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Abstract

In this thesis we follow two directions: Zero Knowledge Protocols and the Discrete

Logarithm Problem. In each direction we present the necessary background and we

give a new approach for some parts of the existing protocols.

The new parts are dedicated to the soundness property of the Schnorr Identifica-

tion Scheme and to the security of the Σ+ -Protocol. Since both directions are very

well-known and studied in the field of cryptography, they are presented with many

details so that the new results are easy to follow.

In writing this thesis we have tried to present the material in a specific order and

in a manner easy to read even by beginners in cryptography.
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Résumé

Dans cette thèse on suit deux directions : les protocoles Zero-Knowledge et le

Problème du Logarithme Discret. Dans chaque cas on présente toutes les connais-

sances préliminaires nécessaires et on donne une nouvelle approche pour certaines

parties des protocoles existants.

Les parties originales sont dédiées à la correction du Schèma d’Identification de

Schnorr et à la sécurité du protocole Σ+. Comme les deux directions sont très connues

et étudiées dans le domaine de la cryptographie, elles sont présentées avec beaucoup

de détails pour mieux comprendre les nouveaux résultats.

Partout dans cette thèse on a essayé de présenter le matériel dans un ordre

spécifique et dans une manière spéciale afin qu’elle soit facile à lire et à suivre par les

débutants du domaine de la cryptographie.
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Introduction

We will begin speaking about cryptology by explaining the origin of the word

itself. The term “cryptology”comes from ancient Greek and it has two components:

“kryptos” which means hidden and “logos” which means word.

Besides the origin of the word it is interesting to mention where it first appeared.

Many consider that the Egyptian hieroglyphs are the earliest form of cryptology. The

Egyptian writing system is complex but relatively straightforward. The inventory

of signs is divided in three major categories: (1) logograms, signs that write out

morphemes, (2) phonograms, signs that represent one or more sounds and (3) deter-

minatives, signs that denote neither morpheme nor sound but help with the meaning

of a group of signs that precede them. It was not until the nineteenth century that

Egyptian hieroglyphs were deciphered. Several people had been trying to crack the

code when Jean-François Champollion discovered the secret to this ancient writing.

He published in 1828 a paper “ Précis ” where he explains how to read hieroglyphs.

His work was based on the discovery of the Rosetta Stone (a stone with writing on it

in two languages, Egyptian and Greek using three scripts: hieroglyphic, demotic and

Greek) found in 1799 by the French soldiers.

Used with the same purpose as today, that of protecting the military and diplo-

matic communications, one of the first cryptosystem used in history was due to the

roman emperor Julius Caesar. He had the brilliant idea of protecting the messages

sent to his military troops by shifting each letter three places to the right in the
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alphabet.

In the field of cryptology we distinguish two major and well studied directions:

cryptography and cryptanalysis. A fundamental goal of cryptography is to give to

two people the possibility to transmit information over an insecure channel such that

a possible adversary cannot understand the message. This idea can be organized

formally by the notion of a cryptosystem. In a cryptosystem the sender’s informa-

tion is encrypted by using a predetermined key and the ciphertext, obtained after

that, is sent over the channel to the receiver. The adversary seeing the ciphertext

cannot determine the original message but the receiver, knowing the encryption key,

can decrypt the ciphertext and reconstruct the initial message. People working in

cryptography are interested in developing cryptosystems which are secure to use.

Cryptanalysis is dedicated to developing new attacks to break the security of the

existing cryptosystems.

Seeing all the various domains (where cryptography is used) such as e-mail, diplo-

matic and military communication and e-commerce we can understand the desire of

cryptanalysts to break existing cryptosystems.

The major tools in “ modern ” cryptology are mathematical notions and results.

They give us the possibility to encrypt and decrypt data.

In this thesis I will try to describe two existing cryptographic protocols and give

a new extension for each one.

The first one is the Schnorr Identification Scheme which is one of the existing Zero

Knowledge Protocols. We will give a detailed description of the scheme and we will

demonstrate the security of the protocol.

The second one is the Σ+-Protocol which gives efficient proofs of knowledge for any

exponentiation homomorphism in groups with hidden order. Studying the security of

the protocol we raise a question never studied by the authors.

The thesis is structured as follows: in the first chapter we give a presentation of
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the theoretical background necessary to follow the material. In the second chapter

we describe the field of identification schemes, concentrating on the Zero Knowledge

Protocols. Chapter 3 describes the Schnorr Identification Scheme together with the

security of the scheme.

In Chapter 4 we develop our new result regarding the security of the scheme.

Chapter 5 introduces us to the field of the Discrete Logarithm Problem with a focus

on proofs of knowledge. In Chapter 6 we describe the Σ+-Protocol and in Chapter

7 we present the modification that can be easily done in the protocol and which

counters some proposed attacks to the protocol as described in [16].

