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Résumé

Les résultats presentés dans le mémoire montrent comment on peut convertir

une mise en gage de bit quantique statistiquement liante et calculatoirement

camouflante en une mise en gage de bit quantique calculatoirement liante et

statistiquement camouflante. Pour un paramètre de sécurité n, la construc-

tion de la mise en gage statistiquement camouflante requiert O(n2) appels à

la mise en gage statistiquement liante. Une conséquence de la réduction est

qu’une mise en gage de bit quantique calculatoirement liante et statistique-

ment camouflante peut se baser sur l’existence de n’importe quelle famille

de fonctions à sens unique quantiques. On a découvert aucune réduction

équivalente dans le monde classique.

Mots-clés: cryptographie quantique, mise en gage de bit, transfert incon-

scient, fonction à sens unique.

i



Abstract

The results presented in the thesis show how to convert a statistically bind-

ing but computationally concealing quantum bit commitment scheme into a

computationally binding but statistically concealing scheme. For a security

parameter n, the construction of the statistically concealing scheme requires

O(n2) executions of the statistically binding scheme. As a consequence of the

reduction, statistically concealing but computationally binding quantum bit

commitments can be based upon any family of quantum one-way functions.

Such a construction is not known to exist in the classical world.

Keywords: quantum cryptography, bit commitment, oblivious transfer,

one-way function.
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• Louis Salvail avec qui j’ai partagé les joies de la recherche ainsi que les
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Chapter 1

Introduction

Throughout human history, groups of individuals have tried to protect in-

formation while others have tried to gain access to it. These two oppos-

ing behaviors define the essence of cryptology and relate to cryptography

and cryptanalysis respectively. More formally, cryptography is the study of

mathematical techniques used to enforce information security. On the other

hand, cryptanalysis is the study of mathematical techniques used to defeat

cryptographic techniques and, more generally, information security services.

Cryptology is simply the combination of both disciplines.

In 1969, for the first time quantum information processing was foreseen as

a possible way to better accomplish cryptologic tasks [24]. It was the birth of

quantum cryptology. Since then, outstanding contributions from quantum

physics were made to both cryptography and cryptanalysis. Probably the
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most illustrious achievement in quantum cryptography was the discovery of

a quantum key distribution protocol [2]. Using quantum information we can

achieve an efficient QKD with unconditional security (i.e. do not depend

on any computational assumption). On the other, quantum computation

provided cryptanalysts with powerful tools such as an algorithm to factor

or compute discrete logarithm efficiently [23]. Another remarkable result for

quantum cryptanalysis was the quadratic speed-up for database search [13].

Researchers learned the hard way that quantum cryptography had also

its limitations. In the beginning of the 90s, the scientific community was con-

vince that bit commitment could be achieved with security relying solely on

laws of quantum mechanics [5]. A bit commitment scheme is a cryptographic

task involving two participants Alice and Bob. Alice wants to commit to a

bit b but without Bob knowing the bit until she decides to open the com-

mitment. We say a bit commitment protocol is binding if Alice is unable to

change her mind and concealing if Bob cannot determine b before the open-

ing of the commitment. A cold rain fell on the scientific community when

unconditional security for quantum bit commitment was proven impossible

[19, 20, 18].

Though unconditional security was impossible, one could still hope to
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base the security of quantum bit commitment on a computational assump-

tion. A quantum one-way function must be easy to compute with a quantum

computer but hard to invert even using quantum computations. Since there

is a difference of power between classical and quantum computers, we do

not have direct inclusion between the two respective sets of one-way func-

tions. In computationally secure bit commitment, we have to sacrifice the

unconditional security of only one of the two participants. Hence, there are

two possible flavors: unconditionally binding and computationally concealing

or computationally binding and unconditionally concealing. The two flavors

allow different cryptographic applications. For example, computational zero-

knowledge proofs [11, 12] can be constructed from unconditionally binding

commitments whereas perfect zero-knowledge arguments [4] require uncon-

ditionally concealing commitments. Arguments can be used whenever the

verifier is not restricted in computing power and proofs can be used when-

ever the prover has unlimited computing power. Arguments are preferable

in some settings, since a dishonest prover for an argument must break the

complexity assumption on-line in order to prove a false theorem, whereas

a dishonest verifier involved in a computational zero-knowledge proof can

spend unlimited time after the end of the protocol in order to extract ad-
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ditional knowledge. Classically, the two flavors seem to require different

computational assumptions.

In the case of unconditionally binding commitments, the existence of a

family of classical one-way function is sufficient. The reduction is divided

into two parts: the existence of a one-way function implies the existence

of a pseudo-random bit generator [15, 14] and the existence of a pseudo-

random generator implies the existence of a unconditionally binding and

computationally concealing bit commitment [21]. The two part proof also

holds in the quantum setting.

For unconditionally concealing commitments, the weakest computational

assumption for which a reduction was found is the existence of a family of

classical one-way permutations [22]. However, the proof is not extendable

to the quantum world [9]. Nevertheless, it was proven that computationally

binding and unconditionally concealing quantum bit commitment can be

based on any family of quantum one-way permutations [9]. Unfortunately,

although we have candidates for quantum one-way functions [10], none of

them is a permutation. It was still to be establish whether computationally

binding and unconditionally concealing quantum bit commitment could rely

on a weaker computational assumption, that is quantum one-way function.
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New Results. Our main contribution consists in showing how any statis-

tically binding quantum bit commitment scheme can be transformed into a

statistically concealing one. Informally, statistical security is defined as un-

conditional security where an adversary is allowed a negligible probability of

cheating (as opposition to perfect security). Our result relies heavily upon

the qot protocol for quantum 1-out-of-2 oblivious transfer [7, 6]. The qot

protocol can be seen as a construction of a secure quantum oblivious transfer

from a black-box for bit commitment [7, 6, 25]. Therefore, unlike the classi-

cal case, there exists a black-box reduction of quantum oblivious transfer to

bit commitment. The construction of a statistically concealing quantum bit

commitment scheme is obtained by using the qot protocol together with a

statistically binding but otherwise computationally concealing commitment

scheme (this commitment will be called initial commitment in the following).

Using the qot protocol that way, we construct a simple quantum commit-

ment scheme that we show statistically concealing and computationally bind-

ing. The construction requires O(n2) executions of the initial commitment

scheme for n a security parameter. As a by-product, we show that the qot

protocol is an oblivious transfer that statistically hides one out of the two bits

sent and computationally conceals the receiver’s selection bit whenever it is
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used together with statistically binding but computationally concealing com-

mitments instead of perfect commitments given as black-boxes. This extends

the security result for the qot protocol of [7, 6, 25] to this case. Our reduc-

tion of an adversary for the concealing condition of the initial commitment

scheme to an adversary for the binding condition of the resulting commit-

ment scheme is an expected polynomial-time black-box reduction. Although

quantum information has peculiar behaviors adding complexity to the se-

curity proofs of cryptographic protocols, we shall see that using quantum

oblivious transfer as a primitive allows to return to an essentially classical

situation. This might be of independent interest for the construction and

analysis of complex quantum protocols.

