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Abstract

Committed oblivious transfer (COT) is a straightforward combination of

bit commitment and oblivious transfer that is powerful enough to achieve gen-

eral multi-party computation with no additional assumptions. We show how

to securely implement COT and multi-party computation in the universally

composable (UC) framework. Our protocol only requires access to underlying

UC commitment, UC oblivious transfer, and UC authentication functionali-

ties. It is the first such protocol that achieves this rigorous notion of security

with no explicit computational assumptions.

Résumé

Le transfert inconscient mis en gage, ou commited oblivious transfer, (COT)

est le fruit d’une combinaison directe d’une mise en gage, ou bit commitment, et

d’un transfert inconscient, ou oblivious transfer, qui est suffisamment puissante

afin de faire des calculs à plusieurs partis sans autres hypothèses additionelles.

Nous démontrons comment implanter de façon sûr le COT et les calculs à

plusieurs partis dans le cadre de la composition universelle (UC). Notre proto-

cole ne nécessite que l’accès aux fonctionalités de mise en gage UC, de transfert

inconscient UC, et d’authentification UC fondamentales. C’est le premier pro-

tocole à satisfaire cette notion rigoureuse de sécurité sans l’usage d’hypothèses

calculatoires explicites.
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Chapter 1

Introduction

1.1 Secure Multi-Party Computation

Say that two coworkers wish to compare their salaries. Neither is willing to

reveal his salary to the other, but both want to know who makes more money.1

The process of achieving this goal is known as a secure multi-party computation.

More generally, a multi-party computation consists of n mutually distrustful

parties conducting a protocol that maps their private inputs into some com-

bined output. (when n = 2, this is known as a two-party computation). A

secure computation must intuitively satisfy the notions of privacy and correct-

ness. Privacy guarantees that the protocol reveals no information about the

inputs beyond that deducible from the output. Correctness guarantees that

parties can’t cheat such that the protocol produces untrue results. Additional

security concerns include fairness (either all parties receive output or no party

receives output) and input independence (no party can correlate its input with

another party’s unknown input), among others.

1This example is a variation of Yao’s millionaires problem from [50]. See [37] for more
examples.
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We represent attacks against a protocol by dividing participants into hon-

est parties and corrupted parties. Honest parties always follow the protocol

exactly as specified. Corrupted parties instead follow the directions of an

independent party known as the adversary. The adversary has full access

to a corrupted party’s private data and may arbitrarily coordinate actions

among multiple corrupted parties. Adversaries may be semi-honest (passive)

or malicious (active). Semi-honest adversaries follow the protocol correctly

but attempt to learn more information than intended. Malicious adversaries

deviate from the protocol in arbitrary ways. Adversaries may also be static or

dynamic. Static adversaries control a fixed set of corrupted parties throughout

the protocol. Dynamic adversaries can corrupt new parties at any point during

the computation.

As in many areas of cryptography, finding adequate formal definitions for

secure multi-party computation has been a delicate and difficult process. Yao

first formulated the problem in [50] in the context of secure function evaluation,

where computations are functions of fixed inputs. He later produced the first

general protocol for secure two-party function evaluation in the computational

setting ([51]). Goldreich, Micali, and Wigderson introduced the first general

protocol for multi-party computation in the computational setting, assuming

less than half of the parties are corrupted ([35]). Their protocol supports

not only function evaluation but also “mental game” computations that can

be reactive in nature. Further research produced improvements in efficiency

([28], [4]), majority-corruption scenarios ([3], [14]), and information-theoretic

security ([16], [5], [15]).

The security definitions in [51] and [35] eventually proved inadequate. The

main problem was that they identified specific security requirements (e.g. pri-
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vacy and correctness) and based security around fulfilling these requirements.

But these requirements are by no means exhaustive. For example, the defini-

tion in [51] doesn’t account for input independence.2 While we can add input

independence as a new requirement, there may still be other requirements that

haven’t been identified.

This led to a series of new definitions that attempted to resolve these

inadequacies. Most notable are the definitions of [38], [44], and [1]. They

introduce the crucial paradigm of evaluating a protocol’s security by comparing

it to an ideal protocol that has access to a trusted party. All parties in an ideal

computation forward their inputs directly to the trusted party, which performs

the required computation and delivers the correct output back to each party.

The trusted party never reveals any information beyond the required outputs

and cannot be corrupted by the adversary. An ideal protocol is therefore

trivially secure. A real protocol is secure if it is “equivalent” to an ideal

protocol under adversarial attack. The exact nature of this equivalence varies

between definitions.

1.2 Protocol Composition

While [38], [44], and [1] provide effective general solutions for multi-party com-

putation, they only consider stand-alone security, where a protocol runs ex-

actly once and in isolation. In contrast, realistic scenarios often involve a

protocol running multiple times in the presence of other parties and com-

2If an honest party in a two-party computation has private input x, [44] observes that
Yao’s definition allows the other party to force the computation’s output to f(x, x). This is
possible even without knowing x.
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putations with unknown behavior.3 Stand-alone security does not work for

such scenarios. This is an important concern. A security model that fails

for realistic scenarios offers very little true security. Consequently, there has

been significant research over the last decade in adapting stand-alone security

models to multi-execution settings.

When multiple protocols run together, this is known as composition. If a

protocol composes with itself, this is known as self composition. If a proto-

col composes with arbitrary protocols, this is known as general composition.

Composition generally occurs in one of three ways:

• sequential composition - No two protocol executions occur at the same

time. In other words, for any two executions A and B, either A finishes

before B starts or B finishes before A starts.

• parallel composition - All executions start at the same time and progress

at the same rate (according to a synchronized round-based schedule).

• concurrent composition - Protocol execution is scheduled arbitrarily. This

is the most general form of composition (it includes sequential and par-

allel composition as special cases).

The most common cryptographic protocols have been explicitly extended

to support composed settings. For encryption, Goldwasser and Micali’s stand-

alone definition of semantic security ([39]) has been extended to handle chosen-

ciphertext attacks, where the adversary has concurrent access to decryption

functionality ([45], [46]). For zero-knowledge, Goldwasser, Micali, and Rack-

off’s stand-alone definition ([40]) has been extended into sequential ([36], [34]),

3Imagine two people flipping a virtual coin over the internet. They may want to flip
many coins instead of just one. Meanwhile, they may be checking email, downloading files,
etc., while other unknown parties are trying to break into their systems.
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parallel ([34], [33]), and concurrent ([26], [47], [21], [42], [32], etc.) settings. For

oblivious transfer, original definitions have been extended into the concurrent

setting ([29], [2]).

In [25], Dolev, Dwork, and Naor identified a specific attack that relies on

composition and introduced the concept of non-malleability as a means to

block it. Specifically, they highlighted the concern that an adversary may feed

one protocol instance’s output into another’s input to gain some advantage.

This is commonly known as a “man in the middle” attack. [25] defines what it

means for a protocol to maintain security against this attack and develops non-

malleable solutions for encryption, commitment, and zero-knowledge. This

spawned significant subsequent research in non-malleable protocols ([19], [48],

[27], [20], etc.).

For general multi-party computation, both the [44] and [1] security defini-

tions maintain security under limited forms of composition. Canetti updated

these models in [9] to form a simpler and less restrictive definition that provides

rigorous security under general non-concurrent composition.

Unfortunately, all of these approaches have severe limitations. Concurrent

definitions of specific protocols usually only work in self-composed settings,

i.e. they fail in the presence of arbitrary protocols. These definitions also

have limited applicability, as each protocol requires its own distinct definition.

Non-malleability offers a single security definition for all protocols, but it only

protects against one type of attack. While we can always identify new at-

tacks and incorporate them into updated security definitions, this results in

continuously changing definitions that are inherently vulnerable to unknown

attacks. Finally, while general multi-party computation definitions can escape

these problems, none of the above definitions work for concurrent settings.
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What we really want are simple and general security definitions that main-

tain security under any form of composition. In other words, we want security

definitions that “just work”, regardless of how they’re used.

1.3 Universally Composable Security

In [7], Canetti presented a framework that finally offers rigorous security for

any protocol under any type of composition. This is known as the universally

composable framework. It consists of a security definition and composition

theorem, informally described as follows:

As in the definitions of [44], [1], and [38], security for a protocol comes

from showing equivalence to an idealized version of the protocol that has ac-

cess to a trusted third party. The idealized protocol runs in the ideal model of

computation, with the trusted party is known as an ideal functionality. The

regular protocol runs in the real model of computation. Both models contain

two special parties known as the adversary and the environment. The adver-

sary delivers all messages between parties and corrupts parties at will. The

environment provides all protocol inputs and reads all outputs, but cannot

see protocol messages. The adversary and environment may privately com-

municate with each other in arbitrary ways. Roughly speaking, a protocol

is secure if no environment can ever tell if it is using the real protocol in the

real model or the idealized protocol in the ideal model, regardless of the adver-

sary’s behavior. Protocols that meet this requirement are known as universally

composable (UC ) and are said to UC realize an ideal functionality.

What distinguishes UC security from other security definitions is that a uni-

versally composable protocol remains secure under general concurrent compo-
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sition. This means security is automatically preserved under any imaginable

usage context. The universal composition theorem provides this guarantee.

The theorem also permits a very convenient “plug and play” form of protocol

design that allows one to design a secure protocol that uses an ideal function-

ality and then replace this functionality with an equivalent UC sub-protocol

with no loss of security.

Large classes of functionality are known to have universally composable im-

plementations. This includes authentication ([7]), secure message transmission

([7]), commitment ([10], [23]), zero-knowledge ([10]), and general multi-party

computation ([12], [30], [24]). One caveat of these results is that most func-

tionalities cannot be realized without some kind of trusted party access ([11],

[10], [7]). A common reference string is sufficient for any purpose ([12]).

1.4 Our Results

This thesis presents a UC general multi-party computation protocol that is

secure against malicious, adaptive adversaries for any number of corrupted

parties and requires no explicit computational assumptions. It is based on a

primitive known as committed oblivious transfer (COT), which is a variation

of oblivious transfer that uses commitments for inputs and outputs.4 Crépeau,

van de Graaf, and Tapp describe in [18] an efficient COT protocol and show

how it can be used to achieve multi-party computation. Our contribution es-

sentially consists of translating their results into the UC framework. We define

a UC COT protocol that assumes only the existence of UC bit commitment,

UC oblivious transfer, and UC authentication. We then plug this into a multi-

4This was first defined in [17] under the name “verifiable oblivious transfer”.
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party circuit evaluation protocol that requires no additional assumptions. For

n parties evaluating a q-gate circuit with security parameter m, this achieves

a running time of O(n2qm2c + nqmt), where c is the running time of a bit

commitment and t is the running time of an oblivious transfer.

[12] introduced the first UC multi-party computation protocol that works

with corrupted majorities. Their protocol follows the “GMW compiler”

paradigm from [35]. That is, they first develop a protocol secure against

semi-honest adversaries and then “compile” it into a protocol secure against

malicious adversaries by having all parties show that their messages are correct

through the use of zero-knowledge proofs. While this approach works under

general assumptions (such as trapdoor permutations), the compiler requires

full access to the “source code” of the semi-honest protocol. In particular,

the compiler cannot handle protocols based on noisy channels, quantum chan-

nels, or black-box primitives where no source code is available.5 In contrast,

our protocol uses its required bit commitment, oblivious transfer, and authen-

tication primitives in a purely black-box manner. It makes no assumptions

whatsoever about how they work. This allows us to support all computational

settings, restricted only by how we choose to implement these primitives.

[23] and [30] also present protocols for UC multi-party computation, but

they focus on efficiency rather than generality. The protocol in [23] runs in

O(nmq) time (for n parties, security parameter m, and a q-gate circuit), but

relies on specific number-theoretic assumptions and cannot handle corrupted

majorities. The protocol in [30] runs in just O(q) time, but also relies on

specific number-theoretic assumptions and only works in the erasing model,

where honest parties are trusted to reliably erase their private data when

5More generally, the compiler cannot handle protocols that cannot be verified through
zero-knowledge proofs.

11



they no longer need it. To our knowledge, our protocol has the most general

assumptions of any known protocol that offers comparable security.

We organize the remaining chapters as follows: Chapters 2 and 3 provide

detailed descriptions of the UC framework and COT, respectively. Chapter 4

provides a UC implementation of “bit commitment with XOR”, a useful tool

that allows us to perform limited zero-knowledge proofs on committed bits.

Chapter 5 defines the COT protocol from [18] and proves its security in the

UC framework. Chapter 6 shows how to use COT to achieve general two-party

and multi-party computation. Chapter 7 offers final analysis and conclusions.
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Chapter 2

Universally Composable

Security

This chapter describes universally composable (UC) security in detail. We

first review relevant fundamental concepts of computation, then provide a

formal description of the UC framework, and finally provide UC definitions

for cryptographic primitives important to our protocol.

2.1 Fundamentals

2.1.1 Multi-Party Computation

A multi-party computation consists of n parties P1, ..., Pn producing a sequence

of private outputs from a sequence of private inputs.1 When this process can

be represented as a function f(x1, ..., xn, r) = (y1, ..., yn) for input sequence

(x1, ...xn), output sequence (y1, ..., yn), and random data r, this is known as

function evaluation. The salary comparison example from the introduction

1If n = 2, this is known as a two-party computation.

13



is an example of function evaluation. This scenario can be modeled by two

parties P1, P2 with inputs x1 = P1’s salary, x2 = P2’s salary and function

f(x1, x2) = (1, 1) if x1 > x2, (2, 2) if x2 > x1, and (0, 0) if x1 = x2.
2 Function

evaluation is a special case of multi-party computation that determines outputs

from a fixed set of inputs. More general computations can be reactive, where

parties receive new inputs throughout the computation.

A multi-party computation is secure if dishonest parties cannot interfere

with it in any way except by choosing their inputs arbitrarily. We formalize

this notion when we define UC security.

2.1.2 Indistinguishability

For w ∈ {0, 1}∗, let Xw be a probability distribution ranging over strings

of length polynomial in |w|. A probability ensemble X = {Xw}w∈{0,1}∗ is an

infinite set of probability distributions ranging over all values of w.

Intuitively speaking, two ensembles are (computationally) indistinguish-

able if no polynomial-time algorithm, given a sample, can tell which ensemble

that sample comes from. For example, we can view a probabilistic program’s

output as a probability distribution on its input. Two programs produce indis-

tinguishable output if no polynomial-time adversary, given some output, can

tell which program it came from. More formally:

Definition 2.1.1 Two ensembles X = {Xw}w∈{0,1}∗ and Y = {Yw}w∈{0,1}∗

are computationally indistinguishable if for every probabilistic polynomial-time

algorithm D and every polynomial p(·), there exists w0 ∈ {0, 1}∗ such that for

all w where |w| > |w0|,

2Although each output is private, in this case both parties receive the same output, so
it essentially becomes public.
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|Pr[D(Xw, w) = 1] − Pr[D(Yw, w) = 1]| <
1

p(|w|)

If X and Y are indistinguishable, we write X ≈ Y .

In the UC framework, a probability distribution takes the form X(m, a),

for m ∈ N and a ∈ {0, 1}∗. This notation is used to describe the output

probability of an algorithm running with security parameter m and input a.

Furthermore, the UC framework only considers binary ensembles, where prob-

ability distributions range over {0, 1}. This allows an alternate definition for

indistinguishability:

Definition 2.1.2 Two binary ensembles X = {X(m, a)}m∈N,a∈{0,1}∗ and Y =

{Y (m, a)}m∈N,a∈{0,1}∗ are computationally indistinguishable if for every polyno-

mial p(·), there exists m0 ∈ N such that for all m > m0 and for all a,

|Pr[X(m, a) = 1] − Pr[Y (m, a) = 1]| <
1

p(m)

We sometimes refer to computationally indistinguishable ensembles simply

as indistinguishable.