The thesis ends with conclusion and bibliography.
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Chapter 1

Theoretical Background

Definition 1.1. A proof has the following two properties:

(1) Soundness

No false affirmation can be proven.

(2) Completeness

Every true affirmation can be proven.

Definition 1.2. An interactive proof system is a proof where the completeness

is verified and there is a negligeable probability that the soundness property is not

verified.

Definition 1.3. An identification scheme is a scheme which allows someone with

a secret information to convince the other party of the knowledge of the secret infor-

mation.

Definition 1.4. Impersonation is when an adversary is able to act as the sender

and to answer all receiver’s challenges.

Definition 1.5. An interactive proof system is called a proof of knowledge if the

following affirmation is verified: if someone is able to impersonate the sender then

this is equivalent with knowing the sender’s private key.
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Definition 1.6. A proof of knowledge is called Zero Knowledge if the following

affirmation is verified: if the information exchanged between the two parties consti-

tutes a proof of knowledge then a cheating verifier cannot deduce anything else except

that fact.

Formally, Zero Knowledge is demonstrated via the notion of a simulator. For

details see [15].

Definition 1.7. An authentication scheme is a five-tuple (P,A,K, S,V) where

the following conditions are satisfied:

(1) P is a set of possible messages

(2) A is a set of possible signatures or authenticators

(3) K, the keyspace, is a finite set of possible keys

(4) For each K ∈ K, there is a signing algorithm sigK ∈ S and a corresponding ver-

ification algorithm verK ∈ V. Each sigK : P→ A and verK : P× A→ {true, false}

are functions such that the following equations are satisfied:

for all x, K, verK(x, sigK(x)) = true

for all x, K, y 6= sigK(x), verK(x, y) = false

with the two algorithms sigK and verK efficiently computable.

Definition 1.8. ElGamal Signature Scheme

Let p be a prime such that the Discrete Logarithm Problem in Zp is intractable

and let α ∈ Z∗
p be a primitive element. Let P = Z∗

p, A = Z∗
p × Zp−1 and define:

K = {(p, α, a, β) : β ≡ αa (mod p)}

The values p, α, β are public and a is private.

For K = (p, α, a, β) we define:

sigK(x) := (γ, δ)
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where γ := αk mod p and

δ := (x− aγ)k−1 mod p− 1

where k is a secret random number, k ∈ Z∗
p−1

For x, γ ∈ Z∗
p and δ ∈ Zp−1, we define:

verK(x, (γ, δ)) := true⇔ βγγδ ≡ αx (mod p)

In the following definition we use the same notations sig and ver for the keys and

for the algorithms using these keys.

Definition 1.9. A certificate for someone in the network will consist of some iden-

tifying information for that person (e.g., their name, email address, etc), their public

key(s) and the signature of the TA (the Trusted Authority) for that information.

Issuing a Certificate to Alice is a protocol with the following steps:

1. The TA establishes Alice’s identity by means of conventional forms of identifi-

cation such as a birth certificate, passport, etc. Then the TA forms a string denoted

ID(Alice).

2. A private signing key for Alice, sigAlice and a corresponding public verification

key, verAlice are determined.

3. The TA generates its signature

s = sigTA(ID(Alice) ‖ verAlice)

on Alice’s identity string and verification key.

The Certificate

Cert(Alice) = (ID(Alice) ‖ verAlice ‖ s)

is given to Alice, along with Alice’s private key: sigAlice
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Definition 1.10. A language is a set of strings.

Definition 1.11. A language is assigned to the NP (nondeterministic polynomial

time) class if it is solvable in polynomial time by a nondeterministic Turing machine.

For details see [20].

Definition 1.12. A one-way hash function maps an arbitrary-length input mes-

sage M to a fixed-length output hash H(M) such that the following properties hold:

One-way: Given a hash H(M), it is difficult to find the message M.

Second preimage resistant: Given a message M1, it is difficult to find another

message M2 such that H(M1) = H(M2).

Collision resistant: It is difficult to find two messages M1 and M2 such that

H(M1) = H(M2).

Definition 1.13. Given a hash function h : X → Y and an element y ∈ Y the

Preimage Problem is to find an x ∈ X such that h(x) = y.

Definition 1.14. The Root Problem for an arbitrary group H is to compute a

h ∈ H such that he = u given an integer e > 1 and a group element u ∈ H.

Definition 1.15. In cryptography, a commitment scheme is a method that allows

a user to commit to a value while keeping it hidden, and while preserving the user’s

ability to reveal the committed value later. A useful way to visualize a commitment

scheme is to think of the Sender as putting the value in a locked box, and giving the

box to the Receiver.

The value in the box is hidden from the Receiver, who cannot open the lock

(without the help of the Sender), but since the Receiver has the box, the value inside

cannot be changed. Commitment schemes are important to a variety of cryptographic

protocols, especially Zero-Knowledge proofs and secure computation.

