Apparent Collapse of Quantum State and
Computational Quantum Oblivious Transfer

Abstract. We analyze the situation where computationally binding string commitment schemes are used to
force the receiver of a BB84 encoding of a classical bitstring to measure upon reception. Since measuring induces
an irreversible collapse to the received quantum state, even given extra information after the measurement does
not allow the receiver to evaluate reliably some predicates applied to the classical bits encoded in the state.
This fundamental quantum primitive is called quantum measurement commitment (QMC) and allows for secure
two-party computation of classical functions. An adversary to QMC is one that can both provide valid proof
of having measured the received states while still being able to evaluate a predicate applied to the classical
content of the encoding. We give the first quantum black-box reduction for the security of QMC to the binding
property of the string commitment. We characterize a class of quantum adversaries against QMC that can
be transformed into adversaries against a weak form for the binding property of the string commitment. Our
result provides a construction for 1 — 2-oblivious transfer that is computationally secure against the receiver and
unconditionally secure against the sender given any unconditionally concealing string commitment satisfying a
weak computational binding property.
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1 Introduction

As for the classical case, secure quantum 2-party cryptography must rely upon some kind of assumption[14,
15, 13]. However, the two models of computation do not share the same capabilities and limits[11, 6,20].
In particular, given a classical black-box for bit commitment, there exists a quantum protocol, called the
CK protocol [6, 5, 4], achieving 1 — 2 oblivious transfer (one-out-of-two oblivious transfer). This is in sharp
contrast with the classical case where such a reduction is not only unknown but unlikely to exist [11]. The
difference between the two models can intuitively be appreciated by observing that a classical black-box for
bit commitment allows to transform the quantum channel into a noisy classical channel powerful enough to
provide OT. To see this, consider the BB84 coding scheme [2, 6] for classical bit b into a random state in
{ 1), Ib), }.The random 6 € {+, x} used to encode b into the quantum state |b), is called the transmission
basis.Since only orthogonal quantum states can be distinguished with certainty, the transmitted bit b is not
received perfectly by the receiver, Alice, who does not know the transmission basis. The coding scheme
also specifies what an honest Alice should be doing with the received state [b),. She picks 6 €r {+, x}
and measures |b), with measurement My that distinguishes perfectly orthogonal states [0); and [1); by
providing the classical outcome b € {0,1}. If Bob and Alice follow honestly the BB84 coding scheme then
b is received with probability 1 when § = 6 whereas a random bit is received when # # 4. The error-rate
of such a transmission is therefore % when 6 is not revealed to Alice. Dishonest Bob however, could send
different states in order to temper with the error-rate of the channel so it becomes an unfair noisy channel
(i.e. UNC) [8]. Bob could instead send cos 5 1b) 4+ (—1)?sin § |1 — b) for the encoding of b. In this case, the
error-rate falls to sin” . According to [8], the resulting (sin® %, )-UNC has no cryptographic capability since
2sin® Z(1 —sin? ) < . In order to prevent Bob from behaving in such a way, a slightly different strategy is
used. Bob is now asked to announce 6 allowing Alice to determine whether b has been received. The result is
an oblivious transfer of bit b from Bob to Alice assuming Alice is honest. Dishonest Alice can easily learn b
all the time by waiting for 6 before applying measurement My. Bob must make sure that Alice has measured
before the announcement of 8 so the initial state has collapsed irreversibly. An oblivious transfer is possible
only given such a primitive implemented the natural way using commitments.

We call Quantum Measurement Commitment (or QMC) the primitive that allows Alice to provide Bob
with evidences of a measurement she claims having performed on the qubits received before the announce-
ment of . Implementing a QMC is simply done by sending a commitment containing (9,5) to Bob where
6 is the measurement Alice claims having performed and b is the outcome. An apparent collapse occurred
if given the transmission basis 8, the encoded bit b cannot be determined perfectly. However, verifying the
collapse of a single qubit cannot be done perfectly since Alice could always provide a commitment to ran-
dom (8, b) while keeping |b), untouched until 6 is announced. The probability of opening with success would
then be % while b can always be received perfectly from 6. To avoid lucky Alice from learning too much
about b, we consider QMC made to n random BB84 qubits [b)g = Ib1)g,, Ib2)g,,---, bn)g,.The QMC is
simply implemented using a string commitment containing the measurements § € {+, x}™ and the outcomes
b € {0,1}"™. The classical transmission is defined by some predicate f(by,...,b,). Alice should be unable to
evaluate f(by,...,b,) even given the knowledge of # once the QMC has been performed. The CK protocol
can be seen as a reduction of oblivious transfer to such a QMC with f(b1,...,b,) = @7 ;b;. A QMC is
therefore an universal primitive for secure quantum 2-party computation of classical functions. A successful
adversary to QMC is one that can unveil valid measurement outcomes with good probability while being
able to get a bias on f(by,...,b,) given 6 € {+, x}".

Our contributions

In this paper, we address the question of determining how the binding property of the string commitment
scheme used for implementing a QMC enforces its security. As already pointed out in [9, 7], quantum bit
commitment schemes satisfy different binding properties than classical ones. The difference becomes more
obvious when string commitments are taken into account. We generalize the computational binding criteria
of [9] to the case where commitments are made to strings of size I € 2(n) for n the security parameter,
and [ some value depending on n. Intuitively, for a class of functions F C {f : {0,1} — {0,1}™}, with
m < I both depending on n, we say that a string commitment scheme is F-binding if for all f € F and a



random y € {0, 1}™, the committer cannot open any s € {0, 1}’ such that f(s) = y with success probability
significantly better than 1/2™. The smaller m is compared to [, the weaker is the F-binding criteria. We
relate the security of a QMC to a weak form of the F-binding property. We assume that QMC’s are made
using some computationally binding and unconditionally concealing string commitments containing the bases
6 € {+, x}™ and the results b € {0,1}" obtained by Alice after Bob’s transmission of |b),. At this point,
Bob selects a challenge ¢ €5 {0, 1}. If ¢ = 0, Alice unveils all measurements and outcomes that Bob verifies.
If ¢ = 1, Bob announces the transmission basis § €g {+, x}"™ and Alice tries to maximize her bias on the
parity of b. Let p; be Alice’s probability of success when ¢ = 0 and let € be Alice’s expected bias when ¢ = 1.
First notice that if p; + 2é = 2 then the QMC is not accomplishing anything since Alice can always unveil
perfectly (§s = 1) and bias the parity of b as she likes (€ = 1/2). In this case it is impossible to build a secure
OT from that QMC. However, as we will see in Section 3.2 an honest Alice can always achieve f; + 2 = 1
and thus all adversaries such that p; + 2¢ < 1 are considered trivial. Our main contribution describes how
Ps and € relates to the F.—binding criteria of the string commitment where 7} is a class of functions with
m € O(polylog(n)). We give a black-box reduction of any good quantum adversary against QMC into one
against the F—binding property of the string commitment. We show that if f; + 4¢2 > 1 + §(n) for non-
negligible §(n), then the string commitment is not F)-binding. We also show that the converse condition
€ < +/1+44(n)— ps/2 (for negligible §(n)) is sufficient to build a secure OT. If ; is sufficiently close to 1
on a large number of QMCs then a correct and private OT is implemented. The opposite case “many P, are
not close to 1” is easy to detect and reject.
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Our reduction shows that using computationally binding commitments one can enforce a computational
or apparent collapse of quantum information. This is the first quantum black-box reduction linking the
security of those two primitives. Previously, Yao [20] has shown that if the string commitment is modeled
by a classical black-box then the CK protocol is secure. Our result can be used for proving the security
of OT in the computational setting using a completely different approach. Our 1 — 2 oblivious transfer
is unconditionally secure against the sender but computationally secure against the receiver and is very
similar to the CK protocol. As for the Quantum Goldreich-Levin theorem of [1] and the computationally
binding commitments of [9] and [7], our result clearly indicates that 2-party quantum cryptography in the
computational setting can be based upon different if not weaker assumptions than its classical counterpart.