2.1.3 Interactive Turing Machines

The UC framework models each party as an interactive Turing machine, which

is a Turing machine that can communicate with other machines. More for-

mally:

Definition 2.1.3 ([7], following the definition of [31]) An interactive Turing

machine (ITM) M is a Turing machine with the following tapes:
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1. a read-only input tape that holds M ’s private input.

2. a read-only random tape that holds M ’s random coin input.

3. a read-only security parameter tape that specifies the protocol’s security

parameter.

4. a write-only output tape that holds M ’s private output.

5. a read-and-write work tape used for private, internal computations.

6. a read-only identity tape, that specifies M ’s identity. Every participant in

a multi-party protocol has a unique identity.

7. a read-and-write one-bit activation tape. When this tape is set to 1, we

say that M is activated. Upon activation, M follows its program and

eventually enters either a waiting state or a halt state. When M enters a

waiting state, it sets this tape to 0 and remains idle (does not change its

state, tape contents, or head positions) until its next activation. When

M enters a halt state, it sets this tape to 0 and remains idle through all

future activations (overriding the original activation rule).

8. a read-only incoming communication tape that holds incoming messages

from other parties. Each message consists of a sender field, which con-

tains the sender party’s identity, and a contents field, which contains

arbitrary data.

9. a write-only outgoing communication tape that holds outgoing messages

destined for other parties. Each message consists of a recipient field,

which contains the identity of the intended recipient, and a contents field,

which contains arbitrary data.
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A multi-party computation informally consists of ITMs receiving initial

inputs, undergoing computation through an ordered series of activations and

message communication, and producing final outputs. The exact details of how

this works vary among different setup assumptions. For example, in the two-

party model of [31] parties communicate directly. That is, one party’s outgoing

communication tape is the same as the other party’s incoming communication

tape. This guarantees instant and reliable message delivery. In contrast, the

UC model of computation requires an untrusted third party to deliver mes-

sages. When a party writes a message onto its outgoing communication tape,

the third party reads this message and copies it onto the recipient’s incoming

communication tape at its leisure. This makes communication less reliable.

We formalize this process in the next section.

2.2 Universally Composable Framework

2.2.1 Summary and Intuition

As described in the introduction, the universally composable framework con-

sists of a security definition and a composition theorem. The security definition

asserts what it means for a protocol to be universally composable. The compo-

sition theorem guarantees that universally composable protocols remain secure

under general composition (the composition theorem is what distinguishes UC

security from other security definitions). Each party is modeled by an inter-

active Turing machine.

In any multi-party computation, the best security we can hope for is that

all parties forward their inputs to a mutually trusted and incorruptible party

F , which internally performs the entire computation and forwards appropriate
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outputs back to each party. This is known as the ideal model of computation.

In this model, a party’s only function is to forward its inputs directly to F

and forward F ’s responses directly to its output. F is known as an ideal

functionality

Unfortunately, realistic protocols generally don’t have access to trusted

parties. Instead, parties must find some safe and reliable way to interact

with each other in spite of their mistrust. This is known as the real model of

computation. In this model, the burden of computation falls on the parties

themselves rather than an ideal functionality.

Both models contain a party known as the adversary (the ideal model

adversary is known as S, whereas the real model adversary is known as A).

The adversary can corrupt parties and read communication messages.3 The

adversary also controls message “delivery”. That is, when Pi wants to send

a message to Pj, Pi writes this message on its outgoing communication tape.

It then becomes the adversary’s responsibility to copy this message onto Pj ’s

incoming communication tape. This models the intuition that in realistic

networks (e.g. the internet), communication is not necessarily reliable. Finally,

the adversary cannot read messages to and from the ideal functionality in the

ideal model.

Both models also contain a party known as the environment.4 The environ-

ment “runs” the protocol by providing all parties with inputs and reading their

outputs. It cannot, however, read communication messages. This models the

intuition that one can use a protocol without knowing how it internally works.

3The adversary cannot, however, modify message contents or forge messages. This means
we assume ideally authenticated communication. We bring this issue up again in chapter 7.

4As the name implies, the environment represents the broader context in which the
protocol is run. Any protocol that doesn’t run in isolation must be a component of a
broader system.
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The environment also communicates arbitrarily with the adversary. This mod-

els the intuition that the broader world may be malicious in unknown ways.5

Say we want to evaluate the function f using protocol ρ. Let F be the

ideal functionality that computes f on the protocol inputs in the ideal model.

We say that ρ UC realizes F if for every real adversary A, there exists an ideal

adversary S such that no environment can distinguish between ρ running with

A in the real model and F running with S in the ideal model. In other words,

our protocol is secure if no environment can ever distinguish between the real

world and the ideal world. This means that no matter what the context,

running the real protocol is equivalent to running the ideal protocol, which

is secure by definition. Protocols that satisfy this requirement are known as

universally composable (or UC secure).

The universal composition theorem guarantees that secure protocols remain

secure under general composition. Informally, the theorem states the following:

For an ideal functionality F , let πF be any protocol that uses F .

Let πρ be the same protocol with all calls to F replaced by equiva-

lent calls to a protocol ρ. If ρ UC realizes F , then no environment

can distinguish between πF and πρ.

An important corollary of the theorem permits a “plug and play” model of

protocol design. It informally states:

For ideal functionalities F and G, define πF , ρ, and πρ as above.

If πF UC realizes G and ρ UC realizes F , then πρ UC realizes G.

5Note that the adversary has access to protocol messages but not input and output,
while the environment has access to input and output but not protocol messages. Since
the adversary and environment can arbitrarily communicate with each other, this seems
to imply no need for defining them separately. However, assuming full knowledge sharing
restricts the generality of the security model. We can achieve useful results by having the
environment withhold information from the adversary.
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With this result, we can build a complicated protocol as follows: if the

protocol requires a sub-protocol (say a zero-knowledge proof), design it such

that it uses ideal zero-knowledge functionality and prove that it is secure.

Then take any universally composable zero-knowledge protocol ρ and replace

the ideal functionality with ρ. The modified protocol remains secure.

We now formally define the UC framework (as defined in [12]).

2.2.2 The Real Computation Model

A real model n-party computation of protocol π consists of real parties P1, ..., Pn,

real world adversary A, and environment Z (all modeled as ITMs). All par-

ties start with infinitely long random data (chosen from a uniform distribution)

written onto their random tapes. Z additionally starts with some value z writ-

ten onto its input tape (z is assumed to contain the local inputs for P1, ..., Pn).

All parties have security parameter m. Protocol execution begins with Z ac-

tivated and all other parties in the waiting state. Protocol execution ends

when Z halts. The protocol output is Z’s output, assumed to be a single bit.6

Parties behave as follows:

1. Z: Upon activation, Z may perform internal computations, process its

own tapes, read the output tapes of P1, ..., Pn and A, and write to the

input tape of at most one party (one of P1, ..., Pn or A). If Z writes to a

party’s input tape, Z enters the waiting state and activates that party.

Otherwise, Z halts.

2. Uncorrupted Pi: Upon activation, an uncorrupted Pi may perform

internal computations and process its own tapes. It ends its activation

6Note that assuming single-bit output does not reduce the model’s generality. This is
because Z’s purpose is to serve as a distinguisher between the real and ideal models.
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by entering the waiting state or halt state and activating Z.

3. A: Upon activation, A may perform internal computations, process its

own tapes, read the outgoing communication tapes of P1, ..., Pn, deliver a

message between parties, and corrupt some P ∈ {P1, ..., Pn}. A delivers a

message m from Pi to Pj by copying m from Pi’s outgoing communication

tape to Pj ’s incoming communication tape (note that A cannot modify

m). When A corrupts P , A learns P ’s entire state history and writes

a message to its output tape notifying Z of the corruption. P can no

longer be activated. When A halts or enters its waiting state, if A has

delivered a message to Pj ∈ {P1, ..., Pn} then A activates Pj. Otherwise

A activates Z.

2.2.3 The Ideal Computation Model

The ideal model is similar to the real model except it defines an additional

party known as the ideal functionality. The ideal functionality is a trusted,

incorruptible party that takes the other parties’ inputs, performs computa-

tions, and responds with appropriate outputs. Every protocol has a unique

ideal functionality (since different protocols have different computation and

security requirements).

An ideal model n-party computation consists of “dummy” parties P1, ..., Pn
7,

ideal functionality F , ideal world adversary S, and environment Z (all modeled

as ITMs). As in the real model, all parties start with infinitely long random

data (chosen from a uniform distribution) written onto their random tapes. Z

additionally starts with some value z written onto its input tape (z is assumed

7We call them “dummy” parties because they simply relay messages between the envi-
ronment and the ideal functionality.
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to contain the local inputs for P1, ..., Pn). All parties have security parameter

m. Protocol execution begins with Z activated and all other parties in the

waiting state. Protocol execution ends when Z halts. The protocol output is

Z’s output, assumed to be a single bit. Parties behave as follows:

1. Z: Upon activation, Z may perform internal computations, process its

own tapes, read the output tapes of P1, ..., Pn and S, and write to the

input tape of at most one party (one of P1, ..., Pn or S). If Z writes to a

party’s input tape, Z enters the waiting state and activates that party.

Otherwise, Z halts. Note that Z has no access to F .

2. Uncorrupted Pi: If Pi is activated due to new input from Z, Pi copies

this input to its outgoing communication tape (destined for F ), enters

the waiting state, and activates Z.8 If Pi is activated due to a new

message from F , Pi copies this message onto its output tape, enters the

waiting state, and activates Z. Note that Pi cannot perform its own

computations or send messages to anyone but F .

3. F: Upon activation, F may read its incoming communication tape, per-

form internal computations, and write messages on its outgoing commu-

nication tape destined for P1, ..., Pn or S. F then enters the waiting state

and activates Z.

4. S: Upon activation, S may perform internal computations, process its

own tapes, deliver a message from some Pi to F or from F to Pi, and

corrupt some Pi ∈ {P1, ..., Pn}. S delivers a message from Pi to F by

copying the message from Pi’s outgoing communication tape onto F ’s

8This contrasts with the definition of [7], where parties write directly onto F ’s incoming
communication tape (no message delivery is required). We follow the approach of [12].
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incoming communication tape (and vice versa for messages from F to

Pi). S can read the destination fields of these messages but cannot read

their contents. S can also send messages from itself to F . When S

corrupts Pi, S learns Pi’s entire input and output history and writes a

message to its output tape notifying Z of the corruption. Pi can no longer

be activated. When S halts or enters its waiting state, if S has delivered

a message to Q ∈ {P1, ..., Pn, F} in this activation then S activates Q.

Otherwise S activates Z.

2.2.4 Definition of UC Security

Universally composable security means that no environment can “tell the dif-

ference” between a real model protocol execution and an ideal model protocol

execution. Because the environment only interacts with a protocol through its

inputs and outputs, the main way the environment can distinguish between

the two models is through communication with the adversary. We can prevent

this by guaranteeing that every real world adversary can be emulated by some

ideal world adversary. More specifically, protocol π UC realizes ideal function-

ality F if for any real adversary A, there exists an ideal adversary S such that

no environment Z, with any input, can distinguish between A and π in the

real world and S and F in the ideal world. If this holds, no advantage can be

gained by using the real protocol over the (trivially secure) ideal protocol. We

formally state this as follows:

Definition 2.2.1 (UC Security):

Let REALπ,A,Z(m, z) be the probability distribution of environment Z’s out-

put in the real model with protocol π, adversary A, security parameter m, ini-

tial input z, and uniformly generated random tape input for all parties. Let
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REALπ,A,Z be the ensemble {REALπ,A,Z(m, z)}m∈N,z∈{0,1}∗ .

Let IDEALF,S,Z(m, z) be the probability distribution of environment Z’s

output in the ideal model with ideal functionality F , ideal adversary S, security

parameter m, initial input z, and uniformly generated random tape input for

all parties. Let IDEALF,S,Z be the ensemble {IDEALF,S,Z(m, z)}m∈N,z∈{0,1}∗ .

Protocol π UC realizes ideal functionality F if for any real adversary A, there

exists an ideal adversary S such that for all environments Z, REALπ,A,Z ≈

IDEALF,S,Z.

Generally speaking, protocols are proven UC secure by demonstrating that

no real adversary A can learn anything that some ideal adversary S can’t also

learn. This is not trivial because the ideal model and real model produce very

different protocol messages. For example, consider the environment that asks

the adversary to report every single protocol message that it sees. While A

sees the real protocol’s full (and possibly complicated) message transcript, S

only sees messages being forwarded to and from the ideal functionality. If both

S and A report their views honestly, the environment can easily distinguish

between them. Therefore, S has to “fill in” the missing protocol messages by

simulating them internally. The challenge of producing a valid security proof

is showing an S that can do this in spite of its limited power for interference

in the ideal setting. Furthermore, S cannot use rewinding in its simulation

(this is a considerable restriction). If, in spite of all these restraints, S can

still match any message that A can produce, then clearly A has very limited

adversarial power with respect to the real protocol.
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2.2.5 The Hybrid Computation Model

Before we can state the UC composition theorem, we must define a third model

of computation: the hybrid model. The hybrid model is a straightforward mix

of the real and ideal models. It is exactly the same as the real model except

that all parties also have access to an ideal functionality F . That is, the only

difference between the hybrid and real models is that hybrid parties P1, ..., Pn

can communicate with F as well as with each other. Likewise, the hybrid

adversary can read the contents of “real” messages between two parties Pi and

Pj but cannot read “ideal” messages between Pi and F .

Hybrid parties may access an unlimited number of F instances. In other

words, a hybrid computation includes not just one trusted party but an arbi-

trary number of trusted parties (each modeled as a distinct ITM with its own

state and tapes). Each instance of F has its own session id, a unique identity

that distinguishes it from all other instances. All messages to and from an F

instance generally include that instance’s session id.

For any F , the hybrid model with ideal access to F is known as the F-hybrid

model. A hybrid model may have multiple functionalities. For example, the

hybrid model with ideal functionalities F , G, and H is known as the (F,G,H)-

hybrid model

We can convert the F -hybrid model into the real model by replacing all

references to F with references to an equivalent real protocol π. This works

as follows: when a hybrid party would send a message to an F instance, we

have it supply the message as input to a corresponding invocation of π. When

a hybrid party would receive a message from an F instance, we have it read

the output from the corresponding invocation of π. See [7] for a more detailed

description.
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2.2.6 The UC Composition Theorem

The UC composition theorem guarantees that secure protocols remain secure

under general concurrent composition. When protocol π composes, we are

saying that it runs within some larger system that uses π multiple times in

arbitrary ways. We can view the larger system as another protocol (call it

Ω).9 If π UC realizes ideal functionality F , secure composition means that

there is no difference between Ω using F and Ω using π. In other words, we

want to show equivalence between the F -hybrid model and the real model that

replaces F with π. This is exactly what the composition theorem does. We

state it as follows:

Theorem 2.2.1 (The UC composition theorem):

Let F be an ideal functionality and let π be a protocol that UC realizes F .

Let Ω be some protocol that operates in the F -hybrid model. Let Ωπ be the same

protocol in the real model, where F is replaced with π. Let HYBRIDF
Ω,H,Z(m, z)

be the probability distribution of environment Z’s output in the F -hybrid model

with protocol Ω, hybrid adversary H, security parameter m, initial input z, and

uniformly generated random tape input for all parties. Let HYBRIDF
Ω,H,Z be

the ensemble {HYBRIDF
Ω,H,Z(m, z)}m∈N,z∈{0,1}∗ .