One consequence of our result is that statistically concealing but computa-

tionally binding quantum commitment scheme can be based upon any quan-

tum one-way function using Naor’s construction [21] from pseudo-random

generators. Only the ability to send and receive BB84 qubits [2] is required

in order to get the new flavor. The scheme can therefore be implemented

using current technology. Our result gives more evidence that computational

security in 2-party quantum cryptography enjoys different properties than

its classical counterpart [16].
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The work presented in the thesis largely overlaps the content of a paper

written in collaboration with Claude Crépeau and Louis Salvail and accepted

for Eurocrypt 2001. Although the original ideas for the security proofs are
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and formalizing the reasoning.
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Chapter 2

Preliminaries

2.1 Notations and Model of Computation

For simplicity, we shall often drop the security parameters associated with

protocol executions. When protocols and adversaries are modeled as circuits

they should be understood as infinite families of circuits, one circuit for each

possible values of the security parameters. We define poly(n) =
⋃

k≥0 O(nk)

as the set of all functions upper bounded by a positive polynomial. We say a

positive function f(n) is negligible if for all p(n) ∈ poly(n) and n sufficiently

large we have f(n) < 1
p(n)

. Accordingly, we say that a function g(n) is

overwhelming if 1− g(n) is negligible.

Let Hn denote a n-dimensional Hilbert space, that is a complete inner

product vector space over the complex numbers. The basis {|0〉, |1〉} denotes

the computational or rectilinear or “+” basis for H2. When the context
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requires, we write |b〉+ to denote the bit b in the rectilinear basis. The

diagonal basis, denoted “×”, is defined as {|0〉×, |1〉×} where |0〉× = 1√
2
(|0〉+

|1〉) and |1〉× = 1√
2
(|0〉 − |1〉). The states |0〉, |1〉, |0〉× and |1〉× are the

four BB84 states. For any x ∈ {0, 1}n and θ ∈ {+,×}n, the state |x〉θ is

defined as ⊗n
i=1|xi〉θi where ⊗ denotes the tensor product. An orthogonal

(or von Neumann) measurement of a quantum state in Hm is described by

a set of m orthogonal projectionsM = {Pi}mi=1 acting in Hm thus satisfying

∑

i Pi = 11m for 11m denoting the identity operator in Hm. Each projection

or equivalently each index i ∈ {1, . . . , m} is a possible classical outcome for

M.

We model quantum algorithms by quantum circuits built out of a uni-

versal set of quantum gates UG = {CNot, H, RQ}, where CNot denotes the

controlled-not, H the one qubit Hadamard gate, and RQ is an arbitrary one

qubit non-trivial rotation specified by a matrix containing only rational num-

bers [1]. The time-complexity of a quantum circuit C is the number of ele-

mentary gates ‖C‖UG in C. In addition to the set of gates UG, a quantum

circuit is allowed to perform one kind of von Neumann measurement: M+ =

{P+
0 ,P

+
1 } where P+

0 = |0〉〈0| and P+
1 = |1〉〈1| are the two orthogonal projec-

tions of the computational basis. M+ is sometimes called the measurement in
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the rectilinear or computational basis. Another von Neumann measurement

used by the receiver in the BB84 quantum coding scheme is the measure-

ment in the diagonal basis M× = {P×0 ,P
×
1 } for P×0 = 1

2
(|0〉+ |1〉)†(|0〉+ |1〉)

and P×1 = 1
2
(|0〉 − |1〉)†(|0〉 − |1〉) where † denotes the transposed-complex

conjugate operator. The Hadamard gate H is sufficient to build measurement

M× ∈ UG from M+ since M× = {H†P+
0 H, H

†P+
1 H}. If |Ψ〉 ∈ HA ⊗ HB is a

composite quantum state, we write PAx |Ψ〉 (i.e. PAx ⊗ 11B
|Ψ〉) for the projec-

tor applied to the registers in HA along the state |x〉 for x ∈ {0, 1}Dim(HA).

The classical output L(|Ψ〉) of circuit L is the classical outcomes of all von

Neumann measurements M+ taking place during the computation L|Ψ〉. If

the circuit L accepts two input states of the form |Ψ0〉 ⊗ |Ψ1〉 we may write

similarly L(|Ψ0〉, |Ψ1〉) for the classical output.

A 2-party quantum protocol is a pair of interactive quantum circuits

(A,B) applied to some initial product state |xA〉
A ⊗ |xB〉

B representing A’s

and B’s inputs to the protocol neglecting to write explicitly the states of A’s

and B’s registers that do not encode their respective input to the protocol

(thus all in initial states |0〉). Also, we shall often write |xA〉
A|xB〉

B for the

product state without explicitly writing the tensor product ⊗. Since commu-

nication takes place between A and B, the complete circuit representing one
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protocol execution may have quantum gates in A and B acting upon the same

quantum registers. We write A� B for the complete quantum circuit when

A is interacting with B. The final composite state |Ψfinal〉 obtained after

the execution is written |Ψfinal〉 = (A � B)|xA〉
A|xB〉

B. Protocols are to be

understood, although not explicitly stated, as specified by families of circuits,

one for each possible value of the security parameter n. If for a participant

(adversary) P given 1n as input there exists a classical Turing machine that

efficiently computes the description of the circuit Pn to be run for security

parameter n then P is said to be a uniform participant (adversary); that is

P is modeled by a uniform family of quantum circuits. Otherwise, P is said

to be non-uniform.

2.2 Cryptographic Primitives

The two relevant quantum primitives we shall use heavily in the following are

quantum bit commitment and quantum oblivious transfer. They are defined

as straightforward quantum generalizations of their classical counterparts.

2.2.1 Quantum Bit Commitment

A quantum bit commitment scheme is defined by two quantum protocols

((CA, CB), (OA, OB)) where (CA, CB) is a pair of interactive quantum cir-
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cuits for the committing stage and (OA, OB) is a pair of interactive quantum

circuits for the opening stage (i.e. A being the committer and B the re-

ceiver). The committing stage generates the state |Ψb〉 = (CA�CB)|b〉A|0〉B

upon which the opening stage is executed: |Ψfinal〉 = (OA � OB)|Ψb〉. The

binding condition of a quantum bit commitment is slightly more general

than the usual classical definition. An adversary Ã = (CÃ, OÃ) is such that

|Ψ̃〉 = (CÃ�CB)|0〉Ã|0〉B is generated during the committing stage. The dis-

honest opening circuit OÃ tries to open b ∈ {0, 1} given as an extra input bit

|b〉Ã. Given the final state |Ψ̃final〉 = (OÃ�OB)|b〉Ã|Ψ̃〉 we define sb(n) as the

probability to open b with success. More precisely, sb(n) = ‖PBOK,b|Ψ̃final〉‖
2

where PBOK,b is Bob’s projection operator on the subspace leading to accept

the opening of b. An adversary Ã of the binding condition who can open

b = 0 with probability at least s0(n) and open b = 1 with probability at least

s1(n) will be called a (s0(n), s1(n))–adversary against the binding condition.

We define the concealing and binding criteria similarly to [9]:

(computationally) binding: There exists no quantum (s0(n), s1(n))–ad-

versary Ã and positive polynomial p(n) such that s0(n)+s1(n) ≥ 1+ 1
p(n)

for n sufficiently large. The scheme is computationally binding if we add

the restriction that ‖Ã‖UG ∈ poly(n).
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(computationally) concealing: For every interactive quantum circuit C̃B

for the committing stage, all quantum circuits LB̃ acting only upon

B̃’s registers, all positive polynomials p(n) and n sufficiently large,

P
(

LB̃((CA � CB̃)|b〉A|0〉B̃) = b
)

< 1
2
+ 1

p(n)
where the probabilities are

taken over b ∈R {0, 1}. The scheme is computationally concealing if we

add the restriction ‖CB̃‖UG + ‖LB̃‖UG ∈ poly(n).

