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Abstract

We survey the computational assumptions of various cryptographic schemes, and

discuss the security threat posed by Shor’s quantum algorithm.

One-way functions form the the basis of public-key cryptography. Although we

have candidate hard problems that are believed to be one-way, none has been proven

to be so. Therefore the security of the corresponding cryptographic schemes depends

on the the intractability assumptions of these problems. Two major species of such

problems, factoring and discrete logarithm, are widely believed to be intractable, and

serve as the basis of many popular schemes. However, these two problems turned out

to be polynomial-time solvable on a hypothetical quantum computer using Shor’s

algorithm. This is the most worrisome long-term threat to current public-key cryp-

tosystems.

In the thesis we provide a review of existing cryptosystems, with a focus on

their underlying computational assumptions and the security. Other than factoring

and discrete logarithm, schemes have been proposed based on error-correcting codes,

subset-sum and subset-product problems, lattice, polynomials, combinatorial group

theory, number fields, etc. Many are to be furtherly evaluated in future research.
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Résumé

Nous faisons un survol des hypothèses calculatoires de plusieurs schémas cryp-

tographiques, et nous discutons de la menace posée par l’algorithme quantique de

Shor.

Les fonctions à sens unique forment la base des systèmes à clés publiques en cryp-

tographie. Malgré que nous ayons sélectionné des problèmes difficiles et qui semblent

à sens unique, personne n’a prouvé qu’ils le sont. Donc, la sécurité des schémas

cryptographiques dépend d’hypothèses sur la complexité de ces mêmes problèmes.

La factorisation et les logarithmes discrets, deux problèmes de ce type, sont large-

ment acceptés comme étant intraitables et servent de base à ces schémas. Cependant,

ces deux problèmes peuvent être résolus en un temps polynomial à l’aide d’un hy-

pothétique ordinateur quantique en utilisant l’algorithme de Shor. À long terme, cela

représente une grande menace aux systèmes cryptographiques à clés publiques.

Dans cette thèse, nous présentons un survol des systèmes cryptographiques exis-

tants, en insistant sur leur côté calculatoire et leur sécurité. À part la factorisation

et les logarithmes discrets, des schémas ont été proposés en se basant sur la théorie

des codes, la somme et le produit de sous-ensembles, la théorie des treillis, la théorie

des polynômes, la théorie des groupes combinatoires et d’autres théories. Plusieurs

problèmes devront être évalués dans de futures recherches.

ii



Acknowledgments

First I wish to express my gratitude to my thesis supervisor, Claude Crépeau, for
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Résumé ii
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Chapter 1

Introduction

Cryptography refers to a wide range of security issues in the storage, transmission and

protection of information such as massive file storage, electronic commerce through

public networks, the use of smart cards, etc.

Three of the most important services provided by cryptosystems are secrecy, au-

thenticity, and integrity. Secrecy refers to keeping information secret from all but

those who are authorized to see it. Authenticity refers to validating the source of a

message; i.e., that it was transmitted by a properly identified sender. Integrity refers

to assurance that a message was not modified accidentally or deliberately in transit,

by replacement, insertion or deletion. Traditional cryptography deals mainly with

the secrecy aspect.

A cryptosystem for message transmission means a map from ordinary text (plain-

text) to encrypted form (ciphertext). The idea of using arithmetic operations to

construct such a map goes back to the days of Roman Empire. Until the late 1970’s,

encryption schemes were based on the sender and receiver of a message knowing and

using the same secret key. In such a cryptosystem (known as symmetric-key cryp-

tosystem) two users who want to communicate secretly must exchange keys in a safe

way.

The course of cryptography was totally altered when Diffie and Hellman intro-
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CHAPTER 1. INTRODUCTION 2

duced the concept of public-key cryptosystem in 1976. The idea behind public-key

cryptography is fairly simple: Anyone can put something in a box and close the lock,

but only the person who knows the lock combination can open the box again. In a

public-key cryptosystem, each person gets a pair of keys, one called the public key

and the other called the private key. Each person’s public key is published while the

private key is kept secret. Suppose Alice has a public key, which she publishes. Then

anyone can encrypt a message to send her. And everyone uses the same method of

encryption using her public key. But only Alice knows the private key which allows

her to invert the process and decrypt the message.

At the heart of this concept is the idea of using a one-to-one one-way function for

encryption. Speaking roughly, a function f from X to Y is “one-way” if it is easy

to compute f(x) for any x ∈ X but very hard on average to compute x from the

value of f(x). The functions used for encryption belong to a special class of one-way

functions called trapdoor one-way functions. A trapdoor one-way function is a one-

way function where the inverse direction is easy, given a certain piece of information

(the trapdoor), but difficult otherwise. This trapdoor serves as the decryption key. A

trapdoor one-way function remains one-way only if the decryption key is kept secret.

All practical public-key cryptosystems are based on functions that are believed to

be one-way, but no function has been proven to be so. The existence of polynomial-

time computable one-way functions is still an open question.

This means that it is theoretically possible that an algorithm will be discovered

that can compute the inverse direction easily without a trapdoor. This development

would render any cryptosystem based on that one-way function insecure and useless.

Two candidate one-way functions of importance in cryptography today are in-

teger factorization and discrete logarithm. The former has given rise to the RSA

cryptosystem and the latter to the discrete logarithm based systems.

The RSA cryptosystem, invented by Rivest, Shamir and Adleman in 1978, is the

most popular public-key cryptosystem. This system is based on the fact that multi-

plication and primality testing are easy but prime factorization is much harder. So
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far it has resisted all kinds of attacks [MvOV96]. The difficulty of discrete logarithm

problem is the foundation of several public-key cryptosystems, including the ElGamal

public-key cryptosystem. The discrete logarithm problem bears the same relation to

these systems as factoring does to RSA. More recently, the fact that every elliptic

curve defined over a finite field has a group structure is used in constructing of elliptic

curve cryptosystems.

Factoring algorithms have been studied for hundreds of years, general discrete

logarithm algorithms have been extensively studied since the early 1970s, and elliptic

curve discrete logarithms have been studied since the mid-1980s. It is impossible to

predict when a mathematical breakthrough might occur.

It is an unfortunate fact that discrete logarithms and integer factorization are so

close that many algorithms developed for one problem can be modified to apply to

the other. For security, it would be better to have much more diversity. However,

the many attempts to find public-key schemes based on other principles have been

less than successful – most have been broken, and the rest are either unpractical or

still under investigation.

The most worrisome long-term threat to RSA and discrete logarithm cryptosys-

tems comes from quantum computers.

Quantum computers use the dynamics of atomic-scale objects to store and ma-

nipulate information. The behavior of atomic-scale objects is governed by quantum

mechanics rather than by classical physics. The state of a quantum computer is a su-

perposition of exponentially many basis states, each of which corresponds to a state

of a classical computer of the same size. By taking advantage of interference and

entanglement in this system, a quantum computer could naturally perform a myriad

of operations in parallel (known as quantum parallelism). As a result, significant

speedup is possible for certain problems using appropriate quantum algorithms.

In 1994, Peter Shor [Sho97] of AT&T Laboratories showed that if such machines

were built, integer factorization and discrete logarithms (including elliptic curve dis-

crete logarithms, as shown by [BL95]) could be computed in polynomial time.
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The implications of Shor’s factoring algorithm on the world of cryptography is

staggering. The integer factorization and discrete logarithms problems are generally

believed to be intractable for classical algorithms, and most schemes are based on

this assumption. The ability to break the RSA and discrete logarithms based systems

will render almost all current channels of communication insecure.

Shor’s discovery stimulated great interests and an explosion in research on quan-

tum computers. Experimentalists try to build quantum computers and theorists

try to find other quantum algorithms. Quantum computing suddenly came into a

dynamic and rapidly developing field.

While there is still some debate on whether quantum computers are feasible,

no fundamental obstructions to their constructions have been found, and novel ap-

proaches are regularly suggested. The one comforting factor is that all experts agree

that a lot of ground needs to be broken before the first quantum computer can be

built. It will likely take many years to do so, at least for machines on a scale that

will threaten modern public-key systems.

It is likely that quantum computing will be the next revolution in computer

science. Because of the threat that Shor’s algorithm poses to existing encryption

techniques, there is also a great deal of interest in developing alternate public-key

cryptosystems. A few candidate hard problems are:

• Error-correcting codes

• Subset-sum (knapsack)

• Subset-product

• Lattice

• Polynomials

• Combinatorial group theory

• Number fields
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The remainder of this thesis is organized as follows. Chapter 2 contains a brief

covering of the relevant mathematics used in this thesis. Chapter 3 introduces the

basics of cryptography. Chapter 4 and 5 discuss the two important problems, factor-

ing and discrete logarithm, as well as some major practical cryptosystems based on

them. Chapter 6 explains the famous Shor’s quantum algorithm and how it solves

factoring and discrete logarithm problems. We thus show the great impact of Shor’s

algorithm on cryptography and quantum computing. The rest of the thesis surveys

computational assumptions that survive Shor’s attack, i.e., assumptions other than

factoring and discrete logarithm. The list includes error-correcting codes, subset-

sum, lattices, polynomials, braid groups, subset product, number fields, etc. The list

here is not assumed to be exhaustive. We aim to provide an up-to-date view of the

research directions in cryptography as facing the long-term threat posed by Shor’s

algorithm.



Chapter 2

Mathematical Background

2.1 Complexity theory

Computational complexity provides a foundation for analyzing cryptographic tech-

niques. Complexity theory classifies a problem according to the minimum time and

space needed to solve the hardest instances of the problem on a Turing Machine (or

some other abstract model of computation). If a problem is polynomial solvable on a

Turing Machine (TM), then it is polynomial solvable on a real system and vice versa.

2.1 Definition 1 An algorithm is a well-defined computational procedure that takes

a variable input and halts with an output.

2.2 Definition The running time of an algorithm on a particular input is the number

of primitive operations or “steps” executed.

Often a step is taken to mean a bit operation. For some algorithm it will be more

convenient to take step to mean something else such as a comparison, a machine

instruction, a machine clock cycle, a modular multiplication, etc.

The following definitions involves asymptotic notations O and o. Readers not

familiar with them can refer to [MvOV96]. Intuitively, f(n) ∈ O(g(n)) means that f

1Unless otherwise indicated, the definitions in this chapter are based on [MvOV96].

6
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grows no faster asymptotically than g(n) within a constant multiple. f(n) ∈ o(g(n))

means that g(n) is an upper bound for f(n) that is not asymptotically tight, i.e.,

f(n) becomes insignificant relative to g(n) as n gets larger.

The following two notations are borrowed from Paul Dumais [Dum99, page 5].

2.3 Notation A polynomial-time algorithm is an algorithm whose worst-case run-

ning time function is of the form

poly(n) =
⋃
k≥1

O(nk),

where n is the input size.

2.4 Notation A superpolynomial-time algorithm2 is an algorithm whose worst-case

running time function is of the form

superpoly(n) =
⋂
k≥1

Ω(nk),

where n is the input size.

2.5 Example (superpolynomial running time) Let A be an algorithm whose inputs

are either elements of a finite field Fq, or an integer q. If the expected running time

of A is of the form

Lq[α, c] = O(e((c+o(1))(ln q)α+(ln ln q)1−α
),

where c is a positive constant, and α is a constant satisfying 0 < α < 1, then A is a

superpolynomial-time algorithm. Observe that for α = 0, Lq[0, c] is a polynomial in

ln q, while for α = 1, Lq[1, c] is a polynomial in q, and thus fully exponential in ln q.

2.6 Definition An algorithm whose running time is given by O(kh(n)) for constant

k > 1 and polynomial h(n) is called an exponential-time algorithm [Den82].

2The term “superpolynomial” is often exchangeable with “subexponential” when describing the

complexity class that is asymptotically faster than exponential while asymptotically slower than

polynomial. In this thesis, we stick to the term “superpolynomial”.
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Informally speaking, problems that are solvable in polynomial time are called

tractable because they can usually be solved for reasonable size inputs. Problems

that cannot be systematically solved in polynomial time are called intractable or

simply “hard”, because as the size of the input increases, their solution becomes

infeasible on even the fastest computers.

Complexity theory restricts its attention to decision problems, i.e., problems which

have either YES or NO as an answer. In practice, computational problems can be

phrased as decision problems, so that an efficient algorithm for the decision problem

yields an efficient algorithm for the computational problem, and vice versa.