For any real adversary A, there exists a hybrid adversary H such that for

all environments Z, REALΩπ,A,Z ≈ HYBRIDF
Ω,H,Z.

Proof: see [7] for a detailed proof.

An important corollary of the theorem allows us to design secure protocols

in the F -hybrid model, then replace F with any protocol that UC realizes F

9Even if the system consists of many unrelated protocols, they can be thought of as
components of a broader umbrella protocol.
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without losing security. This allows for simple and straightforward protocol

design. The corollary states:

Corollary 2.2.1 For ideal functionalities F and G, let α be a protocol that

UC realizes G in the F -hybrid model. Let π be a protocol that UC realizes F

in the real model. Let απ be the real version of α where F is replaced with π.

Then απ UC realizes G in the real model.

Proof ([7]): The general theorem guarantees that there is some adversary

H in the F -hybrid model such that REALαπ,A,Z ≈ HYBRIDF
α,H,Z for any

environment Z and any real adversary A. The security of α in the F -hybrid

model guarantees that there is some ideal adversary S in the ideal model

such that HYBRIDF
α,H,Z ≈ IDEALG,S,Z for any environment Z and any hybrid

adversary H . We thus have that REALαπ ,A,Z ≈ HYBRIDF
α,H,Z ≈ IDEALG,S,Z,

i.e. REALαπ,A,Z ≈ IDEALG,S,Z . By the definition of UC security, this means

that απ UC realizes G in the real model.

2.3 Some Ideal Functionalities

In this section we define a simple example ideal functionality that illustrates

the UC framework. We then define standard ideal functionalities for bit com-

mitment and oblivious transfer. These functionalities are vital to our results.

2.3.1 An Example: Ideal Salary Comparison

Consider the example from the introduction. Two parties P1 and P2 want

to compare their salaries without revealing them. Figure 2.1 defines an ideal

functionality that solves this problem. We call this functionality FCOMPARE.
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Functionality FCOMPARE

Parties: P1 with salary x1, P2 with salary x2, ideal adversary S

On receiving message (salary, sid,x1) from P1 and message (salary, sid,x2)

from P2, set a according to

a = 1 if x1 > x2

a = 2 if x2 > x1

a = 0 if x1 = x2

and write the message (comparison, sid, a) to both P1 and P2. After this,

halt (ignore all future messages).

Figure 2.1: An ideal functionality for two-party salary comparison

An ideal computation with P1 and P2, ideal functionality FCOMPARE, ideal

adversary S, and environment Z proceeds as follows:

1. Z sets x1 = P1’s salary and x2 = P2’s salary.

2. Z chooses a session id sid and writes the message (salary, sid,x1) to P1, who forwards

this message to FCOMPARE .

3. Z writes the message (salary, sid,x2) to P2, who forwards this message to FCOMPARE .

4. FCOMPARE selects an answer a as described in figure 2.1 and sends the message

(comparison, sid,a) to P1 and P2.

5. P1 and P2 forward this response to their respective outputs, which Z reads.
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We note some consequences of this definition. First, FCOMPARE is a single-

use functionality, as it permanently halts after performing a single comparison.

If we wish to make n comparisons, we must do so in a hybrid model by using

n FCOMPARE instances. Second, FCOMPARE does not reveal its output to the

ideal adversary S. This maintains output privacy, but output privacy isn’t

very important here because all parties receive the same output. We may

wish to emphasize this fact by having FCOMPARE also send its response to

S. Many practical functionalities do this. Third, an ideal computation pro-

duces no output if a malicious Pi withholds its (salary, sid,xi) message from

FCOMPARE, thus keeping the ideal functionality in a perpetual waiting state.

We can avoid this by having FCOMPARE send an empty (receipt, sid) message

to all parties after receiving any input. This would guarantee output as long

as at least one party is honest. Other modifications are possible depending on

our requirements.

Obviously our choice of definition critically affects the security of our pro-

tocols. When we call a protocol universally composable, all we are saying is

that it is as secure as some ideal functionality. This may not be a valuable

claim if our ideal functionality is poorly defined. For example, we can easily

modify FCOMPARE to write (comparison, sid, a,x1,x2) as its response to P1

and P2. But while this trivially remains secure by definition, it hardly remains

secure in any intuitive sense. So we must take special care that our ideal

functionalities capture our natural notions of security.

2.3.2 Ideal Bit Commitment

Bit commitment is a two-stage interaction between a committer Pi and a

receiver Pj. Pi commits to a bit b by running some algorithm C with Pj and
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Functionality FCOM

Parties: committer Pi with input bit b, receiver Pj, ideal adversary S

Commitment: On receiving message (commit, sid,b) from Pi, write

message (receipt, sid) to both Pj and S. Ignore any

subsequent commit messages.

Decommitment: On receiving message (decommit, sid) from Pi, if a

commitment has already been made to some bit b then

write message (open, sid,b) to both Pj and S and halt.

Otherwise, halt.

Figure 2.2: An ideal functionality for bit commitment

decommits to b (opens b) by running some algorithm D that reveals b. A

valid commitment process must be binding and hiding. Binding means that

after committing to b, Pi cannot decommit to b. Hiding means that before

decommitment, Pj cannot guess the value of b with greater probability than

was possible before the commitment began.

The ideal functionality for commitment is known as FCOM and has been

defined in numerous papers (i.e. [10], [7]). All of our protocols rely on access

to ideal bit commitment. We reproduce FCOM in figure 2.2.

Note that this definition provides the ideal adversary S with any message

that Pj receives. Also, this is a single-use functionality (each FCOM instance
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Functionality FOT

Parties: sender Pi with input bits b0 and b1, receiver Pj with input bit v, ideal

adversary S

Transfer: On receiving message (input, sid,b0,b1) from Pi and message

(choice, sid,v) from Pj, write message (received, sid,bv) to

Pj and message (receipt, sid) to Pi and S. Ignore all future

inputs.

Figure 2.3: an ideal functionality for oblivious transfer

handles only a single commitment and decommitment).

2.3.3 Ideal Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is an interaction between a sender Pi and

a receiver Pj. Given inputs bits b0, b1 for Pi and input bit v for Pj , an OT

reveals bv to Pj while revealing nothing about bv. Furthermore, Pi learns

nothing about v. 1-out-of-4 oblivious transfer is the same protocol, but with

Pi providing four inputs for Pj to select from instead of two.

The ideal functionality for oblivious transfer is known as FOT and has been

defined in numerous papers (i.e. [7], [30]). Our COT protocol relies on access

to ideal oblivious transfer. We reproduce FOT in figure 2.3.

Note that this definition reveals bv to Pj but not to the ideal adversary

S. This models the intuition that Pj ’s choice remains secret even after the
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protocol completes. Like FCOM , this is a single-use functionality.
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Chapter 3

Committed Oblivious Transfer

This chapter reviews the abstract committed oblivious transfer (COT) primi-

tive and the COT implementation from [18]. Our main results in the following

chapters consist of translating this protocol into the UC framework.

3.1 Informal Definition

Committed oblivious transfer (COT) is a two-party interaction between a

sender T and a receiver R. In short, COT is a straightforward combina-

tion of bit commitment and oblivious transfer. T starts with commitments to

bits b0 and b1. R starts with a commitment to bit v. After T and R run the

protocol, R is committed to bv while knowing nothing about bv. Furthermore,

T knows nothing about v. COT was first defined by Crépeau, van de Graaf,

and Tapp in [18] (earlier defined as “verifiable oblivious transfer” in [17]).

The advantage of committed oblivious transfer over traditional oblivious

transfer is that an OT protocol provides no guarantee that its input bits are

what they are claimed to be. For example, imagine that b0 and b1 are the

results of some earlier computation that both parties were involved in. When
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R receives bv, R expects to receive one of the results from that computation.

But nothing prevents T from replacing b0 and b1 with arbitrary bits. R must

verify T ’s inputs through some external means. In contrast, COT guarantees

that neither party can change its inputs after commitments have been made.

If T and R end the earlier computation by committing to its results, they

cannot change these values when doing subsequent transfers.

The above COT description is also known as 1-out-of-2 COT. 1-out-of-4

COT is defined analogously to 1-out-of-4 OT.

3.2 The CGT Implementation

[18] describes a protocol for implementing COT using underlying bit commit-

ment and oblivious transfer primitives (we call this the CGT protocol). We

review relevant fundamentals and reproduce the protocol description in the

following subsections:

3.2.1 Codes

The CGT protocol uses codes. We briefly review codes as they apply to our

work.

For a finite set S, a block code of length n (also known simply as a code)

is a non-empty subset of Sn. Say that S = {a, b, c, d, e, f}. An example

of a block code is the repetition code of length 3, represented by the set

{aaa, bbb, ccc, ddd, eee, fff}. We encode the value w ∈ S by mapping it into

some c ∈ C and decode c ∈ C by reverse-mapping it back to w. w is known as

an information word and c is known as a codeword. For example, we can use

the repetition code of length 3 to encode the information word “e” into the
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codeword “eee”.

A code from S = {0, 1} is known as a binary code. The binary repetition

code of length 3 is the set {000, 111}.

A code of length n produces codewords with n symbols. The distance1 be-

tween two codewords is the number of spots in which their symbols differ. The

minimum distance for a code C is the smallest distance between any two code-

words in C. An error correcting code is a code that has some capacity to fix

improperly formed codewords. Consider the code C = {00000, 11100, 01111}.

Codewords 00000 and 01111 have distance 4. The minimum distance for C is

3. Using the “nearest codeword” correction strategy, we can correct the value

00001 to produce 00000.

Let F2 be the field with elements 0 and 1, as standardly defined. A binary

linear code of length n is a subspace of F n
2
. An [n, k] linear code is a linear

code of length n with dimension k. We can encode for a linear code through

use of a generator matrix. For an [n, k] linear code C, a k × n matrix G is a

generator matrix for C if G’s rows are linearly independent and the row space

of G is C. We encode a k-bit information word w by representing it as a 1× k

vector and multiplying it by a generator matrix.

An [n, k, d] linear code is an [n, k] linear code with minimum distance d.

We can choose a random linear code by selecting a random generator ma-

trix. That is, a random k×n matrix with linearly independent rows generates

some [n, k] linear code.

See [49] for a more detailed overview on coding theory.

1also known as Hamming distance.
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3.2.2 Privacy Amplification

The CGT protocol also uses privacy amplification ([6]). Roughly speaking, a

privacy amplification function f : {0, 1}n → {0, 1}r has the feature that for

any x ∈ {0, 1}n, a party that only knows some of x has no knowledge of f(x).

Such functions are useful for converting partially secret data into fully secret

data.

Privacy amplification can be achieved through the use of universal hash

functions ([13]). A universal hash function is a randomly chosen function

from a universal class, defined as follows:

Definition 3.2.1 A class C of functions {0, 1}n → {0, 1}r is universal if for f

chosen randomly from C and for any distinct x1, x2 ∈ {0, 1}n, the probability

that f(x1) = f(x2) is at most 1

2r .

An example of a universal class is the class of linear functions from {0, 1}n

to {0, 1}r ([13]).

The CGT protocol uses privacy amplification functions where r = 1, i.e.

functions that map an n-bit string into a single bit. This means a random

linear function is the cumulative XOR of a random subset of an input string’s

bits. For example, assume that n = 5 and party V knows some (but not all) of

x = x1x2x3x4x5. We choose a random linear function f by selecting a random

value s ∈ {0, 1}5. Say that s = “01010”. This means f(x) = x2 ⊕ x4. Say

that s = “11001”. This means f(x) = x1 ⊕ x2 ⊕ x5. As long as s is chosen

randomly, V knows nothing about f(x) except with negligible probability.
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3.2.3 Bit Commitment with XOR

The CGT protocol requires the ability to prove arbitrary XOR relationships

between committed bits without revealing their contents. That is, given com-

mitments to bits b1, ...bn, we must be able to prove b1 ⊕ ... ⊕ bn = x (for some

publicly known x) without revealing any of b1, ..., bn.2

We do this by using a BCX (described by Kilian in [41], Rudich and Ben-

nett as mentioned in [18]). A BCX is a special type of commitment that

supports XOR proofs. It can be constructed from any regular commitment

scheme C as follows: to commit to bit b with security parameter m, choose m

bits b1L, ..., bmL randomly. Then, for i : 1 ≤ i ≤ m, set biR = biL ⊕ b. Finally,

use C to commit to each of the 2m bits b1L, b1R, ..., bmL, bmR (we identify a

commitment to b′ with the label b′ ). To decommit, simply decommit to all

2m bits. The verifier accepts the decommitment if for all i : 1 ≤ i ≤ m,

biL ⊕ biR = b for the same value b.

Say that T has made BCX commitments to bits b and d (as shown in figure

3.1).

b = b1L ⊕ b1R , d = d1L ⊕ d1R ,

b2L ⊕ b2R , d2L ⊕ d2R ,

. . . . . .

bmL ⊕ bmR dmL ⊕ dmR

such that for i : 1 ≤ i ≤ m, biL ⊕ biR = b and diL ⊕ diR = d.

Figure 3.1: Two BCX commitments to bits b and d

T can prove to V that b ⊕ d = x through the following interaction:

1. V: choose random permutations πb, πd that shuffle the rows of b and d respectively

and send (πb, πd) to T .

2Note that proving the XOR of two bits shows whether or not the bits are equal.
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2. T: For (shuffled) rows i : 1 ≤ i ≤ m, calculate Li = biL ⊕ diL and Ri = biR ⊕ diR.

Send (L1,R1,L2,R2, ...,Lm,Rm) to V .

3. V: For (shuffled) rows i : 1 ≤ i ≤ m, randomly choose choicei ∈r {L, R}. Send

(choice1, choice2, ..., choicem) to T .

4. T: For i : 1 ≤ i ≤ m, if choicei = L, then open biL and diL . Else, open biR and

diR .

5. V: For i : 1 ≤ i ≤ m, if choicei = L, check that biL ⊕ diL = Li (act similarly if

choicei = R). Accept the proof if these equations always check out.

For any i, b⊕d = (biL⊕biR)⊕(diL⊕diR) = (biL⊕diL)⊕(biR⊕diR) = Li⊕Ri.

Therefore, b⊕ d = x if and only if Li ⊕Ri = x. So V only needs to verify that

Li and Ri were chosen correctly to find the proof convincing. V accomplishes

this by having T decommit to either biL and diL or biR and diR for each BCX

row, thus verifying one of Li or Ri. While the other value remains unverified,

T can only cheat undetected with probability 1/2, since T doesn’t know which

choice V will make. Over all m rows, T can successfully cheat with probability

1/2m.

When T wants to prove x = b1 ⊕ ... ⊕ bn for n bits b1, ..., bn, the above

technique works with the change that Li = b1

iL⊕...⊕bm
iL and Ri = b1

iR⊕...⊕bm
iR.

A BCX for bit b can be safely used with at most one proof. This is be-

cause after a proof finishes, V knows either biL or biR for each row i. In any

subsequent proof, V can learn the other value and thus learn b. So if we want

to use a BCX for multiple proofs, we must “copy” it first. This is done by

having T generate 6m new biL, biR values for b (in 3m rows). V then sends T

a permutation that shuffles these rows. After shuffling, the first m rows are

labeled bp, the second m rows are labeled b′, and the third m rows are labeled

b′′. Note that each of bp, b′, and b′′ is a valid BCX. T proves equality between b
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and bp with an XOR proof. This makes b and bp ineligible for future proofs, but

b′ and b′′ remain untouched. And because V had T shuffle the rows randomly,

the probability that b′ 6= b or b′′ 6= b is negligible in m.