2 Preliminaries

Notations and Tools. In the following, poly(n) stands for any polynomial in n. We write A(n) < poly(n)
for “A(n) is smaller than any polynomial provided n is sufficiently large” and A(n) < poly(n) (resp. A(n) >
poly(n)) means that A(n) is upper bounded by some polynomial (resp. lower bounded by some polynomial).
For w € {0,1}", z < w means that z; = 0 for all 1 < i < n such that w; = 0 (z belongs to the support
of w). We denote by “4” the string concatenation operator. For w € {0,1}", we write [w] = @} ,w;. For
w, z € {0,1}", we write |w| for the Hamming weight of w, A(w, z) = |w @ 2| for the Hamming d1stance and
w® 2z = @ ,w; - 2 is the boolean inner product. Notation |%|| denotes the Euclidean norm of @ and '
denotes its complex conjugate transposed. The following well-known identity will be useful,

(vye{o,1}")y#0"= > (-1)°®¥=0]. (1)
ze{0,1}"

Next lemma, proved in Appendix A, provides a useful generalization of the parallelogram identity:



Lemma 1. Let A C {0,1}" be a set of bitstrings. Let {¥y .}w,. be any family of vectors indered by
w € {0,1}" and z € A that satisfies,

(Vs,t€{0,1}" s £E)> . > Do (FLrOEeRNG, L T ,) = 0] (2)

W z1CAwWPz1=5 20CA:wWPz2=t

Then, Y [ Y (1) twel? = > > 1wl (3)

w  zcA we{0,1}™ z€A

Finally, for 8,b € {0,1}", we define A<(6,b) = {(4,b) € {0,1}" x {0,1}"|(Vi,1 <i < n)[f; = 6; = b; =
b;]}. It is easy to verify that #A<(6,b) = 3" and that (0@ 7,0 @ B) € A<(0,b) ff B < 7.

Quantum Operators and Encoding. In the following, we denote the m-dimensional Hilbert space by
Hm. The basis {10), 11)} denotes the computational or rectilinear or “+” basis for Hp. When the context
requires, we write |b), to denote the bit b in the rectilinear basis. The diagonal basis, denoted “x”, is defined
as {10),, 11), } where 10), = %( 10) + I1)) and I1), = %( |0) — I1)). The states 10), [1), 10),, and I1),

are the four BB84 states. For any z € {0,1}" and 6 € {+, x}", the state |z), is defined as ®} , |z;)g,. An
orthogonal (or Von Neumann) measurement of a quantum state in #,, is described by a set of m orthogonal
projections M = {P;}7*, acting in H,, thus satisfying };P; = 1,, for 1,, denoting the identity operator
in H,,. Each projection or equivalently each index 7 € {1,...,m} is a possible classical outcome for M.
In the following, we write P4 g = Py = 10)(0], P41 = Py = [1)(1], Py o = 10),(0l and Py 1 = 1), (1
for the projections along the four BB84 states. The two possible measurements applied by the receiver
of BB84 qubits are M, = {Py,P1} and My = {Py,,Px,1}. For 8 € {+, x}", measurement My is the
composition of measurements My, for 1 < 72 < n. In order to simplify the notation, we sometimes associate
the rectilinear basis “4” with bit 0 and the diagonal basis with bit 1. We map sequences of rectilinear and
diagonal bases into bitstrings the obvious way. In order to indicate that @) € Hor is the state of a quantum
register Hr ~ Hor we write \¢)R. If Hr ~ Hyr and Hg ~ Hys are two quantum registers and [¢) =
Y eefo,1} oyefo Yoy 18) ® 1Y) € Har ® Has then we write 19)7 = 3,0 13- Syeronye Yoy 12)F © 19)°

to denote the state of both registers Hgz and Hg. Given any transformation U acting on a register Hg and

any state |@) € Hr ® Hothers,we write UT ) def (UR® 10thers) |¢). We use the same notation when U

denotes a projection operator.

Model of Computation In this paper, we model protocols and algorithms by quantum circuits built out
of the universal set of quantum gates 4G = {CNot,H,P, T}, where CNot denotes the controlled-NoT, H the
one qubit Hadamard gate, P the phase gate, and T is a one qubit gate sometimes refer to as the 7/8 gate
[16].In addition to the set of gates UG, a quantum circuit is allowed to perform von Neumann measurements
in the computational basis M, . A circuit C executed in the reverse direction is denoted C'. The complexity
of the circuit C is simply the number ||C||yg of elementary gates in C.

In the following, we use the two Pauli (unitary) transformations ox (bit flip) and oz (conditional phase
shift) defined for b € {0,1} as, ox : b) — |1 —b) and oz : 1b) — (—1)°[b). Assuming U is a one qubit
operation and s € {0,1}", we write U®* = @7 ,U; where U; = 1, ifs; =0and U, = U if s; = 1. U®* is
therefore a conditional application of U on each of n registers depending upon the value of s. The maximally
entangled state 161) = 277/2 > oze{0,137 'z) ® |z) will be useful in our reduction. This state can easily be

constructed from 107)L' @ 10™)F after applying n H and CNOT gates. A 2-party quantum protocol taking place
between A and B is a pair of interactive quantum circuits (P4, PB) applied to some initial product state
1z4) ® |zg)P representing A’s and B’s (maybe secret) inputs to the protocol neglecting to write explicitly
the states of A’s and B’s registers that do not encode their respective input to the protocol (thus all in
initial states 0)). Since communication takes place between A and B, the complete circuit representing a
protocol execution may have quantum gates in P4 and P2 acting upon the same quantum registers. We
write P4 @ PZ for the complete quantum circuit when A is interacting with B. The final composite state
Wfina1) Obtained after the execution is then written as ¥;nq1) = (P4 © PB) Iz4)* |z5)E. Protocols are to
be understood, although not always explicitly stated, as specified by families of interactive quantum circuits,
one for each possible value of the security parameter n. We denote by P42 = {(PA, PB)},-¢ such a family
of protocols.



3 Definitions

3.1 Computationally Binding Quantum String Commitment

In the following we shall always refer to A as the sender and B as the receiver of some commitment. Such
a scheme can be specified by two families of protocols C4Z = {(CA4, CE)},~0, and OB = {(O4,0B)} .0
where each pair defined A’s and B’s circuits for the committing and the opening phase respectively. A I-
string commitment allows to commit upon strings of length [ for n a security parameter. The committing
stage generates the state |4,) = (CA ® CB) Is)* 10)® when A commits to s € {0,1}!. The opening stage is
executed from the shared state [9,) and produces |¥fina) = (O4 © OF) I95). In [9), the security criteria
for computationally binding but otherwise concealing quantum bit commitment schemes were introduced.
Here, we follow a similar approach for string commitment schemes.

An adversary A = {(C4, 04)},.-o for the binding condition is such that I9) = (CA ® CB)10)*10)” is
generated during the committing stage. The dishonest opening circuit é;f tries to open s € {0, 1} given
as an extra input in state |s)*. Given the final state |Psina) = (02 © OF) Is)? 14)) we define §5(n) as
the probability to open s € {0, 1} with success. More precisely, §5(n) = ||QF 19 inai)||? where QF is B's
projection operator on the subspace leading to accept the opening of s. The main difference between quantum
and classical commitments is the impossibility in the quantum case to determine the committed string s
after the committing phase of the protocol. Classically, this can be done by fixing the committer’s random
tape so s becomes uniquely determined. In addition, proof techniques like rewinding have no quantum
counterpart [17,18]. A committer (to a concealing commitment) can always commit upon any superposition
of values for s that will remain such until the opening phase. A honest committer does not necessarily know
a single string that can be unveiled with non-negligible probability of success. Suppose a quantum I-string
commitment scheme has committing circuit CA ® CB and let I9(s))*Z = (CA © CB) Is)*. If the committer
starts with superposition >, 1/Bs(n) |s), for any probability distribution {(#s(n), 8)}sco,13t, then the state
obtained after the committing phase would be:

> /Bs(n) l9(s) P =ctock (( > /Bs(n)Is)) @ 104 e 0>B> . (4)

se{0,1} se{0,1}

Equation (4) is a valid commitment to a superposition of strings that will always allow the sender to open
s with probability §;(n). The honest strategy described in (4) achieves ), #:;(n) = 1. In [9], the binding
condition is satisfied if no adversary can do significantly better than what is achievable by (4) in the special
case where | = 1. More precisely, a bit commitment scheme is binding if for all adversaries A:

Po(n) + P1(n) < 1+ 1/poly(n) (5)

where §5(n) is the probability to open bit b with success. Extending this definition to the case where ! € 2(n)
must be done with care however. The obvious generalization of (5) to the requirement 2 2se{0,1} Ps(n) <

1 + 1/poly(n) is too strong whenever [ € (2(n). For example, if | = n and F,(n) = 27 ™(1 + Tln)) for all

strings s € {0,1}" then A’s behaviour is indistinguishable in polynomial time from what is achievable with
the honest state (4) resulting from distribution {(27™, s)}s. Any such attack that cannot be distinguished
from the honest behavior should hardly be considered successful. On the other hand, defining a successful
adversary A as one who can open s and s’ (s # s') such that §,(n) + fs(n) > 1+ 1/p(n) is in general
too weak when one tries to reduce the security of a protocol to the security of the string commitment used
by that protocol (as we shall see for QMCs). Breaking a protocol could be reduced to breaking the string
commitment scheme in a more subtle way. In general, the possibility to commit upon several strings in
superposition can be used by the adversary to make his attack against the binding condition even more
peculiar. Instead of trying to open a particular string s € {0, 1}!, an attacker could be interested in opening
any s € {0,1} such that f(s) = y for some function f : {0,1}} — {0,1}™ with m < I. We shall see in
the following that the security of QMC is guaranteed provided the string commitment does not allow the
committer to mount such an attack for a special class of functions. Such an adversary is defined by a family
of interactive quantum circuits A = {(C2, O2)}nso such that I9) = (GA ® CB)10)# 10)% is the state



generated during the committing phase of the protocol and |1/3(y)) = ((5;:1 e 0B) ly)4 |1/7)AB is the state

(hopefully) allowing to open s € {0, 1} such that f(s) = y. The probability to succeed during the opening

stage is, .
pim) =1 > Q7 I9@)IP (6)
s€{0,1}:f(s)=y

where QP is B's projector operator leading to accept the opening of s € {0,1}. The following binding
criteria takes into account such attacks:

Definition 1. Let F C {f : {0,1}} — {0,1}™} be a set of functions where m < l. A l-string commitment
scheme is computationally F-binding if for any f € F and any adversary A’ such that ||Af|jyg <
poly(n), we have

Z ﬁi(n) < 1+ 1/poly(n) where p}(n) is defined as in (6). (M)
ye{0,1}m

Note that any standard attack can be expressed in terms of an appropriate class of functions F. In general,
the smaller m is with respect to [, the weaker is the F-binding criteria. A class of functions of particular
interest is built out of s1(z,y) = z, s2(z,y) = vy, and s3(z,y) =z d y for all z,y € {0,1}. Let Z7 be the set
of subsets of {1,...,n} having size exactly m, we define the class of functions F}}, as,

F;'L;, = {fI : {0) 1}2n - {0) 1}m|I € I;Lm)fl(way) = thsjh(mh:yh))Where jh € {1)2:3} for h € I} . (8)

In other words, F7 contains the set of functions f such that each output bit of f(z,y) is a bit in z or y or
z@®y. Notice that no quantum string commitment has been formally shown F-binding even for F' with small
range. We believe however that the commitment of [7] can be turned into a F7;-binding string commitment
but this analysis is beyond the scope of this paper.

3.2 Commitment to Quantum Measurement

Quantum Measurement Commitment (QMC) is a primitive allowing the receiver of random qubits to show
the sender that they have been measured without disclosing any further information about the measurement
and the outcome. In this paper we restrict our attention to quantum transmission of random BB84 qubits.
The measurements performed by the receiver are, for each transmission, independently chosen in {M, M, }.
We model QMCs by the following game between players A and B:

. B sends n random BB84 qubits in state 1b), for b €5 {0,1}" and 6 € {+, x}",

. A applies measurement M for 6cr {+, x}"™ producing classical outcome be {0, 1}™,

. A uses a 2n-string commitment in order to commit to (5, 13) toward B,

. B picks and announces a random challenge ¢ € {0, 1},
— If ¢ = 0 then A opens (9, 13) and B verifies that 51- = b, for all 7 such that 9i = 6;, otherwise B ABORTS,
— If ¢ = 1 then B announces 6 and A tries to bias [b)].

B W N =

A wants to maximize both her success probability when unveiling and the bias on [b] whenever 8 is an-
nounced. This is almost identical to the receiver’s situation in the CK protocol[6]. Since we only consider
unconditionally concealing string commitments, B gets information about .A’s measurements and results
only if they are unveiled. As we shall see next, this flavor of commitments allow A to postpone her measure-
ment until the unveiling stage. The commitment stage should nevertheless ensure B that A cannot use this
ability for improving her situation compared to the case where she measures completely before committing.
In other words, although this flavor of commitment cannot force A to measure upon the committing stage,
it should do as such through the actions of a computationally bounded A.

We model the adversary A by a family of interactive quantum circuits A = {(C24, 04, E,)}n>o Where

>

CA and O2 are A’s circuits for the committing and the opening phases. Circuit £, allows to extract the



parity of b upon the announcement of basis 6. Circuit C‘;:‘ works upon A’s internal registers H, together
with the register H panner storing the BB84 qubits. We denote by

Yo" = (G @ CF) Ib)g"enme, (9)

the resulting state after the committing phase (step 3). This state should allow A to succeed both challenges
with good probability. By linearity, we have that for all 8,b,z € {0,1}",

Pop) =275 3 (—1)PO8HOY ype o). (10)

yyz

The probability to open with success ]52’;“ b)(n), when |b), was sent, is

ﬁﬁ’é“,b)(n) = Z ||@g'2*,,;)(é;i1 © Of) |¢6,b>||2 - ||QZe,b) \1/19,b)||2, (11)

(8,5)ea<(6,b)
for Q(B;A ) the projection operator applied upon B’s registers and leading to a valid opening of (4, b) € {0, 1}?".
The opening of (6, b) is accepted by Biff (4,b) € A<(6,b). For simplicity, circuits é;‘}G)Of can be included in
the description of QZ‘,S) so the opening process can be seen as a single projection @’(ke,b) = D 2(65)c A(6,0) Qfg,i,)-

The expected probability of success 7°%(n) is,

P = S Y ). (12)

be{0,1}" 0e{+,x}"

When ¢ = 1, A should be able, given the announcement of 4, to extract information about the parity
[6].The extractor &, has access to an extra register Hp storing the basis 6 € {+, x}". The extractor stores
the guess for [b] in register Hg. The bias €g(n) provided by the extractor when the qubits were initially in
state 1b), is )

Eop(n) = |[PH(En ® 15)160)° 10)® I0,6) 472, (13)

where ]P’f'g] is applied upon the output register Hg. The expected value €(n) for the bias provided by B, is,
. 1 ,,
é(n) = o > > Ep(n). (14)
be{0,1}™ 6e{+,x}"

We characterize A’s behavior against QMC by both #°%(n) and &(n). Independently of the string commitment
scheme used, there always exists A* preparing a superposition of attacks that 1) provides [b] with certainty
and 2) succeeds with probability 1 during the opening. Such an attack can be implemented as follows:

¥55) = a(C# @ C) 1) + B(CA © CF) lom)Fiemne (15)

where |a|* + |8]> = 1 and C;' and C; are the honest circuits for committing. The state I%;,) is a super-
position of the honest behavior with probability |a|? and the trivial attack consisting in not measuring the
qubits received with probability |3|2. The expected probability of success p*(n) is

p(n) = o + IBPC)" ~ [af (16)

since with probability |a|? an honest QMC was executed and with probability |3|> a QMC to the fixed state
|0™), was made. In the later case, the probability to pass B’s test is (3/4)". The expected bias satisfies

e loe
2 2

_ o
2

1

e*(n) )"+ (17)



since with probability |a|? a QMC to [b), is recovered (in which case a nonzero bias on [b] occurs only
when § = 6) and with probability |8)? a QMC to a dummy value is made allowing to extract [b] perfectly.
Such an attack does not enable the committer to break the binding property of the string commitment but
achieves: p*(n) + 2e*(n) > 1. We define two flavors of adversaries against QMC. The first flavor captures
any adversary that achieves anything better than the trivial adversary A* defined in (15). The second
flavor captures stronger adversaries for which our reduction will be shown to produce attacks against the
F-binding property of the string commitment.