2.7 Definition Let L1 and L2 be two decision problems. L1 is said to polytime re-

duce to L2, written L1 ≤P L2, if there is an algorithm that solves L1 which uses, as

a subroutine, an algorithm for solving L2, and which runs in polynomial time if the

algorithm for L2 does.

Informally, if L1 ≤P L2, then L2 is at least as difficult as L1, or, equivalently, L1

is no harder than L2. Consequently, if L1 is widely believed to be intractable, then

proving that L1 ≤P L2 provides strong evidence of the intractability of L2.

2.8 Definition Let L1 and L2 be two decision problems. If L1 ≤P L2 and L2 ≤P L1,

then L1 and L2 are said to be computationally equivalent, written L1 ≡P L2.

2.9 Definition The complexity class P is the set of all decision problems that are

solvable in polynomial time.

2.10 Definition The complexity class NP is the set of all decision problems for

which a YES answer can be verified in polynomial time using some extra information,

called a certificate.

The class P consists of all problems solvable in polynomial time. The class NP

(nondeterministic polynomial) consists of all problems solvable in polynomial time



CHAPTER 2. MATHEMATICAL BACKGROUND 9

on a nondeterministic TM. This means if the machine guesses the solution, it can

check its correctness in polynomial time. Apparently, this does not really “solve” the

problem, because there is no guarantee the machine will guess the correct answer,

and a nondeterministic TM is not a realistic model of computation. However, all

problems in NP have this nice property that an (instance, solution) pair can be

verified efficiently. These (instance, solution) pairs can be built efficiently for some

problems. Put simply, most of the interesting problems that currently cannot be

solved in polynomial time are in NP.

We know that all problems in P are also in NP, but we do not know whether

or not all problems in NP are in P. The class NP includes the class P because

any problem polynomial solvable on a deterministic TM is polynomial solvable on

a nondeterministic one. Although many problems in NP seem much “harder” than

the problems in P, no one has yet proved that P 6= NP.

NP-complete problems is the set of equivalent problems in NP such that if

any one of the problems is in P, then all NP problems are in P and P = NP.

Therefore the NP-complete problems are the “hardest” problems in NP. The fastest

known algorithms for systematically solving these problems are superpolynomial-time

algorithms.

2.2 Number theory

The set of integers is denoted by Z.

2.11 Definition (Division algorithm for integers)

Let a, b ∈ Z, b ≥ 1, then there exist unique q, r ∈ Z such that

a = q b+ r, 0 ≤ r < b

q is called the quotient, denoted by a div b; and r (the remainder) denoted by a mod b.

If r = 0, we say b divides a, and denote this by b|a.
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2.12 Definition A non-negative integer d is the greatest common divisor of integers

a and b, denoted by d = gcd(a, b) if

1. d|a and d|b; and

2. whenever c|a and c|b, then c|d.

2.13 Definition for n ≥ 1, let φ(n) denote the number of integers in the interval

[1, n] which are relatively prime to n. The function φ is called the Euler phi function.

2.14 Fact 1. If p is a prime, then φ(pe) = (p− 1)pe−1.

2. If gcd(m,n) = 1, then φ(mn) = φ(m) · φ(n).

3. If n = pe11 p
e2
2 . . . pekk , then φ(n) = (p1 − 1)pe1−1

1 (p2 − 1)pe2−1
2 . . . (pk − 1)pek−1

k .

Let n be a positive integer.

2.15 Definition If a and b are integers, then a is said to be congruent to b modulo

n, written a ≡ b (mod n), if n divides (a− b).

2.16 Definition The integers modulo n, denoted Zn, is the set of (equivalence classes

of) integers {0, 1, 2, . . . , n − 1}. Addition, subtraction, and multiplication in Zn are

performed modulo n.

2.17 Definition Let a ∈ Zn. The multiplicative inverse of a modulo n is an integer

x ∈ Zn such that ax ≡ 1 (mod n). If such an x exist, then it is unique, and a is said

to be invertible; the inverse of a is denoted by a−1.

2.18 Fact Let a ∈ Zn. Then a is invertible if and only if gcd(a, n) = 1. We can

compute a−1 using the extended Euclidean algorithm (refer to [MvOV96, page 71]).
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2.19 Theorem (Chinese remainder theorem) If the integers n1, n2, . . . , nk are pair-

wise relatively prime, the the system of simultaneous congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

has a unique solution modulo n = n1n2 . . . nk, which is given by

x =
k∑
i=1

aiNiMi mod n,

where Ni = n/ni and Mi = N−1
i mod ni. These computations can be performed in

O((lg n)2) bit operations.

2.20 Definition The multiplicative group of Zn is Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

2.21 Definition Let a ∈ Z∗n. The order of a, denoted ord(a), is the least positive

integer t such that at ≡ 1 (mod n).

2.22 Definition Let α ∈ Z∗n. If the order of α is φ(n), then α is said to be a

generator or a primitive element of Z∗n. If Z∗n has a generator, then Z∗n is said to be

cyclic.

2.23 Fact Z∗n has a generator if and only if n = 2, 4, pk, or 2pk, where p is an odd

prime and k ≥ 1.

2.24 Definition Let a ∈ Z∗n. The integer a is said to be a quadratic residue modulo

n, if there exists an x ∈ Z∗n such that x2 ≡ a (mod n). If no such x exists, then a is

called a quadratic non-residue modulo n. The set of all quadratic residues modulo n

is denoted by Qn and the set of all quadratic non-residues is denoted by Qn.
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2.25 Definition Let a ∈ Qn. If x ∈ Z∗n satisfies x2 ≡ a (mod n), x is called a square

root of a modulo n.

2.26 Definition Let p be an odd prime and a an integer, the Legendre symbol is

defined to be

(
a
p

)
=


0, if p|a,

1, if a ∈ Qp,

−1, if a ∈ Qp.

2.27 Definition Let n ≥ 3 be odd with prime factorization n = pe11 p
e2
2 . . . pekk . The

the Jacobi symbol is defined to be(
a
n

)
=
(
a
p1

)e1 (
a
p2

)e2
. . .
(
a
pk

)ek
.

Note that if n is prime, the Jacobi symbol is just the Legendre symbol. There exists

a polynomial-time algorithm [MvOV96, page 73] to compute the Legendre symbol.

Based on results from number theory, we can evaluate a Jacobi symbol in polynomial

time without factoring n using the same algorithm.

2.28 Definition Let n ≥ 3 be and odd integer, and let Jn = {a ∈ Z∗n |
(
a
n

)
= 1}.

The set of pseudosquares modulo n, denoted Q̃n, is defined to be the set Jn −Qn.



Chapter 3

Basic Concepts

Cryptography is the study of mathematical techniques related to aspects of informa-

tion security. Cryptographic primitives and computational difficulty are linked in a

fundamental way, as cryptographic primitives can be constructed based on various

intractability assumptions. At the very heart of cryptography is the notion of one-

way function, which was shown to be necessary and sufficient for many cryptographic

primitives [OW93]. In this section we define one-way function and describe the role

of one-way functions in various cryptographic contexts.

3.1 One-way functions

In the construction of cryptographic schemes, we are concerned with both the com-

putational efficiency and the infeasibility of violating the scheme. The computations

of the legitimate users of the scheme ought be efficient; whereas violating the security

features (by an adversary) ought to be infeasible. A complexity gap (i.e., between

the complexity of proper usage and the complexity of defeating the security) is re-

quired. Hence, one-way functions play a central role in cryptography. A one-way

function (OWF) is a mathematical function that is significantly easier to perform

in one direction (the forward direction) than in the opposite direction (the inverse

13
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direction).

3.1 Definition (OWF, intuitive definition) [MvOV96, page 327]

A one-way function is a function f such that for each x in the domain of f , it is

easy to compute f(x); but for essentially all y in the range of f , it is computationally

infeasible to find any x such that y = f(x).

Note that by saying “for essentially all y”, we don’t exclude the possibility that for

a few values y it is easy to find an x such that y = f(x). For a better understanding

of this, we include below (see 3.2) the more rigorous definition of one-way function

by Goldreich1.

3.2 Definition (OWF, Goldreich’s definition) [Gol98, page 29]

A function f : X → Y , where X, Y ⊆ {0, 1}∗, is called (strongly) one-way if the

following two conditions hold

1. easy to compute: There exist a (deterministic) polynomial-time algorithm, A,

so that on input x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. hard to invert: For every probabilistic polynomial-time inverting algorithm, A′,

every polynomial p(·), and all sufficiently large n

Pr(A′(f(Un), 1n) ∈ f−1(f(Un))) <
1

p(n)
,

where n is the length of input x, Un denotes a random variable uniformly distributed

over Xn ⊆ {0, 1}n, and p(·) is a polynomial depending on one variable.

“Hardness to invert” is interpreted as an upper bound on the success probability of

efficient inverting algorithms. Clearly, the success probability obtained by repeating

the algorithm polynomial (in n) many times is still negligible. Hence, defining negli-

gible success as “occurring with probability smaller than any polynomial fraction” is

analog to defining feasible as “computed within expected polynomial-time”.

1Goldreich called it “strong one-way function” [Gol98, page 29].
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In fact, there are no known instances of functions which are provably one-way

(with no assumptions) [MvOV96, page 328]. All instances of “one-way functions” to

date should thus be more properly qualified as “conjectured” or “candidate” one-way

functions. Although it is widely believed that one-way functions do exist, it remains

possible that they do not. As a fact, almost all of Modern Cryptography rises or falls

with the question of whether one-way functions exist.

The following are two examples of candidate one-way functions.

3.3 Example (OWF – multiplication of large primes) For primes p and q, f(p, q) =

pq is a one-way function: given p and q, computing n = pq is easy; but given n,

finding p and q is difficult. The difficult direction is known as the integer factorization

problem, RSA and many other cryptographic systems rely on this example.

3.4 Example (OWF – exponentiation in prime fields) Given a generator α of Z∗p ,

for most appropriately large prime p, f(x) = αx (mod p) is a one-way function. f(x)

is easily computed given α, x, and p; but for most choices p it is difficult, given

(y, p, α), to find an x in the range 0 ≤ x ≤ p − 2 such that αx (mod p) = y. The

difficult direction is known as the discrete logarithm problem. Exponentiation in

other groups is also a reasonable candidate for a one-way function, provided that the

discrete logarithm problem for the group is believed to be hard. For example, the

logarithm problem in the group of points on an elliptic curve.

However, a one-way function is not sufficient for public-key cryptography if it

is equally hard for the legitimate receiver and the adversary to invert. So rather,

we need a trapdoor one-way function. A trapdoor one-way function is a one-way

function where the inverse direction is easy, given a certain piece of information (the

trapdoor), but difficult otherwise.

3.5 Definition (TDOWF) A trapdoor one-way function is a one-way function f :

X → Y with the additional property that given some extra information that depends

only on f not on x (called the trapdoor information) it becomes feasible to find for

any given y ∈ Im(f), an x ∈ X such that f(x) = y.
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Public-key cryptosystems are based on one-to-one (presumed) trapdoor one-way func-

tions. The public key gives information about the particular instance of the function;

the private key gives information about the trapdoor. Whoever knows the trapdoor

can perform the function easily in both directions, but anyone lacking the trapdoor

can perform the function only in the forward direction. The forward direction is used

for encryption and signature verification; the inverse direction is used for decryption

and signature generation.

Definitions of OWF and TDOWF can be extended to that of one-way permutation

and trapdoor one-way permutation simply by substituting “function” with “permu-

tation”.

Since the existence of one-way functions has not been proved, the existence of

trapdoor one-way functions/permutations is also unknown. However, there are a

number of good candidates, and some of them will be discussed in Chapter 4 – 9.

3.2 Some main topics in cryptography

One-way functions are fundamental to cryptography in that they were shown to

be necessary and sufficient for many cryptographic primitives. OWF is necessary

and sufficient for pseudorandom bit generators, digital signatures, computational

symmetric-key cryptography, coin-flipping, and identification [NY89, Rom90, IL89,

BCG89, OW93]. TDOWF is sufficient for public-key cryptography, and oblivious

transfer (therefore any two-party protocols). In this section we present some basic

concepts including encryption, symmetric-key and public-key, digital signatures, etc.

