e��
2n=2: (A.3)
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A.2 Error probability and its concentration on an

erasure event

A.2.1 Fano’s lemma

(Adapted from [BCW03]) Let X be a random variable with range X and let

Y be another random variable. Let pe be the (average) error probability of

correctly guessing the value of X with any strategy given the outcome of Y .

Let H(X j Y ) denote the conditional entropy of X given Y , and let h(p)
def
=

�p log p � (1� p) log(1� p). Then pe satisfies:

h(pe) + pe � log2(jX j � 1) � H(X j Y ) : (A.4)

A.2.2 Specifying an erasure event �

Let X be a binary random variable and let pe be the error probability of guessing X

correctly using an optimal strategy (in other words, pe is the minimum average

error probability). Let p � pe . For a specific guessing strategy with average

guessing error at most 1=2, let E be an indicator random variable corresponding

to the event of guessing the value of X incorrectly. Note that Pr
[
�E
] � Pr [E] �

pe � p. Define � to be another indicator random variable such that

Pr [� j E] = p

Pr [E]
Pr
[
� j �E] = p

Pr
[
�E
] : (A.5)
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It follows that Pr [�] = 2p and that Pr [E j �] = Pr
[
�E j �] = 1

2
. Suppose that

the value of � is provided as side information by an oracle. Then with probability

2p we have � = 1 in which case X is totally unknown (the probability that its

value was guessed incorrectly is 1=2). We will refer to this event as an erasure of

X. This leads to the following lemma:

Lemma A.1. Let X be a binary random variable and let pe be the error probability

when guessing X. Then X can be erased with probability 2p � 2pe .

A.3 Privacy Amplification

Privacy Amplification [BBR88] is a technique that allows a partially known string

R to be shrunk into a shorter but almost uniformly distributed string r that can

be used effectively as a one-time pad in cryptographic applications. For our needs

we will use a simplified version of the Generalized Privacy Amplification Theorem

[BBCM95] (also covered in [BBR88]) which assumes that there are always u or

more unknown physical bits in R (as opposed to general bounds on R’s entropy).

Theorem A.1. Let R be a random variable with uniform distribution in f0; 1gn.
Let V be a random variable corresponding to Bob’s knowledge of R and suppose

that any value V = v provides no information about u or more physical bits of R.

Let s be a security parameter and let k = u�s . Let H be a 2-Universal Family of

Hash functions mapping f0; 1gn to f0; 1gk and let H be uniformly distributed in

H. Let r = H(R) (note that H; r; R are random variables). Then the following
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holds:

H(r j V H) � k � log
(
1 + 2k�u

) � k � 2k�u

ln 2
= k � 2�s

ln 2
: (A.6)

It follows from Equation (A.6) that I(r ; V H) � 2�s= ln 2. From Markov’s in-

equality it follows that the probability that Bob has more than 2�s=2 bits of

information about r is no larger than 2�s=2= ln 2. In other words, except with

exponentially (in s) small probability, Bob’s information about r is no more than

an exponentially small fraction of a bit.
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