3.2.4 Informal Protocol Description

Say that T has BCX commitments to bits b0 and b1 and R has a BCX com-

mitment to bit v. A first attempt at performing a COT may have T run a

plain OT with R and then have R commit to bv. However, this approach is

problematic. As mentioned earlier, it is impossible to verify that T and R

don’t replace their input bits with arbitrary bits that have nothing to do with

b0, b1, and v.

We can resolve this problem by having T and R transfer m-bit strings (for

security parameter m) instead of single bits. That is, T commits to random

strings s0 = s1
0s

2
0...s

m
0 and s1 = s1

1s
2
1...s

m
1 , then for i : 1 ≤ i ≤ m runs an OT

with R with bits si
0

and si
1
. T then maps these strings to the original bits b0

and b1 with a privacy amplification function. This means R can only learn

bv by learning all of the bits of sv, except with negligible probability. This

approach offers effective techniques (described below) for verifying that both

parties act honestly.

However, we still face a subtle security problem. R can only verify the

bits it receives from the OT. The unreceived bits can’t be verified because R

never sees them in the first place. T can exploit this and learn v as follows:

T correctly feeds the bits of s0 into each OT while replacing the bits of s1

with arbitrary values. T then announces the privacy function correctly. If R

chooses to learn b0, verification checks succeed and the protocol runs correctly.

If R chooses to learn b1, verification checks fail and R aborts the protocol. T

39



learns v simply by seeing whether or not R aborts.

We can resolve this through the use of error-correcting codes. For a code

with minimum distance d, T transfers random codewords c0 and c1 to R instead

of arbitrary strings. R chooses to learn all the bits of cv and a few of the bits

of cv. This allows R to verify both of T ’s inputs. If d is sufficiently large, T

cannot transfer either codeword incorrectly without being detected by R while

R will not know enough bits of cv to learn anything about bv.

This is precisely how the CGT protocol works. In this protocol, T commits

to two random codewords, uses oblivious transfer to transmit one of these

codewords to R, and announces a privacy amplification function that maps

the codewords to b0 and b1. R then commits to bv. Both parties engage in

a number of proofs along the way to verify their actions. Specifically, T and

R interact as follows (note that we omit some important details to keep this

description informal):

1. R picks and announces a random error-correcting [m,k,d] linear code where k >

(1/2 + 2σ) and d > εm for positive constants σ and ε.

2. T picks two random codewords c0, c1 ∈ C and commits to each through BCX com-

mitments on their bits. That is, for c0 = c1
0c

2
0...c

m
0 , T commits to ci

0 for i : 1 ≤ i ≤ m

(and does the same for c1).

3. R randomly selects disjoint sets Iv, Iv ⊂ {1, .., m} where |Iv| = |Iv| = σm. For

i : 1 ≤ i ≤ m, T and R run an oblivious transfer with ci
0 and ci

1. R chooses to receive

ci
v for i ∈ Iv and cv for all other indices. This means that R learns most of the bits

of cv and a few of the bits of cv.

4. R announces I = Iv

⋃
Iv. For i ∈ I, T decommits to both ci

0 and ci
1. This lets R

verify that at least 2σm of T ’s OT inputs were chosen honestly according to protocol.

This also lets R know all m bits of cv. Furthermore, because d is linear in m, R can

use error correction to correctly learn cv even if T feeds some of the unverified bits
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(i.e. the bits with indices i 6∈ I) into the OT incorrectly.3

5. T randomly picks and announces a privacy amplification function h and announces

bits x0, x1 such that h(c1
0...c

m
0 ) ⊕ x0 = b0 and h(c1

1...c
m
1 ) ⊕ x1 = b1. Since R fully

knows cv, R learns bv. Since R only partially knows cv, R knows nothing about bv.

6. R makes a BCX commitment to bv.

A few concerns remain unresolved. T must prove to R that c0 and c1 are

in fact codewords (and not just arbitrary strings), since R relies on the fact

that they are codewords to learn bv. T must also prove that h, x0, and x1 have

the required relationships. R must prove to T that it has learned bv and not

bv. R must also prove that it finally commits to bv and not bv.

All of these proofs can be accomplished through XOR proofs on appropri-

ate BCX commitments. We leave a more formal description of the protocol,

including details of the XOR proofs, to chapter 5.

3More precisely, because d is linear in m, T would have to feed a linear number of bits
into the OT incorrectly for R to receive the wrong codeword. However, T doesn’t yet know
I when it performs the transfer. So at least one of these bits will likely be chosen for
decommitment when R announces I, at which point R can detect any inconsistencies. The
probability that this does not happen is negligible in m.
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Chapter 4

Universally Composable Bit

Commitment with XOR

In this chapter we define FBCX , the ideal functionality for bit commitment with

XOR proofs. We then formally define the hybrid BCX protocol as described

in chapter 3 and prove that it UC realizes FBCX (assuming hybrid access to

FCOM). In the next chapter we define a UC COT protocol that runs in the

FBCX -hybrid model. We only consider the two-party setting, as extending to

the multi-party setting is simple and straightforward (see chapter 6 for further

discussion).

4.1 Ideal BCX Functionality

The ideal two-party functionality for bit commitment with XOR is known as

FBCX . It supports an unlimited number of commitments and decommitments

between a designated committer and receiver. It also supports an unlimited

number of XOR proofs on committed bits, so long as these bits have not been
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decommitted. Each commitment has a unique identifier known as its cid.

Each FBCX instance has a unique identifier known as its sid. FBCX is defined

in figure 4.1.

4.2 Hybrid BCX Protocol

The hybrid protocol for BCX follows the description from chapter 3 and runs

in the FCOM -hybrid model. Given committer P , receiver V , hybrid adversary

A, environment Z, and security parameter m, the protocol runs as follows:

Commitment:

1. Z provides P with input (commit, sid, cid,b).

2. P checks that cid is a new value (has not been used for any previous com-

mitment). If so, P generates m random bits b1L, ..., bmL and computes

biR = b ⊕ biL for 1 ≤ i ≤ m. Otherwise, P aborts the operation.

3. P invokes 2m new FCOM instances (with sids cid1L, cid1R, ..., cidmL, cidmR).

P gives instance cidiL the input message (commit, cidiL,biL) and in-

stance cidiR the input message (commit, cidiR,biR).

4. Each FCOM instance responds with a receipt. For α ∈ {L, R}, instance

cidiα writes the message (receipt, cidiα) to V and A.

5. V , upon receiving all 2m receipts, outputs (receipt, sid, cid).

Decommitment:

1. Z provides P with input (decommit, sid, cid).

2. P checks that cid refers to a commitment to some bit b that has never

been decommitted. If so, P decommits to all 2m underlying bits of b by

giving FCOM instance cidiα the input (decommit, cidiα) for α ∈ {L, R}

and 1 ≤ i ≤ m. Otherwise, P aborts the operation.
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Functionality FBCX

Parties: (dummy) committer and prover PI , (dummy) receiver and verifier VI , ideal

adversary S

Commitment: On receiving message (commit, sid, cid,b) from PI ,

check that cid is a new value (i.e. has not been used for

any previous commitment). If so, store b and write mes-

sage (receipt, sid, cid) to both VI and S. Otherwise,

do nothing.

Decommitment: On receiving message (decommit, sid, cid) from PI ,

check that cid refers to an existing commitment to some

bit b that has never been decommitted. If so, write mes-

sage (open, sid, cid,b) to both VI and S. Otherwise,

do nothing.

XOR Proof: On receiving message (prove, sid,x, cid1, ..., cidn)

from PI , check that each cidi refers to a commit-

ment to some bit bi that has never been decommit-

ted. If this holds and b1 ⊕ ... ⊕ bn = x, write message

(proof , sid,x, cid1, ..., cidn) to VI and S. Otherwise,

do nothing.

Figure 4.1: An ideal functionality for bit commitment with XOR
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3. Each FCOM instance cidiα responds with the message (open, cidiα,biα)

to V and A.

4. V verifies that for each i, biL ⊕ biR = b (for some b), and if so outputs

(open, sid, cid,b). Otherwise, V outputs nothing.

XOR Proof:

1. Z provides P with input (prove, sid,x, cid1, ..., cidn).

2. P checks that each cidi refers to a commitment to some bit bi where none

of its 2m underlying bits have been decommitted and that b1⊕ ...⊕bm =

x. If any of these conditions fails, P aborts the operation.

Copy Phase

3. P chooses, for 1 ≤ i ≤ 3m, random bit b1iL and computes b1iR = b1⊕b1iL .

4. P invokes 6m new FCOM instances (supporting 3m bit-pairs, with base

sid pid) and gives instance pid1
iα the input (commit,pid1

iα,b1iα
).

5. Each FCOM instance pid1
iα responds with the message (receipt,pid1

iα)

for V and A.

6. V produces a random permutation π of these 3m rows and sends message

(permute, sid,pid, cid1, π) to P .

7. P and V label the first m permuted pairs as b′1, the second m pairs as b′′1 ,

and the third m pairs as b′′′1 . For 1 ≤ i ≤ m and α ∈ {L, R}, they assign

cid1′

iα = pid1
π−1(i)α, cid1′′

iα = pid1
π−1(i+m)α, and cid1′′′

iα = pid1
π−1(i+2m)α

(where π−1(i) is the inverse of the permutation of i).1

8. Steps 3 - 7 are repeated for the other committed bits b2, ..., bn.

Prove Phase ( bj = b′j for 1 ≤ j ≤ n)

9. P calculates Li = b1iL ⊕ b′1iL
and Ri = b1iR ⊕ b′1iR

for 1 ≤ i ≤ m and

sends message (announce, sid,pid, cid1,L1,R1, ...,Lm,Rm) to V .

1This is simply a cid labelling scheme that lets us treat b′1, b′′1 , and b′′′1 as standard BCX
commitments, where cid1′

iα refers to bit b′1iα
, etc.

45



10. V randomly selects choicei ∈r {L, R} for 1 ≤ i ≤ m and sends message

(choices, sid,pid, cid1, choice1, ..., choicem) to P .

11. For 1 ≤ i ≤ m and choicei = α, P opens b1iα and b′1iα
by sending inputs

(decommit, cid1
iα) and (decommit, cid1′

iα) to the appropriate FCOM

instances.

12. The appropriate FCOM instances write messages (open, cid1
iα,b1iα

) and

(open, cid1′

iα,b′
1iα

) to V and A.

13. V checks for each choicei = α and Θi = (Li if αi = L or Ri if αi = R)

that Θi = b1iα ⊕ b′1iα
. If this fails for any i, V aborts the protocol.

14. Steps 9 - 13 are repeated for the other committed bits b2, ..., bn.

Reassignment Phase

At this point, the original commitments to b1, ..., bn have been “used up” be-

cause some of their underlying bits have been decommitted. This makes them

unsuitable for future proofs.2 P and V get around this by “reassigning” the

underlying bits. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, and α ∈ {L, R}, whenever the pro-

tocol instructs P to decommit to bjiα , P sends the message (decommit, cidj′′′

iα )

to FCOM instance cidj′′′

iα (and never sends any more messages to FCOM instance

cidj
iα). Likewise, V expects to receive decommitments from instance cidj′′′

iα in-

stead of instance cidj
iα. This essentially replaces bj with b′′′j . The bits for b′′′j

are “fresh” and after the above prove phase b′′′j is guaranteed to equal bj except

with negligible probability ([18]).

Prove Phase ( b′′
1

⊕...⊕ b′′n = x)

Note that after the first prove phase, b′′j = bj for 1 ≤ j ≤ n except with

negligible probability ([18]). So showing b′′1 ⊕ ... ⊕ b′′n = x is equivalent to

showing b1 ⊕ ... ⊕ bn = x.

15. V chooses random permutations π
′′

1 , ..., π
′′

n that shuffle the rows of b′′1 , ..., b′′n

and sends message (permute3, sid,pid, π
′′

1 , ..., π
′′

n) to P .

2Say that for some i, V has decided to learn b1iL in the current proof. In any future
proof, V can choose to learn b1iR , which reveals b1.
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16. P calculates Li = b′′1iL
⊕ ...⊕b′′niL

and Ri = b′′1iR
⊕ ...⊕b′′niR

for 1 ≤ i ≤ m

and sends message (announce2, sid,pid,L1,R1, ...,Lm,Rm) to V .

17. V randomly selects choicei ∈r {L, R} for 1 ≤ i ≤ m and sends message

(choices2, sid,pid, choice1, ..., choicem) to P .

18. For 1 ≤ i ≤ m, if choicei = L, P opens b′′1iL
, ..., b′′niL

by sending inputs

(decommit, cid1′′

iL ) , ..., (decommit, cidn′′

iL ) to the appropriate FCOM

instances. If choicei = R, P instead opens b′′1iR
, ..., b′′niR

the same way.

19. The appropriate FCOM instances write messages (open, cid1′′

iα ,b′′
1iα

) , ...,

(open, cidn′′

iα ,b′′
niα

) to V and A.

20. V checks for each choicei that if choicei = L, then Li = b′′1iL
⊕ ...⊕ b′′niL

(and similarly if choicei = R). V also checks that for 1 ≤ i ≤ m, Li ⊕

Ri = x. If all conditions hold, V outputs (proof , sid,x, cid1, ..., cidn).

Otherwise, V outputs nothing.

Note that after an XOR proof completes, no b′j or b′′j value may be used in

any future decommitment or proof. These should be thought of as “temporary

values” that have no scope beyond the current proof.

4.3 UC Security of the Hybrid Protocol

We now state the following theorem:

Theorem 4.3.1 The above protocol UC realizes FBCX in the FCOM -hybrid

model.

Proof: In order to prove this theorem, we must show that for any adversary

A interacting with the hybrid protocol in the FCOM -hybrid model, there is an

adversary S interacting with FBCX in the ideal model such that no environment

Z can distinguish between the two models under any input. We construct such

an S as follows:
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In general, S runs a simulated copy of A within its code (call this ASIM).

All inputs from Z are forwarded to ASIM ’s virtual input. All virtual outputs

of ASIM are forwarded to S’s actual output.

When ASIM , having virtually corrupted a party, wants to use its ideal

functionality FCOM , S plays the role of that ideal functionality. This gives

S the considerable power of receiving simulated commitments, learning their

contents, and opening them however it chooses.

We will first show security for a single commitment/decommitment process,

then for a single XOR proof, and finally when the protocol is used for multiple

operations.

4.3.1 Security of a Single Commit/Decommit Opera-

tion

Say that some environment Z runs the protocol to perform a single commit-

ment and decommitment with bit b. As mentioned above, S internally runs a

copy of ASIM , forwarding inputs from Z to ASIM ’s virtual input and forward-

ing virtual outputs from ASIM to its own output. The remaining details of the

simulation depend on who is corrupted and who is honest. We consider each

corruption scenario in turn:

Corrupted P , Uncorrupted V

The Simulation:

S plays the role of FCOM for ASIM . For commitment, an honest hybrid V

would only output a receipt after receiving 2m FCOM receipts. So S follows

ASIM ’s code and keeps track of all bits biL, biR that ASIM virtually sends to

FCOM in the name of T . After 2m such commitments have been made, S
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determines b by calculating b = biL ⊕ biR (for any i) and has PI send the

message (commit, sid, cid,b) to FBCX .

For decommitment, an honest hybrid V would only output its result af-

ter all 2m committed bits have been correctly decommitted. S follows ASIM ’s

code and waits until ASIM has sent virtual decommit messages to all 2m FCOM

copies. S then verifies that for all i, biL ⊕ biR = b. If so, S has PI send the

message (decommit, sid, cid) to FBCX . Otherwise, S does nothing.

Proof of Security:

S can play the role of FCOM perfectly, and since the protocol only involves

messages from P and FCOM , S does not have to simulate any messages from

an honest V .