3.2.1 Encryption schemes

The traditional and most basic problem of cryptography is that of providing secret

communication over insecure media. The general setting consists of two parties com-

munication through a channel which is possibly tapped by an adversary. The parties

want to exchange information without leaking the content to the adversary.
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Loosely speaking, an encryption scheme is a protocol that allows these parties to

communicate secretly. Typically, the encryption scheme consists of a pair of algo-

rithms. One algorithm, called encryption, is applied by the sender (i.e., the party

sending a message), while the other algorithm, called decryption, is applied by the

receiver. Hence, in order to send a message, the sender first applies the encryption

algorithm to the message, and sends the result, called the ciphertext, over the chan-

nel. Upon receiving a ciphertext, the receiver applies the decryption algorithm to it,

and retrieves the original message (called the plaintext).

For real security, each algorithm is indeed a set of transformations characterized

by parameters and/or auxiliary inputs known as the key. The range of possible values

of the key is called the keyspace

3.6 Definition A cryptosystem has five components [Sti95]:

1. A plaintext space, P ;

2. A ciphertext space, C;

3. A keyspace, K;

4. A family of encryption transformations, E ;

5. A family of decryption transformations, D;

For each K ∈ K, there is an encryption rule eK ∈ E and a corresponding de-

cryption rule dK ∈ D. Each eK : P → C and dK : C → P are functions such that

dK(eK(x)) = x for every plaintext x ∈ P .

3.2.2 Security

There are two approaches to defining security [Gol99]:

The first (“classic”) approach is information theoretic. It is concerned with the

“information” about the plaintext which is “present” in the ciphertext. Loosely
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speaking, if the ciphertext contains information about the plaintext then the encryp-

tion scheme is considered insecure. It has been shown that such high level of security

can be achieved only if the key in use is at least as long as the total length of the

messages sent via the encryption scheme. The fact, that the key has to be longer

than the exchanged information, is indeed a drastic limitation on the practical uses

of such schemes.

The second (“modern”) approach is based on computational complexity. It comes

from the observation that it does not matter whether the ciphertext contains infor-

mation about the plaintext, but rather whether this information can be efficiently

extracted. In other words, we ask whether it is feasible for the eavesdropper to ex-

tract this information, instead of asking whether it is possible for him to do so. It

turns out that this approach may offer security even if the key is much shorter than

the total length of the messages sent via the encryption scheme.

3.2.3 Symmetric-key vs. public-key

There are two general forms of key-based encryption schemes: symmetric-key and

public-key.

Traditional encryption schemes are based on the sender and receiver of a message

knowing and using the same secret key: the sender uses the secret key to encrypt

the message, and the receiver uses the same secret key to decrypt the message. This

method is known as the secret-key or symmetric-key scheme2. In fact all the encryp-

tion schemes used prior to the 1980’s are symmetric-key schemes. The eavesdropper

in these schemes must be ignorant of the encryption key, and consequently the key

distribution problem arises (i.e., how can two parties wishing to communicate over

an insecure channel agree on a secret encryption/decryption key).

In contrast, the computational complexity approach allows the introduction of en-

cryption schemes where the encryption key may be given to the eavesdropper without

2Symmetric-key systems are also referred to as private-key systems. To avoid confusing with the

private key in public-key systems, we use the term “symmetric-key” throughout this thesis.
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compromising the security of the scheme. Clearly, the decryption key in such schemes

is different and furthermore infeasible to compute from the encryption key. The con-

cept of public-key cryptography was introduced in 1976 by Diffie and Hellman [DH76].

In their concept, each person gets a pair of keys, one called the public key and the

other called the private key. Each person’s public key is published while the private

key is kept secret.The key distribution problem thus is trivially resolved since all

communications involve only public keys, and no private key is ever transmitted or

shared. When Alice wishes to send a secret message to Bob, she looks up Bob’s public

key in a directory, uses it to encrypt the message and sends it off. Bob then uses his

private key to decrypt the message and read it. No one listening in can decrypt the

message. Anyone can send an encrypted message to Bob but only Bob can read it.

3.2.4 Digital signatures

A signature scheme (also called digital signature) is a method of signing a message

stored in electronic form. In comparison to “conventional” handwritten signatures,

digital signatures are message dependent: signatures are created by a signing trans-

formation of the message, and verified by a verification transformation also involving

the message.

Digital signatures can be based on OWF or TDOWF. Again, there are symmetric-

key and public-key versions consists of three algorithms corresponding to the key-

generation, signing and verification tasks. The difference between the two types

lies in the definition of security (i.e., whether the adversary is given access to the

verification-key). Public-key signature schemes produce signatures which are univer-

sally verifiable, since the verification-key is publicly available. In contrast, symmetric-

key signature schemes are only used to authenticate messages sent among a small set

to mutually trusting parties. Therefore symmetric-key signature schemes are com-

monly referred to as message authentication scheme.

There is a class of digital signatures which arise from public-key encryption tech-

niques. For example, the RSA signature scheme derives directly from the RSA public-
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key encryption. As in the case of decryption, the signing-key is the secret information

which distincts the legitimate signer from all other users. Other users only have the

corresponding verification-key allowing them to verify signatures (but not to produce

them).

3.2.5 Other applications of OWF

Next we briefly describe some other important applications of OWF.

There are many situations in cryptography where random numbers or bit-strings

are needed. In practice it is common to use a pseudo-random bit generator (PRBG).

A PRBG starts with a short random bit-string (a “seed”) and expands it into a much

longer “random-looking” bit string. In other words, although the output of a PRBG

is not really random, it is infeasible to tell the difference. A PRBG can be constructed

from any OWF. In fact, PRBG exists if and only if OWF exists [Lub96].

It turns out that PRBG plays a central role in the construction of others primi-

tives, such as symmetric-key cryptosystems, digital signatures, zero-knowledge proofs,

and bit commitment.

A proof refers to a process by which the validity to an assertion is established.

Proofs in cryptographic protocols are often dynamic interactive processes, in which

one party P (the prover) tries to prove a certain fact to the other party V (the

verifier). Loosely speaking, zero-knowledge proofs are proofs which yield nothing

beyond the validity of the assertion. That is, a verifier obtaining such a proof gains

no knowledge beyond the conviction in the validity of the assertion.

An essential tool used in zero-knowledge proofs is bit commitment schemes. A bit

commitment simply means that a player in the protocol is able to choose a bit and

commit to his choice such that he can no longer change his mind. A bit commitment

scheme consists of two phases. In the commit phase, P commits to a bit b, and sends

the encrypted form of b (called a blob) to V . In the release phase, P can “open” the

blob to reveal b and it is guaranteed that he cannot reveal a value other than the

one committed. Bit commitment schemes are of great interest because they are a key
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ingredient in the construction of any two-party protocols. Their simple functionality

enables complicated, otherwise seemingly impossible tasks.



Chapter 4

Candidate OWFs Reducible to

Factoring

Factoring is the hard direction of a conjectured OWF. In this Chapter we examine

the factoring problem, and three problems that are reducible to factoring — the RSA

problem, the Rabin problem, and the quadratic residuosity problem. All of them are

candidate OWFs.

4.1 The factoring problem

4.1 Definition The integer factorization problem (FACTORING)

Given a positive integer n, find its prime factorization; that is, write n = pe11 p
e2
2 . . . pekk

where the pi are pairwise distinct primes and each ei ≥ 1.

Factoring is widely believed to be a hard problem, yet this has not been proven.

The worst cases turn out to be when n is a product of large primes. Mathemati-

cians and computer scientists have been very actively searching for efficient factoring

algorithms. The best algorithms known (see [MvOV96] for a summary) have time

complexity Ln[α, c], where α = 1/2, 1/3. It is superpolynomial in the size (the number

22
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of digits, i.e., log n). The fastest algorithm, the number field sieve, achieves α = 1/3.

There remains a possibility that an easy factoring algorithm will be discovered.

There is also the possibility that someone will prove that factoring is difficult. Above

all this, there is the threat from a quantum computer — if one is ever developed —

on which factoring can be solved efficiently using Shor’s algorithm [Sho97]. We will

cover Shor’s algorithm later in Chapter 6.

4.2 The RSA problem

4.2 Definition The RSA problem (RSAP)

Given a positive integer n that is a product of two distinct odd primes p and q, a

positive integer e such that gcd(e, (p−1)(q−1)) = 1, and an integer c, find an integer

m such that me ≡ c (mod n)

In other words, the RSA problem is that of finding the eth roots modulo a compos-

ite integer n. The underlying one-way function, f(x) = xe (mod n), (f : Zn → Zn)

is called the RSA function. The inverse is f(x)−1 = xd (mod n), where d ≡ e−1

(mod φ(n)). The conditions imposed on the problem parameters n and e ensure that

the function is in fact a permutation over its domain. It is conjectured that the RSA

function is a trapdoor one-way permutation [Gol98], with the factors of n serving as

the trapdoor information.

If an opponent knows the trapdoor (p, q), he can compute φ(n) = (p− 1)(q − 1)

and then compute d as the inverse of e using the extended Euclidean algorithm, thus

easily solve the RSA problem. This fact is stated next.

4.3 Fact RSAP ≤P FACTORING. That is, the RSA problem polytime reduces to

the integer factorization problem. [MvOV96]

However, it is unknown whether there might be other easier ways of breaking RSA

without factoring n. The best algorithms known for inverting RSA proceed by (ex-
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plicitly or implicitly) factoring n except for small d1. It is widely believed that without

the knowledge of the factorization of n, it is infeasible to invert RSA, yet no proof of

this is known. In other words, we have no proof that shows how secure RSA really

is. This problem became the motivation of designing provably secure cryptosystems

whose security can be mathematically proved to be equivalent to the difficulty of

factoring.

The RSA cryptosystem is one of the most well-known and popular public-key

cryptosystem. It was invented in 1977 by Rivest, Shamir, and Adleman [RSA78]. It

may be used to provide both secrecy and digital signatures.

In the RSA public-key encryption, the RSA function serves as the encryption

function, and the inverse function as the decryption function. Suppose Alice wants

to send a message m to Bob. Bob’s public key is (n, e), and his private key is (d, p, q).

Alice creates the ciphertext c by exponentiating: c = me mod n . She sends c to Bob.

To decrypt, Bob also exponentiates: m = cd mod n; the relationship between e and

d ensures that Bob correctly recovers m. Since only Bob knows d, only Bob can

decrypt.

Because the encryption and decryption functions are mutual inverses, the RSA

scheme can be used for digital signatures as well. Suppose Bob wants to send a

message m to Alice in such a way that Alice is assured that the message is authentic

and is from Bob. Bob creates a digital signature s by exponentiating: s = md mod n,

where d is Bob’s private key. He sends m and s to Alice. To verify the signature,

Alice exponentiates and checks that the message m is recovered: m = se mod n,

where (n, e) is Bob’s public key.

The RSA pseudorandom bit generator [ACGS88] is based on the assumption that

the RSAP is intractable. The generator first selects a random seed, x0, then com-

putes the sequence x1, x2, . . . , xl by successively applying the RSA function. The

1An attack on RSA with short d is known from Wiener [Wie90]. This attack will discover d

where |d| < |n|/4. More recent results improve Wiener’s attack to |d| < 0.292|n| [BD98, DN00].

These attacks pose no threat to normal case RSA where |d| ∼ |n|.
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sequence of pseudorandom bits is formed by the sequence of the least significant bit

of xi. The efficiency is furtherly improved in the Micali-Schnorr pseudorandom bit

generator [MS91] by generating more bits per exponentiation by e. Yet the security

of Micali-Schnorr PRBG is stronger than requiring that the RSAP is intractable.

A variety of provably secure public-key schemes [Rab79, Wil80, Wil85, SW95]

have been developed whose security is computationally equivalent to the difficulty of

factoring. The basic idea underlying most these systems is to replace the exponent e

in the RSA system by λe, where λ is a small prime (usually, λ = 2 or 3, but larger

values of λ are possible, specifically λ = 5 [SW95]. Upon raising a ciphertext to the

secret exponent d, the receiver obtains not the original message, but its λth power.

As a result, the sender needs to provide a clue indicating which of the λth roots of

this power is the correct message. All these schemes were shown to to be as difficult

to break as it is to factor n.

4.3 The quadratic residuosity problem

4.4 Definition The quadratic residuosity problem (QRP)

Given an odd composite integer n and an integer a having Jacobi symbol
(
a
n

)
= 1,

decide whether or not a is a quadratic residues modulo n.

