
An Alternative Approach to Identifying Stolen
Network Clients Using DHCP

by

Christian Roy,

School of Computer Science,

McGill University, Montreal

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Masters of Science

October, 2005

Copyright c© 2005 by Christian Roy

To Mom and Dad, thanks for everything.

Abstract

Computer theft is a mounting problem despite prevention strategies already in place.

The marketplace currently offers post-theft solutions but most depend on software in

place on the stolen item. This is a critical vulnerability as it places the theft recovery

technology in the hands of the thief.

This thesis is an investigation into the feasibility of abandoning this limitation by

moving the theft recovery technology into the server, beyond the hands of the thief.

The contents are divided into two complimentary sections. The first is the creation

of a theft detecting DHCP server with acceptable performance levels for production

environments. The second involves investigation into the ramifications of widespread

adoption of such a server by exploring the countermeasures open to an adversary.

Questions of difficulty and reliability of such techniques are explored, in both hard-

ware and software. Also discussed is the possibly of countering such countermeasures.

iii

Sommaire

Le vol d’ordinateur reste un problème en dépi des stratégies de prévention déjà en

place. Plusieurs solutions pour retracer un objet volé existent, mais elles dépendent

généralement de logiciel installé sur celui-ci. Ceci est une vulnérabilité critique car

elle place le logiciel dans les mains du voleur.

Ce mémoire explore la possibilité de dépasser cette limitation en déplaçant le

logiciel vers le serveur, hors de la porté du voleur.

Le contenue se divise alors en deux sections. La première couvre la création d’un

serveur DHCP permettant de retracer les ordinateurs volés avec niveau de perfor-

mance adéquate pour un environnent de travail. La seconde couvre les conséquances

si un tel serveur entrait en service en explorant les méthodes possibles pour déjouer

notre serveur. La difficulté et la fiabilité de ces méthodes sont analysées. Une sec-

tion finale couvre les possibilités pour contrer ceux qui tenteraient de subvertir les

techniques que notre serveur utilise.

iv

Acknowledgements

There are a great many people I would like to thank for making this document

possible.

First and foremost I would like to thank Professor Claude Crépeau for providing

the original idea and encouraging me to see it to the end. Thank you Professor, for

not only making it interesting for me but also for all the occasions when you treated

all of us in the labs like more than mere students.

Secondly, I wish to thank the Laboratoire Universitaire Bell for their generosity

in funding this thesis. Without them this document would not exist.

The good people at ISC deserve recognition for not only providing the internet

with a suite of infrastructure software but also for providing such products in an open

source form.

I am also thankful to Ville Aikas, of the University of Washington, for patiently

responding to my frequent queries about his DHCP testing suite, which served me

well during the evaluation of the prototype and saved me from having to write it

myself. To Edwin Groothuis for information and tools related to DHCP. Also to

Louis-Philippe Crevier for the LaTex templates. And to Slashdot user 639698 for

pointing out the obvious.

Thanks are also offered to the Hutchison Avenue Software Corporation, in general,

and Ghyslain Boisvert in particular for too many things to mention — they know

why. And to the Intuit corporation for its generous employee compensation.
v

Thanks also go to Etienne Mineau, Simon Pierre Desrosiers, Geneviève Arboit

and Carmen Laht for proofreading.

I wish to thank my examiners Professor Claude Crépeau and Professor Muthu-

cumaru Maheswaran for providing me with their time and comments.

And finally, McGill University for offering its graduate students many employment

opportunities.

vi

Contents

Abstract iii

Sommaire iv

Acknowledgements v

Contents vii

List of Figures x

List of Tables xii

1 Introduction 15

1.1 Theft of Computer Hardware . 15

1.2 Current Theft Solutions . 16

1.3 Proposed Alternative Approach . 17

2 Design 19

2.1 Challenges . 19

2.2 Technology Requirements . 20
vii

2.2.1 Globally Unique Identifier . 20

2.2.2 Client Server Protocol . 21

2.3 The Blacklist . 24

3 Implementation 27

3.1 Implementation Requirements . 27

3.2 Implementation Method: Hybrid Trie Indexing 29

3.2.1 Hybrid Trie Indexing Analysis 30

3.3 The Maximum Branching Assumption 32

4 Performance 35

4.1 Success Parameters . 35

4.2 Testing Environment . 37

4.3 Testing Requirements . 37

4.4 Performance Testing . 39

4.4.1 Establishing Baselines . 40

4.4.2 Phase 1: Base Case . 40

4.4.3 Phase 2: Midrange . 44

4.4.4 Phase 3: Stress Test . 46

4.5 Conclusions . 48

5 Countermeasures 51

5.1 The Hardware . 52

5.1.1 NIC Replacement . 52
viii

5.1.2 NIC Reprogramming . 54

5.2 The Software . 55

5.2.1 Linux Operating System . 56

5.2.2 Apple OS X . 57

5.2.3 Windows . 58

5.3 NAT Technology . 64

6 Counter-Countermeasures 67

6.1 DHCP Client Identifier . 67

6.1.1 Windows and the Client Identifier 68

6.1.2 Apple OS X and the Client Identifier 71

6.1.3 Linux Operating System . 72

7 Conclusion 73

A DHCP Primer 75

A.1 What is DHCP? . 75

A.2 DHCP Message Types . 77

A.3 Obtaining a DHCP Lease . 78

A.4 On the Necessity of the “chaddr” Field 80

Bibliography 83

Acronyms 89

B RFC Copyrights 93

ix

List of Figures

2.1 Format of a DHCP message. 23

5.1 Windows operating systems found on the internet. 58

6.1 DHCP option 61, the client identifier. 68

A.1 Format of a DHCP message. 76

A.2 DHCP option 53, DHCP message type. 78

A.3 Obtaining A DHCP lease. 79

A.4 Obtaining A DHCP lease with a relay. 81

xi

List of Tables

3.1 Actual vs. assumed possible values of trie branching. 32

4.1 Baseline metric values for unmodified DHCP server. 40

4.2 Forward indexing, hybrid trie, metric values for blacklist size 900,000. 41

4.3 Backwards indexing, hybrid trie, metric values for blacklist size 900,000. 43

4.4 Forward indexing, hybrid trie, for blacklist size 1,500,000. 45

4.5 Backwards indexing, hybrid trie, for blacklist size 1,500,000. 45

4.6 Forward indexing, hybrid trie, for blacklist size 9,000,000. 46

4.7 Backwards indexing, hybrid trie, for blacklist size 9,000,000. 47

5.1 Effect of upgrading Windows on MAC address spoofing. 63

xiii

Chapter 1

Introduction

1.1 Theft of Computer Hardware

Since 1995 the Computer Security Institute (CSI)1 in conjunction with the Federal

Bureau of Investigation (FBI) has published the “Computer Crime and Security

Survey”. The report tracks and analyses the cost of various types of computer crimes

perpetrated against American enterprise, government and educational institutions

[40]. The 2003 results indicate that “laptop theft” cost American business on the

order of 6,830,500 USD [40]. The cost of a single theft goes well beyond the cost of

replacing the hardware with estimates placing the value of lost data, lost productivity

and technical services at 3,957 USD per incident [9]. Added to these costs is the price

of the average portable computer, which currently ranges from 500 to 3,000 USD.

With the combined loss reaching into the high four figures, even a single theft can

be disastrous to a business or individual. However, many of these losses could be

mitigated by having a theft solution in place.

1See page 89 for a list of acronyms.

15

1.2. Current Theft Solutions

1.2 Current Theft Solutions

There are a number of computer theft protection products on the market. These

generally belong to one of two distinct categories. The first category is theft deter-

rence products. Notable examples include portable computer locks and permanent

serial numbers (engraved or affixed). The media fracas, in mid 2004, regarding the

vulnerability of pinned tubular cylinder locks, often used in portable computer locks,

clearly illustrated that the faith placed in such deterrence is often misplaced [28].

These items may hinder an opportunist but will likely fail to deter a professional

thief.

The second category is theft recovery products. This includes any product that

actively offers the possibility of recovering the item after it has been lost or stolen.

While serial numbers may aid in recovery, they play a passive role at best. Products

in this second category use the stolen computer’s network connection, be it wired

or wireless, or in some cases a modem and a phone line, to communicate with a

predetermined recovery service provider.2 Often these products rely on established

protocols such as email or the web but some have deployed proprietary protocols in

order to better hide their nature. If a computer with this technology is stolen the

owner reports the theft to the recovery service provider. The next time the computer

contacts the recovery provider they determine its location from the contact vector and

provide the owner and law enforcement with the location data. Here, the inherent

weakness is not the dependence on computer interconnectivity but that the recovery

technology is placed in the stolen item itself. As the thief has physical access to

the stolen item he can, with the appropriate tools and time, disable or remove the

recovery technology.

2In most cases, however, some products contact the owner directly making them the provider

16

1.3. Proposed Alternative Approach

1.3 Proposed Alternative Approach

With theft deterrence products serving as only a barrier to opportunists and theft

recovery products at risk of compromise; then what, if any, solutions are left? Our

proposal is the rehabilitation of theft recovery by eliminating the current weakness

and placing the recovery technology at the server side, well beyond the thief’s grasp.

There is some previous related work in the field of remote computer forensics.

Eight years ago Fydor published “Remote OS detection via TCP/IP Stack Finger-

Printing” [13]. The techniques for gathering data about a remote computer on a

network have been refined since those first steps. However, as of yet, none of them

have yielded a way to reliably and uniquely identify a remote computer.

A recent paper by Tadayoshi Kohno, Andre Broido and K.C. Claffy entitled “Re-

mote Physical Device Fingerprinting” outlines a novel approach for obtaining an

identifier from a remote computer: using the computer’s network clock skew. The

paper provides various proofs of reliability of the techniques and proofs of how stable

the identifier is in regard to changes in the physical location and operating conditions

of the computer. While promising, the paper disclaims the possibility of using clock

skews as a unique identifier: “With respect to tracking individual devices, we stress

that our techniques do not provide unique serial numbers for devices, but that our

skew estimates do provide valuable bits of information that, when combined with

other sources of information such as operating system fingerprinting results, can help

track individual devices on the Internet” [45]. It may be that with additional work

the research outlined by Kohno, Broido and Claffy will yield a unique identifier but

currently their results only provide a reliable identifier. We will therefore have to

exploit more conventional techniques such as relying on inbuilt unique identifiers or

assigned unique identifiers.
17

1.3. Proposed Alternative Approach

This document is therefore the exploration of our attempt at the rehabilitation

of theft recovery technology using conventional techniques. Chapter 2 discusses the

basic methodology of the design as well as the challenges that this approach imposes.

Implementation of a prototype and the difficulties it raises are discussed in Chapter

3. In Chapter 4, we examine the performance of the finished prototype. In Chapter

5, the possible techniques that could be used to thwart this proposal are examined.

And finally, in Chapter 6, we discuss the techniques that could be used to defeat the

techniques analysed in Chapter 5.

18

Chapter 2

Design

This chapter examines the general issues raised by moving the theft recovery technol-

ogy from client to server. Topics covered include the challenges posed by this move,

selection of the technology used and finally the mechanism used.

2.1 Challenges

Moving the theft recovery technology from client to server still leaves us firmly in the

server-client model. This creates a series of challenges that must be examined before

proceeding.

Out of necessity, we assume as little as we can about the client as this is beyond

our control. We cannot require custom software, proprietary protocols or unusual

hardware. The only assumption we make is that, at some point, the client will enable

some form of network communication. Therefore, we need to design our solution

around common hardware components and, aiming for maximum operating system
19

2.2. Technology Requirements

support, common standard protocols.