A commitment scheme take place in two phases: the commit phase during

which a value is chosen and specified, and the reveal phase during which the value
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is revealed and checked. In the simplest commitment schemes, the commit phase

consists of a simple message from the Sender to the Receiver, while the reveal phase

consists of a single message from the Sender to the Receiver, followed by a check

performed by the Receiver.

Definition 1.16. A graph is an ordered pair (V (G), E(G)) consisting of a nonempty

set V (G) of vertices and a set E(G), disjoint from V (G), of edges which are unordered

pairs of vertices of G.

Definition 1.17. Two graphs which contain the same number of vertices connected

in the same way are said to be isomorphic.

Formally, two graphs G and H with vertices Vn = {1, 2, ..., n} are said to be

isomorphic if there is a permutation p of Vn such that {u, v} is in the set of edges

E(G) if and only if {p(u), p(v)} is in the set of edges E(H).
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Chapter 2

Identification Schemes. Zero

Knowledge Protocols

An identification scheme gives the possibility to a person to confirm the identity of

another person. The main property of an identification scheme is that if someone is

watching the information flow he cannot easily impersonate the person who is proving

its identity. The adversary is able to observe the information transmitted between

the sender (say Alice) and the receiver (say Bob) and its first goal is to impersonate

Alice.

An example of an identification scheme is a zero-knowledge protocol. Such a

scheme allows Alice to prove her identity without revealing anything from her iden-

tifying information.

An intuitive good example is the following: suppose that Alice knows how to solve

the Rubik’s cube and she wants to convince Bob that she can, without revealing the

solving procedure. Then they can act in the following way: Alice gives Bob the

Rubik’s cube, then Bob scrambles the cube and then he returns it to Alice. Alice

finds a place where Bob cannot see her, she solves the cube and she gives it back to

Bob.
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On one hand, Bob is convinced that Alice knows how to solve the Rubik’s cube

because he saw that she was solving it and on the other hand, he clearly didn’t see

the solution.

For identification purpose we wish that each person has something unique. In

reality this is true if we think of physical attributes but we need to adapt this to some

other types of information.

In the field of identification schemes some useful and secure schemes have been

discovered.

In design, a first component that these schemes should have, as explained below,

is: “random challenges”. A random challenge is a mathematical statement chosen at

random for which the proof is known and by using it someone is asked to prove it.

If Alice transmits to Bob information to identify herself which never changes then

the scheme can be easily proved as insecure.

There are two directions in building identification schemes known in the litera-

ture. One way is to use the simple cryptographic primitives like signature schemes or

message authentication codes and the other way which we will present in this thesis

is to build new identification schemes.

One of the basic examples of identification schemes can be found in Shafi Gold-

wasser et al in 1985 paper: “The knowledge complexity of interactive proof-systems”

[15].

Let Z∗
n the set of integers from 1 to n relatively prime with n. We say that

a ∈ Z∗
n is a quadratic residue mod n if r2 ≡ a (mod n) for some r ∈ Z∗

n. r is called a

square root of a. Otherwise, we say that a ∈ Z∗
n is a quadratic nonresidue mod n.

The quadratic residuosity problem is to decide, given n, if a is a quadratic residue

mod n.

Consider now the following interactive protocol between a Prover that knows n,

a and a square root r of a and a Verifier that knows n and a.



13

Prover Verifier

He picks at random t ∈ Z∗
n, computes y ≡ t2 (mod n).

He sends it to the Verifier.

y −→

He picks at random b ∈ {0, 1}.

He sends it to the Prover.

←− b

If b = 0 then he sets z = t, otherwise he sets z = rt.

He sends z to the Verifier.

z −→

If b = 0 then the Verifier accepts iff z2 ≡ y (mod n).

If b = 1 then the Verifier accepts iff z2 ≡ ya (mod n).

The protocol is complete because if all of the parties are honest and follow the

protocol then the Verifier accepts with probability 1.

For the soundness we suppose that P ′ is a prover strategy that makes the Verifier

accept with probability bigger than 1
2. Then one of the possible first messages y sent

by the Prover P ′ must be such that V accepts for both choices b = 0 and b = 1. Let

z0, z1 be the third round messages sent by P ′ in such cases.

Then we have z0
2 ≡ y (mod n) and z1

2 ≡ ya (mod n), so that a ≡ (z0
−1z1)

2

(mod n). Therefore a is a quadratic residue mod n.

In conclusion, if a is not a quadratic residue mod n then the Verifier accepts with
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the probability ≤ 1
2.

We can construct a simulator for the zero knowledge property as follows:

Let V ′ be an arbitrary Verifier strategy. Given n, a the simulator algorithm for V ′

follows the steps:

1. Pick at random b ∈ {0, 1} and z ∈ Z∗
n; pick randomness R for V ′.

2. If b = 0 set y ≡ z2 (mod n) else y ≡ a−1z2 (mod n).

3. If V ′, using randomness R, given y as first message, outputs b, then halt and

output transcript: “ V ′ selects randomness R, P sends y at first round, V ′ sends b at

second round, P sends z at third round, V ′ accepts.”