Let n be a product of two distinct primes p and q, it can be shown that if a ∈ Jn, then

a ∈ Qn if and only if a ∈ Qp and a ∈ Qq. Thus, if the factorization of n is known,

the quadratic residuosity problem can be solved simply by computing the Legendre

symbol
(
a
p

)
. This observation can be generalized to all integers n and leads to the

following fact.

4.5 Fact QRP ≤P FACTORING. That is, the QRP polytime reduces to the FAC-

TORING problem. [MvOV96]

On the other hand, if the factorization of n is unknown, there is no known efficient

procedure for solving QRP. It is widely believed that QRP is as hard as the integer
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factorization problem, although no proof is this is known.

The intractability of quadratic residuosity problem forms the basis for the se-

curity of the Goldwasser-Micali probabilistic public-key encryption scheme. The

Goldwasser-Micali public-key cryptosystem [GM84] encrypts one bit at a time. A

0 bit is encrypted to a random quadratic residues modulo n; a 1 bit is encrypted to a

random pseudosquare modulo n. The receiver uses his trapdoor knowledge (i.e. the

factorization of n) to determine whether the element he receive is a quadratic residue

or a pseudosquare, therefore the original bit.

4.4 The square root modulo n problem

4.6 Definition The square root modulo n problem (SQROOT)

Given a composite integer n and a ∈ Qn (the set of quadratic residues modulo n),

find a square root of a modulo n; that is , an integer x such that x2 ≡ a (mod n)

Note that the SQROOT problem is not a special case of the RSA problem: since

p−1 is even, it follows that e is odd, and in particular e 6= 2. The conjectured one-way

function in the SQROOT problem is f(x) = x2 (mod n), with (p, q) as the trapdoor.

This function induces a 4-to-1 mapping on the multiplicative group modulo n.

If the the factors p and q of n are known, then the SQROOT problem can be

solved efficiently by first finding square roots of a modulo p and modulo q, and then

combining them using the Chinese remainder theorem ( 2.19) to obtain the square

root of a modulo n.

Conversely, if one can solve the SQROOT problem, then the FACTORING prob-

lem is easy. It works as follows. First compute a = x2 mod n for a random x coprime

to n. Then find a square root y by solving the SQROOT problem with (a, n). If

y ≡ ±x (mod n), then the trial fails, and the above procedure is repeated with a

new x. Otherwise, y 6≡ ±x (mod n), gcd(x − y, n) is guaranteed to be a non-trivial

factor of n, namely, p or q. The procedure runs in expected polynomial time.

Therefore we have the following fact.
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4.7 Fact SQROOT and FACTORING are computationally equivalent. [MvOV96]

If n is a Blum integer (i.e., n is a product of two distinct primes each congruent to 3

modulo 4), then the function defined above is a permutation. When p, q ≡ 3 (mod 4),

the computation of square roots is very easy. The two square root of a modulo p are

±a(p+1)/4 mod p, and the two square root of a modulo q are ±a(q+1)/4 mod q [Sti95].

It is then straightforward to obtain the four square roots of a modulo n using the

Chinese remainder theorem.

The Rabin public-key scheme [Rab79] is based on the above trapdoor one-way

permutation. It was the first provably secure public-key encryption and signature

scheme — that is, the underlying problem of the scheme is provably as difficult as

some computational problem that is widely believed to be difficult, such as FAC-

TORING or DLP.

The Blum-Blum-Shub (BBS) pseudorandom bit generator [BBS86] is based on

the assumption that integer factorization is intractable. It works in a similar way

to the RSA PRBG, using f(x) = x2 (mod n) where n is a Blum integer. The BBS

generator forms the basis for the Blum-Goldwasser probabilistic public-key encryption

scheme [BG85]. The scheme uses the BBS generator to generate a pseudorandom bit

sequence which is then XORed with the plaintext. The resulting ciphertext, together

with an encryption of the random seed used, is sent to the receiver. The receiver

uses his trapdoor information to recover the seed and subsequently reconstruct the

pseudorandom bit sequence and the plaintext.
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Candidate OWFs DL and GDL

In this Chapter we look at the discrete logarithm problem and its generalized version.

Like the factoring problem, the discrete logarithm problem is believed to be difficult

and also to be the hard direction of a one-way function.

The intractability of discrete logarithm problem forms the basis of many cryp-

tographic techniques, including Diffie-Hellman key agreement and its derivatives,

ElGamal encryption, and the ElGamal signature scheme and its variants [MvOV96].

We will briefly talk about Diffie-Hellman key agreement, ElGamal encryption, El-

Gamal signature and DSS as examples. The discrete logarithm problem appears to

be much harder over arbitrary groups than over finite fields; this is the motivation

for cryptosystems based on elliptic curves. Generalized discrete logarithm problem

is examined in the setting of elliptic curve.

5.1 The discrete logarithm problem

If G is a group, such as the multiplicative group of a finite field or the group of points

on an elliptic curve, and α is an element ofG, then (writing the group multiplicatively)

αx is the discrete exponentiation of base α to the power x. This operation shares

28
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many properties with ordinary exponentiation, so that, for example,

αx+y ≡ αx · αy (mod n).

Finding discrete logarithm is the inverse operation of discrete exponentiation. For

simplicity assume that G is cyclic and is generated by α, the formal definition follows:

5.1 Definition Discrete logarithm (DL)

Let G be a finite cyclic group of order m. Let α be a generator of G, and let β ∈ G.

The discrete logarithm of β to the base α, denoted logα β, is the unique integer x,

0 ≤ x ≤ m− 1, such that β = αx.

The number x is called the discrete logarithm, since it again shares many prop-

erties with the ordinary logarithm. For example,

logα(βγ) ≡ (logα β + logα γ) (mod m)

The problem of finding discrete logarithm defined on Z∗p is known as the discrete

logarithm problem (DLP).

5.2 Definition The discrete logarithm problem (DLP)

Given a prime p, a generator α of Z∗p, and an element β ∈ Z∗p, find the integer x,

0 ≤ x ≤ p− 2, such that αx ≡ β (mod p).

More generally, the discrete logarithm problem can be defined in a finite cyclic

group as follows:

5.3 Definition The generalized discrete log problem (GDLP)

Given a finite cyclic group G of order n, a generator α of G, and an element β ∈ G,

find the integer x, 0 ≤ x ≤ n− 1, such that αx = β.

The groups of most interest in cryptography are the multiplicative group F∗q of

the finite field Fq, including the particular case of the multiplicative group Z∗p of the

integers modulo a prime p, and the the multiplicative group F∗2m of the finite field

F2m of characteristic two. Also of interest are the group Z∗n where n is a composite
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integer, the group of points on an elliptic curve defined over a finite field, and the

jacobian of a hyperelliptic curve defined over a finite field [MvOV96].

The discrete logarithm problem is a well-studied problem. The best discrete

logarithm algorithms have expected running times similar to those of the best fac-

toring algorithms. A summary of the known algorithms for the DLP can be found

in [MvOV96].

Currently, the best algorithms to solve the discrete logarithm problem are broken

into two classes: index-calculus methods and collision search methods. Index calculus

methods are very similar to the fastest current methods for integer factoring and they

run in superpolynomial-time. Collision search algorithms have purely exponential

running time. Index calculus methods generally require certain arithmetic properties

to be present in order to be successful, whereas collision search algorithms can be

applied much more generally. Collision search methods is the best known method for

attacking the general elliptic curve discrete log problem.

5.2 The Diffie-Hellman problem

The Diffie-Hellman problem is closely related to the discrete logarithm problem. Its

assumed intractability forms the basis for the security of many cryptographic schemes,

including Diffie-Hellman key agreement and its derivatives, and ElGamal public-key

encryption.

5.4 Definition The Diffie-Hellman problem (DHP)

Given a prime p, a generator α of Z∗p, and elements αa mod p and αb mod p, find

αab mod p.

5.5 Definition The generalized Diffie-Hellman problem (GDHP)

Given a finite cyclic group G, a generator α of G, and group elements αa and αb, find

αab.
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Suppose that the DLP could be efficiently solved. Then given α, p, αa mod p and

αb mod p, one could first find a by solving the DLP from α, p, and αa mod p, and

then compute (αb)a = αab mod p. This establishes the following relation between the

DHP and the DLP.

5.6 Fact DHP ≤P DLP. That is, DHP polytime reduces to the DLP. More generally,

GDHP ≤P GDLP. [MvOV96]

Whether the GDHP and the GDLP are computationally equivalent remains an

open question.

5.3 Diffie-Hellman key agreement

The Diffie-Hellman key agreement protocol is based on the Diffie-Hellman problem.

It was developed by Diffie and Hellman [DH76] in 1976 and published in the ground-

breaking paper “New Directions in Cryptography”. The protocol (together with

authentication) allows two users to exchange a secret key over an insecure medium.

The basic approach is that if Alice and Bob wish to create a common secret key,

they agree on a group G, and then Alice chooses a random integer a, while Bob

chooses a random integer b. Alice then computes αa and sends it to Bob over a

public channel, while Bob computes αb and sends that to Alice. Now Alice and Bob

can both compute

αab = (αa)b = (αb)a,

while an eavesdropper who happens to have overheard the exchange, and thus knows

α, αa, and αb, will hopefully not be able to compute the secret αab.

5.4 ElGamal public-key encryption

The ElGamal public-key encryption [ElG85] is based on the Diffie-Hellman problem.
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Bob has a private key a and a public key (p, α, β), where β ≡ αa (mod p). Suppose

Alice wishes to send a message m to Bob. She first generates a random number k

less than p− 1, then computes

eK(m, k) = (y1, y2) = (αk,mβk) mod p.

Alice sends (y1, y2) to Bob. Upon receiving the ciphertext, Bob computes

dK(y1, y2) = y2(y1
a)−1 mod p

.

In the ElGamal cryptosystem, the plaintext m is “masked” by multiplying it by

βk, yielding y2. The value αk is also transmitted as part of the ciphertext. Bob

knows the secret exponent a, which enables him to compute βk from αk. Then he

can “remove the mask” by dividing y2 by βk to obtain m. Clearly, the ciphertext

depends both on the plaintext m and the random value k chosen by Alice. Therefore,

the ElGamal Cryptosystem is probabilistic, as there will be many ciphertexts that

are encryptions of the same plaintext.

The problem of breaking the ElGamal encryption scheme is equivalent to solving

the Diffie-Hellman problem [MvOV96]. In fact, the ElGamal encryption scheme can

be viewed as simply comprising a Diffie-Hellman key exchange to determine a session

key αak, and then encrypting the message by multiplication with that session key.

For this reason, the security of the ElGamal encryption scheme is said to be based

on the discrete logarithm problem in Z∗p, although such an equivalence has not been

proven.

Analysis based on the best available algorithms for both factoring and discrete

logarithms shows that RSA and ElGamal have similar security for equivalent key

lengths [Lab00]. The main disadvantage of ElGamal is the need for randomness,

and its slower speed (especially for signing). Another potential disadvantage of the

ElGamal system is that message expansion by a factor of two takes place during

encryption. However, such message expansion is negligible if the cryptosystem is

used only for exchange of secret keys.
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5.5 The ElGamal signature scheme and DSS

The ElGamal signature algorithm is similar to the encryption algorithm in that the

public key and private key have the same form. However, encryption is not the same

as signature verification, nor is decryption the same as signature creation as in RSA.

The ElGamal signature scheme is designed specifically for the purpose of signatures.

The ElGamal signature scheme was, in part, the basis for several later signature

schemes, including one by Schnorr [Sch89], which in turn was the basis for DSS, the

Digital Signature Standard. DSS makes use of computation of discrete logarithms in

certain subgroups of Z∗p, where p is allowed up to 1024 bits. In 1994, the DSS was

adopted by the U.S. National Institute of Standards and Technology (NIST) to be

the digital authentication standard of the U.S. government.

The security of the ElGamal signature scheme and its variants relies on the discrete

logarithm problem. However, it remains unproven that these schemes are secure even

if the discrete logarithm problem is hard.

5.6 The elliptic curve discrete logarithm problem

The discrete logarithm problem is typically described in the setting of the multiplica-

tive group Z∗p, but can be easily generalized to work in any finite cyclic group G.