Definition 2. An adversary A = {(CA,OA, E,)}n>0 against QMC is §(n)-non-trivial if 5°%(n)+2&(n) >
1+ d(n), and d(n)-good if 5°%(n) + 4&(n)? > 1+ &(n) for $°%(n) and &(n) defined as in (12) and (14)
respectively.

Notice that if A is not §(n)-good (or §(n)-non-trivial) then an upper bound on &(n) can be obtained from
a lower bound on #°*(n). This is how we use QMCs for implementing oblivious transfer in Sect. 6.

4 The Reduction

Using a good adversary A against QMC, we would like to build an adversary against the F-binding property
of the underlying string commitment. In this section, we provide the first step of the reduction provided
A’s parity extractor is perfect. We construct a circuit built from A allowing to prepare a commitment into
which any |4y 3) can be inserted efficiently at the opening stage. In Sect. 5, we show how to use this circuit
for attacking the binding property of the string commitment.

4.1 The Switching Circuit

Let A = {(CA,04, Ey)}n>o be an adversary in QMC. We call Hkee, the register kept by A after the
committing phase. We denote by Hp the register containing what is sent by A and kept by B after the
committing phase. Hg ~ Hy» denotes the register containing the BB84 qubits before the commitment,
Hp ~ Hon denotes the register for the basis given as input to the extractor, and Hgy ~ H: denotes the
register in which the guess on [b] is stored by the extractor.

Instead of running G, = (CA ® CF) upon some BB84 qubits, we run it with the maximally entangled
state 19;) where the first half is stored in He and the second half stored in Hg. Therefore, the basis given
as input to the extractor is not a classical state but is rather entangled with register Hg containing the
qubits A is committed upon. After the execution of &, |&F )@’Q, transformations B®® and T'®¢ are applied
to register Hp in order to prepare the input for the extractor where, B = ox 0z and T = Hog. B, is
then run before o is applied upon the extractor’s output register Hg. The transformation is completed by
running the extractor in reverse. The resulting circuit is called the switching circuit:

o) [¥p,,)

Next, we see that whenever the parity extractor is perfect (i.e. B, = E,), the switching circuit using
transformations B®® and T'®° generates I4g,). To see this, we follow its evolution from the initial state
|&F). We first look at the state generated before the extractor is applied,

A b _ 1\bOs
#5) = Zﬁ'”'”izﬁ'” Vire) Z%b@s) ims)

@6 (_1)bOs @ bOt B sOt

— +16
st 1 t<6 \/5’"- i

b®s@t) Pins) (18)



(_1)b®t D sQU ® s@s

= Z n+|6]+|b@sDt| b®s® t> |"/}b@s@t,s@v>- (19)
. t=e \/§
st v<b@s@t

The states up to (18) are obtained by definition of |83),C,, B®®, and T®°. Equation (19) follows after
changing the basis from +™ to b @ s @ t using (10). From (19), we follow the evolution through ElozE,,

— m®f p®b 1\ Blo B, (—1)b0t & sOv & vov
Wp,5) = T®B®C,, 18}) P > roTee 0@ 5 ©1) [Yiesetsen) (20)
ke V2
st v=<b@s@t

Z (_1)b®0 ® b0z @ bOY ® vOyY
- +6[+]0®a]
_vBzdY=<6 \/571
Z,Y,V ‘Uj9®2
(_1)b(39 @ bOz @ bOY

- Z: \/§n+\€|+\6‘®z:|—2|0/\i| 16 z) Y6z boy)
Yysz

16 5] :II) "‘/)GGBz,bG)y)

(—1)b@¢ @ b= & bOy

= ; 7 16 @ z) 1P60,50y) (21)
Yysz
_ (=1 o (-)e=erey
= zz: \/in ® 33) ® , zy;z ﬁ‘z‘ ¢0@2,b®y>
(=1)°®°

= V2"
Equation (20) follows from the fact that the extractor is perfect. Equation (21) follows after using (1). We
finally get (22) from (10).
In conclusion, a perfect extractor allows to produce a commitment inside which any l4s,) can be put
efficiently during the opening phase.

Xe) m) \1/)9,1,). (22)

5 Analysis

We analyze the switching circuit when it is run with imperfect parity extractors. We first show how states
{|’I’g’b>}g’b, produced in this case, overlap with states { % ;)}s» generated when perfect extractors are
available. In Sect. 5.2, we represent the behavior of the switching circuit by a table.In Sect. 5.3, we relate
the table representation to attacks against the 7. -binding property of the string commitment.

5.1 Generalization to Imperfect Extractors

Assume the adversary A = {(CA, OA, E,)}n>0 has access to an imperfect extractor. &, modeled as follows:

B 19)° W) = 16)° @ (70,5 1[1)® 100,0) + 0,0 11 @ [])® 160,5)) (23)

Without loss of generality, we may assume that both 55, and 4,5 are real positive numbers such that

|76,/> > 3 (i.e. arbitrary phases can be added to lgpgs) and |@gp)). According (14), the expected bias

provided by B, is,
é'(n) =4" Z Z é'g,b(’n) =4"" Z Z
) 6 b

Compared to the case where the extractor is perfect, only the effect of transformation ELUZE',L needs to be
recomputed. From (23), we obtain,

1
sl = 5] (24)

BlogE, 16) 1es) = (1)1 18) l9pgp) — 2(—1)14, , B ( 6) 11 [5])® \¢g,b)) . (25)
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We now define the vector €y such that 16) ® €gp = —2'“79,1,]57;2( 6) 11 @ [b]) I@ep)) so that (25) becomes
(BlozBn)18) 19e) = (1)1 16) ® (1%06) + €5p) - (26)
The final state ¥ ) produced by the switching circuit can be obtained easily from (20) using (26). We get,
)boa @ bOz @ bOY

” . o 1 -
‘g’g’b> = EJLO'ZEnT@oB@an |¢+ Z ( n+|z| 18 @ m) ® ( ‘1/}€€Bz,beay> + eg@z,b@y) . (27)
y=z

Splitting the inner sum of (27) gives,
|‘j}g,b> = "I’g#,) + ﬁg,b where, (28)

—1)bOF@LOZBLOY (—1)bOP@LOz@LOY

( _,
o) =) — 160 @ z) 1Yo poy), and Fgp =) —
y=z V2 e y=z V2 el

The first part [pp) = (272 Y,(—1)*®% 16)) ® |4g5) is exactly what one gets when the switching circuit
is run with a perfect extractor (see (22)). The second part is the error term for which next lemma gives a
precise characterization.

10 ® z) ® Eha,bey-

Lemma 2. Consider the switching circuit built from adversary A = {(C4,04, E,)}n>0. Then,

Y | 5)|? < 2 — 4é(n).
"] b

Proof. Let 6 be fixed. Using the definition of ﬁg,b, we get

S n (_1)1)00@1)@2@5@?! 5
—n P N
27" > FepllP =271 >0 ot 160 @ z) ® Evae,bayll
be{0,1}" b y-<z
bOGGBbO:c b 5
= 2_”2 | Z T bez)® ) (—1)"¥éewbeyll
yiy=z
=277 ‘Z‘ZZ” Y (—1)"¥&og payll, (29)
y:y<z

where (29) is obtained from the orthogonality of all €pg, sey When z varies, and from Pythagoras theorem.
We now apply Lemma 1 to (29) with A = {y € {0,1}"|y <z}, w = b,z = y, and ¥y, = Epgzpey- We first
verify that the condition expressed in (2) is satisfied:

> ST (1)U G vy Eomapous) = (Bee,s: Bomat) . (—1)P°C®) =0

b y1€AbDY1=s y2€ADDY2=t b:
v bds<z,bdt<z

from an identity equivalent to (1) since b runs aver all substrings in the support of s @t < z. We therefore
apply the conclusion of Lemma 1 to get that for all z € {0, 1}",

Z I3 (~1)"eeopeul® = Y- 3 ll€sas eyl < 277I(2 - 48(n)). (30)
y:y=z yy<z b
The result follows after replacing (30) in (29). 0

Using Lemma 2, we show how the the output of the switching circuit with imperfect extractors approaches
the one with perfect extractors. Next lemma gives an upper bound on the expected overlap between the
states produced using perfect and imperfect extractors.