What we call concealing and binding is in fact statistically concealing and

statistically binding respectively and not perfectly concealing and perfectly

binding.

2.2.2 Quantum Oblivious Transfer

In the following, we shall restrict our attention to 1–2 quantum oblivious

transfer (i.e. one-out-of-two oblivious transfer) [6, 8]. A 1–2 quantum oblivi-

ous transfer protocol involves a sender Alice holding input bits (b0, b1) and a

receiver Bob holding input c ∈ {0, 1}. Alice sends (b0, b1) to Bob in such a

way that Bob receives only bc and Alice does not get to know c. The receiver

must not be able to find bc for at at least one c ∈ {0, 1} and even given

bc. More precisely, a protocol (A,B) for 1–2 quantum oblivious is such that

|Ψ(b0, b1, c)〉 = (A � B)|b0b1〉
A|c〉B allows Bob to recover bc from applying
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M+ upon one of his registers. A protocol for 1–2 quantum oblivious transfer

is (computationally) secure if it is both

(computationally) secure against the sender: For all quantum sender

Ã, all quantum circuit LÃ acting only on Ã’s registers, all positive poly-

nomials p(n) and n sufficiently large, P
(

LÃ((Ã�B)|00〉Ã|c〉B) = c
)

<

1
2
+ 1

p(n)
where the probabilities are taken over c ∈R {0, 1}. The security

is computational if we add the restriction ‖LÃ‖UG + ‖Ã‖UG ∈ poly(n).

(computationally) secure against the receiver: For every quantum re-

ceiver B̃, all quantum circuits LB̃ acting only on B̃’s registers, all pos-

itive polynomials p(n) and n sufficiently large, there exists a random

variable c with possible outcome 0 or 1 depending on (A�B̃)|b0b1〉
A|0〉B̃

satisfying P
(

LB̃((A� B̃)|b0b1〉
A|0〉B̃, |bc〉

B̃) = bc̄

)

< 1
2
+ 1

p(n)
where the

probabilities are taken over b0, b1 ∈R {0, 1}. The security is computa-

tional if we add the restriction ‖B̃‖UG + ‖LB̃‖UG ∈ poly(n).

As for bit commitment, the security against the sender and the security

against the receiver is not perfect but statistical.
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2.3 Tools

Let X ∼ B(p) be a Bernoulli random variable with probability of success p

(when X = 1). The following tools are used on multiple occasions in the

security proofs presented in chapter 4.

2.3.1 Hybrid Argument

Let X = {X0, X1, . . . , Xn} be a set of independent random variables Xi ∼

B(pi) for 0 ≤ i ≤ n. Then, there exist 0 ≤ k < n such that,

|pk+1 − pk| ≥
|pn − p0|

n
. (2.1)

The result also holds without the absolute values, but is non-trivial only if

pn > p1. This simple argument is also used in other cryptographic proofs

[14].

2.3.2 Bernshtein’s Law of Large Numbers

Theorem 2.3.1 (Bernshtein) Let X1, X2, . . . , Xn ∼ B(p) be independent

random variables following a Bernoulli distribution with p as the probability

parameter. Then for any 0 < ε ≤ p(1− p),

P

(
∣

∣

∣

∣

∑n

i=1 Xi

n
− p

∣

∣

∣

∣

≥ ε

)

≤ 2e−nε
2
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In particular, Bernshtein’s law of large numbers ensures us that we can

estimate the probability of an event with an error bounded by any polynomial

except with negligible probability using a polynomial number of random

variables. For example, if we want to estimate p with an error bounded by

ε = 1
p(m)

then with n = dmp(m)2e random variables we obtain a correctly

bounded estimate with probability at least 1− 2e−m.

2.3.3 Estimating Polynomial Variation

Suppose we have a quantum circuit Rn allowing to sample from a Bernoulli

distribution with unknown parameter pn = q + 1
p(n)

where 0 ≤ q < 1 is a

known constant and p(n) is some positive polynomial. That is P (Rn = 1) =

pn and P (Rn = 0) = 1−pn independently for each execution of Rn. The follow-

ing classical procedure uses the quantum sampling circuit Rn as a black-box

to provide a lower bound 1
gn

for 1
p(n)

with overwhelming probability:

LowBound(Rn, q, n)

1. p̃n = 0; gn = 1;

2. While p̃n ≤ q + 2
gn

Do

(a) gn = gnn;

16



(b) sampling = ng2
n;

(c) success = 0;

(d) For 1 ≤ i ≤ sampling Do success = success + Rn;

(e) p̃n = success
sampling

;

3. Return: 1
gn

.

Lemma 2.3.2 For n sufficiently large, LowBound(Rn, q, n) returns 1
gn

such

that 1
n2p(n)

< 1
gn
≤ 1

p(n)
except with probability 2−αn for α > 0 constant and

after calling Rn an expected O(n5p(n)2) times.

Proof: For n sufficiently large, there exist a constant c such that

1

nc+1
<

1

p(n)
≤

1

nc
. (2.2)

Hence, there exists at least one constant k such that for all i ≥ k + 2 and

j ≤ k

3

ni
<

1

p(n)
≤

1

nj
. (2.3)

Let k′ be the smallest constant satisfying (2.3).

By Bernshtein’s law of large numbers, the obtained estimate p̃n(t) in the

t-th repetition of step 2 has a bounded error 1
gn(t)

= 1
nt

with probability at
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least 1− 2e−n. So, for j ≤ k′ we have with probability at least 1− 2e−n

p̃n(j) ≤ q +
1

p(n)
+

1

nj
≤ q +

2

nj
= q +

2

gn(j)
(2.4)

and the number of repetition of step 2 is greater than k′ with probability at

least (1 − 2e−n)k
′
. Moreover, for i ≥ k′ + 2 we have again with probability

at least 1− 2e−n

p̃n(i) ≥ q +
1

p(n)
−

1

ni
> q +

2

ni
= q +

2

gn(i)
(2.5)

and so the probability of executing more than k′ + 2 repetitions of step 2

is lower then 2e−n. Hence the procedure will repeat step 2 either k′ + 1 or

k′+2 and respectively output 1
nk

′+1
or 1

nk
′+2

except with negligible probability

smaller than 2−αn for some α > 0. By definition of k′ we have that

1

n2p(n)
≤

1

nk′+2
,

1

nk′+1
<

1

p(n)
. (2.6)

Hence, the number of calls to Rn in any of the first k′ + 2 rounds is at

most n5p(n)2 and since (2.5) the expected total number of calls to Rn is in

O(n5p(n)2). ut

2.3.4 Finding a Polynomial Drop Between Neighbors

Let Dm( 1
p(n)

) = {pi}
m
i=0 be a family of Bernoulli distributions with unknown

parameters 0 ≤ pi ≤ 1 for every 0 ≤ i ≤ m and such that pk∗ − pk∗+1 ≥
1

p(n)
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for some 0 ≤ k∗ < m. Let S be a quantum circuit such that P (S|l〉 = 1) = pl

and P (S|l〉 = 0) = 1 − pl for all 0 ≤ l ≤ m. That is, S is a quantum circuit

allowing to sample from the Bernoulli distribution B(pl) given classical input

|l〉. We would like to find κ that exhibits a polynomial drop pκ−pκ+1 similar

to pk∗ − pk∗. Algorithm FindDrop finds κ using the sampling circuit S as a

black-box but is otherwise classical:

FindDrop(S, 1
p(n)

, n)

1. p̃−1 = 0; k = −1;

2. Loop:

(a) k = k + 1; success = 0;

(b) For i = 1 to d64mnp(n)2e Do success = success+ S|k〉;

(c) p̃k = success/d64mnp(n)2e;

3. Until (p̃k−1 − p̃k ≥
3

4p(n)
) or (k = m)

4. Return κ=k − 1.

The returned value κ can now be shown to satisfy pκ− pκ+1 ≥
1
2
(pk∗− pk∗+1)

except with negligible probability. The algorithm is efficient in terms of

‖S‖UG, and parameters m and n.
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Lemma 2.3.3 Given a family of Bernoulli distributions Dm( 1
p(n)

) = {pi}
m
i=1

with sampling circuit S such that pk∗−pk∗+1 ≥
1

p(n)
for some 0 ≤ k∗ ≤ m−1,

algorithm FindDrop(S, 1
p(n)

, n) returns κ such that pκ − pκ+1 ≥
1

2p(n)
except

with negligible probability 2−αn for α > 0 constant and after calling S at most

(m + 1)d64mnp(n)2e ∈ O(m2np(n)2) times.

Proof: By Bernshtein’s law of large numbers, p̃k as a bounded error 1
8p(n)

with probability at least 1 − 2e−mn. So, with probability at least (1 −

2e−mn)m+1 the estimate p̃k is within bounded errors 1
8p(n)

of pk for all 0 ≤

k ≤ m. In that case, we have for 0 ≤ i ≤ m− 1 such that pi − pi+1 <
1

2p(n)

p̃i − p̃i+1 ≤ pi − pi+1 +
2

8p(n)
<

3

4p(n)
(2.7)

and also for 0 ≤ j ≤ m− 1 such that pj − pj+1 ≥
1

p(n)

p̃j − p̃j+1 ≥ pj − pj+1 −
2

8p(n)
≥

3

4p(n)
. (2.8)

The algorithm FindDrop returns a bad κ whenever pκ − pκ+1 < 1
2p(n)

but

p̃k−p̃κ+1 ≥
3

4p(n)
or whenever k∗ could not be recognized. By equation 2.7 and

2.8, the probability pe that FindDrop makes a mistake in the output satisfies

pe ≤ 1 − (1 − 2e−mn)m+1 ≤ 2−αn for some α > 0. The second inequality

is easily obtained by expanding with the Newton’s binomial theorem and

bounding terms. ut
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Chapter 3

Protocols

3.1 The QOT Protocol

The qot protocol [7, 6] is based upon the BB84 quantum coding scheme [2].

If the receiver (Bob) of a random BB84 qubit |s〉β, s ∈R {0, 1}, β ∈R {+,×}

measures it in basis β̂ ∈R {+,×} upon reception, then a noisy classical

communication of bit s from Alice to Bob is implemented. Moreover, if later

on Alice announces β, then Bob knows that he received s whenever β = β̂

and an uncorrelated bit whenever β 6= β̂. The qot protocol amplifies this

process in order to get a secure 1–2 oblivious transfer. In order to ensure that

Bob measures the BB84 qubits upon reception, bit commitments are used.

Bob commits upon each measurement basis1 and measurement outcome right

after the quantum transmission. Alice then verifies in random positions that

1The bases {+,×} are encoded in {0, 1}.
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Bob has really measured the transmitted qubits by testing that whenever

β = β̂ then Bob’s classical outcome r ∈ {0, 1} is such that r = s.

In the following, we assume that Alice and Bob have access to some bit

commitment scheme BBC in order for Bob to commit upon the measure-

ment bases of the received qubits together with the outcomes. Since the

two commitments are made together, we write BBC(x, y) where x ∈ {+,×}

and y ∈ {0, 1} for the commitments of both the measurement basis and the

measurement outcome. This simply means 2 sequential executions of BBC,

one for the commitment of x and the other the commitment of y. BBC may

be given as a black-box for bit commitment or may be provided from some

computational assumption. We denote by the Open-BBC(x, y) the opening

stage of BBC(x, y). Protocol qot(b0, b1)(c) achieves the oblivious transfer of

bit bc.
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Protocol 1 ( qot(b0, b1)(c) )

1: For 1 ≤ i ≤ 2n

• Alice picks si ∈R {0, 1}, βi ∈R {+,×}

• Alice sends to Bob a qubit πi in state |si〉βi

• Bob picks a basis β̂i ∈R {+,×}, measures πi in basis β̂i, and obtains

the outcome ri ∈ {0, 1}

2: For 1 ≤ i ≤ n

• Bob runs BBC(β̂i, ri) and BBC(β̂n+i, rn+i) with Alice

• Alice picks fi ∈R {0, 1} and announces it to Bob

• Bob runs Open-BBC(β̂nfi+i, rnfi+i)

• Alice verifies that βnfi+i = β̂nfi+i ⇒ snfi+i = rnfi+i, otherwise she

rejects the current execution

• if fi = 0 then Alice sets βi ← βn+i and si ← sn+i and Bob sets

β̂i ← β̂n+i and ri ← rn+i

3: Alice announces her choices of bases β1, β2, . . . , βn to Bob

4: Bob chooses at random and announces two subsets of positions J0, J1 ⊂

{1, 2, . . . , n}, |J0| = |J1| =
n
3 , J0 ∩ J1 = ∅, and ∀i ∈ Jc, βi = β̂i.

5: Alice computes and announces b̂0 =
⊕

j∈J0

sj ⊕ b0 and b̂1 =
⊕

j∈J1

sj ⊕ b1

6: Bob receives 〈b̂0, b̂1〉 and computes bc =
⊕

i∈Jc
ri ⊕ b̂c

Known Security Results. The correctness and the security of the qot

protocol against the sender (Alice) has been reduced to the concealing prop-

erty of BBC in [3, 6]. The security against the receiver (Bob) has been provided

by Yao in [25] given the commitment scheme BBC is binding. That is, given
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BBC is a perfect black-box for bit commitment then qot is secure against

any dishonest Bob irrespectively of his computing power.

3.2 QBC Protocol using QOT

Given a binding but computationally concealing bit commitment scheme

BBC in qot the following commitment scheme will be shown concealing and

computationally binding.

Protocol 2 ( qbc(b) )

1: qbc-commit(b)

• For 1 ≤ j ≤ n

• Alice prepares a0j ∈R {0, 1} and a1j = a0j ⊕ b

• Bob prepares cj ∈R {0, 1}

• Alice and Bob execute qot(a0j, a1j)(cj) and Bob receives the

result dj

2: qbc-open(b)

• Alice announces b

• For 1 ≤ j ≤ n

• Alice announces a0j and a1j

• Bob verifies that b = a0j ⊕ a1j and dj = acjj

A commitment to bit b is done by sending through 1–2 oblivious transfers

n pairs of bits {(a0j , a1j)}
n
j=1 such that a0j⊕a1j = b. The concealing condition

depends on the security of the oblivious transfer against the receiver and the
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binding condition depends on the security against the sender. Intuitively,

the qbc protocol appears concealing since for 1 ≤ j ≤ n Bob cannot obtain

information on more than one of the two bits (a0j , a1j) input in the j-th qot

and so, cannot determine b = a0j⊕a1j . Similarly, the qbc should be binding

since for all 1 ≤ j ≤ n Alice needs to change the bit ad̄jj not selected by Bob

in order to change her commitment.