Depending on the cyclic group used, the discrete logarithm problem may be easy

or (apparently) difficult. It is therefore useful to study other groups in the hope of

finding other settings where the discrete logarithm problem seems to be intractable.

The groups that have received the most attention are:

1. The multiplicative group F∗2m of the finite field F2m of characteristic two.

2. The group of points on an elliptic curve over a finite field.

In this section, we examine the GDLP in the setting of elliptic curve.
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5.6.1 Introduction to elliptic curves

Elliptic curves has been the subject of many mathematical studies since the 19th

century.

An elliptic curve can be defined over any field (e.g., real, rational, complex).

However, elliptic curves used in cryptography are mainly defined over finite fields.

An elliptic curve consists of elements (x, y) satisfying the equation1

y2 ≡ x3 + ax+ b (mod p),

where a, b ∈ Zp are constants such that 4a3 + 27b2 6≡ 0 (mod p), together with a

special element O called the point at infinity.

There is a rule for adding two points on an elliptic curve E to get a third elliptic

curve point. Such an operation is called addition, and denoted by +. Under this

addition rule, the set of points on E forms an abelian group, with O serving as its

identity.

Let P = (x1, y1) and Q = (x2, y2) be two points on an elliptic curve E.

1. P +O = O + P = P ;

2. If x1 = x2 and y1 = −y2, then P +Q = O;

3. Otherwise P +Q = (x3, y3), where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =


y2−y1

x2−x1
, if P 6= Q,

3x1
2+a

2y1
, if P = Q.

1This equation can be used to define an elliptic curve over any field Fpn , for p > 3 prime, n > 1.

An elliptic curve over F2n or F3n is defined by a slightly different equation. [Sti95]
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It can be proven that the above addition rule indeed makes the points on E an

abelian group [ST92]. This implies that if P ∈ E and Q ∈ E, then it holds that

P +Q ∈ E.

The addition operation in an elliptic curve is the counterpart to modular multipli-

cation in common public-key cryptosystems, and multiple addition is the counterpart

to modular exponentiation. Table 5.1 summarizes the correspondence between Z∗p and

Ep.

Multiplicative Group Elliptic Curve Group

Group Z
∗
p E or Ep

Elements {1, 2, . . . , p− 1} Points (x, y) on E plus O

Operation Multiplication modulo p Addition over E

Arithmetic notation Elements: g, h Elements: P , Q

Multiplication: gh Addition p+Q

Inverse: h−1 Negative: −P

Division: g/h Subtraction: P −Q

Exponentiation: ga Multiple: aP

Discrete logarithm problem Given g and h = ga, find a Given P and Q = aP , find a

Table 5.1: Notational correspondence between Z∗p and Ep

5.6.2 The elliptic curve discrete logarithm problem (ECDLP)

Since the group of points on an elliptic curve Ep forms a cyclic group, we can extend

the DLP to the elliptic curve discrete logarithm problem (ECDLP).

5.7 Definition The elliptic curve discrete logarithm problem (ECDLP)
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Given an elliptic curve Ep, a point P ∈ Ep of order n and a point Q ∈ Ep, find a ∈ Zn
such that Q = aP , provided that such an a exists.

The ECDLP has received much attention over the past decade. It is conjectured

to be harder than the DLP and the factoring problem [Wie98]. The DLP on a

finite field can be solved in superpolynomial time by the index calculus method. By

contrast, the best attacks on the ECDLP in general2 are brute-force methods, which

run in exponential time. The index calculus method does not work for elliptic curves

because elliptic curves don’t have certain properties that may facilitate cryptanalysis.

As a result, shorter key sizes can be used to achieve the same security as larger

keys in general finite field discrete log cryptosystems.

5.6.3 Elliptic curve cryptosystem

The use of elliptic curves in public-key cryptography was proposed independently by

Koblitz [Kob87] and Miller [Mil85] in 1985.

Elliptic curve cryptosystems are analogs of existing public-key cryptosystems

(such as RSA and ElGamal) in which modular multiplication is replaced by ellip-

tic curve addition operation. One can easily construct elliptic curve encryption,

signature, and key agreement schemes by making analogs of ElGamal, DSA, and

Diffie-Hellman.

Elliptic curve cryptosystems have emerged as a promising new area in public-key

cryptography in recent years due to their potential for offering similar security to es-

tablished public-key cryptosystems with reduced key sizes. Shorter key-lengths bring

about simpler arithmetic processors, and smaller band-width and memory require-

ments.

It should be noted that at equivalent key sizes elliptic curve cryptosystems are

much slower than other public-key methods. If a superpolynomial-time algorithm

2For certain choices of elliptic curves there do exist more efficient attacks [MVO91]. However

these cases are readily classified and easily avoided.
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were found for the ECDLP, key sizes would have to increase greatly, and elliptic

curve cryptosystems would no longer be competitive as a public-key method.

Discrete logarithm problem and factoring seem to enjoy the same level of difficulty.

Historically, any algorithmic advance in one problem equally affects the other. Like

factoring, discrete logarithm problem (including ECDLP) can be solved efficiently

using Shor’s algorithm, as we will detail in Chapter 6.



Chapter 6

Shor’s Algorithm

In 1994, Peter Shor discovered polynomial-time algorithms [Sho97] to solve factoring

or discrete logarithm problems on a hypothetical quantum computer. Boneh and

Lipton [BL95] showed that using a variant of Shor’s, discrete logarithm problem is

solvable over any group including Galois fields and elliptic curves. Shor’s discovery

thus has a deep impact on cryptography, and spurs widespread interests in quantum

computing.

6.1 Quantum computing

6.1.1 A brief history

Quantum computing is a new field in computer science that brings together ideas

from classical information theory, computer science, and quantum physics. It holds

the key to computers that may run exponentially faster than any known algorithm

that runs on conventional computers for certain problems.

The field started in the early 1980s with suggestions by Benioff [Ben80] and Feyn-

man [Fey82, Fey86]. Feynman observed that certain quantum mechanical effects

could not be simulated efficiently on a computer. This observation led to speculation

38
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that perhaps computation in general could be done more efficiently using quantum

effects. In 1985, Deutsch defined the universal quantum Turing machine [Deu85].

However, it wasn’t until 1994 that this field saw exciting promises brought by Shor’s

algorithm. Shor discovered polynomial time quantum algorithms for integer factor-

ization and discrete log, thus attacked many cryptosystems based on the hardness of

these problems. Shor’s work prompted a flurry of activity, both among experimental-

ists trying to build quantum computers and theorists trying to find other quantum

algorithms and quantum error correcting codes.

Why are we interested in quantum computing? A prime motivation is that quan-

tum mechanics might provide new and possibly very powerful ways of information

processing. Highly parallel quantum algorithms can drastically decrease the compu-

tational time for some problems, thus promise to solve certain problems which are

intractable on digital computers. Moreover, at the current pace, the ongoing minia-

turization in chip design will lead to chip components as small as a few atoms within

the next two decades (Moore’s law [SR00]). That means we will eventually approach

the regime where quantum theory is highly relevant to how computing devices func-

tion. Atomic scale sets the ultimate physical limits for classic gates. If computers

are to become smaller and faster in the future, new, quantum devices must replace

or supplement classical ones.

6.1.2 Basic concepts

The power of quantum computing comes from quantum parallelism. A quantum

computer promises to be immensely powerful because it can be in multiple states at

once (called superposition), and because it can act on all its possible states simulta-

neously. Thus, a quantum computer could naturally perform a myriad of operations

in parallel, using only a single processing unit. A few basic concepts are important

for understanding quantum computing.

Quantum superposition In classical computers, the fundamental unit of informa-
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tion is a bit. A bit can represent either a 0 state or a 1 state. In a quantum

computer, information is represented using qubits (quantum analog of the clas-

sical bit).

6.1 Definition A qubit is a quantum state |ψ〉 of the form

|ψ〉 = α|0〉+ β|1〉

where α, β ∈ C and |α|2 + |β|2 = 1.

A qubit can be in a linear superposition of the two distinguishable physical

states, i.e., can exist simultaneously as |0〉 or |1〉, with a complex amplitude for

each state. Similarly, two qubits can be in a superposition of the four states

(|00〉, |01〉, |10〉, and |11〉), and n qubits can be in a superposition of 2n states.

Quantum parallelism Quantum computers operate on all values stored in any

qubit at the same time. A quantum computer with an input of n qubits can

execute a single gate operation on all the 2n encoded values in O(n) time. To

perform the same task with a classical computer, 2n processors would have to

work in parallel, or else the computation would have to be repeated 2n times.

This phenomenon is known as quantum parallelism.

Quantum entanglement At the heart of quantum parallelism lies entanglement,

which refers to quantum correlations of multiple qubits. An entangled state

cannot be described as a tensor product1 of states of the individual qubits.

This means a qubit within the entangled state is not, by itself, in a pure state

(but is in a statistical mixture of pure states); even though the multiple qubits

as a whole are.

Measurement Accessing the results obtained through quantum parallelism proves

tricky, because it requires measuring the final state of the qubits. When a

1The notion of tensor product is used in describing the state of a multi-bit quantum system.

Refer to [Gru99] for more explanation.
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qubit is measured the result will be |0〉 with probability |α|2 and |1〉 with the

complementary probability, |β|2. Any measurement disturbs the quantum state

— whenever a measurement is made, the state is transformed from a possibly

complex superposition to a simple state. We cannot “see” a superposition itself,

we will “see” one and only one classical state.

This difficulty in accessing values is a severe limitation, requiring highly uncon-

ventional algorithms. How do quantum algorithms give the result we look for?

It is done through quantum interference.

Quantum interference Quantum interference, the analog of Young’s double-slit

experiment that demonstrated constructive and destructive interference phe-

nomena of light, is one of the most significant characteristics of quantum com-

puting. Quantum interference improves the probability of obtaining a desired

result by constructive interference, and diminishes the probability of obtaining

an erroneous result by destructive interference. Thus in some cases, among

the exponentially many computations, the correct answer can theoretically be

identified with appropriate quantum algorithms.

6.1.3 Quantum algorithm

A central issue of quantum computing is to devise algorithms that take advantage

of quantum parallelism. Few good quantum algorithms are known to date. The two

main examples are Shor’s algorithm [Sho97] and Grover’s algorithm [Gro96].

Shor’s algorithm for factoring and discrete logarithm runs in polynomial-time,

which is an superpolynomial speedup of the fastest classical algorithms. Grover’s

algorithm searches an unordered list in O(
√
n) time, while classical algorithms require

O(n). Although Grover’s quadratic speedup is not as dramatic as the (conjectured)

superpolynomial speedup achieved by Shor’s factoring algorithm, it is provably better

than any possible classical search algorithm.
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6.1.4 Future development

In the last decade, quantum computing has become a prominent and promising area

of theoretical computer science. Realizing this promise requires two things:

1. actually building a quantum computer;

2. discovering tasks where a quantum computer is significantly faster than a clas-

sical computer.

In theory, a quantum computer will be able to perform any task that a classical

computer can. However, this does not necessarily mean that a quantum computer will

outperform a classical computer for all types of task. If we use our classical algorithms

on a quantum computer, it will simply perform the calculation in a similar manner

to a classical computer. In order for a quantum computer to show its superiority

it needs to use quantum algorithms which can exploit the phenomenon of quantum

parallelism. Such algorithms are not easy to formulate. It is not yet known whether

the power of quantum parallelism can be harnessed to solve a wide variety of problems.

The realization of a practical quantum computer still seems far away. Only a

few, small-scale quantum computers have been built to date. The largest quantum

computers so far have 100 logic operations on two qubits or 10 operations on seven

qubits [SR00]. Moreover, it is unclear how this small-scale machine can be scaled up

to a larger practical one, or whether it is even possible to do so [Pre97]. Most people

believe that it will be increasingly difficult (and costly) to built bigger quantum

computers because of the instability problems (decoherence). On the other hand,

there is good reason for optimism since we see no fundamental physical barrier to

building large quantum computers.

6.2 The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a variant of the discrete Fourier transform

(DFT). The DFT sends a discrete function to another discrete function, convention-
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ally having as its domain equally spaced points k 2π
N

in the interval [0, 2π) for some

N . By scaling the domain by N
2π

, the quantum Fourier transform outputs a function

with domain the integers between 0 and N − 1.