Lemma 3. Let A = {(C2,04, E,)}n>o be the circuits for the adversary such that the eztractor E, has
ezpected bias £(n). Then, the set of states { |¥)}v0 produced by the switching circuit satisfies,

Si=4"") (Tl Pp)| > 2¢(n).
b0
Proof. According (28), we can write |¥p,) = 1Ws) + Fsp = (1 — asp) |¥s) + Bop ¥55), where 1 =
| 1Ze.)]12 = |(1— g p)[? + |Be,> and (9,51¥5) = 0. Isolating |ag 5| and using the fact that [ags|* + [Be,p|* =
|1 Fa,pl|? gives,
|1 B2

|a9’b| = 5 (31)

Using (31) and Lemma 2, S5 = g5 4 " ($,5/ T)| > T4 (1~ | pl) = 1- 3,4 1F2% > 26(n). 0

Lemma 3 tells us that with good extractors, one can generate states having large overlap with all QMCs
to different BB84 qubits chosen upon the opening stage of the commitment scheme. It remains to show how
to use this ability to break the binding property.

5.2 Representing The Switching Circuit by a Table

In this section, we look at how to use the switching circuit in order to attack the binding criteria of the string
commitment. Remember first that |4 ,) has probability ﬁfg,b)(n) = ||Qf€,b) 196,6)]|? to open a valid QMC to
b), where @fe,b) is defined as in (11). Remember that a valid opening of |b), consists in the opening of any

2n-bit string (,5) € A<(6,b). We take advantage of the structure of A<(6,b) in order to exhibit attacks
against the binding condition.

Suppose first that adversary A has access to a perfect parity extractor E,. From Sect. 4.1, such an
adversary can generate [9p;) for any choice of § € {+,x}™ and b € {0,1}". Each of 4™ sets of valid
announcements A<(0,b) is of size #A<(6,b) = 3™. We define a table of positive real numbers having 4™
rows and 3" columns where each row is labeled by a pair (6,b). The row (6,b) contains values T 4(7,5) =
||Q5®T’b®ﬁ) 19e,)||2 for all (7, ) such that (6 ® 7,b ® B) € A<(6,b). This condition is equivalent to (7,0)
such that 8 < 7. The table values for the case n = 1 are shown in Fig. 1. The sum of each row is added to the
right. The construction is easily generalized for arbitrary n. Each column contains 4™ orthogonal projectors

1QC0) [#+.0)112 Q00 1¥+.0)117 Q1) 1#+.0)117 | BE%,0)(m) = 11Q 0y 100117
1QC 1) 1#+.017 11QCc 0y [9+.017 11QC 0 194,117 | 85,1y (m) = Q71 1) 194,011
IIQSB><,0>‘1/)><,0>II2 Qo) 0 11QF 1) 19,0l | 5% 0)(1) = 1Qx 0y ¥x.0)II?
||Q(><,1)"‘/)><,1>||2 ||Q(+,1) "‘/’x,1>||2 ||Q(+,o) W’x,l)”z ﬁ?i,l)(n)ZHsz,l)"‘/’X,1>||2

Fig. 1. The table for the case n = 1 and perfect extractor.

applied to the 4™ states { 14/s,b) }o,5. The sum of all values in the table is simply 4"5°%(n) = 324, 5 5 (n)-
The table is defined similarly for imperfect parity extractors. In this case, table T; = {Ts+(7, B)}6,0,7.5<r
associated with adversary A contains elements,

Ty 5(7,8) = | Qg rses) | Fo.) I (32)

While for perfect extractors the sum over all elements in the table is at least 4"#°%(n), next theorem shows

that any table T'; built from a §(n)-good adversary adds up to 4™poly(d(n)). The proof is a consequence of
Lemma 3 and can be found in Appendix B.
Theorem 1. If A = {(C4,04,E,)}ns0 i a §(n)-good adversary against QMC and T; =
{To,(7,B)}8,5,r5<r 5 its associated table, then
4n§(n)3
33 Do) > U (39)

6,b,7 BT
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Theorem 1 establishes the existence of one column in T'; providing a weak attack since any table with

3" columns all summing up to more than A‘n‘;# has one column exceeding (%)”‘5(3%)2 > 1+ 1/poly(n).
Let (7,8) be such a column and consider the class of functions 1, containing only the identity. For
(v,9') € {0,1}?", the state |¥yg,,@p) can be generated using the switching circuit. The probability

to unveil (y,y’) is Tyeryeps(T,.8) = ||Qg’y,) |¥yeryep)||>. By construction, we have > (vy) ﬁ{y’y,)(n) =
> (y,y') Tyeryes(T,8) > 1+ 1/poly(n) which provides an attack against the string commitment’s 15,-
binding property in accordance with (7). As we have seen in Sect. 3.1 however, this attack might not even be
statistically distinguishable from the trivial adversary. In the next section, we find stronger attacks allowing
to relax the binding property required for secure QMC.

5.3 Strong Attacks Against the String Commitment

We now show that the table T4, built out of any §(n)-good adversary A, contains an attack against the
F7-binding property of the 2n—string commitment with m € O(polylog(n)) whenever §(n) > 1/poly(n).
We show this using a counting argument. We cover uniformly the table T ; with all attacks in F;,. Theorem
1 is then invoked in order to conclude that for some f € F7, condition (7) does not hold.

Attacking the binding condition according to a function f € F7, is done by grouping columns in Tz
as described in (6) and discussed in more details in Appendix C. The number of lines involved in such an
attack is clearly 2™ while the number of columns can be shown to be 2™3"~™ (see Appendix C and Lemma
4). This means that any attack in 7}, covers t = 3"~™4™ elements in T;. The quality of such an attack is
characterized by the sum of all elements in the sub-array defined by the attack since this sum corresponds to
the value of (7). Let £ ; = 374" be the total number of elements in T'; and let s 4 be its sum. The following
lemma, proved in Appendix D, shows that all attacks in F7; cover T; uniformly:

Lemma 4. All attacks f € Fj, cover T; uniformly, that is, each element in T; belongs to ezactly
a = C(m,n)4™ attacks each of size t = 3"~ ™4™.

a-t-sA

Let s* be the maximum of (7) for all attacks f € F}.. Clearly, a - s* > 7

of T é& by f € F7, is uniform and a - t/t ; is the number of times T'; is generated by attacks in 7. In other
words,

since by Lemma 4, the covering

s at-sg a-t-sy *>t-sA_4m-sA

T nan = 3ran T 3mar (34)
Assuming that A is §(n)-good, Theorem 1 tells us that s i 4n‘;(2")3. Replacing in (34) finally leads to,
34m
52 W 1 1 poty(m), (36)

for any m > [log% (%5)]. Equation (35) guarantees that for at least one f € F}},, condition (7) is not

satisfied thereby providing an attack against the F)!-binding criteria. Moreover, since §(n) > 1/poly(n) it
is sufficient that m € O(polylog(n)).