4. Go to 1.

The most important information in the analysis of the simulator is that regardless

of the choice of b, the simulator chooses y as a uniformly distributed quadratic residue

in Z∗
n. This means that y and b, as random variables, are statistically independent

and the second message of V ′ given y is also statistically independent of b.

Therefore, the simulator has probability 1
2 of outputting a simulation in each

attempt.

With these three properties we have a zero knowledge interactive proof.

Efficiency determined in the last years the discovery of new identification schemes

which can be implemented in practice like: The Schnorr Identification Scheme,

The Okamoto Identification Scheme and The Guillou-Quisquater Identifi-

cation Scheme.

In a zero knowledge scheme the Verifier can establish that the answer from the

Prover is correct but nothing else except that. A typical round in a zero knowledge

scheme is:
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Prover Verifier

“commitment” message −→

←− challenge

response to the challenge −→

This can be repeated for several rounds but would be less efficient. Taking into

consideration all the responses of the Prover in all the rounds, the Verifier then accepts

or rejects the proof.

An intuitive idea of zero knowledge proofs was published by Jean-Jacques Quisquater

et al in their paper: “How to explain Zero Knowledge Protocols to your children” [17].

The basic story takes place in the ancient city of Baghdad. In this town there

was an old man named Ali Baba. Ali Baba was selling and buying different things

almost every day. One day a thief took one of Ali Baba’s purses and started to

run. Immediately, Ali Baba ran after him until the thief went into a cave having two

different passages: one to the right and one to the left.

Ali Baba didn’t see where the thief was going so he picked by chance to go to the

left. He searched all the way to the end of the left passage and he didn’t discover the

thief. He was then certain that the thief had gone to the right. After searching the

right passage as well, he was confused by the disappearance of the thief, he gave up

and went home.

The next day the situation was repeated and another thief stole one of Ali Baba’s

things; the second thief entered into the same cave as the first. Now knowing the

first incident from the day before Ali Baba chose to go to the right side but he was

surprised to not find the thief. He didn’t check the left passage, assuming that it was

a problem of bad luck in choosing the passage.

This was just the beginning since now, every day, a thief stole something from

Ali Baba. As we can imagine each day the thief was not caught. After forty days
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the only explanation was that each time the thief was lucky enough to escape. Being

unsatisfied by this explanation, Ali Baba decided on the next day to hide into the

cave and discover the mystery.

The next day he chose the right passage and he stayed there until a thief appeared.

The thief approached the wall and he said the magic words: “ Open Sesame” after

which the wall started to open, letting the thief escape. The mystery was solved. He

even heard the magic words and he tried himself to open the walls. He was amazed

by the fact that the two passages communicate and give the possibility of escaping

from the cave.

After discovering the words he decided to change them such that no one else could

use the old ones. This gave the possibility of catching the thieves from now on.

He also decided to write his story but without revealing the new magic words.

The manuscript can be seen in our days near Boston in the United States of America.

Using this story we can describe an example of a zero knowledge protocol between

Alice(the Prover) and Bob(the Verifier):

The purpose of Alice is to prove to Bob that she knows the secret phrase which

will open the gate R-S in the cave but of course without revealing the secret to Bob.

Alice’s commitment is to go to R or S. One round can be as follows: (see figure on

the next page)

Bob goes to P and he waits until Alice goes to R or S. Then he goes to Q and

he asks Alice to appear from the tunnel (from the right or left side). Supposing that

Alice does not know the right words the probability of appearing from the good side

is only 1/2. Bob will repeat this round until he is sure that Alice knows the secret

phrase. We observe that no matter how many times the proof is repeated, Bob cannot

discover the secret words.

Repeating the protocol, the probability for Alice to guess each time the correct

side is ≤ 1
2

(the number of repetitions)
and decreases significantly.
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Another important fact is that by using randomization for the initial path that

Alice takes and hiding it from Bob we can eliminate the possibility of Bob discovering

the secret words (simply by following Alice).

Before we formalize the concept of zero knowledge protocol it is good to have

many examples. I found in the literature another very well designed and significant

example with two isomorphic graphs G1, G2. Let’s take a look to it:

Prover Verifier

He knows φ(G1) = G2.

He picks a random permutation π, π(G1) = H.

H −→

He picks i ∈ {1, 2} at random.

He sends the index i = 1 or i = 2.

←− i
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If G1 is received then take α := π.

If G2 is received then take α := π ◦ φ−1.

α −→

He checks if α(Gi) = H.

The protocol is complete because the Verifier is convinced at the end that the

graphs are isomorphic.