With these restrictions in mind, we will limit ourselves to the TCP/IP protocol

suite and avoid any operating system specific extensions or enhancements.

2.2 Technology Requirements

There are two major requirements for our theft recovery technology prototype system.

The first, as mentioned in Section 1.3, is a globally unique identifier for each computer.

The second is a protocol on which to build the recovery technology.

2.2.1 Globally Unique Identifier

Without the ability to uniquely identify a computer, we cannot proceed. This is the

first and most basic requirement. Unfortunately, we have precious few such identifiers

available in network communication. While IP addresses may be globally unique

identifiers, they are usually dynamically assigned. The same is true of computer

domain names.

One candidate among the few identifiers is the Media Access Control (MAC) ad-

dress. The standards documents define the MAC address to be a globally unique iden-

tifier assigned to each network interface hardware [16, 23]. This means that computers

capable of interfacing with a Institute of Electrical and Electronics Engineers (IEEE)

802 style network will have at least one, if not several, MAC addresses, each of

which is a globally unique identifier. Today, IEEE 802 style networks encompass the

majority of the commonly used networks (Ethernet, Wi-Fi, Token ring...).
20

2.2. Technology Requirements

A MAC address is 12 digit hexadecimal number, which is commonly written

by grouping the digits in pairs. For example, 00:0D:93:63:CF:30. Every Network

Interface Card (NIC) that communicates with a IEEE 802 style network will have its

own unique MAC address [17]. As all IEEE 802 style MAC addresses share the same

address space, the uniqueness of MAC addresses is not restricted to a single type of

network [17]. For example, there should never be a Wi-Fi NIC with the same MAC

address as an Ethernet NIC.

Given these properties, it seems that the MAC address is an excellent choice for

the globally unique identifier.

2.2.2 Client Server Protocol

The second requirement, after the selection of a unique identifier, is the selection of a

client-server protocol to work with. There is a plethora of possible choices, from AEP

to TFTP. The problem with many of these protocols is that a computer connected to

a network is under no obligation to use most of them. Therefore we need a protocol

that a computer on a network is almost guaranteed to use. The list of such protocols

is limited.

One feature of TCP/IP networks is the requirement that a computer connected

to such a network have an IP address. Without such an address the computer cannot

truly participate in the network. Though it is possible to have a static IP address,

this is only viable in such cases where the computer is permanently connected to a

network and only common in institutional contexts. In most cases, IP addresses are

dynamically assigned to a computer when it joins a network.

A common mechanism for dynamic IP address assignment is the Dynamic Host
21

2.2. Technology Requirements

Configuration Protocol (DHCP). Many large Internet Service Providers (ISPs) use

the DHCP protocol, though some may continue to use DHCP’s ancestor Bootstrap

Protocol (BOOTP), these will be fairly rare. ISPs offering some form of Point-to-

Point Protocol (PPP) access, be it dial up or Point-to-Point Protocol over Ethernet

(PPPoE), do not use DHCP but use Internet Protocol Control Protocol (IPCP)

instead.

The majority of modern operating systems include a DHCP client. Microsoft’s

Windows operating systems have included a DHCP client from 1993 onwards [32, 10].

Similarly, Apple operating systems have also included such a client since mid 1995

[1, 53]. In fact, ease of use, especially for the client has made it practically de rigueur.

Almost any product designed for the modern home network, from Tivoes to Xboxes,

includes a DHCP client.

The procedure for obtaining an IP address via DHCP is fairly simple. When a

computer joins a network it broadcasts a DHCP request message whose format is laid

out in Figure 2.1.1 Upon receiving such a message, the DHCP server offers the client

temporary use of an IP address, a lease. This makes DHCP interesting as each time

a stolen or lost computer joins a network it will make such a DHCP request because

obtaining an IP address is necessary.

The DHCP message, as shown in Figure 2.1, contains a useful piece of information

in the “chaddr” field. The Request For Comments (RFC) defining DHCP describes

this as the “client hardware address” [35]. Conveniently, this is the client’s MAC

address that we have chosen as our globally unique identifier.2

All of these qualities combine to make DHCP an excellent selection as the client-

1See Section A.3 for an expanded explanation of how an IP address is obtained via DHCP.
2See Section A.4 for a discussion why the “chaddr” is preferred over the link layer address.

22

2.2. Technology Requirements

op (1) htype (1) hlen (1) hops (1)

xid (4)

secs (2) flags (2)

ciaddr (4)

yiaddr (4)

siaddr (4)

giaddr (4)

chaddr (16)

...

sname (64)

...

...

file (128)

...

...

options (variable)

...

Figure 2.1: Format of a DHCP message [35].

server protocol for our experiment.
23

2.3. The Blacklist

2.3 The Blacklist

The chosen mechanism for implementation is a blacklist. An example of this would

be lists cataloguing ISPs refusing to control their mail volume. In our case, we can

apply the same monitoring device to our problem. A globally distributed list of MAC

addresses tied to missing or stolen hardware would be maintained with accompanying

information for each entry. Such a blacklist, in combination with a DHCP server

monitoring client MAC addresses could be used to detect any clients on the DHCP

server’s network that report matching MAC addresses.

Detection is, of course, only the first step, beyond this remains the question of

tracking down the blacklisted hardware. Is it possible, with only the DHCP data to

track down the hardware on the network? This is a question that must be answered

by each DHCP server installation.

The frontline in this effort would be ISPs. ISPs are very tight-lipped about their

internal workings and thus it is difficult to comment, in a general fashion, on their

capabilities. However, thanks to the Canadian Radio-television and Telecommunica-

tions Commission (CRTC), we have some insight into Vidéotron’s practices, one of

Québec’s largest ISPs.

Vidéotron, in documents filed with the CRTC working group on high speed inter-

net, specifies its technique for identifying its subscribers. They add an option, “option

82”, containing the MAC address of subscribers’ cable modems, to the “options” field3

of subscribers’ DHCP traffic [11]. A subscriber’s DHCP message goes from the com-

puter to the cable modem to the Cable Modem Termination System (CMTS), where

“option 82” is added, and then onto Vidéotron’s backbone network [48]. Making this

3See Figure 2.1 for the “options” field and Section A.1 for a discussion of the “options” field.

24

2.3. The Blacklist

addition at the CMTS renders the process invisible to the subscriber. The result is

that each subscriber’s DHCP traffic is tagged with not only the computer’s MAC

address, but also the cable modem’s MAC address.

Vidéotron registers new subscribers by linking their cable modem’s MAC address

to their account information. Therefore, if a Vidéotron subscriber attempted to use

a blacklisted computer, then Vidéotron could use the cable modem’s MAC address,

found in the DHCP message, to track down the subscriber’s account information.

This data includes the subscriber’s name and address, which could be forwarded to

the appropriate authorities.

More generally, ISPs often maintain billing in terms of bandwidth usage and thus

it is likely they will maintain a mechanism for linking a customer’s IP address given

by the DHCP server to the customer’s billing data. Beyond this, legal requirements

in several jurisdictions demand that ISPs be able to identify customers using IP

addresses to facilitate law enforcement activities. We can tie the MAC address to the

IP address from the DHCP server’s logs, which means there is little doubt that ISPs

would be able tie it to their customer records.

25

Chapter 3

Implementation

This chapter discusses the details of the prototype implementation, analysis of the

implementation methods, as well as a discussion of some problems encountered with

the implementation.

3.1 Implementation Requirements

While it would be possible to implement a blacklisting DHCP server from scratch

there are two major reasons why this is not a desirable proposal. The first and most

obvious is that such an endeavour is beyond the scope of this work. The second

reason is a desire for maximum participation in this venture. The added cost to

the participant of migrating from their current DHCP server to a completely new

blacklisting DHCP server is likely to be prohibitive. For these reasons, we have

chosen to implement this prototype as a modification to one of the most popular

DHCP server implementations in the open source community, the Internet Software
27

3.1. Implementation Requirements

Consortium (ISC)’s DHCP server.

Again, to gain the widest acceptance possible, the implementation will need to

mirror the design philosophy of the original code. The ISC website claims that

its DHCP package provides an implementation “which is designed to be sufficiently

general that it can easily be made to work on POSIX-compliant operating systems

and also non-POSIX systems like Windows NT and Mac OS” [22]. Once the source

code for this package is examined we find generic, mostly, ANSI C code and few

system specific API references. Therefore, the blacklisting functionality will have to

be ANSI C code and avoid platform specific API references.

Beyond these requirements, the implementation of the blacklist should have mini-

mal impact on the operation of the DHCP server. The vast majority of requests made

against the server will be legitimate in nature and should suffer minimal effects. This

means that unless the cost of the blacklist on a per connection basis is not minimized,

the total impact could be unacceptably high.

The final requirement for the blacklist implementation is scalability. Despite the

fact that computer equipment quickly becomes obsolete, an entry on the blacklist may

remain in place for several years. In order to accommodate this fact, the blacklist

must handle various list sizes and must cope with an expanding list size.

The feature list included in the blacklisting server is as follows:

• The ability to accept or deny DHCP requests from a blacklisted host.

• Support for additional record information for each blacklist entry such as con-

tact information should the server ever see the blacklisted MAC address.
28

3.2. Implementation Method: Hybrid Trie Indexing

• Checking both the actual MAC address and the supplied client identifier.1

• Support for Windows client identifier unspoofing.2

3.2 Implementation Method: Hybrid Trie Index-

ing

The ISC DHCP implementation uses a single thread to process all incoming DHCP

messages. This means that should the thread take too much time on a blacklist

lookup all subsequent DHCP messages, waiting in the message queue, will go un-

handled until the first message is completed. While this may not seem catastrophic,

the problem lies in the DHCP standard’s timeout mechanism. The RFC document

provides a mechanism for a DHCP client to abandon what it considers to be an

unanswered message and retry [35]. However, no such mechanism is defined in the

RFC for the server to abandon messages that have waited too long in the queue.3

Any significant delay in searching the blacklist will cause an escalating backlog of

DHCP client messages. If the message queue grows too long and each lookup takes

too much time there begins to emerge a cascade failure as clients abandon messages

in the queue and retransmit, therefore growing the queue and exacerbating the prob-

lem. Eventually, most DHCP clients would abandon fail altogether under whatever

mechanism is implemented. Of course, this is an unacceptable situation and any im-

plementation of the blacklist must not interfere seriously with the efficiency of each

DHCP request. The goal of “minimal cost on a per connection basis” will therefore

1See Chapter 6 for a discussion of the use of the client identifier.
2See Section 6.1.1 for a discussion of this technique.
3Although the RFC defines no such mechanism the ISC server does implement one. Without

RFC guidance they must be careful not to conflict with the DHCP client message abandonment

algorithm.

29

3.2. Implementation Method: Hybrid Trie Indexing

be a major hurdle.

However, only the initial DHCP client request causes a blacklist lookup. The

client’s status, blacklisted for those in the blacklist or whitelisted for those not, is

recorded. All further traffic from that DHCP client is no longer checked against the

blacklist, unless a new blacklist is obtained. This helps reduce the cost of DHCP

traffic and helps further the goal of “minimal cost on a per connection basis”.

After several cycles of implementation and performance testing, the solution se-

lected was a hybrid trie. Unlike the standard trie, in a hybrid trie a leaf node does

not necessarily indicate a matched string, or in our case a matched MAC address,

but merely the possibility of a match. The search will then proceed to secondary

storage for further examination. This balancing between memory searches and sec-

ondary storage searches allows for tuning the blacklist performance in such a way as

to balance memory and secondary storage searches.