If A is semi-honest, the ideal simulation is clearly identical to an actual hy-

brid interaction. In both computations, V will output (receipt, sid, cid) after

commitment and (open, sid, cid,b) after decommitment. And since both A

and ASIM are given the same input bit b (provided by Z), we know that all

biL’s and biR’s will be computed the same way.

If A is malicious, it may compute the biL’s and biR’s incorrectly. First,

it may not compute each biL randomly as required. But since ASIM follows

the same code as A, any non-randomness will be perfectly emulated in the

ideal simulation. Second, A may choose its bits inconsistently, such that there

exist two i and j where biL ⊕ biR 6= bjL ⊕ bjR. In the hybrid interaction, this

would cause commitment to complete successfully but decommitment to fail

(V fails to produce output when it recognizes the inconsistency). In the ideal

simulation, S doesn’t check for consistency before committing but does check

before decommitting. Any inconsistency causes S to withhold its decommit
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message to FBCX , which means VI produces no output.

We thus have a perfect simulation for this scenario.

Uncorrupted P , Corrupted V

The Simulation:

S plays the role of both FCOM and an uncorrupted hybrid P for ASIM . For

commitment, PI makes a commitment using FBCX in the ideal world. S is

notified that this commitment occurred, but does not know the committed bit

b. S then simulates 2m FCOM receipts for ASIM (note that FCOM commitment

receipts don’t include any information on the committed bits, so S can produce

valid receipts even without knowing b). Once ASIM instructs V to output its

receipt, S has VI output its receipt.

For decommitment, PI sends a decommit message to FBCX , which then

opens the commitment and reveals b to S. S then simulates 2m decommit

messages from FCOM as follows: for FCOM instance iL, S randomly chooses

biL and simulates a decommitment to this value. For FCOM instance iR, S

calculates biR = b ⊕ biL and simulates a decommitment to biR. When ASIM

instructs V to output its receipt, S has VI output the same value.

Proof of Security:

The critical difference between the ideal and hybrid interactions is that a

hybrid P commits to bits biL and biR such that biL ⊕ biR = b, whereas the

simulated P cannot do this because S doesn’t know b. However, this has no

effect on the adversary’s view of the commitment messages. A cannot see the

contents of any message sent to FCOM and FCOM receipts (which A can see)

contain no information about b. So S can simulate the commitment messages
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perfectly.

Upon decommitment, S learns the value of b before having to simulate any

decommit messages. Thus, S can choose biL and biR according to an honest P ’s

program and decommit to these values. The fact that simulated commitments

have already been made is not a problem. Since S plays the role of FCOM for

ASIM , S can decommit to any value it chooses without producing any message

inconsistencies.

If A is malicious, it may have V produce incorrect output. S easily emulates

this by producing VI ’s output according to ASIM ’s code.

We thus have a perfect simulation for this scenario.

Both Parties Corrupted

The entire protocol is a deterministic functionality of P ’s and V ’s inputs

and random tapes. When both parties are corrupted, S has full access to all

of this information and can thus emulate the hybrid interaction exactly.

Neither Party Corrupted

When neither party is corrupted, A passively sees a complete message tran-

script between P and V . S must simulate this transcript for ASIM . This is

easy to do by following the simulation from the Uncorrupted P , Corrupted V

scenario. Security follows from the security of that scenario. A malicious A

may also interfere with the protocol by interrupting message delivery, possibly

preventing V from producing output. S can simulate this perfectly by not

delivering messages from FBCX to VI when ASIM does something that would

block V ’s output.
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Dynamic Corruption

We’ve now demonstrated the (perfect) UC security of the hybrid proto-

col for commitment and decommitment in the presence of static, malicious

adversaries. However, we must also demonstrate security against adaptive ad-

versaries that may corrupt parties at any point in the protocol. The added

challenge is that a newly corrupted party’s input must be consistent with its

previous protocol messages. For example, when P is uncorrupted, S simulates

commitment messages from P to b without actually knowing b. As long as P

remains uncorrupted and the simulated messages are indistinguishable from

real messages, security is maintained. But if P is later corrupted, the adver-

sary now learns b. It does not in general hold that the earlier messages remain

indistinguishable given this new knowledge. We must explicitly guarantee this

and do so as follows:

Corrupting P:

Say that A corrupts P at some point in a hybrid interaction. If this

corruption occurs during a commitment, then P has sent somewhere be-

tween 1 and 2m commitment messages of the forms (commit, cidiL,biL) and

(commit, cidiR,biR) to FCOM . S has simulated these messages without know-

ing b. However, since messages to FCOM are private and secure, A has not seen

the biR or biL values in these messages. The remaining message data is inde-

pendent of b. If the corruption occurs during a decommitment, P ’s decommit

messages are entirely independent of P ’s private inputs (note that when the

simulation for decommitment begins, S learns the correct value of b in the

ideal interaction, so b is no longer private). In either case, revealing P ’s input

produces no inconsistencies with the existing message transcript. So S can
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corrupt PI and make PI ’s actual input available to ASIM in the simulation.

Corrupting V:

V receives no private inputs in this protocol; its output fully depends on

the messages received from FCOM . So V can trivially be corrupted at any

point without adverse security consequences.

This completes the security proof for a single commitment/decommitment

process.

4.3.2 Security of a Single XOR Proof

Now say that Z runs the protocol to perform a single XOR proof on committed

bits b1, ..., bn and result x. S internally runs a copy of ASIM , forwarding inputs

from Z to ASIM ’s virtual input and forwarding virtual outputs from ASIM to

its own output. The rest of the simulation runs as follows:

Corrupted P , Uncorrupted V

The Simulation:

S plays the role of both FCOM and an uncorrupted hybrid V for ASIM .

For the copy phase, S follows ASIM ’s code to generate the appropriate com-

mitments for b1. After ASIM has virtually produced 6m such commitments, S

chooses a random permutation π and simulates a permute message from V

to P . This process is repeated for b2 through bn.

For the prove phase between bj and b′j , S simulates messages from V by

following an honest V ’s program. Note that V has no private inputs, so S

does not need additional information to run V ’s code correctly. S simulates
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messages from P by following ASIM ’s code. At the end of this phase, S follows

V ’s code to determine if the proof was conducted properly. If not, S withholds

all messages from PI to FBCX in the ideal interaction.

The rest of the protocol involves a reassignment phase and another prove

phase. The reassignment phase produces no messages, so can be trivially sim-

ulated perfectly. S simulates the prove phase in exactly the same way that it

simulates the first prove phase. If the entire simulation completes without com-

plaint by simulated V , S has PI send the message (prove, sid,x, cid1, ..., cidn)

to FBCX to complete the ideal proof and have VI generate output.

Proof of Security:

The copy phase is essentially the same as a commitment process. There are

only two differences: the copy phase uses 6m bits instead of 2m bits and the

copy phase involves the additional steps of V choosing a random permutation

and P rearranging its bit-rows accordingly. The first difference has no security

consequences. The second difference creates no problems because S generates

a random permutation the same way an actual hybrid V would. Thus, security

of the copy phase follows from the security of commitment, which has already

been shown.

In the prove phases, V has no private inputs and produces all of its messages

exclusively by tossing random coins. So S can easily simulate V ’s messages

perfectly. S’s only other responsibility is to guarantee that VI produces output

only when V would produce output (i.e. only when the hybrid proof would

succeed).

For the prove phase that shows b′′1 ⊕ ... ⊕ b′′n = x, assume that the relation

is correct. If ASIM is semi-honest, P follows the protocol correctly, so the
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hybrid protocol is guaranteed to succeed. S completes the proof in the ideal

interaction accordingly. If ASIM is malicious, P may attempt to cheat. If

S finds that V would detect this, S withholds proof completion in the ideal

interaction. Note that S judges success based on what V would see, not on

what S sees itself. This is because there is a negligible probability that P can

cheat without V noticing (see [18] for details). S would notice such cheating,

since S knows simulated P ’s private inputs, but it must still complete the ideal

proof consistent with how the hybrid proof would complete.

Now assume that the relation is false (i.e. b′′
1
⊕ ... ⊕ b′′n 6= x). A semi-

honest ASIM has P generate each Li and Ri such that Li 6= Ri. Both S and

V can detect this and produce protocol failure. If ASIM is malicious, there is

a negligible probability that P can still provide a convincing proof for V .3 In

such a case, the hybrid protocol would incorrectly report success. S cannot

emulate this through FBCX , which refuses to complete an equality proof for

incorrect relations.

We use the same analysis for the prove phase between bj and b′j . Thus, S

simulates the hybrid interaction perfectly except with a negligible probability

of failure, i.e. S produces an indistinguishable simulation for this scenario.

Uncorrupted P , Corrupted V

The Simulation:

S plays the role of both FCOM and an uncorrupted hybrid P for ASIM . For

the copy phase, S does not know the values of b1, ..., bn, so it simulates fake

commitment receipts with no underlying values. S then follows ASIM ’s code

3For any i, P can announce Li correctly and Ri incorrectly. If V chooses to open the
left bits, V will not detect the cheating. This happens with probability 1

2 . Over all i, this
happens with probability 1

2m .

55



to generate V ’s permute messages.

For the prove phase between bj and b′j , S follows ASIM ’s code to generate

V ’s simulated messages. But since S doesn’t know the value of bj and b′j , S

cannot follow an honest P ’s code to simulate P ’s messages. Rather, S simu-

lates the (announce, sid,pid, cidj,L1,R1, ...,Lm,Rm) message by choosing

each Li uniformly at random and setting Ri = Li. After ASIM responds

with the message (choices, sid,pid, cidj, choice1, ..., choicem), S simulates

P ’s selective decommitments as follows: Say that choicei = L. S chooses bit

p uniformly at random. If Li was announced as 0, S sets bit q = p. If Li was

announced as 1, S sets q = p. S then simulates the FCOM decommitment of

bjiL
to p and b′jiL

to q. If choicei = R, S acts analogously.

S simulates the final prove phase in the same way. Finally, S waits for

ASIM to instruct V to produce its output, at which point S delivers the ideal

proof message from PI to FBCX to complete the ideal proof.

Proof of Security:

As in the previous scenario, the copy phase is essentially the same as com-

mitment, so security follows accordingly.

For the prove phase between bj and b′j , S does not generate the simulated Li

and Ri values as a hybrid P would. S generates each Li completely at random

and sets Ri = Li. In contrast, a hybrid P generates Li according to the

equation Li = bjiL
⊕b′jiL

and Ri according to the equation Ri = bjiR
⊕b′jiR

. But

since bjiL
and b′jiL

are both completely random, Li itself is completely random.

And since P is honest, Ri is guaranteed to equal Li if bj and b′j are equal. So

both the ideal and hybrid models produce the same exact distribution.

After ASIM announces its choicei values, S must simulate decommitments
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to either bjiL
and b′jiL

or bjiR
and b′jiR

(for each i). If choicei = L, then S

simulates decommitments to two uniformly random bits p and q such that

p = q (if Li = 0) or p 6= q (if Li = 1). The fact that S didn’t commit

to these bits in the first place poses no problems (as argued earlier). In the

hybrid interaction, an honest P decommits to the actual bits bjiL
and b′jiL

that

it originally committed to. Since both bits were originally chosen uniformly

at random, the decommitted bits are still uniformly random subject to the

restriction that they are equal (if Li = 0) or different (if Li = 1).

If choicei = R, the ideal simulation runs in exactly the same way. The

hybrid interaction, however, is not the same, since bjiR
and b′jiR

are not chosen

randomly. But in this case A does not know bjiL
and b′jiL

(these values are

not decommitted). Since bjiR
= bj ⊕ bjiL

and b′jiR
= b′j ⊕ b′jiL

, the decommitted

bits still appear uniformly random from A’s perspective, so the probability

distribution remains the same.

We apply the same analysis to the final prove phase.

A malicious A may have V produce incorrect output. S can easily emulate

this by following ASIM ’s code and producing incorrect VI output accordingly.

A may also have V generate its protocol messages non-randomly (V ’s messages

should be the exclusive result of random coin tosses). Again, S can emulate this

by following ASIM ’s code. A may try to choose messages in some special way

that causes P to reveal more information than S knows in the ideal interaction,

but the hybrid protocol guarantees that this is impossible. This is because the

probability distribution of P ’s messages is fully independent of V ’s messages.

The only part of P ’s message transcript that depends on V is in step 12,

when P decommits to either the left bits or the right bits of its commitments

according to V ’s choicei values. But, as already argued, the decommitted
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values are always uniformly random from A’s perspective. So A cannot extract

off-limits information no matter what messages it chooses for V .

Finally, an honest P may be asked to prove that b1 ⊕ ... ⊕ bn = x when

in fact b1 ⊕ ... ⊕ bn = x. In the ideal world, it is impossible for such a proof

to succeed, since FBCX ignores the request and never sends a receipt to VI .

Likewise, in the hybrid model an honest P halts the protocol without sending

any messages to V .

We thus have a perfect simulation for this scenario.

Both Parties Corrupted

The entire protocol is a deterministic functionality of P ’s and V ’s inputs

and random tapes. When both parties are corrupted, S has full access to all

of this information and can thus emulate the hybrid interaction exactly.

Neither Party Corrupted

When neither party is corrupted, A passively sees a complete message tran-

script between P and V . S must simulate this transcript for ASIM . We do

this through a straightforward combination of the Uncorrupted P , Corrupted

V and Corrupted P , Uncorrupted V simulations. If Z initiates a correct XOR

proof (where the bits do in fact have the specified XOR relationship), S re-

ceives a valid proof receipt from FBCX , conducts the simulation, and delivers

the receipt to VI to output. If Z initiates an incorrect XOR proof (where

the bits do not have the specified XOR relationship), FBCX never produces a

receipt and S is never notified that a proof was even attempted. So S can’t

simulate any hybrid messages. However, in a hybrid interaction an honest

T would catch the inconsistency and immediately abort the proof. So there
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would be no hybrid messages to simulate anyway.

Dynamic Corruption

Corrupting P :

Say that A corrupts P at some point in a hybrid interaction. If corruption

occurs during the copy phase, security follows from the security of commit-

ment.

If corruption occurs in the first prove phase after S has simulated an

(announce, sid,pid, cidj,L1,R1, ...,Lm,Rm) message, S has produced this

message without knowing P ’s input bits bj and b′j. Thus, each Li and Ri was

chosen at random. We must ensure that these random choices are consistent

with the newly revealed values of bj and b′j . S does so as follows: if Li was

announced as 0, then S randomly sets bjiL
and sets b′jiL

= bjiL
. If Li was

announced as 1, then S randomly sets bjiL
and sets b′jiL

= bjiL
. In either case,

S sets bjiR
= bj ⊕ bjiL

and b′jiR
= b′j ⊕ b′jiL

. If bj = b′j , then the resultant Ri

is the same as Li (i.e. consistent with the announced value of Ri). If bj 6= b′j ,

then the protocol would have failed when P aborted earlier and we never get

to this step in the first place.

If corruption occurs in the first prove phase after S has simulated P ’s

selective decommitments, we face two scenarios. If choicei = L, then S has

decommitted to randomly chosen bjiL
and b′jiL

subject to bjiL
⊕ b′jiL

= Li. S

then simply sets bjiR
= bj ⊕ bjiL

and b′jiR
= b′j ⊕ b′jiL

to maintain consistency.

If choicei = R, then S has decommitted to randomly chosen bjiR
and b′jiR

such

that bjiR
⊕ b′jiR

= Ri. S simply sets bjiL
= bj ⊕ bjiR

and b′jiL
= b′j ⊕ b′jiR

to

maintain consistency.