It is sound because:

-if G1, G2 are not isomorphic then the Prover is not able to construct H isomorphic

to both G1 and G2;

-the Verifier has probability at least 1
2 to pick the graph to which H is not iso-

morphic;

-after k rounds the probability of successful cheating is 1
2k .

With these two properties knowing that we have an interactive proof system then

to prove that is zero knowledge we construct a simulator (see definition 1.6).

The simulator guesses G1 or G2. If it chooses, say G1, then it chooses randomly

a permutation π, calculates π(G1) = H and sends it to the Verifier.

We observe that the simulator knows the correct answer only if the Verifier chooses

the same G1 or G2 as the simulator. If the other graph is chosen then we skip that

round and start over with a new round.

Since the protocol has these three properties then we conclude that it is zero

knowledge.

Now we can formalize the general concept of a Zero Knowledge protocol. The

notion was first introduced by Shafi Goldwasser et al in 1985 in their paper: “The

knowledge complexity of interactive proof-systems” [15].

The authors of the paper discuss interactive proof systems. They give a com-

putational complexity measure of knowledge and measure the amount of additional
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knowledge contained in proofs. Depending on the amount of additional knowledge

that should be revealed to prove the identity they propose classification of different

languages.

As they mention in the beginning of the paper their interest is “ the case where

the additional knowledge is essentially zero ” and they show that it is possible to

interactively prove that a number is a quadratic residue mod m while releasing zero

additional knowledge. They state, “This is surprising as no efficient algorithm for

deciding quadratic residuosity mod m is known when m′s factorization is not given.

Moreover, all known NP proofs for this problem exhibit the prime factorization of

m. This indicates that adding interaction to the proving process, may decrease the

amount of knowledge that must be communicated in order to prove a theorem.”

Suppose that we have a protocol between the Prover and the Verifier. We intro-

duce the following notions:

(1) Soundness

No false affirmation can be proven.

(2) Completeness

Every true affirmation can be proven.

An interactive proof system is a proof where the completeness is verified and

there is a negligeable probability that the soundness property is not verified.

An interactive proof system is called a proof of knowledge if the following

affirmation is verified: if someone is able to impersonate the sender then this is

equivalent with knowing the sender’s private key.

In this context the notion of soundness can be adapted as: the Prover is able to

convince the Verifier that he has the private key only if he actually has it.

The soundness property can be also used in the following form: a scheme is sound

if there exists an efficient algorithm (a knowledge extractor) which uses the Prover

as a blackbox to obtain the secret information.
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A proof of knowledge is called zero knowledge if the following affirmation is

verified: if the information exchanged between the two parties constitute a proof of

knowledge then a cheating verifier cannot deduce anything else except that fact.

Formally zero knowledge is demonstrated via the notion of a simulator. For details

see [15].

From mathematical point of view, interactive proofs are not very rigorous because

we always have a small probability for the cheating Prover to convince the Verifier of

his knowledge (see the soundness property). That’s why some techniques have been

developed to decrease this probability.

Different papers studying identification schemes are presently known. We mention

[5] and [22].

In the field of identification schemes, A.Fiat and A. Shamir opened a very impor-

tant path by showing how to use zero knowledge techniques to create new more effi-

cient schemes. The most important ones are: The Schnorr Identification Scheme

and The Guillou-Quisquater Identification Scheme.

When a new identification scheme is created the normal follow-up is to study its

security under different types of attacks. For these two schemes passive and active

attacks were studied. The adversary can impersonate the Verifier under both types

of attack. The passive attack is weaker than the active one.

In the passive attack the adversary can obtain transcripts from the exchange

of information between the two parties. In the active attack we can consider that

the adversary will impersonate a cheating Verifier and is capable of opening new

interactions with different presumed provers.

Until now the problem of proving security against impersonation under active

attacks is still open. Mihir Bellare and Adriana Palacio studied the security of The

Schnorr Identification Scheme and The Guillou-Quisquater Identification

Scheme [4].
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In the next chapter we will describe The Schnorr Identification Scheme and

we will study in detail the soundness property of this scheme.
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Chapter 3

The Schnorr Identification Scheme

and its security

The scheme was first introduced by C.P. Schnorr in 1989 [19]. He presented

at that time a new public-key signature scheme and a corresponding authentication

scheme, both based on the discrete logarithms in a subgroup of units in Zp with p a

prime sufficiently large. The protocol wanted to improve the speed of the ElGamal

signature scheme introduced in 1985.

The protocol combines ideas from the schemes of ElGamal and Fiat and Shamir

schemes [12]. We now start to describe the protocol:

The scheme needs a trusted authority TA to choose common parameters (called

domain parameters) with the properties:

p is a large prime, p ' 101024

q is a large prime divisor of p− 1, q ' 2160

α is an element in Z∗
p with order q

t is a security parameter such that q > 2t

As an observation t = 40 will assure a safe level of security of the protocol.