3.2.1 Hybrid Trie Indexing Analysis

Analysis of this hybrid trie requires that some terms be defined. The height of the trie

will be called h and the alphabet size a. The alphabet size indicates the maximum

number of children a trie node can have. As this trie indexes MAC addresses and not

regular strings we can be more particular about our trie structure. We could treat

all 12 hexadecimal digits of the MAC address as individual letters to be indexed.4

However, it’s easier programmatically to deal with the MAC address as six pairs of

hexadecimal digits. Therefore, the maximum value for h will be six, not twelve, and

the value of a will be 256, not sixteen.

4Recall that a MAC address is a 12 digit hexadecimal number. For example, 00:0D:93:63:CF:30.

30

3.2. Implementation Method: Hybrid Trie Indexing

Equation 3.1 captures the total upper bound on the complexity for the search

time in a hybrid trie.

O (a ∗ h) + O
(

a6−h
)

(3.1)

The first term is the upper bound of the trie search, which is performed in mem-

ory. The second term is the search performed on secondary storage. The goal is to

maximize the first term and minimize second term. This would suggest the largest

value of h possible. However, Equation 3.2 will place restrictions on h.

Equation 3.2 captures the memory requirements of a hybrid trie.

O

(

h
∑

i=0

ai

)

= O

(

1 − ah+1

1 − a

)

(3.2)

Here, memory usage is dictated, primarily, by the height of the trie. It is possible

to set h to any value, including the maximal value of 6, but too high a value can turn

a hybrid trie into a regular trie. This situation wastes much of the advantage of a

hybrid trie.

When building the hybrid trie with a blacklist, the goal is to find a value for h

such that the second term of Equation 3.1 is minimized while not causing the value

of Equation 3.2 to increase beyond utility.
31

3.3. The Maximum Branching Assumption

3.3 The Maximum Branching Assumption

The initial implementation of this prototype assumed that the hybrid trie would

achieve a level of branching that was equal to the alphabet size a. However, after

the original performance testing it was discovered that this assumption is seriously

flawed when indexing MAC addresses. To understand this, it is necessary to ex-

plain the mechanism of MAC address assignment. Anyone producing networking

equipment compatible with IEEE 802 standard networks must obtain what is known

as an Organisational Unique Identifier (OUI) prefix [17]. This prefix is three pairs

of hexadecimal digits, which prefixes the MAC address of any device produced by

the group in question [17]. Three pairs of hexadecimal digits represents 16,777,216

possible combinations. Unfortunately, there are currently only 8479 assigned OUI

prefixes.5 Thus we end up with the following scenario:

h Actual Maximum Leaf Nodes Assumed Maximum Leaf Nodes

1 10 256

2 68 65,536

3 8479 16,777,216

4 2,029,056 4,294,967,296

Table 3.1: Actual vs. assumed possible values of trie branching.

Table 3.1 clearly illustrates the sharp division of assumed branching versus actual

branching. Thus, when indexing MAC addresses this means that only once the trie

height reaches four or more will the branching of the trie even remotely approach the

assumed maximum. This will change over time as the IEEE assigns more OUIs but

is unlikely to dramatically increase. The lack of branching has proven not to be a

fatal flaw for small blacklists, but as the blacklist size increases, it becomes a more

5According to the IEEE as of August 2005.

32

3.3. The Maximum Branching Assumption

pronounced problem.

The chosen solution to this branching limitation is to index the blacklist of MAC

addresses backwards. The pairs of the MAC address are not reversed but simply

indexed backwards. Thus if a forward index would be 00:0D:93:63:CF:30 then the

backwards index would be 30:CF:63:93:0D:00. Manufacturers must exhaust 95% of

all possible suffixes of an assigned OUI prefix before requesting another [17]. We can

therefore assume that the suffix of a MAC address will be random and thus, will

conform to the maximum branching assumption.

33

Chapter 4

Performance

This chapter covers the analysis of the performance of the prototype including success

conditions, testing conditions and results.

4.1 Success Parameters

How do we define success in this endeavour? The stated goal of “minimal cost on a per

connection basis” needs to be measured in some way. An article by Bruce Bahlmann

suggests several appropriate metrics for DHCP servers [5]. His suggestions, adapted

for our particular use are:

• Transaction Rate: The number of transactions handled on a per second ba-

sis. Transaction here is taken to mean any request-response pair of DHCP

message. This includes both DHCPDISCOVER - DHCPOFFER pairs and

DHCPREQUEST - DHCPACK pairs.1

1See Section A.2 for a discussion of message types and Section A.3 for an expanded explanation

35

4.1. Success Parameters

• Average Transaction Time: The average time taken between the server’s recep-

tion of DHCP message and the server sending a DHCP response is measured

here. Again, this includes both DHCPDISCOVER - DHCPOFFER pairs and

DHCPREQUEST - DHCPACK pairs.

• Average Lease Request Time: Obtaining an IP address, a lease, from a DHCP

server is a two-step process. The average time taken during the first step,

the time between the server’s reception of DHCPDISCOVER message and the

server sending a DHCPOFFER response, is measured here.2

• Average Lease Acquisition Time: This is the entire time taken up in the ob-

taining of a lease on an IP address. This is the average time between the

server’s reception of a DHCPDISCOVER message and to the server’s sending

of a DHCPACK message.

• Percentage of Failed Transactions: Percentage of transactions that have failed

to complete for whatever reason. Transaction here is taken to mean any request-

response pair of DHCP message. This includes both DHCPDISCOVER -

DHCPOFFER pairs and DHCPREQUEST - DHCPACK pairs. Here, we di-

vide the number of failed requests by the number of requests made, both failed

and successful. Generally, the reason for such failures is a timeout. The client

gives up waiting on the server, and tries again.

With these metrics we can determine the effects the blacklist lookup is having on

the DHCP server.

of how an IP address is obtained via DHCP.
2The second step of obtaining a DHCP lease, the time between a DHCPREQUEST message and

a DHCPACK message, is not measured, as it does not perform a blacklist lookup, and so should

not vary from the original server.

36

4.2. Testing Environment

4.2 Testing Environment

Obtaining and configuring thousands of clients was, of course, not possible. Instead,

a DHCP client simulator was used to create the illusion of thousands of clients [49].

In our case, we simulated 5000 clients. This number was chosen as it represents

20 Class C subnets.3 This was the maximum number of subnets available with the

networking equipment in use.

The computer chosen to host the DHCP server was a Cobalt Qube 2. This

machine is best described as underpowered, being a 250 MHz MIPS processor [7]. The

quantity of DHCP traffic on a network is likely to be much smaller than, for example,

HyperText Transfer Protocol (HTTP) traffic. Therefore the machines hosting DHCP

servers are likely to be much less powerful. The Qube is meant to represent, and

exaggerate, this fact in our tests.

4.3 Testing Requirements

In order to test effectively we will need to run the blacklisting DHCP server with a

sizable blacklist. The procedure for generating such a blacklist is fairly straightfor-

ward. Randomly select one of the assigned OUI4 prefixes and generate the remaining

three pairs of hexadecimal digits at random. The question is, how large should this

test blacklist be?

It is incredibly difficult to obtain any sort of meaningful statistics on theft of

3A Class C subnet is a network with IP addresses that vary only in the last quad. e.g. 201.68.34.1-

255
4When the testing was performed, a slightly different list, including some OUI prefixes seen in

the wild but not on the official OUI list, was used.

37

4.3. Testing Requirements

computer hardware. We mentioned the yearly CSI/FBI survey in Section 1.1 but

unfortunately, the problem with this publication is that it gives numbers in terms of

monetary loss and not unit loss.

The only group we are aware of currently publishing statistics on the number of

computer thefts is Safeware Insurance. Safeware Insurance specializes in computer

insurance and publishes a yearly report of computer loss statistics for the United

States of America. These numbers are extrapolated from actual customers’ insurance

claims [43].

The original test value for the number of supported records was three year’s worth

of data for the United States of America. Three year was chosen as a reasonable mark

at which the deprecation of the computer makes it almost beyond worth recovering

[29]. According to the Safeware’s 1996 data, there were 265,000 notebook computer

thefts [41]. Rounding up for simplicity we ended with 900,000 records.

The 2001 survey released by Safeware Insurance placed the number of notebook

computer thefts at 591,000 [42]. Approximately three years worth of data places us

in the range of 1,500,000, which is our second blacklist test size.

This data makes it clear that the implementation must scale fairly well in order

to accommodate the likely increasing number of stolen computers in coming years.

However, with the depreciation rate of the average computer and various statutes

of limitation on theft it is unlikely that a computer’s record would remain on the

blacklist permanently [29, 8, 47, 4]. With this data in mind we’ve chosen a fifteen-year

upper bound for record retention and have therefore selected the figure of 9,000,000

blacklisted records as our stress testing bound.

38

4.4. Performance Testing

4.4 Performance Testing

The first step in the test procedure is an iterative one. A DHCP client simulator

is used to create thousands clients which begin making DHCP requests against the

server with a pause p between each request. Initially p is set to a large number,

something that would generate one transaction per minute.5 The test continues until

all clients are served. The value of p is then reduced and the clients again make their

requests. This continues until p is found that places a maximum load on the server

without increasing the number of failed transactions to unacceptable levels.

Once the proper value of p is determined then the second step in the test procedure

begins. As in step one, a DHCP client simulator is used to create thousands clients

who begin making DHCP requests against the server with the pause p between them.

This continues until the clients are all served.

This second test is then repeated until five data sets are obtained. After five

data sets are gathered, then the metrics outlined in Section 4.1 are calculated then

averaged. On occasions where the metrics calculated with five data sets are suspect,

for example besting the values of the baseline, then twenty data sets are obtained.

This is how the metrics found in the following sections are compiled.

In some cases it takes more than five iterations of the test to obtain five data

sets, or twenty as the case may be. This occurs when the server exhibits too high

a failure rate. The value of p is chosen to place the maximum load on the DHCP

server without causing the server to drop too many connections on average. This is,

at best, a precarious position for the server. Any small delay, for whatever reason,

be it network congestion or background activity on the server machine, can cause

5Guided by experience the initial value for p is rarely set that high.

39

4.4. Performance Testing

failures to build up to an unacceptable number on some tests. This means that some

data sets are discarded.

4.4.1 Establishing Baselines

A baseline performance test against which to compare the blacklisting DHCP server

is required. This baseline was generated by running the unmodified ISC DHCP server

trough the procedure outlined in Section 4.4. The baseline data generated is found

in Table 4.1.

Metric Value

Transactions Rate (per s) 39.061

Transaction Time (µs) 347,342.227

Lease Request Time (µs) 538,401.190

Lease Acquisition Time (µs) 5,955,793.465

% of Failed Transactions 0.017

Table 4.1: Baseline metric values for unmodified DHCP server.

4.4.2 Phase 1: Base Case

As mentioned in Section 4.3, the size of our initial test blacklist was chosen to be

900,000 records. Using the procedure outlined in Section 4.4, we generated the fol-

lowing results.
40

4.4. Performance Testing

Forward Indexing

The original forward indexing implementation generated the results found in Table

4.2.

Trie Height (h)

Metric 1 2 3 4

Transactions Rate (per s) - 9.942 39.021 39.056

Transaction Time (µs) - 631,620.671 347,252.834 350,040.386

Lease Request Time (µs) - 883,567.920 542,226.191 541,102.495

Lease Acquisition Time (µs) - 6,526,178.288 5,956,636.346 5,948,880.033

% of Failed Transactions - 0.050 0.052 0.034

Table 4.2: Forward indexing, hybrid trie, metric values for blacklist size 900,000.