If corruption occurs during the second prove phase, we apply the above
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analysis to maintain consistency.

Corrupting V :

Say that A corrupts V at some point in a hybrid interaction. If corruption

occurs during the copy phase, security follows from the security of commit-

ment. If corruption occurs during either prove phase, any message that S

simulated in the name of V consists exclusively of random bits that use no

private inputs. S can trivially maintain consistency by setting simulated V ’s

random tape appropriately.

This completes the security proof for a single XOR proof.

4.3.3 Security under Multiple Operations

We’ve shown security with respect to a single operation (i.e. a single com-

mitment, decommitment, or XOR proof), but the BCX protocol supports an

unlimited number of operations within a single instance. So we need to show

that the protocol retains security when used multiple times with an arbitrary

scheduling scheme. For example, imagine the hybrid XOR proof without the

copying and reassignment phases. This proof can securely show that two com-

mitted bits b1 and b2 are equal. But we lose security if we repeat the proof a

second time. This is because for each i, V can assign its choicei value to the

opposite of what it chose the first time, thus revealing both b1iL
and b1iR

, thus

revealing b1 and b2.

Let a single operation of the protocol consist of input β, output γ, and pub-

lic message transcript δ (where “public” means viewable to the adversary). We

claim that security holds under multiple operations if (β, γ, δ) provides no in-

60



formation to the adversary on any other operation beyond that provided by

(β, γ). In other words, an operation’s message transcript leaks no information

that isn’t also leaked from its inputs and outputs. This claim holds because

our single-usage security proofs tell us that S can simulate a message tran-

script that is indistinguishable from an actual hybrid transcript for a single

operation. So the only way a hybrid adversary can gain advantage over S is

to use information from one operation’s transcript to learn something about

another operation. By showing that no information leaks between operations,

we preclude this possibility.4

For commitment and decommitment, this is straightforward. The public

message transcript of a commitment reveals no information whatsoever, as the

only sensitive information is the 2m bits being committed to and these values

do not appear in the transcript. Decommitment reveals the values of all 2m

bits, but these bits have no value once they are decommitted (in particular,

they are not used in other commitments and cannot be used in future XOR

proofs).

For an XOR proof, the only part of P ’s message transcript that could reveal

information is when P announces Li and Ri values and decommits to selected

bits based on V ’s choicei responses (the rest of P ’s messages are nothing more

than ideal commitments through FCOM .). Say that for row i, P generates the

messages Li (where Li = b1iL
⊕ b2iL

) and Ri (where Ri = b1iR
⊕ b2iR

) and

decommits to b1iR
and b2iR

after receiving choicei = R from V . As already

argued, Li, Ri, b1iR
, and b2iR

always appear uniformly random to any party

without information on b1iL
or b2iL

. Thus, knowledge about b1iL
and b2iL

is

4This doesn’t apply to inputs and outputs because these values can leak information but
do so equally in both the ideal and hybrid models. For example, if P proves that b1 = b2

and then decommits to b1, this also reveals the value of b2. This is true regardless of which
model we’re in.
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required to extract information from P ’s messages. But due to the protocol’s

copy phase, each instance of an XOR proof uses unique values for b1iL
and b2iL

that are randomly generated and completely independent of all values in other

instances. So it is impossible to gain this knowledge. This remains true even

when P and V conduct multiple simultaneous proofs on the same bits, because

P generates a new set of “fresh” bits when a proof begins (in steps 3-5). If

the protocol is modified such that the reassignment phase occurs immediately

after step 6 (instead of after step 14), then P and V perform this phase in

the same order in which each proof completes step 6. In other words, say that

proof instance ρ is the next proof to complete step 6. P and V each perform

the reassignment mapping of cidj
iα to ρ’s version of cidj′′′

iα (recall that cidj′′′

iα

is unique for each instance). This reassignment is both global and atomic:

all other proof instances from this point forward now use ρ’s version of cidj′′′

iα

instead of cidj
iα and no other proof instance may perform a reassignment while

ρ’s reassignment is ongoing. Note that the other proof instances cannot be

considered fully complete until ρ finishes step 14 (because ρ’s reassigned value

is only guaranteed to equal the original value after step 14 completes).

V also produces messages, but they are random and rely on no private

inputs, so they trivially provide no information on other operations.

This completes the proof of theorem 4.3.1.
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Chapter 5

Universally Composable

Committed Oblivious Transfer

In this chapter we define FCOT , the ideal functionality for committed oblivious

transfer. We then formally define an extended version of the COT protocol

described in chapter 3 and prove that it UC realizes FCOT (assuming hybrid

access to FBCX and FOT ). We only consider the two-party setting, as extending

to the multi-party setting is simple and straightforward (see chapter 6).

5.1 Ideal Committed Oblivious Transfer

The ideal two-party functionality for COT is known as FCOT . It supports an

unlimited number of commitments, decommitments, and transfers (in both

directions). It also supports XOR proofs between three committed bits as well

as AND proofs. That is, given three committed bits b1, b2, b3, we can show

that b1 ⊕ b2 = b3 or that b1 ∧ b2 = b3. We add support for AND proofs because

this makes FCOT more useful as a primitive for multi-party computation. A
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party conducts a proof using a binary relation Y (in the form of a truth table),

where Y must be an XOR relation or an AND relation. Each commitment

has a unique identifier known as its cid. Each FCOT instance has a unique

identifier known as its sid. FCOT is defined in figures 5.1 and 5.2.

5.2 Hybrid COT Protocol

The hybrid protocol for COT follows the description from chapter 3 and runs

in the (FBCX ,FOT )-hybrid model. It supports AND proofs using a simple trick

described in [18]. Say that party T is committed to bits b1, v, and d and wants

to prove to party R that b1 ∧ v = d. T does this by committing to b0 = 0

and performing a COT with itself using transfer bits b0 and b1 and choice bit

v. After the transfer finishes, T is committed to bv. If v = 0, this means

that bv = 0 = b1 ∧ 0. If v = 1, this means that bv = b1 = b1 ∧ 1. The proofs

required for the transfer convince R that everything proceeds correctly. T then

performs a conventional XOR proof to show that bv = d.

Given parties T and R, hybrid adversary A, environment Z, security pa-

rameter m, and positive constants σ and ε (used for selecting a code in the

transfer phase), the protocol runs as follows:

Commitment:

T and R maintain two running instances of FBCX : F
(T→R)
BCX and F

(R→T )
BCX (with

respective sids sid′ and sid′′). All commitments from T to R are forwarded to

F
(T→R)
BCX and all commitments from R to T are forwarded to F

(R→T )
BCX .

Decommitment:

All decommitments from T to R are forwarded to F
(T→R)
BCX and all decommit-

ments from R to T are forwarded to F
(R→T )
BCX .
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Functionality FCOT

Parties: (dummy) participant TI , (dummy) participant RI , ideal adversary S. We

also define the variables Pi and Pj as generic labels that can refer to either party.

Commitment: On receiving message (commit,Pi,Pj, sid, cid,b)

from Pi, check that cid is a new value (i.e. has not

been used for any previous commitment). If so, store

b and write message (receipt,Pi,Pj, sid, cid) to both

Pj and S. Otherwise, do nothing.

Decommitment: On receiving message (decommit,Pi,Pj, sid, cid)

from Pi, check that cid refers to an existing commit-

ment to some bit b that has never been decommitted.

If so, write message (open,Pi,Pj, sid, cid,b) to both

Pj and S. Otherwise, do nothing.

Figure 5.1: An ideal functionality for committed oblivious transfer: commitment

and decommitment phases
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Functionality FCOT (continued)

Transfer: On receiving message (transfer,Pi,Pj, sid, cidn, cid0,

cid1,vid) from Pi, check that cid0 and cid1 refer to un-

opened commitments by Pi to respective bits b0 and b1, vid

refers to an unopened commitment by Pj to bit v, and cidn

does not refer to an existing commitment by either party.

If any of these conditions fails, do nothing. Otherwise,

record a new commitment to bv with cid cidn, write mes-

sage (treceived,Pi,Pj, sid, cidn, cid0, cid1,vid,bv)

to Pj (but not S) and write message

(treceipt,Pi,Pj, sid, cidn, cid0, cid1,vid) to Pi and

S.

AND/XOR Proof: On receiving message (prove,Pi,Pj, sid, cid1, cid2, cid3,

Y), check that cid1, cid2 and cid3 refer to unopened

commitments by Pi to bits b1, b2, and b3, respectively.

Also check that Y is an XOR or AND relationship and

Y (b1, b2) = b3 holds. If all conditions hold, write mes-

sage (proof ,Pi,Pj, sid, cid1, cid2, cid3,Y) to Pj and S.

Otherwise, do nothing.

Figure 5.2: An ideal functionality for committed oblivious transfer: transfer and

proof phases
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Transfer (T to R):

1. Z provides T with input (transfer,T,R, sid, cidn, cid0, cid1,vid)

(where cid0 and cid1 are T ’s respective commitments to bits b0 and

b1, and vid is R’s commitment to bit v).

Validated Codeword Generation

2. T sends message (sendcode, sid, cidn, cid0, cid1,vid) to R.

3. R chooses a decodable [m, k, d] linear code C with k > (1/2 + 2σ)m and

d > εm and sends message (code, sid, cidn,C) to T .

4. T picks random codewords c0, c1 ∈ C (|c0| = |c1| = m) and uses FT→R
BCX

to commit to their component bits c1
0, ..., c

m
0 and c1

1, ..., c
m
1 . (see section

5.2.1)

5. T uses FT→R
BCX to prove that c0 and c1 are codewords. (see section 5.2.1)

Validated Codeword Transfer

6. R randomly picks disjoint subsets Iv, Iv ⊂ {1, .., m} where |Iv| = |Iv| =

σm. For 1 ≤ i ≤ m, R sets choicei = v if i ∈ Iv and choicei = v

otherwise (if i ∈ Iv or if i is outside both sets).

7. T and R invoke FOT (ci
0, c

i
1)(choicei) (m times), giving R w1, ..., wm. (see

section 5.2.1)

8. R sets I = Iv

⋃
Iv and writes the message (subset, sid, cidn, I) to T .

9. For each i ∈ I, T uses FT→R
BCX to decommit to ci

0 and ci
1. (see section

5.2.1)

10. R checks that for i ∈ Iv, wi = ci
v and that for i ∈ Iv, wi = ci

v. R then

sets wi = ci
v for i ∈ Iv and corrects w using the decoding algorithm (if

this fails, R aborts the protocol).

11. R invokes FR→T
BCX m times to commit to w and uses FR→T

BCX to prove that

this is a codeword. (see section 5.2.1)

12. T randomly picks a subset IT ⊂ {1, ..., m} of size σm such that IT∩I = ∅.

For i ∈ IT , T uses FT→R
BCX to decommit to ci

0 and ci
1. (see section 5.2.1)
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13. T sends message (subset2, sid, cidn, IT) to R.

14. R proves that wi = ci
v for i ∈ IT using FR→T

BCX . (see section 5.2.1)

Committed Bit Transfer

15. T picks a random privacy amplification h : {0, 1}m → {0, 1}, sets p0 =

h(c0) ⊕ b0 and p1 = h(c1) ⊕ b1, and sends message (amplify, sid, cidn,

h,p0,p1) to R.

16. T uses FT→R
BCX to prove b0 = h(c0)⊕ p0 and b1 = h(c1)⊕ p1. (see section

5.2.1)

17. R sets bv = h(w) ⊕ pv and uses FR→T
BCX to commit to bv. (see section

5.2.1)

18. R uses FR→T
BCX to prove bv = h(w) ⊕ pv. (see section 5.2.1)

19. R outputs (treceived,T,R, sid, cidn, cid0, cid1,vid,bv).

20. T outputs (treceipt,T,R, sid, cidn, cid0, cid1,vid).

Transfer (R to T ):

Transfers from R to T operate the same way as transfers from T to R. For

simplicity’s sake, the rest of this chapter assumes transfers from T to R.

AND/XOR Proof:

All XOR proofs from T to R are forwarded to F
(T→R)
BCX and all XOR proofs

from R to T are forwarded to F
(R→T )
BCX .

T performs an AND proof for R by running an “internal” partial transfer and

verifying the results with R. This is done as follows:

1. Z provides T with input (prove,T,R, sid, cid1, cid2, cid3,Y) (where

cid1, cid2, and cid3 are T ’s respective commitments to bits b1, v, and d,

and Y specifies the relation b1 ∧ v = d).

2. T commits to b0 = 0.

3. T and R conduct steps 2-5 of the transfer phase. This convinces R that

T has committed to two valid codewords.
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4. T and R conduct steps 11-14 of the transfer phase with their roles re-

versed. That is, T commits to the codeword w = cv in step 11 (and

proves this). R picks and announces the subset in steps 12-13. T per-

forms the decommitments in step 12 and the proof in step 14.

5. T conducts steps 15-16 of the transfer phase with b0 and b1.

6. T conducts steps 17-18 of the transfer phase to commit to bv and prove

its validity. This value is equal to b1 ∧ v.

7. T uses FT→R
BCX to prove that d = bv.

8. T decommits to b0 = 0.

9. R outputs (proof ,T,R, sid, cid1, cid2, cid3,Y).

R performs an AND proof for T analogously.

5.2.1 Transfer Phase Details

This section explains in detail how T and R conduct the proofs performed in

the transfer phase.

Step 4: T commits to codewords c0, c1:

T commits to each codeword bit by bit (each codeword being m bits long).

That is, T selects a unique base cid tid and sends 2m messages (commit, sid′,

tid1
0, c

1
0), ..., (commit, sid′, tidm

0 , cm
0 ), (commit, sid′, tid1

1, c
1
1), ..., (commit,

sid′, tidm
1 , cm

1 ) to F T→R
BCX . F T→R

BCX sends the receipts (receipt, sid′, tid1
0), ...,

(receipt, sid′, tidm
0 ), (receipt, sid′, tid1

1), ..., (receipt, sid′, tidm
1 ) to R and

A.

Step 5: T proves that c0, c1 are codewords:

Since C is a linear code, T shows that c0 and c1 are codewords by showing

that the syndrome of each is zero. This requires O(m2) XOR proofs using
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F T→R
BCX . See [18] for further details.

Step 7: T and R perform an OT :

For all 1 ≤ i ≤ m, T and R create an FOT instance with sid sidi. T sends

the message (input, sidi, c
i
0, c

i
1) to FOT . R sends the message (choice, sidi,

choicei) to FOT . FOT sends the message (received, sidi, c
i
choicei

) to R and

the message (receipt, sidi) to T and A.

Step 9: T decommits to ci
0
, ci

1
for i ∈ I:

For i ∈ I, T sends the messages (decommit, sid′, tidi
0) and (decommit,

sid′, tidi
1) to F T→R

BCX . F T→R
BCX sends the messages (open, sid′, tidi

0, c
i
0) and

(open, sid′, tidi
1, c

i
1) to R and A. This process occurs (|I| = 2σm) times.

Step 11: R commits to w and proves w ∈ C:

R selects a unique base cid wid and sends m messages (commit, sid′′,wid1,

w1),...,(commit, sid′′,widm,wm) to F R→T
BCX . F R→T

BCX sends m receipts

(receipt, sid′′,wid1),...,(receipt, sid′′,widm) to T and A. R proves that w is

a codeword by showing that its syndrome is zero. This requires O(m2) XOR

proofs using F R→T
BCX . See [18] for further details.

Step 12: T decommits to ci
0, c

i
1 for i ∈ IT :

For i ∈ IT , T sends the messages (decommit, sid′, tidi
0) and (decommit,

sid′, tidi
1) to F T→R

BCX . F T→R
BCX sends the messages (open, sid′, tidi

0, c
i
0) and

(open, sid′, tidi
1, c

i
1) to R and A. This process occurs (|IT | = σm) times.