The quantum Fourier transform operates on the amplitude of the quantum state,

by sending ∑
a

g(a)|a〉 7→
∑
c

G(c)|c〉,

where G is the discrete Fourier transform of g,

G(c) =
1√
N

∑
a

exp(2πiac/N)g(a),

and a and c both range over the binary representations for the integers between 0

and N − 1. If the state is measured after the Fourier transform is performed, the

probability that the result is |c〉 is |G(c)|2.

Fourier transforms in general map from the time domain to the frequency domain.

So Fourier transforms map functions of period r to functions which have non-zero

values only at multiples of the frequency 1/r. Thus applying the quantum Fourier

transform to a periodic function g(a) with period r, we would expect to end up with∑
cG(c)|c〉, where G(c) is zero except for multiples of N/r. Thus, when the state is

measured, the result would be a multiple of N/r , say jN/r.

In order for Shor’s algorithm to be a polynomial algorithm, the quantum Fourier

transform must be performed in polynomial time. This requires [Sho94]: (1) N can be

represented with a polynomial number of bits, and (2) that N must be smooth, i.e.,

must have “small” prime factors. Coppersmith [Cop94] and Deutsch (unpublished,

see [EJ96]) independently found an efficient construction for the QFT based on the

fast Fourier transform (FFT) algorithm [Knu81].

The QFT is a variant of the FFT which is based on powers of two, and only gives

approximate results for periods which are not a power of two. However the larger the

power of two used as a base for the transform, the better the approximation. Take
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N = 2l, the Fourier transform is∑
a

g(a)|a〉 →
∑
c

(
1√
2l

∑
a

exp(2πiac/2l)g(a)

)
|c〉.

The classical version requires O(N logN) operations. In contrast, the QFT takes time

O((logN)2) by exploiting quantum parallelism. The implementation of the QFT is a

network of one-bit and two-bit quantum gates. Specifically, the circuit uses two types

of gates. One is a gate to perform the familiar Hadamard transformation, H. We

will denote by Hj the Hadamard transformation applied to the jth bit. The other

type of gate performs transformations of the form

Sj,k =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθk−j


where θk−j = π/2k−j which acts on the kth element depending on the value of the

jth element. The quantum Fourier transform is given by

H0S0,1 . . . S0,l−1H1 . . . Hl−3Sl−3,l−2Sl−3,l−1Hl−2Sl−2,l−1Hl−1

followed by a bit reversal transformation. For more details including the quantum

circuit, see [Sho97].

Shor shows that the quantum Fourier transform with base 2l can be constructed

using only l(l − 1)/2 gates [Sho97]. Thus quantum computers can efficiently solve

certain problems with a periodic structure, such as factoring and the discrete log

problem.

6.3 Shor’s algorithm

Shor’s algorithm has two phases: first, based on quantum computing; second,on

classical computations. The classical phase involves efficient algorithms known from
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number theory such as continued fraction expansion and Euclid’s algorithm. As all

of quantum computing, Shor’s algorithm is wholly probabilistic. Several repetitions

of one or both phases may be necessary to find the correct result.

Most modern factoring algorithms, including Shor’s, use a standard reduction

of the factoring problem to the problem of finding the period of a function. The

algorithm first uses quantum parallelism to compute all the values of the function in

one step. Next it performs a quantum Fourier transform, putting all the amplitude

of the function into multiples of the reciprocal of the period. With high probability,

measuring the state yields the period, which in turn is used to factor the integer n.

6.3.1 Shor’s algorithm for factoring

Shor’s algorithm is based on calculating the period r of the function f(x) = ax mod n

for a randomly selected integer a between 0 and n. Once r is known the factors of

n are obtained by calculating the greatest common divisor of n and ar/2 ± 1. The

algorithm uses two essential quantum registers.

Step 1. Calculating ax mod n in quantum parallelism Choose an integer a ar-

bitrarily. If a is not relatively prime to n, we’ve found a factor of n. Otherwise

apply the rest of the algorithm. Let l be such that2 n2 ≤ 2l < 2n2.

Prepare two quantum registers in state |0, 0〉. The first register has l qubits, and

the second dlog ne qubits. Apply a transformation called the Walsh-Hadamard

transform to put the first register in the equally weighted superposition of all

integers from 0 to 2l − 1.

|0, 0〉 7→ 1√
2l

2l−1∑
x=0

|x, 0〉.

Then we take advantage of quantum parallelism by computing f(x) = ax mod n

for all the values of x in the superposition simultaneously. The values of f(x)
2This choice is made so that the approximation for non powers of 2 given by the quantum Fourier

transform used in Step 3 will be good enough for the rest of the algorithm to work.
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are placed in the second register so that after the computation the two registers

become entangled:

1√
2l

2l−1∑
x=0

|x, 0〉 7→ 1√
2l

2l−1∑
x=0

|x, f(x)〉.

Step 2. Measuring the second register Measure the second register, and obtain

value u = f(k) for some randomly selected k. This measurement also collapses

the state of the first register into a superposition of all states |x〉 such that

x = k, k + r, k + 2r, . . ., i.e. all x for which f(x) = u.

So the state after measurement is

C
∑
x

g(x)|x, u〉,

for some scale factor C where

g(x) =


1 if f(x) = u,

0 otherwise.

The offset k is randomly selected by the measurement of the second register.

It’s impossible to directly extract r by measuring the first register because of

k.

Step 3. Applying QFT The |u〉 part of the state will not be used, so we will no

longer write it. Apply the quantum Fourier transform to the state obtained in

Step 2.

QFT :
∑
x

g(x)|x〉 7→
∑
c

G(c)|c〉

Standard Fourier analysis tells us that when the period r of g(x) is a power of

two, the result of the quantum Fourier transform is

C ′
∑
j

ρj|j
2l

r
〉
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where |ρj| = 1. When the period r does not divide 2l, the transform approxi-

mates the exact case so most of the amplitude is attached to integers close to

multiples of 2l/r. The Fourier transform can be regarded as an interference

between the various superposed states in the first register.

Step 4. Extracting the period Measure the state in the standard basis (|0〉, |1〉)

for quantum computation, and call the result v. The remaining part of the

algorithm is classical.

In the case where the period happens to be a power of 2 so that the quantum

Fourier transform gives exactly multiples of the scaled frequency, the period is

easy to extract. In this case, v = j2m/r for some j. Most of the time j and r

will be relatively prime, in which case reducing the fraction v/2m to it’s lowest

terms will yield a fraction whose denominator q is the period r.

The fact that in general the quantum Fourier transform only gives approxi-

mately multiples of the scaled frequency complicates the extraction of the pe-

riod from the measurement. When the period is not a power of 2, a good

guess for the period can be obtained using the continued fraction expansion of

v/2m [RP98].

Step 5. Finding a factor of n When our guess for the period, q, is even, use the

Euclidean algorithm to efficiently check whether either aq/2 + 1 or aq/2 − 1 has

a non-trivial common factor with n.

The reason why aq/2 + 1 or aq/2 − 1 is likely to have a non-trivial common

factor with n is as follows. If q is indeed the period of f(x) = ax mod n, then

aq = 1 mod n. If q is even, we can write

(aq/2 + 1)(aq/2 − 1) ≡ 0 mod n.

Thus, so long as neither aq/2 + 1 nor aq/2 − 1 is a multiple of n, either aq/2 + 1

or aq/2 − 1 has a non-trivial common factor with n.
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Step 6. Repeating the algorithm, if necessary Various things could have gone

wrong so that this process does not yield a factor of n [RP98]:

1. The value v was not close enough to a multiple of 2l/r.

2. The period r and the multiplier j could have had a common factor so that

the denominator q was actually a factor of the period not the period itself.

3. Step 5 yields n as n’s factor.

4. The period of f(x) = ax mod n is odd.

A few repetitions of this algorithm yields a factor of n with high probability.

It can be shown that O(log log r) repetitions suffice to find the period r with a

high probability. Given r, step 5 succeeds with probability at least 1− 1/2k−1,

where k is the number of distinct prime factors of n. For composite numbers,

k ≥ 2, so that the probability is at least 1/2.

Shor’s factoring algorithm takes O((log n)2(log log n)(log log log n)) steps on a

quantum computer, along with a polynomial (in log n) steps on a classical com-

puter. The overall time complexity is polynomial. The total number of elementary

logic gates required is a polynomial of n.

6.3.2 Shor’s algorithm for discrete log

The discrete log problem is to find r mod p − 1 such that x ≡ gr (mod p), given p,

g, and x. The OWF function involved is f(r) = gr mod p. We have the following

preliminary fact:

6.2 Fact Suppose that we know the order k of the base g. Then if gr ≡ x (mod p),

the following equation

gax−b ≡ u (mod p)

is satisfied for all integers a, b ≥ 0 such that a = k + br.
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Shor’s algorithm for discrete log uses three quantum registers.

Step 1. Calculating gax−b mod p in quantum parallelism Prepare two quantum

registers in state |0, 0〉, and put both in the uniform superposition of all integers

from 0 to p− 2.

|0, 0〉 7→ 1

p− 1

p−2∑
a,b=0

|a, b〉.

We then compute gax−b mod p in the third register. This leaves our machine

in the entangled state

1

p− 1

p−2∑
a=0

p−2∑
b=0

|a, b, gax−b mod p〉.

Step 2. Measuring the third register Observe the third register, and obtain value

u = gkax−kb for some randomly selected (ka, kb). The state after measurement

is

C
∑
a,b

h(a, b)|a, b, u〉,

for some scale factor C where

h(a, b) =


1 if gax−b = u

0 otherwise

Step 3. Applying QFT The |u〉 part of the state will not be used, so we will no

longer write it. Since there is a correspondence between a and b as stated in

the preliminary fact, we are reduced to the superposition state

1√
p− 1

p−2∑
b=0

|br + k mod (p− 1), b〉
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As before, apply the quantum Fourier transform to send |a〉 7→ |c〉 and |b〉 7→ |d〉.

QFT :
1√
p− 1

p−2∑
b=0

|br + k mod (p− 1), b〉 7→
∑
c,d

H(c, d)|c, d〉.

In the easy case where p − 1 is smooth, we carry out the QFT over Zp−1.3

However, in the general (hard) case, we need to find a smooth q such that

p < q < 2p, and perform our transform in Zq.

Step 4. Extracting the DL Finally, we observe the state of the quantum com-

puter, extract r from the pair c, d, and repeat the algorithm if necessary.

In the easy case, extracting r is easy: our probability will be non-zero if and

only if rc+ d ≡ 0 (mod p− 1), i.e.,

r ≡ −d
c

(mod p− 1)

If c and p − 1 are relatively prime, we can find r by division. Because we are

choosing among all possible c’s with equal probability, the chance that c and

p − 1 are relatively prime is φ(p − 1)/(p − 1), which is greater than 1/ log(p).

Thus by repeating the algorithm, we will obtain r with high probability.

In the hard case, we are able to obtain c, d such that∣∣∣∣dq + r
c(p− 1)− [c(p− 1) mod q]

(p− 1)q

∣∣∣∣ ≤ 1

2q

with relatively high probability. Note q divides c(p − 1) − [c(p − 1) mod q].

We need only round d/q off to the nearest multiple of 1/(p − 1) and divide

(mod p− 1) by the integer

c′ =
c(p− 1)− [c(p− 1) mod q]

q

to find a candidate r.

It is shown that the algorithm need only be repeated a polynomial number of

rounds to find the correct r.

3As Shor notes, there already exist classical polynomial-time algorithms [PH78] for the p − 1

smooth case.



Chapter 7

Surviving Assumptions

7.1 Error Correcting Codes Assumptions

Decoding an arbitrary linear code is an NP-hard problem [ERvT78]. The McEliece

cryptosystem is based on this assumption. The McEliece system uses an easy special

case of the NP-hard problem, disguised as a general-looking instance of the problem.

The two major drawbacks of the systems are large key size and message expansion.

7.1.1 Introduction to linear codes

7.1 Definition [Sti95] Let k, n be positive integers, k ≤ n. An [n, k] linear code,

C, is a k-dimensional subspace of (Z2)n, the vector space of all binary n-tuples.

7.2 Definition A generating matrix for an [n, k] code, C, is a k × n binary matrix

whose rows form a basis for C.