6 The Main Result and Its Application to Oblivious Transfer

Putting together Theorem 1 and (35) leads to our main result:

Theorem 2 (Main). Any d(n)—good adversary A against QMC can break the Fm—binding property of
the string commaitment it is built upon for m € O(log Tln)) using a circuit of size O(||Allug)-

Theorem 2 has an immediate application to the security of 1 — 2-OT in the computational setting. We can
easily observe that a QMC implements a weak 1 — 2 oblivious transfer (i.e. WOT) where

- the sender has no information about the receiver’s selection bit and,

- the receiver, according to Theorem 2, can only extract a limited amount of information about both bits.
The following primitive, called W, accepts B’s input bits (8o, 51) and A’s selection bit s and builds a WOT
from a QMC (very similar to the CK protocol[6]):
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Protocol W,

1. B and A run the committing phase of a QMC (i.e. built from any F};-binding string commitment scheme) upon |b), for
b€r {0,1)",6 €x {+, x}" picked by B,
2. B chooses ¢ €r {0, 1} and announces it to A,
— if ¢ = 0 then A unveils the QMC, if UNVEIL SUCCEEDS then A and B return to 1 otherwise B ABORTS,
— if ¢ = 1 then B announces 6, A announces a partition I, I1 C {1,...,n} such that for all z € I; the measurements were

made in basis §; = 6;, then B announces ao,a; € {0,1} s.t. Bo = ao Bicr, b: and B1 = @icr, bi:
e A does her best to guess (bo,b1) & (B, ;, b, Dy, )

Clearly, W, is a correct 1 —2 O since an honest receiver A can always get bit §; = bs ® a;. A’s information
about the other bit can be further reduced using the following simple protocol accepting B’s input bits
(Bo, B1) and the selection bit s for the honest receiver:

Protocol R-Reduce(t, W)
1. W is executed ¢ times, with random inputs (Bos, B1:),¢ = 1..t for the sender and input s for the receiver such that Bo:1 &
.. ®Pot=Poand f11 P ... Pt = Pi.
2. The receiver computes the XOR of all bits received, that is B = ®_;Bs:.

Classically, it is straightforward to see that the receiver’s information about one-out-of-two bit decreases
exponentially in ¢. We say that a quantum adversary A against R-Reduce(t, W,,) is promising if it runs in
poly-time and the probability to complete the execution is non-negligible. Using Theorem 2, it is not difficult
to show that A’s information about one of the transmitted bits also decreases exponentially in ¢ whenever
A is promising:

Theorem 3. For any promising receiver A in R-Reduce(t,W,,) and for all ezecutions, there ezists
5 € {0,1} such that A’s expected bias on Bs is negligible in t (even given f;).

A sketch of proof can be found in Appendix E. It relies upon the fact that any promising adversary must
run almost all W, with $°*(n) > 1 — § for any § > 0. Using Theorem 2, this means that independently
for each of those executions 1 < i < t, one bit Bz out of (Boi, B1:) cannot be guessed with bias better than
Emaz(0) << % In this case, the bias on G5 can be shown to be negligible in ¢ similarly to the classical case.

Clearly, the sender B in R-Reduce(t, W,,) cannot get any non-negligible amount of information about A’s
selection bit when the commitments are statistically concealing. This remark together with Theorem 3 and
the correctness of R-Reduce(t, W,,) lead to:

Corollary 1. A correct and private 1 — 2 OT can be based upon any F.-binding and statistically
concealing quantum string commitment scheme. The resulting OT statistically hides the selection bit
and computationally hides one out of two transmitted bits.

In other words, building 1 — 2-OT upon Theorem 2 allows for an easy security proof in the computational
setting. Our analysis assumes for simplicity that A and B have access to an error-free quantum channel.
Nevertheless, some noise may be tolerated if we construct OT along the lines of BBCS [4] instead of CK [6].

7 Open Questions

An obvious open problem is how to build F;} -string commitment from computationally binding bit com-
mitment schemes. In particular, how one can transform the computationally binding bit commitments of [9]
and [7] into F},-binding string commitments? This would show that QMCs and therefore OT can be based
upon any one-way permutation[9] and/or upon any one-way function[7]. It is an open question whether or
not Theorem 2 holds for §(n)-non-trivial adversaries against QMC. Such an extension would show that our
reduction from an adversary to QMC into one against the binding condition is optimal. It is also of interest
to find attacks against weaker binding properties. In particular, is it possible to transform an adversary
against QMC into one against the F-binding property where F' is class of functions with range of size in
o(log 1/6(n))? Our reduction is non-uniform since we did not provide an efficient way to find a good f-
attack.Our result would be stronger if a uniform reduction was found. Finally, it would be very interesting
to formally prove the security of the CK protocol using Theorem 2. This would result in a proof of security
that, in addition to apply in the computational setting, would be based upon a completely different approach
than Yao’s proof [20]. It is also an interesting problem to prove Corollary 1 in the case where the quantum
channel is not error-free.
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A Proof of Lemma 1

First, we prove the following related claim:

Claim. Let {ty ;}w,. be any family of vectors, indexed by w,z € {0,1}", that satisfies,

(Vs,t €{0,1}" s £ ). D] > (FreEeRN g, dy,.,) = 0] (36)

w z1:whz1=s 25 wHzo=t

Then,

DD G a1 [ N[99 (37)

w,z€{0,1}"

Proof. We carry out the calculation for (37):
DD () Ry o1 = 3 (0 (1) O iz, ) (=1) YO Tz,
w z z1 z2

w
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— Z (_1)w®(z16322) <,u'w121 ’ ﬁ%lz)

w,21,22

= [dwelP+ D (—1)WOEeR Gy, iy 1) (38)

w,21,22:21#22

We now re-arrange the terms in the right-hand part of (38):

Z (_l)we(zlez2)<ﬁw,21:ﬁw,22>:Z Z Z Z <":’:w,21:"7"w,22>

w,21,22:21£22 w,z1 s:wWB21=S 23:227#21 LrwBzo=t

=22 > > ATuwe Tue)

s,tisAt W z1:wH#zy 22:wzo=t

=0, (39)
where (39) follows from condition (36). Replacing (39) in (38) concludes the proof. O

Proof (Lemma 1). The proof of Lemma 1 follows from the Claim after setting %, , = ¥y, if 2 ¢ A and
Uy, = 0if 2 € A. It is easy to verify that if condition (2) is satisfied by {Uw ;}w,. then {#y ,}. . satisfies
(36). Our result then follows from (37). O

B Proof of Theorem 1

Proof. We use Lemma 3 together with the fact that A is §(n)-good. From Lemma 3, any §(n)-good adversary
is such that,

°k(n) +> 47T bl Tpp)|> =4 "Z <P(g p(n) + |<%,b“ﬁe,b>|2) > 1+ 4(n). (40)
0.5

The sum of any row (8,b) € T is given by,

1Qfa,0) T, 017 > [1Qs) (I(Wo,b“f’o,bﬂ @) — /1 — [(Ze,51Fo,0) 2 EPGJ,_b>> 1%, (41)
where %)) is any state orthogonal to 1% ). Now, notice that we can always write [%p;) = ﬁz’;“,b)(n) €6.5)+

1 _ﬁ%c,b)(n) €5,) for 1€o,) = Qo ) |%,b>/\/ﬁ€§,b)(n) and 1§5,) = (1 - Qfs,p)) Pop)//1 _ﬁfg,b)(n)- We
can also write "I’aL,b) = gy €ap) + Payp \50{,,) + Cop | Agp) where [Agp) is orthogonal to both [€5) and
\Ej’b) and where |ag |2 + |Bep|? + |{o,5|> = 1. Since by construction (%,bl%fb) =0, it is easy to verify that

lagp| < ﬁfg b)( n). Using the above observations !, we rewrite (41) as,
* 7, 2 1 7 * 2 7 2M* 1\12 2
Qs B0 > 5 (Il B0 Qe ) o) I — /1 = (6018620 1245 (42)

1 i =ok 7 2 2

22 (l(%,b‘f’e,b) Bla 5 (m)|° — \\/1 — [(Zo,5! %o 5) 2]t ]| ) (43)
1 -

> 2+ (100516 ) P8 (m) — (1~ |/ B ) P)(1 — B35y (m)) (44)
1., " 2

2 1 <P(§,b)(n) + (W 51 ) |* — 1) : (45)