Step 14: R proves wi = ci
v for i ∈ IT :
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When ci
0

= ci
1
, wi reveals no information on v, so R simply decommits:

R sends the message (decommit, sid′′,widi) to F R→T
BCX and F R→T

BCX sends the

message (open, sid′′,widi,wi) to T and A.

When ci
0

= 0 and ci
1

= 1, this means that ci
v = v. So R shows that wi = v

by sending the message (prove, sid′′, 0,widi,vid) to F R→T
BCX , which responds

with the message (proof , sid′′, 0,widi,vid) for T and A.

When ci
0 = 1 and ci

1 = 0, this means that ci
v = v. So R shows that wi = v

by sending the message (prove, sid′′, 1,widi,vid) to F R→T
BCX , which responds

with the message (proof , sid′′, 1,widi,vid) for T and A.

In total, R sends |IT | = σm messages to F R→T
BCX .

Step 16: T proves b0 = h(c0) ⊕ p0, b1 = h(c1) ⊕ p1:

We assume h is a universal hash function defined as a random subset

{i1, i2, ..., ir} (for some r) of its input bits summed together modulo 2. There-

fore, h(c0) = ci1

0
⊕ci2

0
⊕ ...⊕cir

0
. So T proves that h(c0)⊕b0 = p0 by sending the

message (prove, sid′,p0, tid
i1

0 , tidi2

0 , ..., tidir

0 , cid0) to F T→R
BCX , which responds

with the message (proof , sid′,p0, tid
i1

0 , tidi2

0 , ..., tidir

0 , cid0) for R and A. T

repeats this for c1 and b1.

Step 17: R commits to bv = h(w) ⊕ pv:

R commits to bit bv by sending the message (commit, sid′′, cidn,bv) to

F R→T
BCX . F R→T

BCX sends the message (receipt, sid′′, cidn) to T and A.

Step 18: R proves bv = h(w) ⊕ pv:

This follows the same logic as the proofs for steps 14 and 16. If p0 = p1, R

uses the step 16 proof technique to show that h(w) ⊕ bv = p0 (or equivalently
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h(w)⊕ bv = p1). If p0 = 0 and p1 = 1, this means that h(w)⊕ bv ⊕ v = 0, so R

proves this with the step 14 proof technique. If p0 = 1 and p1 = 0, this means

that h(w) ⊕ bv ⊕ v = 1, so R proves this with the step 14 proof technique.

5.3 UC Security of the Hybrid Protocol

We now state the following theorem:

Theorem 5.3.1 The above protocol UC realizes FCOT in the (FBCX ,FOT )-

hybrid model.

Proof: In order to prove this theorem, we must show that for any adversary

A interacting with the protocol in the (FBCX , FOT )-hybrid model, there is an

adversary S interacting with FCOT in the ideal model such that no environment

Z can distinguish between the two models under any input. We construct such

an S as follows:

In general, S runs a simulated copy of A within its code (call this ASIM).

All inputs from Z are forwarded to ASIM ’s virtual input. All of ASIM ’s virtual

outputs are forwarded to S’s actual output.

When ASIM , having virtually corrupted a party, wants to use its ideal

functionalities FBCX or FOT , S plays the roles of these ideal functionalities.

This gives S the power of receiving simulated commitments, learning their

contents, decommitting however it chooses, faking XOR proofs, and learning

the full contents of any OT transfer.

We will first briefly consider security for commitments / decommitments

/ XOR proofs, then show security for a single transfer, then consider security

for a single AND proof, and finally show security for multiple operations.
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5.3.1 Security of Commitments, Decommitments, and

XOR Proofs

Since the hybrid protocol forwards commitments, decommitments, and XOR

proofs directly to appropriate FBCX instances, these operations are secure by

definition.

5.3.2 Security of a Single Transfer

Say that Z runs the protocol to perform a single transfer from T to R, where

T has committed inputs b0 and b1 and R has committed input v. S internally

runs a copy of ASIM , forwarding inputs from Z to ASIM ’s virtual input and

forwarding virtual outputs from ASIM to its own output. The rest of the sim-

ulation runs as follows:

Corrupted T , Uncorrupted R

The Simulation:

S plays the roles of FBCX , FOT , and an uncorrupted R for ASIM . In gen-

eral, S follows ASIM ’s code, simulating messages from R by running an honest

R’s program with input v = 0 (since S doesn’t know the actual value of v).

Whenever ASIM conducts a proof from T , S uses R’s code to check the proof’s

validity. If all proofs succeed (i.e. R would be convinced of the protocol’s

overall validity), S delivers TI ’s input in the ideal world to FCOT , which sends

an appropriate response to RI . Otherwise, S delivers nothing to FCOT , thus

preventing RI from producing output. S finally has TI output whatever ASIM

would have T output.
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Proof of Security:

S must simulate R’s messages without knowing R’s private input. This

is easy to do perfectly. In steps 3 and 8, R’s messages consist of randomly

chosen values that make no use of its private inputs. In steps 11, 14, 17,

and 18, R’s messages consist exclusively of commitments or XOR proofs using

F R→T
BCX . While these messages involve R’s private inputs, their contents are

hidden (since the messages are ideal) and the headers can easily be simulated.

Finally, in step 7, R provides input to FOT . This is simulatable for the same

reason.

S must also simulate messages from F T→R
BCX , F R→T

BCX , and FOT . S simulates

F T→R
BCX messages by verifying ASIM ’s inputs to F T→R

BCX and generating appropri-

ate responses. In other words, if ASIM ’s inputs would be acceptable to F T→R
BCX ,

S simulates an appropriate response. If ASIM ’s inputs would not be accept-

able, S withholds any response. S doesn’t have the same luxury for F R→T
BCX ,

where R’s inputs to the ideal functionality are unknown. But since R is hon-

est, S can simply assume R’s inputs are valid and generate F R→T
BCX responses

accordingly. FOT simulation is a straightforward combination of the other two

cases.

This results in a perfect simulation if A is semi-honest. If A is malicious,

it may generate c0, c1 as invalid codewords, pick the subset IT non-randomly,

generate h incorrectly, or use FOT with incorrect inputs. For the first and third

cases, T must prove that its computations are correct using F T→R
BCX . Since F T→R

BCX

is ideal, these proofs are perfectly complete and sound, i.e. T can’t cheat. So a

hybrid R would always detect malicious behavior and abort the protocol, and

S can likewise abort the ideal interaction. For the second case, choosing IT

non-randomly has no effect on the protocol because R’s subsequent messages
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look the same for any IT such that IT ∩ I = ∅.

For the fourth case, A may have T provide arbitrary inputs to each FOT

instead of ci
0 and ci

1 as required. As a result, R may receive an arbitrary

codeword cy that, when applied to h, causes R to commit to some by that has

no relation to b0 or b1. S cannot match this in the ideal interaction, where

FCOT guarantees that RI receives b0, b1, or nothing at all. However, this can

only occur if the verification in steps 8 - 10 succeeds in spite of the malicious

inputs. [18] shows that this happens with negligible probability in m.

We thus have an indistinguishable simulation (a perfect simulation that

fails with negligible probability) for this scenario.

Uncorrupted T , Corrupted R

The Simulation:

S plays the roles of FBCX , FOT , and an uncorrupted T for ASIM . In the

ideal interaction, FCOT informs RI that bit bv has been transferred (since S

controls RI , S also learns bv). FCOT also generates a receipt for TI , but S does

not deliver this message just yet. In the simulation, S follows ASIM ’s code and

simulates messages from T by running an honest T ’s program with inputs bv

(which S knows) set to the actual value of bv and bV (which S doesn’t know)

set to 0. Whenever ASIM has R conduct a proof, S uses T ’s code to check

the proof’s validity. If all proofs succeed (i.e. T would accept the interaction),

S finally delivers FCOT ’s receipt to TI in the ideal interaction. Otherwise, S

never delivers the receipt and TI outputs nothing. S then has RI output what-

ever ASIM would have R output.
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Proof of Security:

S must simulate T ’s messages while only knowing one of T ’s private inputs.

For the first 14 steps of the protocol, S can easily do this perfectly. This is

because these messages have nothing to do with T ’s private inputs. Rather,

they all rely on codewords that T chooses completely at random. S must also

simulate messages from F T→R
BCX , F R→T

BCX , and FOT , but, as already argued, this

is easy to do. In step 16, S must simulate a proof from T that b0 = h(c0)⊕ p0

and b1 = h(c1)⊕ p1. Although this step involves T ’s private inputs, it consists

entirely of XOR proofs using F T→R
BCX . These proofs can easily be faked because

the messages involved contain no information on b0 or b1.

This leaves us with step 15, the only part of the protocol not covered by

the above analysis. In this step, T announces a random privacy amplification

function h and values p0, p1 such that b0 = h(c0) ⊕ p0 and b1 = h(c1) ⊕ p1. As

described in the simulation, S generates these messages under the assumption

that bv = 0. Thus, S generates pv such that pv = h(cv) ⊕ 0. At this point in

the protocol, R is guaranteed not to know cv except with negligible probability

in m ([18]). Because h is a privacy amplification function, it follows that R

has no information on h(cv). So the probability distribution for pv is the same

regardless of whether bv = 0 or bv = 1.

We thus have an indistinguishable simulation (a perfect simulation that

fails with negligible probability) for this scenario.

Both Parties Corrupted

The entire protocol is a deterministic functionality of T ’s and R’s inputs

and random tapes. When both parties are corrupted, S has full access to all

of this information and can thus emulate the hybrid interaction exactly.
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Neither Party Corrupted

When neither party is corrupted, A passively sees a complete message tran-

script between T and R. S must simulate this transcript for ASIM . We do

this through a straightforward combination of the Corrupted T , Uncorrupted

R and Uncorrupted T , Corrupted R scenarios. However, in this case S must

simulate T ’s messages without knowing either of T ’s input bits (as opposed to

knowing bv but not bv). So S runs the simulation assuming b0 = 0 and b1 = 0.

The analysis for the Uncorrupted T , Corrupted R scenario remains valid even

with this difference. A may also try to interfere with the protocol by interrupt-

ing message delivery, possibly preventing T and R from producing output. S

can easily simulate this by following ASIM ’s actions and only delivering ideal

messages if ASIM allows the simulated protocol to complete.

Dynamic Corruption

Corrupting T:

Say that A corrupts T at some point in a hybrid interaction. All of T ’s

commitment, XOR proof, and OT messages to an ideal functionality reveal

no information on T ’s private input, so they do not need to be justified once

the input is known. If corruption occurs after steps 9 or 12, S has simulated

T ’s decommitments to some bits of c0 and c1. Since c0 and c1 are chosen

randomly, S justifies the decommitted values by setting simulated T ’s random

tape appropriately (note that known methods exist to generate uniformly ran-

dom codewords from uniformly random input bits in an easily reversible way).

If corruption occurs after step 13, S has simulated T ’s announcement of a

subset IT . This subset is also chosen randomly and is handled the same way.
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If corruption occurs after step 15, S has simulated T ’s announcement of

a random privacy amplification function h and values p0, p1 such that p0 =

h(c0) ⊕ b0 and p1 = h(c1) ⊕ b1. If R was corrupted at the time, then S

simulated these messages with the correct value of bv and with bv assumed to

be 0. If R was not corrupted, S simulated these messages by assuming that

both b0 and b1 are 0. After corruption of T , S learns the correct values of both

bits and must justify that the simulated messages are consistent with these

values.

We consider the case for bv: If bv = 0, S’s assumption regarding bv was

correct, so the simulated messages are consistent by default. If bv = 1, it

follows that pv 6= h(cv) ⊕ bv. This is a problem. But most of the bits of cv

were unknown to the adversary at the point of corruption. At most, T has

revealed m
2

+ 3σm
2

bits from the OT in step 7, decommitments in step 9, and

decommitments in step 12. This is because if any more bits had been revealed,

R would not have learned enough bits of cv to successfully complete the proof

in step 14 with non-negligible probability (as shown in [18]). Therefore, at

least m − (m
2

+ 3σm
2

) = m
2
− 3σm

2
≥ m

8
bits of cv are still unknown. If S can

generate a different codeword cS such that h(cS)⊕ pv = bv and the known bits

in cv are the same in cS, this produces the required consistency between bv and

the simulated messages for T .

Let ` be the number of known bits of cv and let I` ⊂ {1, ..., m} be the set of

indices specifying the positions of these bits in the codeword (where |I`| = `).

Because C is a linear code, it has a generator matrix G such that cv = wG for

some binary k-bit information word w (where both cv and w are represented

as vectors). Each codeword bit ci
v (for index i ∈ {1, ..., m}) is determined by

multiplying w by the i’th column in G. Let Gi be the i’th column in G. Since
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` of the bits of cv have been revealed, this means that the set of information

words producing codewords consistent with these values is defined as all k-bit

vectors w that satisfy wGi = ci
v for i ∈ I`. This is simply a series of ` linear

equations with at least 2n−` ≥ 2
m

8 solutions (note that because k > (1

2
+2σ)m,

we know that k > `).

S proceeds as follows: S finds a random solution wS from the above linear

system and calculates cS = wSG. If pv = h(cS) ⊕ bv, then S sets simulated

T ’s random tape such that cS would be its chosen codeword for bv. Otherwise,

S finds another solution to the linear system and tries again. The privacy

amplification properties of h guarantee that for each solution wS, p[h(wSG) =

pv ⊕ bv] = 1

2
. So after m tries, S is guaranteed to find a solution that works

except with probability 1

2m .1

The same analysis applies to bv if it was unknown before corruption.

Corrupting R:

Say that A corrupts R at some point in a hybrid interaction. Aside from R’s

messages to an ideal functionality, R sends two messages to T . If corruption

occurs after step 3, S has simulated R’s announcement of a randomly chosen

code C. This message is the exclusive result of random coin tosses, so S

justifies it with an appropriately set random tape. If corruption occurs after

step 8, S has simulated R’s announcement of the subset I to T . This message

is also the result of random coin tosses and is handled the same way.

1If we treat h as the cumulative XOR of a random subset Ih of the bits of cv, there is a
chance that Ih ⊆ I`. In such a case, it holds that for all valid solutions cS , h(cS) = h(cv).
This would be a problem. But the probability that this happens is 1

2m−` ≤ 1
2m/8

(because

for each i 6∈ I`, the probability that i ∈ Ih is 1
2 ).
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5.3.3 Security of a Single AND Proof

Note that an AND proof is simply a stripped down version of a transfer.

The main difference is that when T performs an AND proof, it doesn’t need

to execute steps 6-10 of a transfer because it already knows both codewords

(although we could keep these steps in if we wanted to). Therefore, security

follows from the security of a transfer operation.

5.3.4 Security under Multiple Operations

We now show security under multiple operations. Because commitment, de-

commitment, and XOR proofs are handled directly through FBCX functional-

ities, we only need to consider the transfer and AND proof operations.

When T and R perform a transfer, the only point where T could possibly

provide information useful to other operations is when T announces p0 and p1

in step 15. This is because all other messages that T produces are determined

exclusively by codewords c0 and c1, which are randomly chosen for each trans-

fer. So the codewords for a transfer have no meaning outside the scope of that

particular transfer. In step 15, T ’s messages partially depend on the private

values b0 and b1, which may be used among multiple operations. However,

these messages reveal no information on b0 and b1 unless the adversary learns

the corresponding codewords c0 and c1. The only way this can happen is if

the adversary controls R, thus learning cv. This reveals bv, but this value is

revealed by the protocol’s output anyway.