3.3 More Notation

In the following we shall have to identify the variables generated during all

calls to qot in qbc. For that purpose, we use the following notation:

• πji is the i-th qubit sent in the j-th call to qot in qbc.

• βji ∈ {+,×} is the basis βi announced by Alice during the j-th execu-

tion of qot in qbc. Note that since Alice is not necessarily honest, πji

can be different from |0〉
β
j
i

and |1〉
β
j
i
.

• β̂ji ∈ {+,×} is the basis used by Bob to measure πji in the j-th call to

qot.

• rji ∈ {0, 1} is the outcome of Bob’s measurement of πji in basis β̂ji .

• r̂ji ∈ {0, 1} is Carl’s outcome for measurement of πji in basis βji .
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• J j = (J j
0 , J

j
1) is the two sets of positions announced by Bob in the j-th

execution of qot.

We denote by bold lowercases the values for all executions at one glance:

β = {βji }i,j, β̂ = {β̂ji }i,j, r = {rji }i,j, and r̂ = {r̂ji }i,j. We denote by b̂0 =

b̂10, . . . , b̂
n
0 and b̂1 = b̂11, . . . , b̂

n
1 the bits announced by Alice at step 5 of each

call to qot. Similarly, we denote by a = (a0,a1) = (a01, a11), (a02, a12), . . . ,

(a0n, a1n) ∈ {0, 1}
2n Alice’s announcements during the opening stage. We

also denote J 0 = J1
0 , . . . , J

n
0 and J1 = J1

1 , . . . , J
n
1 all sets announced by

Bob and we write J = (J0,J1). Let c = c1, . . . , cn be all selection bits

used by Bob and let d = d1, . . . , dn be all bits received by qot. We write

Jc = J1
c1
, J2

c2
, . . . , Jn

cn
for all set of positions corresponding to qubits measured

by Bob in bases announced by Alice.
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Chapter 4

Security Proofs

4.1 The Binding Condition

In the following section, we show that qbc is secure against any Alice (the

sender) who cannot break the concealing condition of the inner commitment

scheme BBC. BBC is used in the calls to qot in order for Bob to commit on

his measurements and outcomes.

Simplified Version of QOT. In our analysis of the binding condition of

qbc, we shall assume that the opening of half of the commitments in step

2 of qot doesn’t occur. The opening of the commitments allows Alice to

make sure that Bob measured the qubits received in qot upon reception.

This test is not relevant to the binding condition of qbc.
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Protocol 3 ( qot∗(b0, b1)(c) )

1: ...step 1 of protocol 3.1

2: For 1 ≤ i ≤ n

• Bob runs BBC(β̂i, ri) and BBC(β̂n+i, rn+i) with Alice

• Alice picks fi ∈R {0, 1} and announces it to Bob

• if fi = 0 then Alice sets βi ← βn+i and si ← sn+i and Bob sets

β̂i ← β̂n+i and ri ← rn+i

3–6: ...as steps 3 to 6 in protocol 3.1

We omit the proof of the following simple lemma:

Lemma 4.1.1 If qot∗ is secure against the sender then qot is secure against

the sender.

Throughout section 4.1, we shall assume tacitly calls to qot∗ in qbc instead

of calls to qot. This simplifies the analysis and according to lemma 4.1.1, it

can be done without loss of generality.

4.1.1 How to Prove the Binding Condition

In order to show that qbc is computationally binding, we introduce interme-

diary protocols that will allow us to bridge the security of the qbc protocol

with the known security of qot given black-boxes for bit commitments. Let’s

consider the following four modified protocols:
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u-qot: Protocol qot except that in step 2, Bob commits to random values.

In other words, for 1 ≤ i ≤ n, Bob runs BBC(u0i, u1i) and BBC(u2i, u3i)

with u0i, u2i ∈R {+,×} and u1i, u3i ∈R {0, 1}.

m-qot: The same as u-qot but a third party named Carl, for 1 ≤ i ≤ n,

intercepts the i-th qubit πi sent by Alice in step 1, measures in basis βi

(announced by Alice in step 3) and sends the resulting state to Bob.

u-qbc: Protocol qbc using u-qot.

m-qbc: Protocol qbc using m-qot.

The security against any dishonest sender in u-qot and m-qot is a direct

consequence of the analysis provided in [6]. Since the commitments upon

measurements do not carry any information about Bob’s measurement, Alice

cannot obtain any information about his selection bit c. The security is

information-theoretic, no complexity assumption on Alice’s computing power

is required.

We reduce the security of the binding condition of qbc to the security of

the concealing condition of BBC in two steps:

1. Using Lemmas 4.1.2 and 4.1.3, we conclude in Lemma 4.1.4 that u-

qbc is binding. The modified protocol m-qbc is used for reducing
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the security of u-qbc to the security of u-qot. Carl’s presence allows

one to reduce the analysis to an essentially classical argument which

becomes simpler than working from u-qbc directly.

2. Theorem 4.1.5 establishes the desired result using the fact that an ad-

versary for the binding condition of qbc cannot be an adversary of

u-qbc (Lemma 4.1.4). It is shown how to construct an adversary for

the concealing condition of BBC given an adversary for the binding con-

dition of qbc.

4.1.2 U-QBC is binding

In this section, we show that u-qbc is binding (Lemma 4.1.4) using Lemmas

4.1.2 and 4.1.3 as intermediary steps.

First, we show that an adversary against the binding condition of u-qbc

can be transformed into an adversary against the binding condition of m-qbc.

Lemma 4.1.2 If there exists a (s0(n), s1(n))-adversary Ã against the bind-

ing condition of u-qbc there also exists a (s0(n), s1(n))-adversary A∗ against

the binding condition of m-qbc.

Proof: We observe first that Ã’s announcement of β at step 3 of u-qot

commutes with step 2. That is, since only commitments to random values
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are received, Ã can determine β without Bob’s commitments. Moreover, Ã

could simulate the commitments on her own and then determine β before

the qubits are sent to Bob at step 1. Let A∗ be the quantum adversary that

does that. If Ã provides a (s0(n), s1(n))–advantage in u-qbc then so it is for

A∗. We now show that A∗ is also an adversary for the binding condition of

m-qbc.

Now assume for simplicity and without loss of generality that, Bob in u-

qbc or Bob and Carl in m-qbc wait until after Alice announces a = (a0,a1)

before measuring all qubits received. It is easy to verify that this can always

be done since nothing in the committing stage of u-qbc or m-qbc relies

on those measurements’ outcomes (i.e. since the commitments are made to

random values). Clearly, postponing measurements do not influence Alice’s

probability of success at the opening stage.