There is no data for a trie height of one because of the mentioned trie branching

restriction in Section 3.3. With so few nodes in the trie, the performance drops to

unacceptable levels, with transaction rates falling to below 1 per second.

The poor showing with a trie height of two compared to the baseline in Table

4.1 is also the result of the branching limits of forward indexing. A trie height of

two results in an average of 10,000 records at each leaf node. Searching this many

records on secondary storage is prohibitive and results in the degraded performance

observed.

Increasing the trie height to three causes the number of records found at leaf

nodes to drop by two orders of magnitude, compared to the previous height, leaving

the number of records at close to 100. This helps to explain why the increase in

performance is so startling between the trie height of two and three. Here we have

the unusual situation where the Transaction Time for the trie height of three is
41

4.4. Performance Testing

actually less than our baseline metric. Bruce Bahlmann, in the article suggesting

our test metrics, explains that the lower value of the Transaction Time is essentially

tied to the lower value of the Transaction Rate this way: “[transaction time] will

gradually increase as the server and the network becomes increasingly taxed” [5]. A

higher Transaction Rate signals that the network is becoming “increasingly taxed”

which in turn causes a higher Transaction Time. Since the baseline has a higher

Transaction Rate this is perhaps why it has a greater Transaction Time than in this

case.

At this point we have matched the performance level found in the baseline test,

as outlined in Table 4.1.

There is little improvement in extending the trie height beyond three. With this

change, we are merely expending more memory, as illustrated by Equation 3.2, with

little gain. In this case however the Lease Acquisition Time is better than the one

found in the baseline. A further discussion of this result is found in the next section.

Backwards Indexing

The solution to the branching problem, backwards indexing, generated the results

found in Table 4.3.

The performance with a reverse indexing trie height of one provided acceptable

levels of performance. Some may regard the lower Transaction Time combined with

the lower Transaction Rate observed with a trie height of one as puzzling compared

to other trie heights having higher Transaction Times with higher Transaction Rates

but the explanation is the same as with a forward indexing trie of height three.

Unlike the forward indexing implementation, increasing the trie height to two
42

4.4. Performance Testing

Trie Height (h)

Metric 1 2 3 4

Transactions Rate (per s) 32.674 39.034 39.034 39.036

Transaction Time (µs) 343,701.121 349,764.871 347,636.327 349,251.576

Lease Request Time (µs) 546,079.735 541,268.783 540,209.988 541,072.043

Lease Acquisition Time (µs) 5,940,454.860 5,948,086.449 5,929,105.547 5,926,241.145

% of Failed Transactions 0.024 0.033 0.039 0.029

Table 4.3: Backwards indexing, hybrid trie, metric values for blacklist size 900,000.

gives us performance numbers roughly equivalent to those found during the baseline

in Table 4.1.

There is little improvement in extending the trie height beyond two and again, as

with forward indexing, we are merely extending the memory usage without providing

any remarkable performance benefit.

Here with a backwards indexing trie of height two, three and four the Lease

Acquisition Times are again lower than with the baseline value. To further compound

the oddity of the situation we have the following:

• Trie heights of two and four have similar Transaction Times and Lease Request

Times while having dissimilar Lease Acquisition Times.

• Trie heights of three and found have similar Lease Acquisition Times yet have

different Transaction Times and Lease Request Times.

Combined with the value of the Lease Acquisition Time found with a forward indexing

trie height of four we have a puzzling situation. The solution to this puzzle lies in

the nature of the metric. Recall that the Lease Acquisition Time measure the time

between the “ server’s reception of a DHCPDISCOVER message and to the server’s
43

4.4. Performance Testing

sending of a DHCPACK message”. This is a pair of DHCP message exchanges.

First a DHCPDISCOVER - DHCPOFFER pair is exchanged which begins the Lease

Acquisition Time. After an interval of time the DHCPREQUEST - DHCPACK pair

is then exchanged which ends the Lease Acquisition Time. During that interval the

number of intervening DHCP requests by other clients can cause the value of the

Lease Acquisition Time to fluctuate, as evidenced by the odd lower values we have

observed. Given that the Lease Acquisition Time is prone to fluctuation, dependent

on the network, it seems that it does not serve as an excellent metric for our testing

purposes.

4.4.3 Phase 2: Midrange

This is a midrange test of performance using a larger blacklist size of 1,500,000.

Following the procedure found in Section 4.4 with a randomly generated blacklist we

obtain the following results.

Forward Indexing

Forward indexing of the midrange blacklist generated the results found in Table 4.4.

In this case, there is no data for both trie heights of one and two as performance in

these cases is unacceptable. This is again due to the branching restriction discussed

in Section 3.3.

With a trie height of three, we achieve performance similar to that found during

the baseline test in Table 4.1. Extending the trie height to four does little beyond

using more memory and does not remarkably improve performance.
44

4.4. Performance Testing

Trie Height (h)

Metric 1 2 3 4

Transactions Rate (per s) - - 39.049 39.051

Transaction Time (µs) - - 349296.664 350093.035

Lease Request Time (µs) - - 540790.631 539816.378

Lease Acquisition Time (µs) - - 5972910.136 5959859.791

% of Failed Transactions - - 0.037 0.027

Table 4.4: Forward indexing, hybrid trie, for blacklist size 1,500,000.

Backwards Indexing

Backwards indexing of the midrange blacklist generated the results found in Table

4.5.

Trie Height (h)

Metric 1 2 3 4

Transactions Rate (per s) 28.103 39.053 39.036 -

Transaction Time (µs) 352,250.202 347,835.085 349,442.480 -

Lease Request Time (µs) 563,871.886 539,648.110 540,276.719 -

Lease Acquisition Time (µs) 5,922,291.588 5,970,578.997 5,969,034.806 -

% of Failed Transactions 0.042 0.033 0.031 -

Table 4.5: Backwards indexing, hybrid trie, for blacklist size 1,500,000.

Here the performance with a reverse indexing trie height of one, while low, is still

impressive.

Again, as with a blacklist of size 900,000, we obtain performance matching the

baseline metrics with a trie height of two or more.
45

4.4. Performance Testing

There is no data for a trie height of four simply because such a trie height generates

1,499,738 records which represents 99.98 percent of the blacklist’s records. With this

many records in memory we have squandered the advantage of a hybrid trie, by

essentially, transforming it into a regular trie, which would violate the goal stated in

Section 3.2.1.

4.4.4 Phase 3: Stress Test

Unlike the previous set of tests, here we have a significantly larger blacklist size of

9,000,000. This is a stress test and is meant to check the system for its ability to

scale.

Forward Indexing

Forward indexing of the stress test sized blacklist generated the results found in Table

4.6.

Trie Height (h)

Metric 1 2 3 4

Transactions Rate (per s) - - 28.098 32.651

Transaction Time (µs) - - 332,845.608 339,511.928

Lease Request Time (µs) - - 545,072.807 548,471.909

Lease Acquisition Time (µs) - - 5,883,402.460 6,056,957.512

% of Failed Transactions - - 0.036 0.060

Table 4.6: Forward indexing, hybrid trie, for blacklist size 9,000,000.

As with the previous forward indexing test, found in Section 4.4.3, there is no

data for trie heights of one or two simply because of unacceptable performance.
46

4.4. Performance Testing

Unlike the previous forward indexing tests, neither trie heights of three or four

are able to duplicate the performance found in the baseline tests. Though, in the

case of a trie height of four, the performance is competitive.

Backwards Indexing

Backwards indexing of the stress test sized blacklist generated the results found in

Table 4.7.

Trie Height (h)

Metric 1 2 3 4

Transactions Rate (per s) - 32.659 28.096 -

Transaction Time (µs) - 340,280.849 335,621.349 -

Lease Request Time (µs) - 545,960.626 549,796.964 -

Lease Acquisition Time (µs) - 5,968,388.707 6,022,713.630 -

% of Failed Transactions - 0.028 0.044 -

Table 4.7: Backwards indexing, hybrid trie, for blacklist size 9,000,000.

There is no data for the trie height of one because of poor performance. There is

no data for trie height of four for reasons similar to those of the previous backwards

indexing test in Section 4.4.3.

Here it is important to explain why performance decreases as trie height increases.

In this case, once the trie height reaches three we obtain a trie containing nearly

7,000,000 leaf nodes. This is approximately 77 percent of the total number of records.

At this point, the memory expense of the hybrid trie begins to parallel that of a regular

trie. The time required to page such memory begins to exert a prohibitive cost on

search times.
47

4.5. Conclusions

As with forward indexing, we do not obtain values identical to the baseline test.

4.5 Conclusions

The first conclusion we may extract from the data is that in a deployment of this

prototype, the selection of a trie of height two with a reverse index is likely to yield

the best performance levels. Installations that do not wish to tweak performance

should generally rely on this configuration.

Section 3.2 explains that only the first DHCP request by a client causes a blacklist

lookup. In the tests we have performed, the server has a fresh blacklist and therefore

every client’s first request causes a blacklist lookup. This situation is not likely

to occur in a production environment unless the network experiences a high client

turnover. Networks with a fairly stable client population will cause few blacklist

lookups since the clients will long since have been whitelisted.

It was mentioned, in the description of the testing procedure, that the test was

designed to place a significant, continuous heavy load on the DHCP server. It is

unlikely that a network’s DHCP server would be under a similar load barring some

mass network oddity given the nature of the protocol. Sites wishing to minimize

memory usage may be able to do so by lowering the trie height or using a forward

indexing trie. These will likely result in lower performance but this may be acceptable

if the server is also configured to offer IP address leases with longer lease times. This

would cause less frequent renewals of leases and thus decrease DHCP traffic.

The inability of the DHCP server to maintain ideal transaction rates during the

stress test, while unfortunate, is not totally unexpected. The blacklist size was origi-

nally chosen to be exceedingly difficult. It is unlikely that records would accumulate
48

4.5. Conclusions

for fifteen years. The statute of limitations on theft crimes varies by jurisdiction but

generally ranges between 5 to 6 years, though some jurisdictions have no such limita-

tions [8, 47, 4]. The obsolescence time for computer equipment is often ridiculously

short [29]. Both of these factors combine to make it unlikely that records would be

retained for such a long timeframe.

49

Chapter 5

Countermeasures

In this chapter, we consider the countermeasures available to anyone trying to defeat

a blacklisting DHCP server, as described in earlier chapters. Given the open nature

of the DHCP standard and the number of open source implementation based servers,

we must assume that wide scale deployment of these ideas could not be kept secret

for any length of time. As is often the case, “security through obscurity” is not an

option.

Section 5.1 covers the countermeasures available at the hardware level. In Section

5.2, we will address the countermeasures available at the level of the operating system

and drivers. Finally, in Section 5.3, we will discuss networking solutions that mask

the MAC addresses.

51

5.1. The Hardware

5.1 The Hardware

5.1.1 NIC Replacement

The simplest option in dealing with a blacklisted MAC address is to discard it by

replacing the Network Interface Card (NIC). The question of cost, difficulty and

practicality however must all enter into the equation.