The domain parameters introduced above are considered public information and
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they do not change within the protocol.

The private key a of each participant in the protocol is generated inside the set

0 ≤ a ≤ q − 1. The user calculates v ≡ α−a (mod p) or v ≡ (αa)−1 (mod p) or

v ≡ αq−a (mod p) and makes v public information.

The parameters (public and private) for each participant to the protocol are cer-

tified by the TA. The Schnorr Identification Scheme can be described as follows:

Steps:

1. Alice chooses a random k ∈ {0, 1, ..., q − 1} and she computes

γ ≡ αk (mod p)

She sends the Certificate Cert(Alice) and γ to Bob.

2. Bob verifies Alice’s public key v on the Certificate Cert(Alice). He chooses a

random r ∈ {1, 2, ..., 2t} and he sends r to Alice.

3. Alice computes: y ≡ k + ar (mod q) and she sends y to Bob.

4. Bob verifies that: γ ≡ αyvr (mod p) and if it is true then he accepts, otherwise

Bob rejects.

To visualize the transmission of information we can represent everything as:

Alice (Prover) Bob(Verifier)

1. k ∈ {0, 1, ..., q − 1}

γ ≡ αk (mod p)

γ −→

2. r ∈ {1, 2, ..., 2t}

←− r

3. y ≡ k + ar (mod q)
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y −→

4. Verify that: γ ≡ αyvr (mod p)

The step number 4 will allow Alice to convince Bob of her identity (assuming that

both participants are honest). The following calculation can be done:

αyvr ≡ αk+arvr (mod p)

≡ αk+ar(α−a)r ≡ αk+ar−ar ≡ αk ≡ γ (mod p)

Therefore, Alice has a private key a which she uses along the protocol, she con-

vinces Bob that she has it but she never reveals its value.

The initial purpose of this scheme was to improve the speed and the efficiency of

the computations. In this direction we can track the amount of information exchanged

during the protocol.

In the first step Alice sends γ (1024 bits of information) as well as her certificate.

Then Bob sends r (40 bits of information). In the third step Alice gives y to Bob

(160 bits of information). The last step consists of a verification with no transmis-

sion of information between the two parties. The conclusion is that the quantity of

information is reasonable to have an efficient protocol.

The speed of the scheme depends on the computations done by each participant.

For practical reasons it is desirable that Alice performs all the operations with a smart

card of limited power and Bob will use a more powerful computer.

The amount of computation done by Alice is pretty small: she starts with an

exponentiation (modulo p) in step 1 (that she can do offline even before the protocol

starts) and then in step 3 she only does one multiplication and one addition (modulo

q).

The scheme can be introduced in any finite group G. Any finite group with a

multiplication rule which can be computed efficiently and with the property that the
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discrete logarithm problem is hard to solve is a good candidate. In this general case

the element α ∈ Z∗
p should have order q with the property that q has a prime factor

larger than 2140. If the prime q is made public then we just follow the same idea

of the initial protocol. If only an upper bound M of q is given, then the following

modifications appear:

1. r is randomly chosen in the set {1, 2, 3, ...,M}

2. in step 3 the calculation modulo q is replaced by modulo M .

In the literature Girault proposed such an identification scheme in Zn with n a

composite modulus at Eurocrypt’91 [14]. Other examples of groups where the same

theory can be developed are class groups and elliptic curves E(K) over a finite field K.

Security of the Schnorr identification Scheme

We will take into consideration some aspects of the security of this protocol. An

attack on the scheme will be directed into an adversary named Olga who tries to

impersonate Alice.

The first possibility to break the protocol is for Olga to guess the correct value

r chosen by Bob. Supposing that Olga has the correct value for r then she can pick

any y and she calculates: γ ≡ αyvr (mod p). She sends γ to Bob who will send her

the challenge r. Then she transmits y which is already chosen. When Bob verifies

the specific result, it will be just the definition of γ. Therefore, he will automatically

accept.

In this attack the probability of breaking the scheme is equal to the probability

with which Olga can guess the value r. That means:

P = number of favorable cases
total number of cases

P = 1
2t = 2−t

Using the fact that r ∈ {1, 2, ..., 2t} and t the security parameter is sufficiently
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large (t = 40) then this attack is hard to implement in practice.

The most important thing about the challenge r is the fact that in each round

Bob picks a statistically independent value for r. If this was not done then Olga could

follow the previously mentioned attack.

Another possible method to break the protocol is for Olga to compute two values

r1, r2 with the corresponding y1, y2 for the same value γ.