7.3 Definition Let x, y ∈ (Z2)n, where x = (x1, . . . , xn) and y = (y1, . . . , yn). The

Hamming distance is

d(x, y) = |{i : 1 ≤ i ≤ n, xi 6= yi}|,

i.e., the number of coordinates in which x and y differ.

51
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7.4 Definition Let C be an [n, k] code. The minimal distance of C is the quantity

d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

An [n, k] code with minimal distance d is denoted as an [n, k, d] linear code.

The purpose of an error-correcting code is to correct random errors that occur in

the transmission of (binary) data through a noisy channel. Let G be a generating

matrix for an [n, k, d] code. Suppose Alice wants to transmit a binary k-tuple x. She

encodes x as y = xG and sends y through the channel. Suppose Bob receives the n-

tuple r, which may or may not be the same as y. He will decode r using the strategy

of nearest neighbor decoding. That is, to find the codeword y′ that has minimum

distance to r. Then he decodes r to y′, and, finally, determines the k-tuple x′ such

that y′ = x′G. Hopefully y′ = y, so x′ = x, meaning any transmission errors have

been corrected. If at most (d− 1)/2 errors occurred, then nearest neighbor decoding

can correct all the errors.

An efficient approach for nearest neighbor decoding is through the use of parity-

check matrices. A parity-check matrix for an [n, k, d] linear code is an (n − k) × n

binary matrix with the property that, for each vector of the code, the product

(mod 2) of the matrix by the vector is zero. This product can actually be computed

for any vector and is called the syndrome. A syndrome is a column vector with n− k

components. A vector is a codeword if and only if its syndrome is zero.

7.5 Definition The syndrome decoding problem

Given a linear code and the syndrome of a vector, find the nearest codeword to the

vector.

The syndrome decoding problem is NP-hard [ERvT78]. Fischer and Stern [FS96]

constructed an efficient PRBG based on this problem, and proved that the generator

is as secure as a hard instance of the problem. NP-hardness ensures that there is no

known polynomial-time algorithm for solving the problem in the worst case. However,

for many special classes of codes, polynomial-time algorithms are known to exist. One
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such class of codes, the Goppa codes, are used as the basis of McEliece cryptosystem.

For each irreducible polynomial g(x) of degree t over F2m , there exists a binary Goppa

code of length n = 2m and dimension k ≤ n−mt capable of correcting any pattern of

t or fewer errors. These codes have efficient decoding algorithms [MS77]. Moreover,

they are easy to generate and there are a large number of Goppa codes with the same

parameters.

7.1.2 McEliece cryptosystem

The McEliece cryptosystem [McE78] is a public-key cryptosystem based on the in-

tractability of the syndrome decoding problem. The idea is to first select a particular

code for which an efficient decoding algorithm is known, and then disguise it as a

general-looking linear code. A description of the original code can serve as the pri-

vate key, while a description of the transformed code serves as the public key. Goppa

codes are used in the McEliece cryptosystem.

In the setup, the receiver first chooses an easily solvable Goppa code C with

generating matrix G; then transforms this matrix into G′, a generating matrix for

a seemingly arbitrary linear code. To transmit a k-bit message x, the sender mul-

tiplies it with G′ and adds a random error vector e to the resulting codeword xG′.

The Hamming weight of the error vector is equal to the number of errors the code

can correct. Therefore, the legitimate receiver can recover the message by using a

decoding algorithm for the original code C.

The McEliece cryptosystem has resisted cryptanalysis to date. Berson [Ber97]

showed that the scheme fails under message-resend and related-message attacks.

However, such attacks do not break the cryptosystem in the sense that they do

not recover the private key.

Compared with other public-key cryptosystems which involve modular exponen-

tiation, the McEliece scheme has the advantage of high-speed encryption and decryp-

tion. An implementation of this scheme would be two to three orders of magnitude

faster than RSA. In addition, the McEliece scheme employs probabilistic encryption,
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which is better than other types of deterministic encryption in preventing the elim-

ination of any information leaked through public-key cryptography. However, the

McEliece scheme suffers from the drawback that the public key is very large. A (less

significant) drawback is that there is message expansion by a factor of n/k. For the

recommended parameters n = 1024, t = 38, k ≥ 644, the public key is about 219

bits in size, while the message expansion factor is about 1.6. For these reasons, the

scheme receives little attention in practice. [MvOV96]

7.2 Knapsack Assumption

The subset sum problem is an NP-complete problem [GJ79]. Knapsack cryptosystems

are based on the subset sum problem. The Merkle-Hellman knapsack encryption

scheme [MH78] was the first public-key encryption scheme invented. Many variations

have subsequently been proposed but broken.

7.2.1 Knapsack one-way function

The knapsack problem is to select objects with given weights and profits in such

a way that a specified capacity is not exceeded and a specified target profit is at-

tained [Sti95]. A special case of the knapsack problem — the subset-sum problem —

forms the basis of knapsack cryptosystems.

7.6 Definition The subset-sum problem

Given positive integers (or weights) s1, . . . , sn, and T , determine whether there is a

subset of the si’s that sums to T . This is equivalent to determining whether there is

a 0-1 vector x = (x1, . . . , xn) such that

n∑
j=1

xisi = T

7.7 Definition Given s1, . . . , sn and T , the density of the subset-sum problem is

δ = n/ log T .
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If one thinks of T as the capacity of a knapsack and the si as the sizes of vari-

ous items, then the question is whether the knapsack can be filled exactly by some

collection of those items.

The subset-sum problem is known to be NP-complete [GJ79]. Among other

things, this means that there is no known polynomial-time algorithm that solves

the worst case in general. However, the subset-sum problem is easy for special cases

such as having “hidden structure” and/or “low density”. For instance, if s is chosen

to be a superincreasing sequence where

sj >

j−1∑
i=1

si

for 2 ≤ j ≤ n, then the resulting knapsack problem is easy to solve.

The value of T is compared to each value of s, starting with the largest, sn. If sn

is larger than T then it is not in the subset; if it is smaller then it is in the subset.

Reduce T by sn if in, and move to the next largest number in the sequence. Repeat

until finished. Thus in the same manner as decomposing a binary number, we can

trivially solve the problem in time O(n), and the solution x (if it exists) must be

unique.

Clearly depending on the choice of s, we may or may not have a one-way function1.

The strategy therefore is to transform a superincreasing easy knapsack into a non-

superincreasing general one, and use this transformation as the trapdoor. The most

famous transformation is the modular multiplication used by Merkle and Hellman.

7.2.2 Merkle-Hellman cryptosystem

The Merkle-Hellman knapsack cryptosystem [MH78] is a public-key cryptosystem

based on the intractability of the subset sum problem. Like the McEliece system, the

Merkle-Hellman knapsack system uses an easy special case of the NP-hard problem,

1The conjecture that the subset-sum problem is one-way is based on the failure of known algo-

rithm to handle random “high density” instances [Gol98].
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disguised as a general instance of the problem. It uses a superincreasing sequence

as an easy knapsack, and disguises it with modular multiplication. The original

knapsack set can serve as the private key, while the transformed knapsack set serves

as the public key.

In the setup, the receiver first chooses a prime p exceeding the sum of all si, as well

as a multiplier a. Then he disguises his superincreasing sequence into a seemingly

arbitrary one by a modular transformation

ti = asi mod p.

t will appear to have no special structure. Any solution (x1, . . . , xn) to the knapsack

problem
∑n

i=1 xiti = y is also a solution to the knapsack problem
∑n

i=1 xisi = z,

where z = a−1y mod p. The public key is t, the private key is (p, a, s).

The system can be made even stronger, by iterating this process of hiding struc-

ture. In the multiple-iterated version of Merkle-Hellman scheme, the easy superin-

creasing sequence is disguised by a series of modular multiplications.

7.2.3 Attacks on knapsack systems

The basic Merkle-Hellman scheme was broken by Shamir [Sha84]. The attack relies

on the fact that the modular multiplication method does not disguise completely the

easy knapsack that is the basis of the construction. Since multiplying each of the

weights by a mod p produces the same knapsack problem, the goal is to find two

values a′, p′ that transforms the non-superincreasing problem into one that is. By

using an integer programming algorithm of Lenstra, Shamir was able to narrow down

the search and discover Bob’s trapdoor (or an equivalent trapdoor). Attacks have

been developed for more general knapsack systems, and now any system which uses

modular multiplication to disguise an easy-to-solve knapsack can be broken efficiently.

In addition to the attacks on specific knapsack systems, the most powerful general

attack known uses the L3-lattice basis reduction algorithm [LLL82]. It is typically

successful on so-called low-density knapsacks, namely those in which the weights si
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are large. There is a basic link between lattices and knapsacks. Solving the subset

sum problem amounts to find a 0, 1-solution of an inhomogeneous linear equation,

which can be naturally viewed as a closest vector problem (see section 7.3.2). A

deterministic polynomial-time reduction from the subset sum problem to the closest

vector problem is given in [Mic01]. In the case of low-density knapsacks, one can

derive from this reduction a provable method to solved the problem in polynomial-

time with high probability [CJL+92].

Basically all knapsack cryptosystems have been broken, either by specific (often

lattice-based) attacks or by the low-density attacks. The last significant candidate

that had resisted such attacks was the Chor-Rivest knapsack cryptosystem [CR88].

The Chor-Rivest cryptosystem involves a combination of number theory ideas and

knapsacks. It is the only known knapsack public-key encryption scheme that does

not use some form of modular multiplication to disguise an easy subset sum problem.

The Chor-Rivest cryptosystem was broken by Vaudenay [Vau98] with algebraic (not

lattice) methods.

7.3 Lattice Assumptions

Lattices have been widely used in cryptology, and they have found application both

in cryptanalysis and cryptography: lattice algorithms can be used to break crypto-

graphic protocols, while hard lattice problems can be used to design secure cryptosys-

tems.

7.3.1 introduction to lattices

7.8 Definition Let B = {b1, b2, . . . , bm} be a set of linearly independent vectors in

R
n (so that m ≤ n). The set L of all integer linear combinations of b1, b2, . . . , bm is

called a lattice of dimension m; that is, L = Zb1 + Zb2 + · · · + Zbm. The set B is

called a basis for the lattice L.
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Lattices are regular arrangements of points in n-dimensional space. A lattice can

have infinitely many bases when m ≥ 2. A basis consisting of vectors of relatively

small lengths is called reduced. Since a lattice is discrete, it has a shortest nonzero

vector. The goal of lattice reduction is to find interesting lattice bases, such as bases

consisting of reasonably short and almost orthogonal vectors.

Lattice reduction techniques have been a powerful tool in cryptanalysis. For

example, the famous L3-lattice basis reduction algorithm [LLL82] has played a crucial

role in cryptanalyzing factoring and the subset-sum based public-key schemes [Sch91,

CJL+92].

7.3.2 Lattice problems

The most famous lattice problem is the shortest vector problem.

7.9 Definition The shortest vector problem (SVP)

Given a basis of a lattice L, find the shortest nonzero vector v ∈ L.

7.10 Definition The closest vector problem (CVP)

Given a basis of a lattice L and a vector v ∈ Rn, find a lattice vector minimizing the

distance to v.

7.11 Definition The smallest basis problem (SBP)

Find a lattice basis minimizing the maximum of the lengths of its elements.

All these problems are NP-hard, and no polynomial-time algorithm is known for

approximating either SVP, CVP, or SBP in Zn to within a polynomial factor in

n [Ngu99]. The best polynomial-time approximation algorithms are based on the L3

algorithm, and achieve exponential bounds.

7.3.3 Lattice-based cryptosystems

Two lattice-based public-key cryptosystems have received wide attention: the Ajtai-

Dwork (AD) cryptosystem and the Goldwasser-Goldreich-Halevi (GGH) cryptosys-
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tem.

The Ajtai-Dwork cryptosystem

The Ajtai-Dwork cryptosystem [AD97] works in Rn. Its security is based on a variant

of the SVP. The drawbacks of the system are huge public-key size and message

expansion. Nguyen and stern [NS98] showed that any realistic implementation of

the AD scheme was insecure. Therefore unless major improvements are found, the

scheme is only of theoretical importance.

The Goldwasser-Goldreich-Halevi cryptosystem

The Goldwasser-Goldreich-Halevi cryptosystem [GGH96] is based on the CVP. It is

the lattice analog of the McEliece cryptosystem. In both schemes, a ciphertext is the

addition of a random noise vector to a vector corresponding to the plaintext. The

public key and the private key are different representations of the same object (a

lattice for GGH, and a linear code for McEliece). The private key has a particular

structure allowing to cancel noise vectors up to a certain bound.