Desktop PCs

The desktop PC is the easiest computer in which to perform NIC replacement. Up

until fairly recently, the NIC was found inserted into the computer using whatever

expansion slot system the motherboard supported. The current trend in motherboard

construction is to provide basic functionality such as NICs permanently integrated

into the motherboard’s circuitry. In both cases the solution to a blacklisted NIC is

straightforward: a new NIC must be obtained and placed into an available expansion

slot. In the case of motherboards with a non-integrated blacklisted NIC then the old

NIC should be removed and the new one inserted. This case guarantees the avail-

ability of a slot for the new hardware. The case of motherboards with an integrated

NIC may pose a problem, as there is no guarantee of an open expansion slot. Only

in cases where no slot is available would this procedure be impractical.

Currently, the price point for a new Peripheral Component Interconnect (PCI)1

NIC, wireless or wired, from a reputable manufacturer is reaching the sub 20 CAD

range. Even Gigabit Ethernet2 hardware is reaching reasonable price levels. This

1Currently the most common expansion slot type is PCI although PCI express is slowly replacing

it.
2Gigabit Ethernet is the likely successor to the overwhelmingly popular Ethernet type network

52

5.1. The Hardware

makes the question of price almost certainly moot.

The final question is one of difficulty. For those unfamiliar with the ins and outs

of replacing computer hardware the task may be daunting but for anyone with a

modicum of practical computing experience it should be straightforward and require

little time.

Integrated PCs

The term integrated PC is used to mean laptops, notebooks, sub-notebooks, tablet

PCs and even Personal Digital Assistants (PDAs). The common denominator in all

of these is that in most cases the entire unit is integrated into a single small package.

The drawback of such small sizes is the integration. In order to accommodate the

small form factor, most components are placed directly onto the motherboard and

few of these PCs include on-motherboard expansion slots. The only solution in these

cases is to rely on Universal Serial Bus (USB), Personal Computer Memory Card

International Association (PCMCIA) or flash-card devices to supply an alternate

format NIC as any blacklisted NIC is likely irremovable due to integration. In some

of the smaller devices, none of these options are available either for lack of the proper

expansion slots or lack of appropriate expansion hardware. Even if the equipment is

available, it is likely that the expansion slot is already in use. The practicality of the

replacement approach with integrated PCs is much lower than in desktops.

The current price point for USB or PCMCIA cards is roughly equivalent to that of

the PCI format. As was already mentioned, this cost is no barrier to use. Flash-card

based alternatives are, however, significantly more expensive reaching easily into the

100 CAN range.

and as such represents the next generation in wired networks.

53

5.1. The Hardware

Most would agree that the difficulty in using USB, PCMCIA or flash based cards

is fairly low. All were designed for ease of use by the end user.

5.1.2 NIC Reprogramming

The majority of NIC manufacturers currently use a type of chip known as Electron-

ically Erasable Programmable Read-Only Memory (EEPROM)3 chip to store the

MAC address of a NIC [24]. As the name of this type of chip indicates, it is possible

to erase the data stored on the chip and replace it with new data. The implication is

that it is possible to permanently alter a NIC’s blacklisted MAC address with a new

unlisted MAC address.

There are, in fact, two different techniques for writing new data onto a NIC’s

EEPROM. The first is described in “MAC Address Cloning”, which although dated,

is serviceable. It involves the physical removal of the EEPROM chip from the NIC

and reprogramming it using an EEPROM programmer, which is, at best, a tricky

operation as in many cases it requires that the chip be desoldered from the circuit

board [24]. In addition, reprogramming the chip may prove difficult, as the data

format may need to be reverse engineered [24]. However, some manufacturers are

kind enough to offer this information on their websites [18]. This places this technique

outside the ability of everyone but the electronics hardware expert.

The second technique is to rely on the NIC itself to provide the facilities for

reprogramming the EEPROM. MAC addresses are not the only data stored on a

NIC’s EEPROM chip and thus manufacturers occasionally supply both the circuitry

on the NIC and software required to write the EEPROM chip’s memory [19]. The

danger here is that an unsuccessful attempt to write a new MAC address may render

3Historically, ROM chips could only be written to once, hence the term Read-Only Memory.

54

5.2. The Software

the NIC useless. This may not be disastrous on a desktop PC but it could render

an integrated PC all but incapable of network access. Unlike the previous technique,

here, anyone familiar with software can accomplish the task assuming a third party

provides the software. Building the software from scratch is a non-trivial task.

This solution, unlike hardware replacement, requires a higher level of technical

savvy and bears a sharp penalty for failure.

5.2 The Software

In this section we will cover the variety of software solutions open to someone wishing

to mask a blacklisted MAC address. As these solutions are operating system depen-

dant, we will cover the range of most frequently used networking operating systems.

The Google Zeitgeist4 provides us with a snapshot of operating systems found on the

web [15]. Though this may not be completely representative of computers connected

to the internet — servers for instance rarely make connections to Google — it does

serve as a reasonably accurate barometer of end user systems. The zeitgeist indicates

that the Linux operating system has a 1% market share, the Mac a 3% market share

and the various Windows operating systems dominate with 91% market share. We

will therefore endeavour to cover these operating systems and their mechanisms for

altering MAC addresses, if any.

4The Google Zeitgeist tracked statistics concerning Google users, including operating system

type.

55

5.2. The Software

5.2.1 Linux Operating System

The Linux operating system integrates support for changing a NIC’s MAC address.

This offers a solution to the blacklisted MAC address problem. The method used to

accomplish this is described in the man page for the ifconfig command, which reads

as follows: “Set the hardware [MAC] address of this [network] interface [card], if the

device driver supports this operation” [12]. With confirmation that the operating

system itself supports this option, it only remains to verify if the NIC’s device driver

supports the functionality for the NIC in question.

The weaknesses of this solution are twofold. The first is that, unlike the hardware

solutions we covered in Section 5.1, it is not permanent. Each time the power is

cycled on the computer, the ifconfig command must be re-run otherwise the true

MAC address will be used. This is not a fatal problem, a bit of clever scripting and

the change can be made each time the computer boots up. The second weakness is

the very nature of the change. The bit of clever scripting may, for a great variety

of reasons, be wiped out. An operating system reinstallation or upgrade could easily

remove the change and return the computer to its blacklisted MAC address.

Linux is widely regarded as user-unfriendly and often demands a fairly in-depth

set of technical skills and know-how to operate on a daily basis. It is not unreasonable

to claim that enabling this functionality on a permanent basis should be well within

the grasp of most Linux users given the general day-to-day demands of using such an

operating system.

56

5.2. The Software

5.2.2 Apple OS X

FreeBSD is “the primary reference platform for [OS X’s] kernel development” [3].

This places FreeBSD at the very core of OS X and makes it unsurprising that OS X

supports the modification of a NIC’s MAC address, as this functionality is also found

in FreeBSD. The ifconfig command, the same as the Linux command, provides this

functionality for both FreeBSD and OS X, but with slightly different syntax [6].

Support for MAC address spoofing from the operating system is only half the

equation; the device driver for the NIC also needs to support the functionality. The

drivers for the integrated Ethernet NICs found on recent Apple computers, in most

cases, support the spoofing of its MAC address. In contrast, drivers for the Apple

Airport Extreme wireless card do not support the spoofing of its MAC address.

Whatever the reason for its omission, the lack of this functionality has been remedied

by third party developers. The first fix involves patching the network driver for the

Airport Extreme card to enable the functionality with ifconfig [44]. The second fix

involves compiling a new kernel for OS X [37].

When the network driver does allow for spoofing the MAC address, experimenta-

tion has determined that OS X 10.3 and the new OS X 10.4 have slightly different

behaviours. In the case of 10.3, a spoofed MAC address only affects the link layer of

the packets but DHCP packets contain the unspoofed value in the “chaddr” field.5

With 10.4 however, a spoofed MAC address is used in both the link layer and in the

DHCP “chaddr” field. Given the updated behaviour in 10.4, we can assume that the

behaviour found in 10.3 was a bug and not a feature.

As the mechanism for spoofing is identical to the one used in Linux, it shares

the same weakness: fragility. Beyond this, the fact is that because most Apple users

5For a discussion of the link layer and the “chaddr” field see Section A.4

57

5.2. The Software

purchase their computer in order to avoid the pains of Windows, never mind those

of the command line, it seems less likely that the average Apple user would be able

to use such a solution. Perhaps in the future this feature will be integrated into the

Graphical User Interface (GUI).

5.2.3 Windows

The earlier mentioned 91% market share is the total sum figure for all of the many

versions of Windows currently in use on the internet. In Figure 5.1, we can see that

there is a wide spectrum of Windows operating systems still in use on the web.

Clockwise, from Windows 95 to Windows XP

Figure 5.1: Windows operating systems found on the internet [15].

A Short History of Windows

The history of the Windows operating system is fairly convoluted. There are dozens

of branches, splits, false starts and dead-end development paths [10]. A very crude

simplification of this history is to claim that there are two strains of Windows oper-
58

5.2. The Software

ating systems. The first strain originated in the Disk Operating System (DOS) and

includes Windows 1.0, 2.0, 3.x, 95, 98, ME. This is Microsoft’s legacy strain and it

is more or less a dead development branch. The second and currently active strain

originated with the development of Windows NT by David Cutler and his team [14].

This second strain was an attempt by Microsoft to create an operating system that

was legacy free, genuinely robust, networked and multi-user [14]. This strain includes

the Windows NT 3, NT 4, 2000, XP, the forthcoming Vista, the projected Blackthorn

and future Microsoft desktop and server operating systems.

As this document only covers the major operating systems still seen in the wild

on the internet, we do not cover the legacy operating system families such as the

Windows x.x series or the Windows NT 3.x series. Both of these families are many

years out of date, passed their “end-of-life” dates and almost impossible to obtain for

research [30].

Windows 95, Windows 98 First Edition, Second Editions and Windows

ME

All four of these operating systems offer the functionality to spoof a NIC’s MAC

address, although this functionality is not available through the Windows GUI. It

can only be found buried in the Windows registry.

The Windows registry is used to store the vast majority of configuration infor-

mation in the Windows operating system. Its structure vaguely resembles that of a

DOS file structure. What would be a directory is known as a key. A key may have

subkeys much like a directory may have subdirectories. A key may also contain a

set of keyword-value pairs much like a directory may have files. However, despite it’s

resemblance to a directory structure, the registry is not available from the file browser
59

5.2. The Software

or the command line. A separate program must be used to access and modify the

registry. This is because the registry is not actually located in a single file but spread

across several files, depending on which version of Windows operating system [54].

The procedure found here for spoofing the MAC address is a summary of the

procedure provided by Kyle Lai [26]. In Windows 95 et al., each NIC installed has it

own subkey under the following registry key:

HKLM\System\CurrentControlSet\Services\Class\Net

To spoof the MAC address of a particular NIC, a new keyword-value pair must be

created in the NIC’s subkey. This new keyword-value pair should be named “Net-

workAddress”, its type should be of “String Value” and its value should be whatever

the spoofed MAC address value is desired, as expressed in hexadecimal notation, for

example “000090A9C5FF”. As with many Windows configuration updates, a reboot

is necessary to complete the procedure.

None of the operating systems in this series were built with security in mind, thus

there is no way of restricting user access to the registry. This makes the addition or

deletion of registry values simply a question of access. Anyone with physical access

to a machine running any of these operating systems can spoof the MAC address of

any NIC attached to that operating system.

Windows NT 4

Windows NT 4 also offers the ability to spoof a NIC’s MAC address and it too is

unavailable from the Windows GUI.

The procedure found here is, again, a summary of the procedure provided by Kyle
60

5.2. The Software

Lai [27]. It is virtually identical to that used in with Windows 95 et al. although

with a different registry key:

HKLM\SYSTEM\CurrentControlSet\Services\[Adaptor]\Parameters

Unlike the previous case there is no subkey for each NIC. In this case each NIC is as-

signed an identifier, which must be substituted in place of “[Adaptor]” in the registry

key path. The value of this identifier can be obtained by using the net config rdr

command.