Then:

γ ≡ αy1vr1 (mod p)

γ ≡ αy2vr2 (mod p)

⇔ αy1vr1 ≡ αy2vr2 (mod p)

⇔ αy1−y2vr1 ≡ vr2 (mod p)

⇔ αy1−y2 ≡ vr2−r1 (mod p)

Using the definition of v ≡ α−a (mod p) we obtain:

αy1−y2 ≡ (α−a)r2−r1 (mod p)

⇔ αy1−y2 ≡ α−a(r2−r1) (mod p)

Since ord(α) = q in Z∗
p then we identify:

y1 − y2 ≡ −a(r2 − r1) (mod q)

Olga’s goal is to find the value of the Alice’s private key a.

Since r1, r2 ∈ {1, 2, ..., 2t} then 1 ≤ r1 ≤ 2t, 1 ≤ r2 ≤ 2t and 0 < |r2 − r1| ≤ 2t.

Since the prime q > 2t then the element |r2 − r1| is invertible in Zq and it exists

(|r2 − r1|)−1 in Zq.

This allows Olga to compute:

y1 − y2 ≡ −a(r2 − r1) (mod q)

y1 − y2 ≡ a(r1 − r2) (mod q)

which implies: a = (y1 − y2)(r1 − r2)
−1 mod q
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This method of finding the private key a demonstrates that if Olga can imper-

sonate Alice with probability P then she can find the private key with probability

P 2.

Now, of course, if Olga knows the private key a then she can impersonate Alice

with probability P = 1. This implies that Olga finding the private key is at least as

strong as Olga impersonating Alice. So there is a small probability for a cheating

Prover to convince an honest Verifier that he has the secret information.

Stinson [21] argued that the above observation is sufficient to say that The Schnorr

Identification Scheme has the soundness property. In the next chapter we will show

a specific way of obtaining this property.

When the scheme was developed we assumed that from the public information

v ≡ α−a (mod p) someone cannot compute a = − logα v in Z∗
p efficiently. So we

require that this computation is difficult for an adversary.

Another property of the Zero Knowledge protocol that is verified is complete-

ness. We know that in step 4 of the scheme, Bob accepts Alice’s proof of identity (if

we assume that both the Prover and the Verifier are honest).

With the properties shown above we can say that The Schnorr Identification

Scheme is a proof of knowledge.
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Chapter 4

Our Result

In Stinson’s book “Cryptography: Theory and Practice”, Third Edition,[21],

chapter 9, it is presented the security of the Schnorr Identification Scheme. Regarding

the soundness property the author claims that if an adversary Olga knows a value γ

for which she can compute the challenges r1, r2 with their corresponding y1, y2 then

Olga can compute Alice’s private key. No method is mentioned for the calculation of

the values γ, r1, r2, y1, y2. In the present chapter we would like to present a reduction

between a complete break of the soundness condition to an impersonation attack.

Consider a general impersonation attack:

We start with the public parameters produced by the TA: p, q, α, t and v the

public key of each user.

v ≡ α−a (mod p) where a is the private key

Now we suppose that we have two algorithms A and B. The goal of the algorithms

A and B is to accomplish impersonation.

The two algorithms are described below:

Algorithm A

Input: p, q, α, t and v

Output: γ
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Algorithm B

Input: α, γ, v, r

Output: y

In order for the algorithm B to produce a y satisfying γ ≡ αyvr (mod p), αy ≡

γv−r (mod p) it must produce y = logα γv−r mod p− 1. Algorithm B outputs a guess

for value y, the correct ones correspond only to the value y = logα γv−r mod p− 1.

Now we assume that for a certain set Rγ ⊂ {1, 2, 3, ..., 2t − 1} any r ∈ Rγ is such

that the algorithm B produces a correct y.

Two values r1, r2 and related y1, y2 correspond to the same value γ given by the

algorithm A.

We now study the probability of cheating the protocol. To cheat the protocol we

do the steps:

We use algorithm A to obtain the value γ. We continue with step 1 in the protocol

so we transmit γ to Bob. Bob sends the value of r in step 2. Compute γv−r and

compare αy with γv−r.

If αy≡γv−r (mod p) then we transmit y to Bob in step 3; otherwise we transmit

any other value. Bob will accept or reject depending on the value y.

The probability of cheating the protocol using this method is:

P =
|Rγ|
2t

We now study the probability to obtain the discrete logarithm logα v. First we

run the algorithm A and get γ.

By choosing r1, r2< 2t at random and with a bit of luck the algorithm B will

produce correct solutions y1, y2. Now as shown in the previous chapter from:

γ ≡ αy1vr1 (mod p)

γ ≡ αy2vr2 (mod p)

we can calculate: a = (y1 − y2)(r1 − r2)
−1 mod q

Therefore, the probability of breaking the discrete logarithm logα v is
(|Rγ|)(|Rγ|-1)

22t ,
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which is much smaller than the probability of breaking the protocol.

We can conclude that we can break the Schnorr Identification Scheme with prob-

ability P 2, where P is the probability of finding (r1, y1) or (r2, y2).