The GGH cryptosystem is much more efficient than the AD cryptosystem. It was

attacked by Nguyen [Ngu99], who showed that decryption can be reduced to solving

CVP instances that are much easier than the general problem.

7.4 Polynomials

Patarin [Pat96] proposed two public-key schemes based on multivariate polynomials,

Hidden Field Equations (HFE) and Isomorphism of Polynomials (IP). HFE is based

on the MQ problem and HFE trapdoor OWF. IP is a generalization of the Graph

Isomorphism (GI).
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7.4.1 Hidden Field Equations

Hidden Field Equations (HFE) is a public-key cryptosystem using polynomial op-

erations over finite fields. It uses system of several modular equations in several

variables, which could be considered as natural generalization of RSA scheme (one

modular equation in one variable). HFE has two levels of security: it is based on

NP-complete problem Multivariate Quadratic and it hides algebraic structure used

to generate its keys.

The MQ problem

The general problem of solving quadratic equations is known as the MQ problem,

and proved NP-complete [PGC+, GJ79].

7.12 Definition Multivariate Quadratic problem over a ring K (MQ)

Given a system of m quadratic equations with n variables in K. Find (one) solution

of the system.

7.13 Fact Every function f : Kn → Kn can be written as :

• a univariate polynomial b = f(a), or

• n multivariate polynomials with n variables over K

f : {bi = fi(a1, . . . , an)}i=1..n.

Pell’s equation is a special case of the MQ problem.

7.14 Definition Pell’s equation

Given a positive non-square integer d, Pell’s equation is x2 − dy2 = 1 and the goal is

to find its integer solutions.
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Pell’s equation is one of the oldest studied problems in number theory. The best

algorithms known for solving Pell’s equation have superpolynomial time complex-

ity [Len02]. Recently Sean Hallgren gave a quantum algorithm that runs in polyno-

mial time [Hal01].

The HFE problem

The principle of HFE is the following:

1. It is possible to find a solution of a univariate polynomial over a big finite field

provided the degree of the polynomial is not too big.

2. For some polynomial functions it is possible to represent them as n quadratic

equations with n variables which hide the polynomial structure and makes it

look quite as (almost) any other polynomial of any degree. In addition we make

an initial and final affine variable changes. This idea of “disguising” is also

familiar to us from the Merkle-Hellman knapsacks and McEliece cryptosystem.

7.15 Fact [Cou01] Let f be a polynomial over Fqn of the special form:

f(a) =
∑
i

αi · aq
si+qti

Then f can be written as n multivariate quadratic equations over the ai ∈ Fq.

7.16 Fact (HFE trapdoor) [Cou01]

If f is a polynomial of degree at most d then f−1({b}) can be computed in time

d2(ln d)O(1)n2
Fq operations.

7.17 Definition HFE problem [Cou01]

Let S and T be two random secret bijective and affine multivariate variable changes.

Let g = T ◦ f ◦S. Given the multivariate representation g of f and a random b. Find

a solution a such that g(a) = b.
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It is known that the MQ problem is NP-complete for any field K. Computing

g−1 without knowledge of f requires exponential number of operations with the best

known algorithm.

In the HFE public-key scheme, the private-key is S, T , and f , and the public-key

is n quadratic polynomials

g : {yi = gi(x1, . . . , xn)}i=1..n.

g looks like system of random quadratic equations. The idea is to hide the univariate

representation with invertible affine variable changes S and T . Since f is bounded

degree and univariate, we can invert it.

There are several modifications of the basic HFE: HFE− (Asiacrypt’98), HFEv

(Eurocrypt’99), Quartz (RSA’2000), Flash (RSA’2000), etc. The basic HFE conceals

algebraic structure with invertible affine variable changes. Variants of HFE destroys

the algebraic structure by non-invertible operations. Attacks on the basic HFE are

superpolynomial in general and polynomial when d is fixed, while HFE modifications

have resisted all known attack [Cou01].

7.4.2 Isomorphism of Polynomials

7.18 Definition Isomorphism of Polynomials

Given two sets of u multivariate polynomials with n variables over a finite field Fq,

A and B. A and B are isomorphic if there exist two affine bijections S and T such

that

B = T ◦ A ◦ S.

7.19 Definition The Isomorphism of Polynomials problem (IP)

Given A and B, find S and T such that B = T ◦ A ◦ S.

When S and T are not necessary bijective, we call the corresponding problem the

Morphism of Polynomials problem (MP). IP is also a generalization of the Graph
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Isomorphism (GI). Its difficulty lies in between GI (easy but not polynomial) and

MP (hard)[PGC98].

Although we are not able to prove the security of HFE or IP, it has long been

regarded as the most promising cryptosystem of the kind. HFE can be used to do

signatures, encryption or authentication. HFE is considered stronger and faster than

RSA. It generate very short signatures (e.g., 128 bits), and short encryptions of short

messages (e.g., 128-bit blocks). IP can be used for signatures and zero-knowledge

authentication.

7.5 Combinatorial group theory

Another approach is to use hard problems in combinatorial group theory. Com-

binatorial group theory (CGT) is the study of groups by means of generators and

defining relators. Cryptosystems based on CGT use topological, combinatorial and

group theoretical problems that are intractable according to our current mathemati-

cal knowledge.

Informally, a finitely represented group G is specified by a finite set of generators

and relators. Generators are just abstract symbols. A word w in G is a finite string

made up of generators and their inverses. The inverse word w−1 consists of all the

inverses of symbols of w written in reverse order. The group G consists of equivalence

classes of all possible words. Two words are equivalent in G if we can transform one

to the other by a finite sequence of replacement rules.

The fundamental questions of CGT include the word problem (WP), the conju-

gacy problem (CP), and the isomorphism problem (IsoP) as defined and investigated

by M. Dehn in the period 1910-1912. The word problem and the conjugacy problem

are defined as follows:

7.20 Definition The word problem (WP)

Given a group G and words x, y, determine whether x is equivalent to y in G.
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7.21 Definition The conjugacy problem (CP)

Given two arbitrary words x, y ∈ G, determine whether y = wxw−1 for some w ∈ G.

An n-braid is a collection of n strands connecting n fixed points at the top with

another set of n fixed points at the bottom. The ends of the strands are regularly

spaced at the top and the bottom of the braid. Each strand must always hang

downwards from the top of the braid to the bottom, never looping up or knotting

itself.

Two braids are considered equal if one can be deformed to the other continuously

in the set of braids. Two braids on the same number of strands can be concatenated

to form their product by positioning one on the top of the other.

The identity element of the group is the braid in which the strands are straight

lines which do not intertwine at all. The inverse of a braid is its reflection in a mirror

perpendicular to the preferred direction.

This multiplication gives the set of n-strand braids the structure of a group, called

Bn, which is non-commutative if n > 2. Bn is defined by generators σ1, . . . , σn−1.

The word problem of braid groups is easy, but the generalized conjugacy search

problem (GCSP) of braid groups is believed to be difficult.

7.22 Definition The conjugacy search problem in Bn

Given two braids α, α′ ∈ Bn, determine whether α = γα′γ−1 for some γ ∈ Bn.

Ko et al. [KLC+00] proposed a generalized version of the CP:

7.23 Definition The generalized conjugacy search problem in Bn (GCSP)

Given two braids α, α′ ∈ Bn, determine whether α = γα′γ−1 for some γ ∈ LBm,

where m ≤ n. LBm denotes the subgroup of Bn generated by σ1, . . . , σm−1.

Ko et al. constructed a trapdoor one-way function based on the GCSP in the

braid groups.

f : LBl ×Bl+r → Bl+r ×Bl+r, f(a, x) = (axa−1, x),
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where LBl is the subgroup of Bl+r generated by σ1, . . . , σl−1. It is a one-way function

because given a pair (a, x), it is easy to compute axa−1 but all the known attacks

need exponential time to compute a from (axa−1, x). Ko et al. also proposed a

key agreement scheme and a public-key cryptosystem using the trapdoor one-way

function.

7.6 Subset-product

The subset-product problem is to determine, given positive integers (or weights)

s1, . . . , sn, and K, whether there is a subset of the si’s such that the product (i.e.

result of multiplying together all in the subset) is equal to K.

Recall that in the subset-sum problem a super-increasing sequence is transformed

to a seemingly intractable problem. Similarly, in the subset-product problem, the

prime factorization serves as the trapdoor. However, almost all transformation tricks

from a trapdoor subset-product to another subset-product have been cryptanalyzed

due to their linearity and low density [OTU00].

Okamoto et al. [OTU00] proposed a quantum public-key scheme based on the

subset-product problem. Their paper presents a new paradigm of cryptography, quan-

tum public-key cryptosystems. The security of the scheme is based on the assumption

that the subset-product problem is intractable in such cryptosystems.

The basic idea by Okamoto et al. is to employ a non-linear transformation, expo-

nentiation (and logarithm), given that computing a logarithm is feasible. The scheme

employs a ring of integers of an algebraic number field, which is randomly selected

from exponentially many candidates. In this scheme, the underlying quantum (not

classical) mechanism is only Shor’s discrete logarithm algorithm, which is employed

in the key generation stage. (i.e., off-line stage). Encryption and decryption (i.e.,

on-line stage) require only classical computations.
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7.7 Number field

The class group of algebraic number fields is of cryptographic interest.

The DLP in class groups of imaginary number fields is at least as difficult as

factoring the corresponding discriminant. Furthermore, the best known algorithms

for solving the DLP in class groups of higher degree require the solution an index

calculus problem and many SVP in lattices.

Buchmann and Paulus [BP97] proposed a new one-way function based on the diffi-

culty of finding shortest vectors in lattices. This new function consists of composition

of ideals in subrings of quadratic number fields and multiplication by algebraic num-

bers which can both be performed in polynomial time. The only method currently

known for inverting it requires computing shortest vectors in lattices whose dimen-

sion is the degree of the number field. The best known algorithm [Kan87] for this

requires exponential time in the degree of the number field. Buchmann and Paulus

stated that inverting the function is at least as hard as factoring integers. Further

analysis is needed to evaluate the security of their proposal.

Buchmann and Williams [BW89] presented a new Diffie-Hellman key exchange

system based on real quadratic fields. Sean Hallgren [Hal01] claims that his quantum

algorithm for the principal ideal problem breaks this system.



Chapter 8

Conclusion

In the evaluation of cryptographic schemes, we are concerned with both the compu-

tational efficiency and the infeasibility of violating the scheme.

Since the discovery of public-key cryptography by Diffie and Hellman [DH76],

very few proposals have withstood cryptanalysis. The two most successful groups are

factoring or discrete logarithm based schemes. In the thesis, we first discuss three

problems that are reducible to factoring — the RSA problem, the Rabin problem,

and the quadratic residuosity problem, which respectively underlie the RSA, Rabin,

and Goldwasser-Micali cryptosystems. We also looked into the discrete logarithm

problem and its generalized version. The discrete logarithm problem forms the ba-

sis of schemes such as Diffie-Hellman key exchange and ElGamal encryption. The

ECDLP is conjectured to be harder than the DLP and the factoring problem, and

no significant weakness have been reported.

Shor’s quantum algorithm poses the most worrisome long-term threat to RSA

and discrete logarithm cryptosystems. Taking advantage of quantum parallelism, ap-

propriate quantum algorithms can achieve exponential speedup for certain problems,

as is the case of Shor’s. This threat motivates people to seek alternative public-key

cryptosystems. The security of these systems are base on assumed difficulties of other

hard problems. Many of such problems are not well-known. The goal of this thesis
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was then to survey the various underlying computational assumptions, in hope to

inspire new cryptosystems and quantum algorithms.

Our attention was devoted to the following hard problems:

Error-correcting codes : syndrome decoding problem

Subset-sum (knapsack) : subset-sum problem

Subset-product : subset-product problem

Lattice : SVP, CVP, SBP

Polynomials : MQ, HFE, IP

Combinatorial group theory : CP, GCSP

Number fields : DLP, SVP

With academic advances in cryptography, new schemes will continue to be pro-

posed and tested. Among the examples presented here, many are to be furtherly

evaluated in future research. We will be watching with great interest the future

development of cryptography as well as that of quantum computers.
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