Since A is §(n)-good, we use (40) to conclude that the set G = {(9,b)|ﬁz’§b)(n) + [(Zo51 Tpp)|2 > 1+ @}

must satisfy #G > 4"d(n)/2. Any (6,b) € G is such that (45) is at least (’Z—). The result follows easily from
* 7 * 7 m§(n)3

05 Q) 01> > S pec 1Qfp sy o) I7 > £52LE. 0

! and the fact that (v/a — v/a — 5)® > 1/4b? for any 0< b < a < 1.
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C Implementing an f-attack From the Switching Circuit

In this appendix, we briefly describe how one can use the switching circuit in order to attack the binding
property of the string commitment relative to some function f € F,,. We call such an attack an f-attack
since its purpose is to try to open s € f~!(y) for any y € {0,1}™. To make the description easier, let us
consider the case n = 1 resulting in table T; shown at Fig. 2 (this is almost identical to Fig.1). We have

Q0 F+0)I> 11QCk 0y 017 1Q% 1) 1017
Q1 I 11QG 1y o )P 1IQG 0 14,01
1QGc,0) ExI” 11Q% 0y Ec0)® N1QCs, 1) 15,001
QG 1) M, MNP 11QC 1y 1,17 N1QE 0 1, I

Fig. 2. Table T4 for the case n = 1.

seen how the switching circuit allows for generating any state @9,;,). Suppose now that the attacker wants
to open a string commitment (in this case the string as length 2) according to function f; € FJ* defines as
f1(8,b) = b for 8,b € {0,1}. One way consists in generating (using the switching circuit) ¥, o) in order to
open f1(6,b) = 0 and I’foﬁl) in order to open f;1(6,b) = 1. According to (6), the probability to succeed in
unveiling s s.t. fi(s) = 0 and fi(s) = 1 satisfies

#(n) = I(QE, o) + Q. o)) ¥4 0)|I? and 5 (n) = I(QF, 1y + QF, 1)) 14 )%

The quality of this fi—attack is given by (2). That is, the attack succeed if ﬁg(n) +pi(n) > 1+ 6 for some
large enough 4. Looking at Fig. 2, this particular fi—attack is formed by the 2 x 2 upper left sub-array of
T;. The quality of the attack 1'0‘{; (n) + ﬁ{ (n) is simply the sum of all elements in the sub-array. The same
function f; can be attacked using the elements in the lower left 2 x 2 sub-array of T';. This means that the
attacker prepare \fffx,o) and \'ffx,l) in order to open s € f; 1(0) and s € f; 1(1) respectively. In this case, one
gets §l(n) = 1(QF0) + QFr0)) &, o)||? and ] (n) = QG 1y + Q1)) 1@y 1)||2. There are two other ways
to implement an f;—attack by mixing the first two. The attacker could generate \'ff+,0) to unveil s € f; 1(0)
and |¥, ;) to unveil s € f; *(1). Similarly, ¥, ;) to unveil s € f; (1) and ¥y o) to unveil s € f; }(0) can
be used. This adds up to 4 possible implementations of the f;—attack using the first two columns of T';.

Now consider function fo € F7* defines as f2(6,b) = 6. As for f;—-attacks, there are four fo—attacks located
in the two last columns of T';. In the first case, states \fﬁr,o) and I’ffxio) are generated (by the switching
circuit) in order to open s € f;'(1) and s € f;'(0) respectively (using '+’ = 0 and 'x’ = 1). We get
(n) = (QF, gy + QF 1)) 1¥4. 0> and §(n) = (QF, o) + QF. 1)) '¥x,0)[I*. The second way of attacking
is by generating states |¥, ;) and |¥, ;) in order to open s € f, *(1) and s € f, *(0) respectively. The other
two are obtained similarly.

There is only one function left in F7*, that is f3(8,b) = 6 & b. This one can be attacked in four different
ways using the first and third columns in T;. In the first case, states \'JZL,O) and |‘ff+,1) are generated
in order to open s € f; 1(0) and s € f3(1). We get #(n) = ||(Qa,0) + Qfxll)) &, o)||? and #(n) =
||(Qé5+,1) + Qfx,o)) 1%, 1)|[2. The two others can be found similarly.

Remark that any element in T'; belongs to exactly 4 attacks and that any attack uses exactly 4 elements
in T';. This is what we mean when we say that all attacks in F7* covers T ; uniformly. The construction can
easily be generalized for arbitrary n. The number of rows of T; uses in any f-attack (f € F7;) is 2™ and
the number of columns is 23"~™. That is, the number of elements in T'; involved in such an f-attack is
4m3"~™_ As we shall see in Lemma 4, the covering remains uniform for all values of n.

D Proof of Lemma 4

Lemma 4 follows from the combinatorial lemma 5 below. To make the statement of this combinatorial lemma
more succinct we first set the stage for it.
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Let T be a 4™ lines by 3™ columns array. The lines are indexed by the 4™ strings (,b) € {0,1}" x {0, 1}".
The columns are indexed by the 3" strings (7,8) € {0,1}" x {0,1}"™ such that g < 7.

We now consider sub-arrays of 7'. Each sub-array will be composed of cells lying at the intersections of
2™ lines of T' and 3™ ™2™ columns of T'. Any choice of the following 3n parameters will define a unique
sub-array and different choices of parameters will define different sub-arrays:

r1, T2, ..., ™ € {0,1,2,3}, (46)
Uy, Ug, ..., Un € {0,1}, (47)
V1, V2, ..., Un € {O, 1} (48)
subject to the condition
#{j - r; #0} =m. (49)

Accordingly, there will be C(m,n)3™4" different sub-arrays.
Let us fix a choice for r; € {0,1,2,3}, uj,v; € {0,1} for all j € {1,...,n} satisfying (49). We now
describe the sub-array defined by that choice. The column (7,() is part of the sub-array if and only if:

rj =0=—= (Tjuﬂj) € {(0: 0): (1: 0): (1: 1)} Le. ﬂj =T (50)
r; = 1= (15,6;) € {(1,0),(1,1)} ie: T =1, (51)
r; =2 = (15,B;) € {(0,0),(1,0)} ie: fB; =0, (52)
r; =3 — (Tj,ﬂj) € {(0,0),(1,1)} ie: g =1j. (53)
The line (6,d) is part of the sub-array if and only if:
rj = 0= (6;,b;) € {(u5,v5)}, (54)
ri=1=— (ej’bj) € {(O:U’j)i (1:vj)}: (55)
i =2 = (0;,b;) € {(u;,0), (vj,1)}, (56)
i =3 = (6;,b;) € {(u;,u;), (v;,1—v;)}. (57)

One can easily verify that the lines (50) to (57) define a 2™ x 3"~ ™2™ sub-array, thus containing 3%~"4™
cells, and that different choices of the parameters (46) to (48) will lead to different sub-arrays.
We can now state and prove the combinatorial lemma:

Lemma 5. Every cell (8,b,7,8) of T belongs to ezactly C(m,n)d™ sub-arrays.

Proof. Let us fix 5 € {1,...,n}. Figure 3 shows the possible values for (rj,u;,v;) given the value of
(65,b5,7;,B;)- One can verify that, for all j, any 4-tuple (8;,b;,7;,0;) allows exactly 1 triplet (r;,u;,v;) if

0000 0010 0011 0100 0110 0111 1000 1010 1011 1100 1110 11171
(0.0, 0> (0, 0,0) (0, 0. 0)
(0, 0, 1) (0,0, 1) (0,0, 1)
0, 1, 05 0, 1, 0> 0, 1,05
(0.1.1) (0.1.1) (O.1,1)
(1,0,0> (1,0, 0> (1,0,0)> (1,0,0>
(1,0,1) (1,0, 1) (1.0, 1> (1,0, 1)
1,1.0> (1,1.0) 1.,1,0> 1,1.0)
1,1.1) 1,1.1) (1.1,1> 1,1.1)>
(2.0, 0) (2, 0.0) (2,0, 0) (2, 0.0)
(2.0, 1) (2,0, 1) (2,0, 1) (2,0, 1)
(2, 1,05 (2,1.0) (2,1, 05 (2, 1,0
(2,1, 1> (2,1, 1) (2,1,1> (2,1, 1>
(3.0.0) (3.0.0) (3.0.0) (3.0.0)
(3,0, 1) (3,0, 1> (3,0, 1> (3,0, 1)
(3,1, 0 (3, 1,0 (3,1,0) (3,1,0)
(3,1, 1) (3,1.1) (3,1.1) (3,1.1)>

Fig. 3. Eligible triplets (r;, u;,v;) given (6;,b;, 75, 5;)

r; = 0, and exactly 4 if »; # 0. From that follows the statement of this combinatorial lemma. 0
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E Sketch of Proof for Theorem 3

Protocol Wy, which is almost identical to a QMC, is also a weak form of 1 — 2-OT. Theorem 2 tells us that
any efficient adversary A against W,, must satisfy:

7% (n) + (2§(n))? < 1+ 1/poly(n) (58)

for some polynomial poly(n) where #°%(n) is the probability to succeed in challenge ¢ = 0 and &(n) is the
maximum bias on [b] = by @ b; that A can extract in challenge ¢ = 1.