Let V = (β,J , b̂0, b̂1, c,a) be the partial view in u-qbc or in m-qbc up

to Alice’s announcement of a (and b since for all 1 ≤ j ≤ n, aj0 ⊕ aj1 = b)

in the opening stage. Let V U and V M be the random variable for the partial

view in u-qbc and m-qbc respectively. By construction we have that for all

V = (β,J , b̂0, b̂1, c,a), P (V U = V ) = P (V M = V ). Moreover, we have that

for all partial views V , the joint states |ΨU(V )〉 for u-qbc and |ΨM(V )〉 for
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m-qbc satisfy |ΨU(V )〉 = |ΨM(V )〉. Let Vb = {(β,J , b̂0, b̂1, c,a)|(∀1 ≤ j ≤

n)[aj0 ⊕ aj1 = b]} be the set of partial views corresponding for Alice to open

bit b. Given V , Bob’s test will succeed if he gets d = ac = a1c1 , a2c2, . . . , ancn

after measuring the qubits in positions in J c using Alice’s bases βji for all i ∈

J j
cj

and j ∈ {1, . . . , n}. LetMtest(V ) = {QV
ok,11−Q

V
ok} be the measurement

allowing Bob to test Alice’s announcement when she unveils b given partial

view V ∈ Vb. QV
ok is the projection for the state of all qubits received in

positions in Jc into the subspace corresponding to parity dj = ajcj for all j ∈

{1, . . . , n}. More precisely, QV
ok =

⊗n

j=1

∑

x∈T (V,j) P
� (V, j)
x where T (V, j) =

{x ∈ {0, 1}|J
j
cj
|| ⊕i xi = ajcj ⊕ b̂jcj} and β(V, j) = {βji |i ∈ J j

cj
} for all j ∈

{1, . . . , n}. Let s′b(n) be the probability of success when A∗ opens b in m-

qbc. We get that

sb(n) =
∑

V ∈Vb

P (V U = V ) ‖QV
ok|ΨU(V )〉‖2

=
∑

V ∈Vb

P (V M = V ) ‖QV
okQ

V
ok|ΨM(V )〉‖2

= s′b(n) (4.1)

since the only difference between u-qbc and m-qbc is that in the former

case both Carl and Bob measure the qubits in positions in J c with the same

measurement Mtest (this is why we have QV
okQ

V
ok = QV

ok in (4.1)). Carl’s
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measurements for positions in J c are irrelevant to the success probability.

The result follows. ut

Next, we reduce the binding condition of m-qbc to the security against

the sender in m-qot. We show that from any successful adversary against

the binding condition of m-qbc one can construct an adversary able to ex-

tract non-negligible information about Bob’s selection bit in m-qot. Carl’s

measurements in m-qbc allows one to use a classical argument for most of

the reduction thus simplifying the proof that u-qbc is binding.

Lemma 4.1.3 If there exists a (s0(n), s1(n))-adversary Ã = (CÃ, OÃ) for

the binding condition of m-qbc with s0(n)+s1(n) ≥ 1+ 1
p(n)

for some positive

polynomial p(n), then there also exists a cheating sender A∗ for m-qot.

Proof: Let a′j0 and a′j1 be the two input bits for the j-th call to m-qot

computed according to Carl’s outcomes r̂. Let V be the random variable

for the joint view (a,a0,d, c) for an execution of the committing and the

opening stages of m-qbc between Ã and an honest receiver B and where Ã

is opening a random bit b ∈R {0, 1}. Without loss of generality, we assume

the announcements made by Ã to be consistent, that is a0i ⊕ a1i = b for

1 ≤ i ≤ n when she opens bit b. Given V = (a,a0,d, c), we define the
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ordered set S(V ) = {j|a′j0⊕a
′
j1 6= aj0⊕aj1} ⊆ {1, . . . , n} of calls to m-qot for

which given view V Alice’s announcement of a disagree with Carl’s outcomes

a0. Given the ordered set S(V ) = {σ1, σ2, . . . , σs}, let Xj(V ) ∈ {0, 1} for

1 ≤ j ≤ s be defined as

Xj(V ) =

{

0 if dσj 6= aσjcσj
1 if dσj = aσjcσj .

We let X(V ) = X1(V ), . . . , Xl(V )(V ) for l(V ) = min (|S(V )|, dn
2
e). Clearly,

for Ã to open with success given V , we must have X(V ) = 1l(V ). Note that

P
(

|S(V )| ≥ n
2

)

≥ 1
2

since for at least one choice of b, |S(V )| ≥ n
2

given that

V always describes a consistent opening. We easily get that

P
(

X(V ) = 1d
n
2
e) = P

(

X(V ) = 1l(V )
)

− P
(

X(V ) = 1l(V ) ∧ l(V ) <
n

2

)

≥
1

2
(s0(n) + s1(n))−

1

2
P

(

X(V ) = 1l(V ) | l(V ) <
n

2

)

≥
1

2p(n)
. (4.2)

Since
∑

x∈{0,1}d
n
2
e P (X(V ) = x) ≤ 1, for n sufficiently large there exists a

string ŷ0 ∈ {0, 1}d
n
2
e such that P (X(V ) = ŷ0) ≤ 1

4p(n)
. Let ρ be the number

of zeros in ŷ0 and R(ŷ0) = {r1, r2, . . . , rρ} ⊆ {1, . . . , d
n
2
e} be the ordered set

of positions 1 ≤ r ≤ dn
2
e where ŷ0

r = 0. We now define for 1 ≤ j ≤ ρ the

hybrid strings ŷj = ŷj1ŷ
j
2 . . . ŷ

j

dn
2
e between ŷ0 and 1d

n
2
e:

ŷji =

{

1 if i = rk for k ≤ j
ŷ0
i Otherwise.
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Hence, P (X(V ) = ŷρ = 1n)−P (X(V ) = ŷ0) ≥ 1
4p(n)

and we conclude by an

hybrid argument that there exist 1 ≤ k∗ ≤ ρ such that

P
(

X(V ) = ŷk
∗)

− P
(

X(V ) = ŷk
∗−1

)

≥
1

ρ4p(n)
≥

1

2(n + 1)p(n)
(4.3)

Note that ŷk
∗

and ŷk
∗−1 differs only by the bit in position rk∗ where they

respectively have a 1 and a 0.

A∗ uses Ã and B = (CB, OB) in the following way: after choosing h ∈R

{1, . . . , n}, it makes Ã interact with a simulated honest receiver B for m-

qbc except for the h-th execution of m-qot for which Ã interacts with the

targeted receiver for m-qot. Let V = (a,a0,d, c) be the view generated

during the execution. Given A∗’s view, algorithm LA∗
produces a guess c̃ for

Bob’s selection bit c = ch in m-qot as follows:

• If |S(V )| ≥ dn
2
e, h = σrk∗ and ∀i ∈

{

1, . . . , dn
2
e
}

\ {rk∗}, Xi(V ) = ŷk
∗

i ,

then c̃ ∈ {0, 1} is defined such that ahc̃ = a′hc̃ (which necessarily exists

since h ∈ S(V )),

• Otherwise, c̃ ∈R {0, 1}.

Let T (V ) be the event of a successful test in the previous computation.