In contrast to Windows 95 et al., Windows NT 4 was designed with multi-user

facilities and security in mind. With these features, it is possible that someone who

can boot up the computer would be unable to modify the registry and thus unable to

spoof the MAC address of a computer’s NICs. What one needs, beyond being able

to boot the operating system, is access to an Administrator account if one wishes to

spoof a MAC address, because only Administrator accounts can edit the registry.

Windows 2000, Windows XP

As with their predecessor Windows NT, Windows 2000 and XP also offer the ability

to spoof a NIC’s MAC address.

The procedure found here is, once more, a summary of the procedure provided by

Kyle Lai [25]. It is similar to the previous procedures but with two slight differences.

The first difference is the registry key:

HKLM\SYSTEM\CurrentControlSet\Control\Class\4D36E972-E325-11CE-BFC1-08002BE10318

Like Windows 95 et al., each NIC has its own four-digit subkey in which a new
61

5.2. The Software

keyword-value pair must be added to spoof the MAC address. The new keyword-

value pair should, as previously, be named “NetworkAddress” and its value should be

the desired spoofed value. The second difference is that the type of the keyword-value

pair should be “REG SZ”.

Unlike previous versions of Windows, there is, in some cases, a GUI for spoofing

a NIC’s MAC address. The functionality is included in some driver software at the

manufacturer’s discretion [25]. This GUI functionality is simply an automation of

the above-described procedure. When it is used, it alters the registry in identical

fashion.

As upgrades to Windows NT 4, both 2000 and XP maintain the security policies

vis-à-vis the registry. This means that even with boot access to the operating system,

anyone wishing to spoof a MAC address would still need access to an Administrator

account. This applies to both techniques mentioned above.

Windows Upgrades and Spoofing

Microsoft’s various Windows operating systems often offer to upgrade from one ver-

sion to another. This begs the question, how stable is the mechanism for spoofing

MAC addresses through such upgrades? Table 5.1 contains the results of testing the

various mechanisms for MAC address spoofing against permitted Windows upgrade

path.

Table 5.1 illustrates that when upgrading within a strain the spoofing generally

survives an upgrade without issue. If the upgrade crosses from one strain to another,

however, the spoofing is lost. The exception being going from Windows NT 4 to either

Windows 2000 or Windows XP. This is not surprising given that the mechanism for
62

5.2. The Software

To Windows 98 98SE ME NT 4 2000 XP

From Windows

95 Preserved Preserved Preserved N\A Lost N\A

98 N\A Preserved Preserved N\A Lost Lost

98SE N\A N\A Preserved N\A Lost Lost

NT 4 N\A N\A N\A N\A Lost Lost

2000 N\A N\A N\A N\A N\A Preserved

Table 5.1: Effect of upgrading Windows on MAC address spoofing.

spoofing varies in NT 4 as compared to 2000 and its inheritor XP, despite their

sharing the same strain. Why did this happen and is it likely to reoccur with Vista

or Blackthorn? The probable reason for the change between NT 4 and 2000 was

that Windows 2000 was the first step in the integration of both operating system

strains into a single codebase and, as such, while still being the inheritor of NT 4,

it carries many modifications that result from the integration of the home operating

system codebase [36]. It seems unlikely that Vista or Blackthorn will suffer from such

changes now that the integration of the home operating system strain is complete.

Registry Stability and Security

The registry is in constant flux in a Windows environment with keys being added,

read, modified and deleted at all times. Given that the mechanism for spoofing a

MAC address is registry dependent we need to examine how stable the change is.

For all Windows operating systems the location in the registry that enables spoof-

ing of MAC addresses ties together the model of the NIC card and the PCI slot loca-

tion into a unique registry path. This means that moving the card from one PCI slot

to another will result in the card transmitting its un-spoofed MAC address unless
63

5.3. NAT Technology

care is taken to re-spoof the value for the newly created registry unique path based

on the card type and its new PCI slot.

Certain troubleshooting procedures involve deleting a NIC’s key from the reg-

istry. This would also delete the keyword-value pair “NetworkAddress” containing

any spoofed value. When Windows automatically rebuilds the NIC’s key the keyword-

value pair would not be regenerated, thus destroying the spoofing. Some early driver

installation programs used similar behaviour but this is mostly a thing of the past.

Most drivers now follow the proper installation procedure.

5.3 NAT Technology

Network Address Translation (NAT) technology was developed as a stopgap solution

to the ever-increasing demand for IP addresses [33]. The rather clever solution, laid

out in the defining RFC, was to place a device that would provide a “stub” network,

a small network of non-globally unique IP addresses valid only within this small

“stub”. If any network traffic had to leave the “stub”, then it would be translated

into a globally unique IP address [33].

Currently most personal ISPs only offer a single IP address or, in some cases,

demand a surcharge for each additional IP address. This has led to an increase in

the use of routers at home. Given this restriction, most of these routers incorporate

NAT technology, as it is a cheap and easy solution for several home computers to

share a single home internet connection.

The “stub” network must have a mechanism for assigning IP addresses to each

of its members. This often comes in the form of an internal DHCP server. The

router itself has its own MAC address used on the external connection, which is what
64

5.3. NAT Technology

the outside world sees. Thus any computer with a blacklisted MAC address that is

connected to a NAT device will not be reported to the wider network. The wider

network will only see the NAT device’s MAC address.

This makes these pieces of home networking equipment a simple defence against

MAC monitoring. Unless the computer is connected to the internet directly, the

blacklisted MAC address will never leave the “stub” network.

These home NAT devices are unlikely to be able to support the solution proposed

in this document. There is however a solution to this limitation. The device could be

updated to forward any new MAC address it receives to the ISP’s DHCP server thus

opening it up for examination. The problems here are likely to be of a legal, ethical

and public relations nature. Consumers are presumably not going to be happy that

a piece of equipment they have purchased is “ratting them out” to their ISPs. The

media incident over the Pentium III and it’s unique identifier is illustration enough

that consumer’s do not enjoy corporations intruding into their privacy.6

6For those that don’t recall the Pentium III chip introduced a “processor serial number”. Fears

at the time were quite high as is illustrated by the FAQ Intel released [20]. Complaints against Intel

were filed in the USA [46].

65

Chapter 6

Counter-Countermeasures

The examination in Chapter 5 of countermeasures to the proposed blacklisting system

leaves us with the conclusion that, with moderate difficulty and technical knowledge,

it may be possible for someone to hide their true MAC address. How then do we

counter this situation? In this chapter we discuss some approaches that can be used.

6.1 DHCP Client Identifier

The introduction of the DHCP protocol provided the designers with the opportunity

to correct flaws and fix omissions that had been exposed during its previous incarna-

tion as the BOOTP. One of the changes was renaming BOOTP “vendor extensions”

to DHCP options [35]. During this transformation, several new types of DHCP op-

tions were created, including the “client identifier” option [35]. It serves as a unique

identifier instead of the “chaddr” field, which drops its dual role and returns to simply

being the client’s MAC address [35, 34].
67

6.1. DHCP Client Identifier

The format of the “client identifier” option, as defined in RFC 2132, is illustrated

in Figure 6.1.

Code Length Type Client Identifier

61 n t i1 i2 ... in−1

Figure 6.1: DHCP option 61, the client identifier [34].

The comments on this option in RFC 2132 make it clear that it may carry a MAC

address or it may include some arbitrary data. If the MAC address is transmitted, the

type byte is set to the appropriate hardware type and if arbitrary data is transmitted,

the type byte must be set to 0 [21, 34]. The only other restriction the “client identifier”

is that, like the “chaddr”, the value must be unique on the subnetwork [35].

The “client identifier” option enables another opportunity to track a stolen com-

puter. Though a clever thief may change the MAC address of the computer, it is

possible that the thief would overlook the “client identifier”. To this end, if the

“client identifier” were explicitly set to a unique identifier it too could be tracked in

the blacklist. In order to avoid duplicate entries it is suggested that the value used

be the MAC address.

6.1.1 Windows and the Client Identifier

Within the set of Windows operating systems we are discussing, all include a “client

identifier” in DHCP requests.1 This “client identifier” is simply a copy of the NIC’s

MAC address value. Unfortunately for us, by default if the NIC’s MAC address is

spoofed, this value is used for the “client identifier” as well.

The ability to set custom values for the “client identifier” was only introduced in

1See Figure 5.1 for list of Windows operating systems under discussion.

68

6.1. DHCP Client Identifier

the business strain of Windows operating systems starting with Windows NT 4 and

continuing on with Windows 2000 and Windows XP. The procedure, for Windows NT

and Windows 2000—XP, is found in Microsoft article KB172408, and is summarized

in the following sections [31].

Windows NT 4

The procedure in article KB172408 is much like that for spoofing a NIC’s MAC

address. It simply relies on a slightly different registry key:

HKLM\SYSTEM\CurrentControlSet\Services\[Adaptor]\Parameters\Tcpip

As in the procedure found in Section 5.2.3, the NIC’s value for “[Adaptor]” must be

substituted. Once the key is found, a new keyword-value pair must be created with

the name “DhcpClientIdentifier” with the desired “client identifier” as the value.

The keyword-value is specified in the article to be of type “REG DWORD” which

would limit the range of “client identifier” from 00:00:00:00 to FF:FF:FF:FF. As

MAC addresses are six hexadecimal pairs, this limitation to four pairs makes this

feature less than useful.

However, our experimentation has shown that the keyword-value pair type

“REG BINARY” can be used without issue, despite lack of official Microsoft support.

The advantage of this key type is that it supports arbitrarily large values, for example

six hexadecimal pairs.
69

6.1. DHCP Client Identifier

Windows 2000, Windows XP

Mirroring the change in key location for spoofing MAC addresses in the upgrade from

Windows NT 4 to Windows 2000, article KB172408 also specifies a new key location

for the “client identifier”:

HKLM\System\CurrentControlSet\Services\TcpIp\Parameters\Interfaces\NICGUID

The rest of the procedure laid is identical to that used with the Windows NT

“client identifier” spoofing found above.

Again, our experiments have also shown that, as with Windows NT, using the type

“REG BINARY” provides for arbitrarily large values for the spoofed client identifier

despite lack of mention of this in the official Microsoft document.

The only further note to add is that article KB172408 does not include Windows

XP on its “Applies To” list. The review date for the article is June 3, 2003 while

Windows XP was released on September 25, 2001 [10]. It seems likely that the

omission of Windows XP on the list of supported operating systems is simply an

oversight.

Windows Upgrades and Client Identifier

Unlike what can be observed in Table 5.1, the situation vis-à-vis upgrades and a cus-

tom “client identifier” is fairly simple: when upgrading from Windows NT to either

Windows 2000 or Windows XP a custom “client identifier” is lost. This is simple

to explain given the distinct registry key NT uses as compared to 2000 and XP. An

upgrade from 2000 to XP, however, does preserve a custom “client identifier”. Pre-

dicting if future releases of Windows will continue to support this feature is difficult
70

6.1. DHCP Client Identifier

to gauge because, as mentioned, Windows XP does not officially support the feature.

Windows Custom Client Identifiers

Following the requirements of the RFC defining DHCP, the Windows DHCP client

uses a type byte2 of zero if a custom client identifier is used. This means that a

blacklisting DHCP server will need to be clever in handing “client identifiers” values.