As for R, R’s messages in steps 3 and 8 are the results of completely random

coin tosses and thus trivially reveal no information useful to other operations.

The rest of R’s messages consist of invocations of ideal functionalities where
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the message contents don’t appear in the protocol’s public message transcript.

The above analysis also works for AND proofs due to their similar structure.

This completes the proof of theorem 5.3.1.
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Chapter 6

Universally Composable

Multi-Party Computation

In this chapter we show how to achieve UC two-party and multi-party compu-

tation using UC COT. This essentially consists of plugging our COT protocol

into the circuit evaluation structure specified in [30].

6.1 Two-Party Computation

6.1.1 1-out-of-4 COT

Two-party computation can be achieved with 1-out-of-4 COT (defined by the

ideal functionality F4COT ). This is defined as FCOT with the change that sender

T provides four committed input bits to a transfer and receiver R provides two

committed input bits. After the transfer completes, R is committed to exactly

one of T ’s inputs. We show how to realize F4COT in the FCOT -hybrid model:

82



Commitment, Decommitment, AND/XOR Proofs:

T and R share a single FCOT instance and forward these tasks directly to that

instance.

Transfer (T to R):

1. Z provides T with input (transfer,T,R, sid, cidn, cid00, cid01, cid10,

cid11,vid0,vid1) (where T is committed to bits b00, b01, b10, b11 and R

is committed to bits v0, v1).

2. T chooses random bits c0, c1 and sets

b′00 = b00 ⊕ c0 b′01 = b01 ⊕ c1

b′10 = b10 ⊕ c0 b′11 = b11 ⊕ c1

3. T commits to b′00, b′10, b′01, b′11, c0, c1 and uses FCOT to prove the above

relationships.

4. T and R use FCOT to transfer b′00 and b′10 with choice bit v0.

5. T and R use FCOT to transfer b′01 and b′11 with choice bit v0.

6. T and R use FCOT to transfer c0 and c1 with choice bit v1.

7. R ends up committed to b′v00, b′v01, and cv1
. R uses FCOT to commit to

bv0v1
and prove that bv0v1

= b′v0v1
⊕ cv1

.

8. Both parties output appropriate receipts.

Transfer (R to T ):

Transfers from R to T operate exactly the same way as transfers from T to R.

During a transfer, R learns bv0v1
and only bv0v1

. For example, assume that

v0 = 0 and v1 = 1. Because v0 = 0, R only learns b′
00

and b′
01

. Because v1 = 1,

R learns c1 but not c0. Therefore, R can determine b01 but not b00.

Security for this protocol relies on FCOT , which provides ideally secure

transfers and proofs. Since T and R interact exclusively through FCOT , this
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makes simulation easy for an ideal adversary S that plays the role of FCOT .

We therefore state the following theorem without a detailed proof:

Theorem 6.1.1 The above protocol UC realizes F4COT in the FCOT -hybrid

model.

6.1.2 Two-Party Circuit Evaluation

Following the structure used in [30], two-party computation consists of a three-

phase circuit evaluation process in the F4COT -hybrid model. Say that parties

P1 and P2 want to jointly compute an ideal two-party functionality F with

security parameter m. F can be represented as a circuit family CF , where

Fi ∈ CF is the circuit for F with security parameter i. P1 and P2 agree to

evaluate Fm through the following (informal) protocol:

Initialization:

Whenever P1 receives an input bit a †, P1 shares it with P2 by choosing

a random bit a1, setting a2 = a1 ⊕ a, committing to a1 (using F4COT ) and

sending a2 to P2. P2 then commits to a2 and proves that this equals the value

received by P1 (by committing to a′
2 = a2 and a′′

2 = 0, proving a2 ⊕ a′
2 = a′′

2,

then opening a′
2

and a′′
2
).

Whenever P2 receives an input bit b, the same process occurs with roles

reversed.

Thus, all inputs x are shared between P1 and P2 such that P1 commits to

x1 and P2 commits to x2 where x1 ⊕ x2 = x.

†Recall that reactive functionalities allow inputs to become available throughout a com-
putation.
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Evaluation:

P1 and P2 evaluate Fm on a gate-by-gate basis. Without loss of generality,

we assume that each gate is an AND gate or an XOR gate with exactly two

inputs and one output. Let gate G compute the relation c = Y (a, b) for

Y ∈ {AND, OR}, input bits a and b, and output bit c. Evaluation starts with

P1 committed to a1, b1 and P2 committed to a2, b2 such that a1 ⊕ a2 = a and

b1 ⊕ b2 = b. Evaluation ends with P1 committed to c1 and P2 committed to c2

such that c1 ⊕ c2 = c. G is evaluated as follows:

P1 selects c1 randomly and commits to it. This fixes c2 = c1 ⊕ Y (a1 ⊕

a2, b1 ⊕ b2). Since P1 doesn’t know a2 or b2, P1 constructs the following table

over all possibilities:

a2 b2 c2

0 0 c00
2 = c1 ⊕ Y (a1, b1)

0 1 c01
2 = c1 ⊕ Y (a1, b1 ⊕ 1)

1 0 c10
2 = c1 ⊕ Y (a1 ⊕ 1, b1)

1 1 c11
2

= c1 ⊕ Y (a1 ⊕ 1, b1 ⊕ 1)

P1 then commits to c00
2 , c01

2 , c10
2 , c11

2 and uses F4COT to prove that these

commitments satisfy the above table (since Y is an AND or XOR relation, this

falls within F4COT ’s proof capabilities). Finally, P1 and P2 conduct a transfer

with P1’s inputs as c00

2
,c01

2
, c10

2
, c11

2
and P2’s inputs as a2,b2. This results in P2

being committed to the appropriate c2 value.

Output:

Whenever P1 should produce an output c, P2 decommits to its share c2.

P1 then computes c = c1 ⊕ c2 and outputs c.
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Whenever P2 should produce an output, the same process occurs with roles

reversed.

We now state the following theorem:

Theorem 6.1.2 For any two-party ideal functionality F , the above protocol

UC realizes F in the F4COT -hybrid model against malicious, adaptive adver-

saries

Proof: [30] defines a similar 1-out-of-4 COT ideal functionality known as

F 4

ECOT and proves that the above protocol UC realizes F in the F 4

ECOT -hybrid

model. There are exactly two differences between their definition and ours.

One, their definition supports proofs on arbitrary binary relations, whereas

ours only supports proofs on AND and XOR relations. Two, their definition

supports proofs on four bits (i.e. R(a, b, c) = d), whereas ours only supports

proofs on three bits (i.e. R(a, b) = c). These differences only arise in the part

of the protocol that proves the evaluation table is correct. Their definition

supports proofs for arbitrary gates and requires one proof per table row. Our

definition only supports AND and XOR gates and requires multiple proofs per

row. But these limitations pose no problems. Restricting ourselves to AND

and XOR gates does not reduce the class of computable circuits. Performing

multiple proofs instead of a single proof has no security consequences due to

the ideal nature of each proof. Therefore, the analysis in [30] remains valid

when used with F4COT .
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6.2 Multi-Party Computation

Multi-party computation is almost identical to two-party computation. The

main difference is that all operations must be verified by many parties instead

of just one. We show how to extend our two-party protocols into the multi-

party setting. Parties are assumed to have access to a broadcast channel. This

is provided by the ideal functionality FBC . All “real” messages (i.e. messages

that are not sent to or from an ideal functionality) are assumed to be sent

through FBC . See [12] for a formal definition of FBC and further discussion.

6.2.1 Multi-Party BCX

Given n parties P1, ..., Pn, the multi-party version of FBCX (called FmBCX) is

defined as FBCX with the change that commitment, decommitment, and proof

receipts are sent to all n parties. In other words, commitments are made to

an entire group instead of a single party. FmBCX operates in the (FCOM ,FBC)-

hybrid model.

We implement FmBCX as follows: Pi commits to bit b by making separate

BCX commitments to b for each Pj 6=i. Pi then proves that all of these commit-

ments are equal by showing that for each Pj 6=i and Pk 6=j,k 6=i, the commitment

to Pj equals the commitment to Pk. This is accomplished through a two-party

XOR proof, with Pj and Pk collaboratively choosing the random values for

protocol steps 9 and 11. In all, the complete commitment requires O(n2) BCX

proofs. [18] illustrates a more efficient method that requires O(n) proofs.

Pi decommits by separately decommitting to each Pj 6=i. Pi performs an

XOR proof by performing a separate XOR proof for each Pj 6=i.

We claim that this protocol UC realizes FmBCX . The proof of security
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follows from that of the two-party protocol.

6.2.2 Multi-Party COT

Given n parties P1, ..., Pn, the multi-party version of FCOT (called FmCOT ) is

defined as FCOT with the change that commitment, decommitment, proof, and

transfer receipts are sent to all n parties (although only the designated receiver

learns the value of a transferred bit).

We implement FmCOT by making three changes to the two-party COT

protocol. First, parties run in the (FmBCX ,FOT ,FBC)-hybrid model instead

of the (FBCX ,FOT )-hybrid model. Second, when sender Pi and receiver Pj

perform a transfer, the code in protocol step 3 is collaboratively chosen by all

Pk 6=i. Third, when Pi and Pj perform a transfer, the subset IT in step 12 is

collaboratively chosen by all Pk 6=j. These changes guarantee that verification

checks are done by all parties instead of only the transfer participants. So even

if both the sender and receiver are corrupted, they cannot falsify a transfer

without detection. AND proofs are modified in an analogous way.

We claim that this protocol UC realizes FmCOT . The proof of security

follows from that of the two-party protocol. We define and assert security for

the multi-party version of F4COT (called Fm4COT ) analogously.

6.2.3 Multi-Party Circuit Evaluation

Given n parties P1, ..., Pn computing ideal functionality F with security pa-

rameter m, F is evaluated as follows:

Initialization:

Whenever Pi receives an input a, Pi shares this input by choosing random
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values aj for j : 1 ≤ j 6= i ≤ n, setting ai = a ⊕
⊕

j 6=i aj , committing to ai,

and sending each Pj 6=i the value aj . Each Pj then commits to aj and proves

to all parties that this equals the value received by Pi.

Evaluation:

Fm is evaluated on a gate-by-gate basis. Let G be a gate with inputs

a =
⊕n

i=1
ai, b =

⊕n

i=1
bi and output c =

⊕n

i=1
ci. If G is an XOR gate, each

party Pi commits to ci = ai⊕ bi and proves this relation. If G is an AND gate,

we observe that (
⊕n

i=1
ai)∧(

⊕n
i=1

bi) =
⊕n

i,j=1
(ai∧bj). So each pair of parties

Pi, Pj conducts a two-party AND evaluation on its input shares (when i = j,

Pi internally computes ai ∧ bi and proves the result is correct). Each Pi then

commits to ci as the XOR sum of all its two-party results and proves that this

value is correct.

Output:

Whenever Pi should produce an output c, each Pj 6=i decommits to cj . Pi

then computes c =
⊕n

j=1
cj and outputs c.

We now state the following theorem:

Theorem 6.2.1 For any multi-party functionality F , the above protocol UC

realizes F in the Fm4COT -hybrid model against malicious, adaptive adversaries.

The proof of this theorem follows from the proof for the two-party version.

See [30] and [12] for more detailed analysis.
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Chapter 7

Conclusion

Let FAUTH be the ideal functionality for authenticated communication (see

[7] for the definition and detailed description of FAUTH). We state our final

conclusion in the following theorem:

Theorem 7.0.2 For any multi-party functionality F , there exists a protocol

that UC realizes F in the (FCOM ,FOT ,FAUTH)-hybrid model against malicious,

adaptive adversaries with no additional assumptions.

Proof: Theorem 6.2.1 describes a UC protocol for F in the Fm4COT -hybrid

model. Section 6.2.2 shows that Fm4COT can be UC realized in the

(FmBCX ,FOT ,FBC)-hybrid model. Applying corollary 2.2.1 (from the UC com-

position theorem) produces a UC protocol for F in the (FmBCX ,FOT ,FBC)-

hybrid model. Section 6.2.1 shows that FmBCX can be UC realized in the

(FCOM ,FBC)-hybrid model. Applying corollary 2.2.1 produces a UC protocol

for F in the (FCOM ,FOT ,FBC)-hybrid model. FBC is known to have an imple-

mentation that requires no assumptions (see [12]), so applying corollary 2.2.1

produces a UC protocol for F in the (FCOM ,FOT )-hybrid model. However,

our definition of the UC framework in chapter 2 assumes ideally authenticated
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communication between parties. This is practically achieved by operating in

the FAUTH-hybrid model, so we add FAUTH as a basic primitive. This results

in a protocol for F in the (FCOM ,FOT ,FAUTH)-hybrid model.

Because our protocol operates in the (FCOM ,FOT ,FAUTH)-hybrid model,

it uses its bit commitment, oblivious transfer, and authentication primitives

as black-boxes by definition. That is, each of these primitives is modeled by

an ideal functionality that performs its computations internally and privately

from the protocol participants. Parties can use ideal functionalities but cannot

“see into” them. This in combination with corollary 2.2.1 guarantees that we

can plug in any UC implementation for these primitives and retain security. So

the assumptions required for our protocol reduce to the assumptions required

for UC commitment, UC oblivious transfer, and UC authentication. This

makes computation with quantum channels, noisy channels, and other non-

standard computational components feasible if we can find appropriate UC

commitment, OT, and authentication implementations.

This contrasts with the protocol in [12], which is limited to a standard

computational setting. Their protocol uses a “compiler” to convert security

against semi-honest adversaries into security against malicious adversaries. Be-

cause the compiler requires non-black-box access to the semi-honest protocol,

it restricts the class of valid protocols to those that meet the compiler’s require-

ments. Specifically, for semi-honest protocol Π, the compiler requires access to

a “next message” function NMΠ(x, r, M) = m that guarantees a party running

Π would produce message m given initial input x, random input r, and mes-

sage history M . This function is then used with zero-knowledge proofs to make

dishonest parties follow the protocol correctly. Such a function is available for
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all programs based on Turing machines running in a classical computational

setting. But it is not necessarily available for quantum programs, programs

based on noisy channels, programs where the “source code” is unavailable, or

any other programs with fundamental uncertainty in their behavior. It is also

not necessarily available for those relativized complexity classes where oracles

cannot be modeled as basic Turing machines.

Tangible results for our protocol rely on finding effective UC implemen-

tations for bit commitment, OT, and authentication. There has been sub-

stantial research in UC commitment in the standard computational setting.

[10] formalizes the notion of UC commitment and presents non-interactive

commitment schemes based on trapdoor permutations and non-malleable en-

cryption. [12] presents a UC commitment scheme based solely on trapdoor

permutations. [23] presents a highly efficient UC commitment scheme with

strong binding and hiding properties based on number-theoretic assumptions.

UC oblivious transfer has received much less attention. [12] presents an OT

protocol based on number-theoretic assumptions that is secure only against

semi-honest adversaries. To our knowledge, this is the only known result for

OT (although we can use the COT protocol from [30] and decommit to all in-

puts and outputs to achieve UC OT based on number-theoretic assumptions).

For authentication, [7] shows how to achieve UC authentication from public

key cryptography and ideal key distribution. [8] develops a more thorough

framework that provides unconditionally secure UC authentication given ideal

signature and “certification authority” functionalities.

A natural direction for future research is to conduct a definitive study

on oblivious transfer in the UC framework. OT is an important and widely

applicable primitive that deserves a detailed understanding. There is also
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substantial opportunity to explore universal composability in non-standard

computational settings. [43] has asserted that the UC framework extends

naturally into the quantum setting. Results from [22] strongly suggest the

feasability of secure two-party and multi-party computation in a quantum UC

framework. But to date there are no concrete results in this domain.
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