Since independently |S(V )| ≥ n
2

with probability at least 1
2
, h = σrk∗ with
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probability 1
n
, and ∀i ∈

{

1, . . . , dn
2
e
}

\ {rk∗}, Xi(V ) = ŷk
∗

i with probability

P
(

X(V ) = ŷk
∗)

+ P
(

X(V ) = ŷk
∗−1

)

, we have that

P (T (V )) ≥
P

(

X(V ) = ŷk
∗)

+ P
(

X(V ) = ŷk
∗−1

)

2n
. (4.4)

Given T (V ), the guess c̃ is the only value for Bob’s selection bit c that would

lead to X(V ) = ŷk
∗

instead of X(V ) = ŷk
∗−1 (the two strings are the only

possible given T (V )). We get

P (c̃ = c|T (V )) =
P

(

X(V ) = ŷk
∗)

P (X(V ) = ŷk∗) + P (X(V ) = ŷk∗−1)
. (4.5)

Following, (A∗, LA∗
) is a cheating sender for m-qot since

P (c̃ = c) =
1

2
(1− P (T (V ))) + P (T (V )) P (c̃ = c|T (V ))

≥
1

2
+

1

8n(n + 1)p(n)
. (4.6)

ut

Using Lemmas 4.1.1, 4.1.2 and 4.1.3 together with the fact that m-qot is

unconditionally secure against the sender [6], we get the desired result:

Lemma 4.1.4 Protocol u-qbc is binding.

As we shall see next, Lemma 4.1.4 helps a great deal in proving that qbc is

computationally binding.
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4.1.3 QBC is Binding when BBC is Concealing

In the following, we conclude that qbc is computationally binding whenever

BBC is computationally concealing. We use the fact that u-qbc is binding

(Lemma 4.1.4) in order to use any adversary against the binding condition

of qbc as a distinguisher between random (u-qbc) and real (qbc) commit-

ments for some hybrids between u-qbc and qbc.

Theorem 4.1.5 If there exists a (s0(n), s1(n))-adversary Ã = (CÃ, OÃ)

against the binding condition of qbc with s0(n)+s1(n) ≥ 1+ 1
p(n)

for positive

polynomial p(n), then there exists a quantum receiver C B̃ in BBC and a quan-

tum algorithm LB̃ such that P
(

LB̃((CA � CB̃)|b〉A|0〉B̃) = b
)

≥ 1
2
+Ω( 1

n4p(n)
)

whenever b ∈R {0, 1} and where CB̃ calls Ã an expected O(n5p(n)2) times.

Proof: Let B = (CB, OB) be the circuits for the honest receiver in qbc

and let A be an honest committer in BBC. Given Ã, we construct a receiver

CB̃ in BBC from which a bias for A’s committed bit can be extracted. Re-

member that the only difference between u-qbc and qbc is that a honest

receiver commits to random bits instead of his measurements and outcomes.

There are 4n calls to Commit-BBC per qot (u-qot) for a total of 4n2 during

the committing stage of qbc (u-qbc). Let’s note as significant the com-
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mitted bits specified by the protocol qot (to measurements and outcomes)

and as random the ones specified by the protocol u-qot (to random bits).

We describe hybrids in between qbc and u-qbc by letting the number of

significant and random commitments vary. Let qbck be protocol qbc but

where the first k commitments out of 4n2 are made to random values. We

have that u-qbc ≡ qbc4n2

is binding whereas Ã is a (s0(n), s1(n))–adversary

for the binding condition of qbc0 ≡ qbc. Let skb (n) be the probability that

Ã succeeds when opening b ∈ {0, 1} in qbck for 0 ≤ k ≤ 4n2. Defining

ŝk(n) =
sk
0
(n)+sk

1
(n)

2
, we get that ŝ0(n) ≥ 1

2
+ 1

2p(n)
and ŝ4n2

(n) < 1
2

+ 1
q(n)

for

any q(n) ∈ poly(n) (from Lemma 4.1.4), given n sufficiently large. By the

hybrid argument, there exists 0 ≤ k∗ ≤ 4n2 − 1 such that for n sufficiently

large,

ŝk
∗

(n)− ŝk
∗+1(n) ≥

1

9n2p(n)
. (4.7)

Hence, D4n2( 1
9n2p(n)

) = {ŝi(n)}4n
2

i=0 is a family of Bernoulli distributions that

satisfies the condition of Lemma 2.3.3. The sampling circuit S is easy to

construct given Ã and B. Upon classical input |l〉 for 0 ≤ l ≤ 4n2, S runs Ã

and B except that the first l commitments sent from B to Ã (using BBC) are

made to random values instead of the measurements β̂ and the outcomes r.

Ã then opens a random bit b ∈R {0, 1}. If B accepts the opening of b then
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S(|l〉) = 1 otherwise it returns S(|l〉) = 0. Circuit S is therefore a sampling

circuit for D4n2( 1
9n2p(n)

) such that ‖S‖UG ∈ O(‖Ã‖UG) assuming without loss

of generality that ‖B‖UG ∈ O(‖Ã‖UG).

We now construct the adversary C B̃ for the concealing condition of BBC

given Ã. In order to use algorithm FindDrop presented in section 2.3.4,

CB̃ must first determine a lower bound 1
p′(n)

for the drop 1
9n2p(n)

. This is

done by finding a lower bound p̃(n) for 1
2p(n)

and then setting p′(n) = 5n2

p̃(n)
.

CB̃ computes p̃(n) = LowBound(S0,
1
2
, n) where LowBound is the procedure

described in section 2.3.3 and S0 is the circuit S with the input bits fixed to

|0〉. According to Lemma 2.3.2, when n is sufficiently large LowBound returns

p̃(n) such that 1
2n2p(n)

≤ p̃(n) ≤ 1
2p(n)

except with negligible probability and

after an expected O(n5p(n)2) calls to S0.

Now CB̃ can use FindDrop(S, 1
p′(n)

, n) with the family of distributions

D4n2( 1
p′(n)

) = {ŝi(n)}4n
2

i=0 which exhibits a drop 1
p′(n)

except with negligible

probability. From Lemma 2.3.3, C B̃ gets 0 ≤ κ ≤ 4n2 − 1 such that

ŝκ(n)− ŝκ+1(n) ≥
1

2p′(n)
(4.8)

except with negligible probability. The value of κ is obtained after calling S

(including the calls to S0 in LowBound) an expected O(n5p(n)2) times.

CB̃ then uses κ for attacking the concealing condition of BBC in the fol-
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lowing way: It makes Ã and B interact (where Ã opens b ∈R {0, 1}) as in

qbcκ+1 except that the (κ + 1)-th random commitment is provided by the

committer A in BBC. Let b ∈ {0, 1} be the bit committed by A. Let V be

the random variable for the view generated during the interaction between

Ã and B when Ã opens the random bit. Let cκ+1(V ) ∈ {0, 1} be the bit that

B would have committed if the (κ+ 1)-th commitment was significant. The

distinguisher LB̃ (which is classical given the view V ) returns the guess b̃ for

b the following way:

• If V is a successful opening then b̃ = cκ+1(V ),

• Otherwise, b̃ ∈R {0, 1}.

Let Vκ+1
ok be the set of views for qbcκ+1 resulting in a successful opening

and let G be the set of values κ for which (4.8) holds. We have ŝκ(n) =

P
(

V ∈ Vκ+1
ok |cκ+1(V ) = b

)

and ŝκ+1(n) = 1
2
P

(

V ∈ Vκ+1
ok |cκ+1(V ) 6= b

)

+

1
2
P

(

V ∈ Vκ+1
ok |cκ+1(V ) = b

)

which, using (4.8), leads to

P
(

V ∈ Vκ+1
ok ∧ cκ+1(V ) 6= b

)

≤ P
(

V ∈ Vκ+1
ok ∧ cκ+1(V ) = b

)

−
1

2p′(n)
.