Some may be MAC addresses with a type byte of zero and some may be arbitrary

values.

6.1.2 Apple OS X and the Client Identifier

The Google Zeitgeist tells us that 91% of operating systems found on the internet are

Window variants of some sort. This level of homogeneity has engendered a philosophy

that favours catering only to Windows operating system. Some ISPs only support

Windows machines officially and have come to rely on the default Windows behaviour

of including the “client identifier” even if the RFC states that the inclusion is optional.

Thanks to the policies of these ISPs, it’s often the case that Apple’s operating

systems need to duplicate Windows behaviour. To this end we find that from at least

OS 8.5 onwards, it is possible to supply a custom “client identifier” [2]. Consistent

with Apple’s long commitment to ease of use and well-designed user interface, there is

a simple user interface element for setting the “client identifier” on Apple’s operating

systems.

2See Section 6.1 for a discussion of the type byte.

71

6.1. DHCP Client Identifier

6.1.3 Linux Operating System

The vast majority of Linux distributions currently use the ISC implementation of

the DHCP client. The ISC reference DHCP client has, from its introduction in

version 2.0, always included the ability to specify any arbitrary value for the “client

identifier”, including arbitrary values for the type byte, a fact obtained by studying

the source code of the initial release.

An alternative DHCP client named pump is used in some Linux distributions and

is offered as an alternative to the usual ISC implementation. Currently, the pump

implementation does not include the “client identifier” by default, however it does

offer the ability to duplicate Windows DHCP client behaviour by including a “client

identifier” that matches the MAC address but there is no way to include a custom

“client identifier” [38].

A less popular choice but still common enough is dhcpcd; which as the name

implies is a DHCP client daemon. The daemon command line options include the

ability to specify a custom “client identifier” [55].

72

Chapter 7

Conclusion

In this document we have proposed the “rehabilitation” of the theft recovery solution.

To this end a prototype system has been developed and successfully tested thus

fulfilling our stated goal.

Unfortunately the success remains only valid with version four of the Internet

Protocol (IP), which is currently in use over the majority of the internet. However,

the upcoming switch to IP version six will include an upgrade to the MAC address

space [52]. This will expand the size of a MAC address from twelve hexadecimal

digits to sixteen hexadecimal digits [52]. This expanded address space unfortunately

places an extra strain on the system as designed. Further research would be required

to ensure continuing viability.

Unaddressed remain the logistical requirements of this proposal. First among

these would be the maintenance and distribution of a MAC address blacklist. Second

would be ISP participation: mandatory or voluntary? How this could be handled

at a local, regional and national level? These questions are outside the scope of this

73

document as they are entirely dependant on policy decisions and not technical merits.

However, they remain an issue for any real world adoption of the idea.

The majority of countermeasures we have discussed have a varying level of per-

manence attached to them thus making them imperfect. Still, they have eroded

the historically static nature of the MAC address granting it a certain malleability.

This malleability unfortunately places into jeopardy the “rehabilitation” we have at-

tempted. There is however little that can be done about this troubling problem.

Beyond this there is the issue of the many machines hiding behind NAT technology

though as IP version six is implemented it may be that the numbers of such machines

will decrease. NAT has an inherent number of limitations and is often employed in

order to avoid paying for an additional IP. With IP version six providing for 3.4×1038

addresses it may be that the days of NAT are numbered [51]. Regardless, we have

succeeded in removing the theft recovery technology from the client but dependence

on standard hardware and software has its price.

In short, while we have proven the techniques and ideas proposed as plausible,

there is some doubt whether they would yield satisfying results if deployed on the

internet.

74

Appendix A

DHCP Primer

This section is a simplification of what is found in RFC 21311 which is the current

reference describing the basics of DHCP.2

A.1 What is DHCP?

DHCP is a protocol that a client can use to discover the appropriate network configu-

ration without user intervention and more importantly without manual preconfigura-

tion. At its core, it serves as a method for a client to obtain the minimum information

necessary in order to create a fully functional network connection; usually this means

an IP address. There are some exceptions where this is not the case, however, they

are beyond the scope of this discussion.

DHCP is an extension of BOOTP and was designed to be backwards compatible in

1A good source for RFCs is http://www.rfc-editor.org/.
2As of July 2005.

75

A.1. What is DHCP?

addition to supporting a host of new features. Therefore, as was BOOTP, DHCP is a

client-server protocol, which uses the connectionless User Datagram Protocol (UDP)

transport protocol. DHCP has a single message format, which is shown in Section

2.2.2, but also reprinted here, in Figure A.1, for ease of reference.

op (1) htype (1) hlen (1) hops (1)

xid (4)

secs (2) flags (2)

ciaddr (4)

yiaddr (4)

siaddr (4)

giaddr (4)

chaddr (16)

...

sname (64)

...

...

file (128)

...

...

options (variable)

...

Figure A.1: Format of a DHCP message [35].

There are three fields in Figure A.1 that are of keen interest to us in this document.

Anyone wishing further information about other fields should consult the RFC. The
76

A.2. DHCP Message Types

first field of interest is the “op” field, which denotes the type of BOOTP message we

are interpreting. Either a BOOTREQUEST or a BOOTREPLY. This is a holdover

from BOOTP and is kept for backwards compatibility reasons.

The second field of interest is the “chaddr” field, which contains the DHCP client’s

MAC address. MAC addresses are discussed in Section 2.2.1. A discussion on the

necessity of this field can be found in Section A.4.

The third field of interest is the “options” field. There is no specified size for this

field in Figure A.1. The reason for this lack of specificity is that the “options” field

is actually composed of several option fields each containing separate information.

These DHCP options are all identified by an option number between 0 and 255. The

option number is also the first byte of the option when it is encoded in the DHCP

message. Some option fields are, despite the name, required while others are not.

In this document, there are two “option” fields mentioned so far. The first is

option 61, which is illustrated in Figure 6.1 and discussed at length in Section 6.1.

The second example is option 82, an option, added by some ISPs in order to better

identify their clients. This option is mentioned briefly in Section 2.3.

A.2 DHCP Message Types

DHCP was designed to be backwards compatible with BOOTP and thus, instead of

adding new message types in the “op” field to separate BOOTP message from DHCP

message, the designers chose to use an option field instead. Option 53, the DHCP

Message Type option, was born.

As illustrated in Figure A.2, there are nine possible values for Option 53, though
77

A.3. Obtaining a DHCP Lease

Code Length Type

53 1 1-9

Figure A.2: DHCP option 53, DHCP message type [34].

only a few are germane to our discussion. The subset we will be discussing is:

• DHCPDISCOVER: A message broadcast by a client attempting to “locate avail-

able [DHCP] servers” [35].

• DHCPREQUEST: A message sent by a client attempting to obtain an IP ad-

dress lease from a particular DHCP server.

• DHCPOFFER: A message from the server destined to the client offering a lease

on an IP address. It is sent in response to a DHCPDISCOVER message.

• DHCPACK: A message from the server destined to the client indicating that

all is well with its request. Sent in response to a DHCPREQUEST.

These message types make up the basics of the DHCP protocol and will be refer-

enced in most of the examples that follow.

A.3 Obtaining a DHCP Lease

The process of obtaining a lease on an IP address is illustrated in Figure A.3. We

have chosen to illustrate the simplest case, which is when a client has no IP address

and is in the process of requesting a lease. As we can see, this process has two steps,

where each step includes a request by the client and a response by the server.
78

A.3. Obtaining a DHCP Lease

Server
(not selected) Client

Server
(selected)

Begin Initialization
dhcpdiscover

++WWWWWWWWWWWWWWWWWWWWdhcpdiscover

ssggggggggggggggggggg

Chooses Lease to Offer

dhcpoffer

''N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

Chooses Lease to Offer

dhcpofferssgggggggggggggggggggg

Collect Replies

Select Offer
dhcprequest

++WWWWWWWWWWWWWWWWWWWWdhcprequest

ssgggggggggggggggggggg

Discards Offer to Client

��

Commits Lease as Taken

dhcpackssgggggggggggggggggggg

��

Confirmation

Initialization Complete

Figure A.3: Obtaining A DHCP lease [35].

Not shown is that all messages send in Figure A.3 are broadcast messages. Broad-

casting a message means that the messages are sent to no particular IP address and

everyone on the network can receive it.3 The client must do this as it has no idea

what the IP address of the DHCP server is. The server must do this because the

client does not yet have an IP address.

3Here here is a dual meaning to the term broadcast. It means the message is broadcast with des-

tination 255.255.255.255, a broadcast IP address. It also means that the message is broadcast with

destination FF:FF:FF:FF:FF:FF, an Ethernet link layer broadcast address. This is a simplification

of the true behaviour, which is explained in RFC 2131.

79

A.4. On the Necessity of the “chaddr” Field

A.4 On the Necessity of the “chaddr” Field

Some question the necessity of using the “chaddr” field in the DHCP message to

match against the blacklist as suggested in Section 2.2.2. They argue that the MAC

address, the hardware address, would be available in the link layer, the hardware

layer. This objection requires a detour into the workings of the TCP/IP protocol

suite.

There are four layers to the TCP/IP network stack. The topmost is the application

layer, then the transport layer, then comes the network layer and finally the link layer

[50]. In our cases the layers are: DHCP, UDP, IP and for the sake of this discussion

we will use Ethernet as our link layer. As a DHCP message descends down the layers

of the TCP/IP protocol suite, the message is wrapped in various layers; thus the

DHCP message is wrapped in a UDP message, which is in turn wrapped in an IP

message, which is finally wrapped in an Ethernet frame [50].

An Ethernet frame contains both a destination and a source address link layer

addresses, which are MAC addresses [50]. This means that a DHCP server, upon

reception of an Ethernet frame, would have the MAC address of the sender available

as the link layer source address.

There is, however, a situation where the link layer source address is not that of the

DHCP client. This is where a DHCP relay is in use. In Section A.3 we mention that

all the messages exchanged between he client and the server were broadcast messages.

This means that the server and client must share an environment where they can hear

each other’s broadcast messages. If it is not the case, then a DHCP relay must be

inserted between the client and the server in order to solve this problem.

In Figure A.4, the client is on subnet A, a subsection of the network, and the
80

A.4. On the Necessity of the “chaddr” Field

Client
(Subnet A)

Relay
(Subnet A and B)

Server
(Subnet B)

Begin Initialization
dhcpdiscover

&.UUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUU

Receives Message
Relays Message dhcpdiscover

**UUUUUUUUUUUUUUUUU

Chooses Lease to Offer

dhcpofferttiiiiiiiiiiiiiiiiiii

Receives Offer
Relays Offer

dhcpofferqy kkkkkkkkkkkkkkk

kkkkkkkkkkkkkkk

Collect Replies
Select Offer

dhcprequest

%-
TTTTTTTTTTTTTT

TTTTTTTTTTTTTT

Receives Message
Relays Message dhcprequest

**UUUUUUUUUUUUUUUUU

Commits Lease as Taken

��

dhcpack
ttiiiiiiiiiiiiiiiii

Receives Confirmation
Relays Confirmation

��

dhcpackqy kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

Confirmation
Initialization Complete

Double arrows indicate broadcast messages.

Figure A.4: Obtaining A DHCP lease with a relay [35].

server is on subnet B, a separate subsection of the network. Broadcast traffic is

confined to individual subnets. The relay is, of course, on both subnets as it must

act as a bridge between the two.
81

A.4. On the Necessity of the “chaddr” Field

With this configuration, in all the messages received by the DHCP server, the

“source address” field in the link layer message would be the MAC address of the

DHCP relay, and not that of the DHCP client. However, the “chaddr” field of the

messages received by the DHCP server would contain the MAC address of the client.