The only difference between W, and a QMC (as far as #°%(n) and &(n) are concerned) is that in W,,
QMCs are made until challenge ¢ = 1 has been reached. Let f,50rt,1, be the probability for B to abort the
execution of W,. Notice that there is no reason for A to change $°*(n) during the same execution of W,
since the challenges are independent and random. We have,

1- ﬁOk (n) ~ok

Dabort, W, = Zz 1@ (n)) (1 - p%(n)) > = §°*(n) > 1 — 2Pabort,W,- (59)

Let Z, = {(Io, 1)|lo U1 ={1,...,n},Io N I; = 0} be th~e set of possible announcements for Ain W,,. Let
I = (Iy,I1) € Z, be the set of positions announced by A’s during an execution of W,,. We define f;(b) as

the 2-bit output function:
= (@ bi, @ bi).

i€lp  i€EDL

For s € {0,1} and b € {0,1}", let h(b,s) = f1(b);s) where fr(b);,) denotes the s-th output bit of f(b).
Let QPoly(n) and QPoly(n,t) be the classes of families of polynom1a1—s1ze quantum circuits in one and two
variables respectively having one-bit output. Let Cs be the non-uniform class of all families of polynomial
size circuits allowing to run W, with success probability at least 1 — §. That is, any family {Cp}n>0 € Cs
can be used to define the committing phase of an adversary A = {(Chn,-)}n>0 against W, where C, allows
for Paport,w,, < 0 given m is large enough. For simplicity, we abuse the notation by writing the output state
of the committing phase on |b); as Cj, Ib), although formally, C, is the circuit obtained by combining A’s
and B’s interactive circuits. Let G, be a quantum circuit with a one-bit output register so G, - (Cr 1b)5)
defines a probability distribution over the possible outcomes for the measurement in the computational
basis of Gp’s output register. When we write out {G, - (Cn |b)g) ® 18)} we are not only designating the
value of G,’s output register but any classical mapping from the output into {0, 1}. Using this convention,
Pr(hr(b,s) # out {Gn - (Cr 1b)s) ® 16)}) > 1 — €, means that any classical mapping from the value of the
output register to {0, 1} has expected probability of error at least  — € in guessing the value of h;(b, s).

Using (59), we get that A also defines an adversary against QMC with $°%(n) > 1 — 26. From (58), we
conclude that

20 +
E(n) < % (60)
given the output of any family of poly-size quantum circuits {Gr}n>0 € QPoly(n). Remember that &(n)
is the maximum expected bias on h;(b,0) & hs(b,1) for any announcement I € Z,. The following lemma
follows easily from Theorem 2:

Lemma 6.

(V{Cr}n>0 € C5)(VI € Z,)(3s € {0, 1})(V{Grn}n>0 € QPoly(n))(Vn > no)

Pr (h1(b, 5) # out {Gn - (Cn Ib)g) ® 16)}) > %g‘(n) ,

(61)

where the probability is taken over 0 €g {+, x}" and b €g {0,1}" and where €(n) s the function of §
and n defined in (60).
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The proof of Lemma 6 is easy and omitted due to space limitations. It proceeds by contradiction showing
that if both bits A7(b,0) and h;(b, 1) can be guessed respectively by G2 and G with probability larger than

- 25(”) then A could attack a QMC with success probability #°(n) > 1 — 2§ and expected bias larger than

\/26 + 1/poly(n)/2 contradicting (58).

Let Pavort(£) be the probability that B aborts the execution no later than during the ¢-th call to W,
in R-Reduce. Let Hst0p(€ + 1) be the probability that given the first £ calls to W, were successful, B aborts
during the £ + 1-th execution of W,,. We have,

ﬁabort(l) = ﬁabort,wn and (62)
ﬁabort(z + 1) = ﬁabo’rt(e) + (1 - ﬁabort(e))ﬁstop(e + 1) (63)

In order for A’s success probability 1 — Pasort(t) to be non-negligible in ¢, fst0p(¢) must be small for most
executions £ € [1...t]. Let 6 > 0 and a > 0 be two arbitrary constants. Assuming Fsop(£) > 0 for all
£ € L with #L > at then Paport(t) > 1 — (1 — ). In other words, if Fstop(£) >  for a constant fraction
of the t executions then 1 — Papore(t) is neg11g1b1e int. In general an adversary A against R- Reduce(t, Wy,)
is modeled by a family of quantum circuits A= {(C’nt,Gnt, it )}nt>0 where C,, runs the committing

phase and circuits G% and G. extract information about by and b; respectively. Promising adversaries in
R-Reduce(t, W,,) are defined as follows:

Definition 3. A polynomzal size adversary A = {( nt,Gnt,Gnt)}n t>0 against R-Reduce(t,W,) s
promising of Paport(t) <1 — 17(5 for some p(t) € poly(t).

We now consider the limitations implied by (61) to any adversary A against R-Reduce(t, W,). Let |b), =
®t:1 ‘b(1)>€(i) be the random n -t BB84 qubits picked and sent by B. The following lemma links promising
adversaries against R-Reduce(t, W,) to Lemma 6. It tells us that if A is promising then there exists a large

subset L of all executions of W, in R-Reduce(t, W,) for which independently of each other, predicates
hi(b%,s), £ € L cannot be guessed with arbitrary precision given the output of any polynomial size circuit.

Lemma 7. Assume the security parameters n and t in R-Reduce(t, W,,) are polynomaeally related. Then,
(V8 > 0)(Vy > 0)(V promising A = {(Cr,t, )}nt>0) (3L C{L,...,t} : #L > (1 —7t)(VL € L)
(VI € Z,,)(3s € {0,1})(V{Ghn, t}n +>0 € QPoly(n,t))

1- B+ i (64)
Pr (Rs(89), 5) # out {Gy (Cns 8)6) ® 1)} [{(6,0)},¢) > powy(r)

10
where the probability is computed over b = b(1), ... b, and 6 = 61, ..., 8®) for b() €g {0,1}" and
6 cg {0,1}" for alli € {1,...,t}.

The proof can easily be obtained using Lemma 6.From Lemma 7, we would like to conclude that given any
announcement 7 = (I(®), 1), ... 1®)) during R-Reduce(t, W,,), the amplification function

t
g7, 6%, 5) = P hye (8%, 5) € {0,1} (65)

=1

is such that for § € {0, 1}, the value gI{b(l), ...,b®,§) cannot be guessed with bias non-negligible in ¢. Next
theorem follows from Lemma 7 and is equivalent to Theorem 3:

Theorem 4. Let n and t be polynomially related security parameters in R-Reduce(t, W,,). Then,
(V6 > 0)(Vy > 0)(V promising A = {(Cn, VInes0)(VT € T)(3s € {0,13)

1
(H{Gr.tIniso € QPoly(n,t)) [Pr (96,59, 5) # out {Git (Crn 18)g) @ 16)}) > = — 2—‘1*] ,

for a = M 10g 4+5¢g and where the probability is computed over b=>b1), ... b®) and § =61, ..., 6®
for b®) € {0,1}" and ) € {0,1}" for all i € {1,...,t}.
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