(4.9)

Since we also have that P
(

V ∈ Vκ+1
ok

)

= P
(

V ∈ Vκ+1
ok ∧ cκ+1(V ) 6= b

)

+
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P
(

V ∈ Vκ+1
ok ∧ cκ+1(V ) = b

)

, we get

P
(

b̃ = b|κ ∈ G
)

= P
(

V ∈ Vκ+1
ok ∧ cκ+1(V ) = b

)

+
1

2

(

1− P
(

V ∈ Vκ+1
ok

))

≥
1

2

(

1 +
1

2p′(n)

)

. (4.10)

Since P
(

b̃ = b
)

≥ P (κ ∈ G) P
(

b̃ = b|κ ∈ G
)

and P (κ ∈ G) ≥ 1 − 2−αn for

some α > 0 (Lemma 2.3.2) we finally get that (C B̃, LB̃) is an adversary for

the concealing condition of BBC providing a bias in Ω( 1
p′(n)

) = Ω( 1
n4p(n)

) after

calling Ã an expected O(n5p(n)2) times. ut

4.2 The Concealing Condition

In the following section, we show that qbc is concealing for any Bob (the

receiver) who cannot break the binding condition of the inner commitment

scheme BBC. BBC is used in the calls to qot in order for Bob to commit on

his measurements and outcomes.

4.2.1 QBC is Concealing when QOT is secure against

the Receiver

We now reduce the concealing condition of qbc to the security of qot against

the receiver.
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Lemma 4.2.1 If there exists an interacting quantum circuit C B̃ receiving for

Commit-qbc and a quantum algorithm LB̃ acting only on B̃’s registers such

that P
(

LB̃((CA � CB̃)|b〉A|0〉B̃) = b
)

≥ 1
2
+ 1

p(n)
for some positive polynomial

p(n) and an honest committing circuit CA for b ∈R {0, 1}, then there also

exists a cheating receiver (B∗, LB∗
) for qot.

Proof: For the receiver C B̃ and CA described in the statement, we have

P
(

LB̃((CA � CB̃)|1〉A|0〉B̃) = 1
)

− P
(

LB̃((CA � CB̃)|0〉A|0〉B̃) = 1
)

≥ 2
p(n)

.

Let’s define a modification of an honest committing circuit for qbc, noted

CÃ, which is the same as CA but takes a string f̂ ∈ {0, 1}n instead of a bit

b and sends in the i-th call to qot the bits a0i ∈R {0, 1} and a1i = a0i ⊕ f̂i

for 1 ≤ i ≤ n. The circuit CA with input b is equivalent to CÃ with input

bn. Once again, by an hybrid argument, there exists 1 ≤ k∗ ≤ n such that

P
(

LB̃((CÃ � CB̃)|1k
∗

0n−k
∗

〉Ã|0〉B̃) = 1
)

−

P
(

LB̃((CÃ � CB̃)|1k
∗−10n−k

∗+1〉Ã|0〉B̃) = 1
)

≥
2

np(n)
(4.11)

With such a value k∗, B∗ cheats an honest sender A′ for qot(e0, e1)(0) in

the following way: it makes C B̃ interact with CÃ with input (1k
∗−1?0n−k

∗
)

for Commit-qbc except for the k∗-th call to qot where it makes C B̃ interact

with the targeted sender A′ with inputs e0, e1 ∈R {0, 1}.
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Then, knowing ec for c ∈ {0, 1}, we take the output of LB̃ , b′ say, and

compute a guess ec ⊕ b′ for ec̄. For this algorithm LB∗
we have

P
(

LB∗

((A′ �B∗)|e0e1〉
A|0〉B

∗

, |ec〉
B∗

) = ec̄
)

= P (b′ = e0 ⊕ e1)

≥
1

2
+

1

np(n)
(4.12)

where the probabilities are taken over e0, e1 ∈R {0, 1}. ut

4.2.2 QBC is Concealing when BBC is Binding

From Yao’s result [25] and Lemma 4.2.1 it is straightforward to conclude

that:

Theorem 4.2.2 If BBC is binding then qbc is concealing.
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Chapter 5

Conclusion and Open Questions

Having shown in Theorem 4.1.5, that a computationally concealing BBC re-

sults in a computationally binding qbc and, in Theorem 4.2.2, that no ad-

versary against the concealing condition of qbc exists, we conclude with our

main result:

Theorem 5.0.3 If BBC is binding and computationally concealing then qbc

is concealing and computationally binding.

For security parameter n, the reduction of an adversary (C B̃
n , L

B̃
n ) for the

concealing condition of BBC to an adversary Ãn for the binding condition of

qbc is expected polynomial-time black-box. If Ãn breaks the binding con-

dition of qbc with s0(n) + s1(n) ≥ 1 + 1
p(n)

then the circuit CB̃
n is specified

by a classical Turing machine calling Ãn at most n5p(n)2 times except with

negligible probability. LB̃
n then provides a polynomial bias on the committed
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bit through an almost trivial classical computation given as input C B̃’s view.

This guarantees that (CB̃
n , L

B̃
n ) satisfies ‖CB̃

n ‖UG+‖LB̃
n ‖UG ∈ O(n5p(n)‖Ã‖UG)

(using standard simulation techniques) thus breaking the concealing condi-

tion of BBC as defined in Sect. 2.2. The adversary {(C B̃
n , L

B̃
n )}n>0 is specified

by a uniform family of quantum circuits whenever {Ãn}n>0 is a uniform fam-

ily1. Our reduction is therefore uniformity preserving [22]. It is an interesting

open problem to find an exact polynomial-time black-box reduction.

One consequence of Theorem 5.0.3 is that concealing commitment schemes

can be built from any quantum one-way function. We first observe that

Naor’s commitment scheme [21] is also secure against the quantum com-

puter if the pseudo-random bit generator (PRBG) it is based upon is secure

against the quantum computer. This follows from the fact that any quantum

circuit able to distinguish between commitments to 0 and 1 is also able to

distinguish a truly random sequence from a pseudo-random one. To complete

the argument, we must make sure that given a quantum one-way function one

can construct a PRBG resistant to quantum distinguishers. A tedious but

not difficult exercise allows to verify that the classical construction of [14]

results in a PRBG secure against quantum distinguishers given it is built

1Given 1n, there exists a poly-time Turing machine that outputs the description of

(CB̃
n
, LB̃

n
), namely one knowing p(n).
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from quantum one-way functions. We get the following corollary which is

not known to hold in the classical case:

Corollary 5.0.4 Both binding but computationally concealing and conceal-

ing but computationally biding quantum bit commitments can be constructed

from quantum one-way functions.

It would be interesting to find a concealing quantum bit commitment scheme

directly constructed from one-way functions which improves the complexity

of our construction. Is it possible to find a non-interactive concealing commit-

ment scheme from the same complexity assumption or are such constructions

inherently interactive? It is also unclear whether or not perfectly concealing

schemes can be based upon any quantum one-way function.

Although we assumed in this thesis a perfect quantum channel, our con-

struction should also work with noisy quantum transmission [3]. It would be

nice to provide the analysis for this general case.
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sure Proofs of Knowledge”, Journal of Computing and System Science,

vol. 37 , 1988, pp. 156 – 189.
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