This is why we use the “chaddr” field of the DHCP message instead of the “source

address” field of the link layer message.

82

Bibliography

[1] Apple Computing. Open Transport Versions. http://developer.apple.com/

qa/nw/nw64.html.

[2] Apple Computing. Technical Note TN1142. http://developer.apple.com/

technotes/tn/tn1142.html.

[3] Apple Computing. The Evolution of Darwin. http://developer.apple.com/

darwin/history.html.

[4] Arizona State Legislature. Time Limitations. In Arizona Revised Statutes, title

13, chapter 107, section B.1. Arizona State, 1956. 13 A.R.S §107.B.1.

[5] Bruce Bahlmann. Birds-Eye.Net Carrier-Class DHCP Testing Setup. http://

www.birds-eye.net/technical archive/carrier class dhcp testing.htm.

[6] BSD Group. Mac OS X Man Pages : ifconfig BSD System Manager’s

Manual. http://developer.apple.com/documentation/Darwin/Reference/

ManPages/man8/ifconfig.8.html.

[7] Cobalt Networks, Inc. Cobalt Qube 2 User Manual. http://www.sun.com/

hardware/serverappliances/pdfs/discontinued/manual.qube2.pdf.
83

BIBLIOGRAPHY

[8] Connecticut State Legislature. Limitation of Prosecutions. In General Statutes

of Connecticut, title 54 chapter 966, section 53-193.(b). Connecticut State, 2001.

54 Conn. 996 §53.B.1.

[9] David M. Smith Ph.D. The Cost of Lost Data. Graziadio Business Report, 6(3),

2003. http://gbr.pepperdine.edu/033/dataloss.html.

[10] Éric Lévénez. Windows History. http://www.levenez.com/windows/history.

html.

[11] Frans Vandendries of Vidéotron Communications inc. DHCP Server Information

Requirements. Technical report, CRTC, 2001.

[12] Fred N. van Kempen and Alan Cox and Phil Blundell and Andi Kleen. ifcon-

fig(8).

[13] Fyodor. Remote OS detection via TCP/IP Stack FingerPrinting. http://www.

nmap.org/nmap/nmap-fingerprinting-article.html, October 1998.

[14] G. Pascal Zachary. Show-Stopper!: The Breakneck Race to Create Windows NT

and the Next Generation at Microsoft. Free Press, 1994. ISBN 0029356717.

[15] Google Inc. Google Zeitgeist. http://www.google.com/press/zeitgeist/

zeitgeist-jun04.html.

[16] IEEE 802 Working Group. IEEE Standards for Local and Metropolitan Area

Networks: Overview and Architechture. IEEE, 2001.

[17] IEEE Registration Authority. Registration Authority Frequently Asked Ques-

tions. http://standards.ieee.org/faqs/OUI.html.

[18] Intel Corporation. 82547GI(EI)/82541GI(EI)/82541ER EEPROM Map and

Programming Information Guide. http://www.intel.com/design/network/

applnots/ap446.pdf.
84

BIBLIOGRAPHY

[19] Intel Corporation. ERUPDATE - Intel 82559ER Fast Ethernet PCI Con-

troller EEPROM Utility. http://www.intel.com/design/network/drivers/

erupdate.txt.

[20] Intel Corporation. Intel r©Pentium r©III Processor, Processor Serial Number

Questions and Answers. http://support.intel.com/support/processors/

pentiumiii/sb/CS-007579.htm.

[21] Internet Assigned Number Authority. Address Resolution Protocol Parameters.

Technical report, Internet Corporation for Assigned Names and Numbers, 2005.

[22] ISC. ISC Dynamic Host Configuration Protocol. http://www.isc.org/index.

pl?/sw/dhcp/.

[23] JTC 1/SC 6. ISO/IEC 15802-1: Information technology – Telecommunications

and information exchange between systems – Local and metropolitan area net-

works – Common specifications – Part 1: Media Access Control (MAC) service

definition. ISO/IEC, 1995.

[24] kingpin@l0pht.com. MAC Address Cloning. http://www.zone-h.org/

download/file=4197.

[25] Kyle Lai CISSP CISA of KLC Consulting Inc. Spoof MAC address on Windows

2000, XP, 2003 Server. http://www.klcconsulting.net/Change MAC w2k.htm.

[26] Kyle Lai CISSP CISA of KLC Consulting Inc. Spoof MAC address on Windows

98/ME. http://www.klcconsulting.net/Change MAC w98.htm.

[27] Kyle Lai CISSP CISA of KLC Consulting Inc. Spoof MAC address on Windows

NT. http://www.klcconsulting.net/Change MAC wnt.htm.

[28] Marc Weber Tobias. Updated Security Alert: Notebook Computer Locking

Devices. http://www.security.org/dial-90/sl-new.htm.
85

BIBLIOGRAPHY

[29] Mark E. Doms and Wendy E. Dunn and Stephen D. Oliner and Daniel E. Sichel.

How Fast Do Personal Computers Depreciate? Concepts and New Estimates.

Working Paper, US Federal Reserve, November 2003.

[30] Microsoft. Windows Product Family - Product Lifecycle Dates. http://

support.microsoft.com/default.aspx?scid=fh;[ln];LifeWin.

[31] Microsoft. Custom DHCP Client Identifiers for Windows NT. http://support.

microsoft.com/kb/172408/EN-US/, June 2003. Article ID 172408.

[32] Microsoft. DHCP (Dynamic Host Configuration Protocol) Basics. http://

support.microsoft.com/kb/169289/EN-US/, June 2003. Article ID 169289.

[33] Network Working Group. The IP Network Address Translator (NAT). RFC

1631, Internet Engineering Steering Group, 1994.

[34] Network Working Group. DHCP Options and BOOTP Vendor Extensions. RFC

2132, Internet Engineering Steering Group, 1997.

[35] Network Working Group. Dynamic Host Configuration Protocol. RFC 2131,

Internet Engineering Steering Group, 1997.

[36] Paul Thurrott. Microsoft outlines future of Windows NT and Windows 95.

http://www.winnetmag.com/Article/ArticleID/16867/16867.html.

[37] Peter Bartoli. MAC Spoofing on the Mac. http://slagheap.net/etherspoof/.

[38] Red Hat, Inc. pump(8).

[39] RFC Editor. RFC Copyrights. http://www.rfc-editor.org/copyright.

23Jan01.html.

[40] Robert Richardson. Computer Crime and Security Survey. Technical report,

CSI/FBI, 2003.
86

BIBLIOGRAPHY

[41] Safeware Inc. Safeware 1996 Loss Study. Technical report, Safeware Insurance

Agency, 1996.

[42] Safeware Inc. Safeware 2001 Loss Study. Technical report, Safeware Insurance

Agency, 2001.

[43] Safeware Inc. Safeware 2002 Loss Statistics Notebooks and Desktops. Technical

report, Safeware Insurance Agency, 2002.

[44] Stefan Esser. Spoofing the MAC address on Airport Extreme cards. http:

//wishlist.suspekt.org/.

[45] Tadayoshi Kohno and Andre Broido and K.C. Claffy. Remote Physical Device

Fingerprinting . IEEE Symposium on Security and Privacy 2005 and IEEE

Transactions on Dependable and Secure Computing, 2005. There are three

versions of this paper in circulation. We reference the full version found here:

http://www.cse.ucsd.edu/users/tkohno/papers/PDF/.

[46] The Center for Democracy and Technology. Intel Pentium III Processor Serial

Number. http://www.cdt.org/privacy/issues/pentium3/.

[47] Vermont State Legislature. Limitation of Prosecutions for Certain Felonies. In

Vermont Statutes, title 13, chapter 151, section 4501.(b). Vermont State, 1959.

13 V.S.A. §4501.(b).

[48] Vidéotron Communications inc. TPIA Phase 3 Testing Report. Technical report,

CRTC, 2000.

[49] Ville Aikas. DHCP Client Simulator. http://staff.washington.edu/

∼aikasevj/dhcp client/.

[50] W. Richard Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley Profes-

sional, 1993. ISBN 0201633469.
87

BIBLIOGRAPHY

[51] Wikipedia. IPv6. http://en.wikipedia.org/wiki/Ipv6.

[52] Wikipedia. MAC address. http://en.wikipedia.org/wiki/MAC address.

[53] Wikipedia. System 7 (Macintosh). http://en.wikipedia.org/wiki/System

7 (Macintosh).

[54] Wikipedia. Windows registry. http://en.wikipedia.org/wiki/

Windowsregistry.

[55] Yoichi Hariguchi and Sergei Viznyuk. dhcpcd(8).

88

Acronyms

AEP AppleTalk Echo Protocol

ANSI American National Standards Institute

API Application Program Interface

BOOTP Bootstrap Protocol

CMTS Cable Modem Termination System

CRTC Canadian Radio-television and Telecommunications Commission

CSI Computer Security Institute

DHCP Dynamic Host Configuration Protocol

DOS Disk Operating System

EEPROM Electronically Erasable Programmable Read-Only Memory

FBI Federal Bureau of Investigation

GUI Graphical User Interface

HKLM HKEY LOCAL MACHINE

HTTP HyperText Transfer Protocol
89

Acronyms

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPCP Internet Protocol Control Protocol

ISC Internet Software Consortium

ISP Internet Service Provider

MAC Media Access Control

MHz megahertz

MIPS Microprocessor without Interlocked Pipeline Stages

NAT Network Address Translation

NIC Network Interface Card

OUI Organisational Unique Identifier

PC Personal Computer

PCI Peripheral Component Interconnect

PCMCIA Personal Computer Memory Card International Association

PDA Personal Digital Assistant

POSIX Portable Operating System Interface

PPP Point-to-Point Protocol

PPPoE Point-to-Point Protocol over Ethernet

RFC Request For Comments
90

Acronyms

ROM Read-Only Memory

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

91

Appendix B

RFC Copyrights

The following text, with an edit providing a link to the copyright notice in place of

reproduction, discusses the copyrights attached to RFC and is authored by the RFC

Editor [39]:

To protect the integrity of RFC publication, all RFCs are with published an ISOC

copyright statement. The text of the standard copyright statement can be found at

ftp://ftp.rfc-editor.org/ in-notes/rfc-editor/copyright.23Jan01

This copyright notice was designed to ensure that Request For Comments documents

will have the widest possible distribution. The following general guidelines control

the reproduction and modification of RFCs.

1. Copying and distributing an entire RFC without any changes:

1a. The copying and free redistribution are generally encouraged.

1b. The inclusion of such RFC copies in other documents and collections that

are distributed for a fee is also encouraged. However, in this case it is a
93

courtesy (i) to ask the RFC author and (ii) provide the RFC author with

a copy of the final document or collection.

Anyone can take some RFC, put them in a book, copyright the book,

and sell it. This in no way inhibits anyone else from doing the same thing,

or inhibits any other distribution of the RFCs.

2. Copying and distributing the whole RFC with changes in format, font, etcetera:

2a. The same as case 1, with the addition that a note should be made of the

reformatting.

3. Copying and distributing portions of an RFC:

3a. As with any material excerpted from another source, proper credit and

citations must be provided.

4. Translating RFCs into other languages:

4a. Since wide distribution of RFCs is very desirable, translation into other

languages is also desirable. The same requirements and courtesies should

be followed in distributing RFCs in translation as would be followed when

distributing RFCs in the original language.

The RFC Editor

Last revised: 23 January 2001

94