More precisely, if algorithm B has a probability of success P1 = 1
p(t)

� 1
2t where

p(t) is a polynomial in t then the probability of finding the correct values r1, r2, y1, y2

is P2 = 1
p2(t)

.

Now we can conclude:

1
p(t)

� 1
2t , because p(t) is a polynomial and moreover

1
p2(t)

� 1
2t which is equivalent to:

1
q(t)

� 1
2t , where q(t) is a polynomial in t.

So we can write the following relations:

Pr[A outputs γ]·Pr[B outputs valid r|A outputs γ]= 1
p(t)

We know that there exist pA(t), pB(t) such that:

Pr[A outputs γ]≥ 1
pA(t)

Pr[B outputs r|γ]≥ 1
pB(t)

Therefore,

Pr[A outputs γ]·Pr[B outputs r|γ]·Pr[B outputs r′|γ]≥ 1
p(t)

1
pB(t)

With all this observations we can formulate the following statement:

“ If Olga can impersonate Alice successfully with probability P = 1
p(t)

> 1
2t then

the probability of finding for a γ the correct values r1, r2, y1, y2 such that Bob will

accept is: P = 1
p2(t)

> 1
2t .

Therefore, if an adversary can impersonate Alice with a non negligeable probability

P in polynomial time then the adversary can also compute Alice’s private key with

a non negligeable probability P ′ in polynomial time.”
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Chapter 5

The Discrete Logarithm Problem

If G is a cyclic group with the operation denoted by “ ×” and a generator g ∈ G

then we define:

ga = g × g × g × ...× g︸ ︷︷ ︸
a terms

The operation defined above is called exponentiation. The inverse operation is

defined as follows:

Given y∈G, G cyclic with the generator g. Now, if ord(g) = n then there is a

unique exponent a 0 ≤ a ≤ n− 1 such that y = ga. a is called the discrete logarithm

of y and it is written as: a = logg y.

The exponentiation inside the group G can be calculated by using fast exponenti-

ation in O(|a|) group operations, where |a| is the number of bits of the representation

of a. It is believed that the discrete logarithm is essentially harder to compute than

exponentiation in many groups.

The Discrete Logarithm Problem can be solved by computing g, g2, g3, ..., until

we obtain: y = ga. In this method we use: gi = g × gi−1, so the necessary time is

Ω(a).

Another solution would be to calculate all the pairs (i, gi) and sort them with
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respect to the second coordinate. Given y∈G then we make a binary search in the

sorted list of (i, gi) and we identify a such that y = ga. This requires Ω(a) space.

In the literature there are many methods to find discrete logarithms. We can

mention: Shank’s Algorithm, The Pollard Rho Discrete Logarithm Algo-

rithm, The Pohlig-Hellman Algorithm, The Index Calculus Method and

The Number Field Sieve. A good description of all these methods can be found

in [21]. But none of these methods provide a solution in polynomial time.

For the Discrete Logarithm Problem if y∈G is given, it is easy to prove that there

exists a such that:

ga = y (always exists), but for the Prover to prove that he knows a is a harder

question.

As we introduced in Chapter 2 a zero knowledge proof must satisfy the proper-

ties of soundness, completeness and zero-knowledge. In other words we have a zero

knowledge proof when a Prover succeed in proving a statement to a Verifier without

revealing any knowledge of his secret.

One interesting and new direction is to obtain efficient zero-knowledge proofs

of knowledge for the discrete logarithm by considering the discrete logarithm as a

preimage of exponentiation.

In cryptography there are efficient zero-knowledge proofs of knowledge of the

preimage of many one-way homomorphisms.

Endre Bangerter, Jan Camenisch, Ueli Maurer introduced efficient zero-knowledge

proofs of knowledge for exponentiation and multiexponentiation homomorphisms for

the first time in groups with unknown order (for example an RSA group) [1].

To present the details of their work we need to first explain the necessary notions.
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If (G, +), (H, ·) are groups then the map ϕ : G → H is called a homomorphism

if:

ϕ(g1 + g2) = ϕ(g1) · ϕ(g2)

for any g1, g2 ∈ G

A preimage of the element h ∈ H under the homomorphism ϕ is an element g ∈ G

such that: ϕ(g) = h.

Supposing now that we have a protocol between a Prover and a Verifier with the

given function ϕ and the element h ∈ H to prove that the Prover has g with ϕ(g) = h.

If the Prover can make the Verifier accept in the last step with a probability larger

than a certain threshold probability (the knowledge error), then the Prover must

know the preimage g ∈ G of h such that: ϕ(g) = h.

This is a proof of knowledge of the preimage of the homomorphism ϕ because we

can see it as the proof of the existence of a knowledge extractor which can compute

a preimage g of h given access to the Prover as a rewinding oracle.

The most commonly used protocol for almost all the homomorphisms used in

cryptography is the Σ-Protocol with binary challenges.

Let’s now introduce first the Σ-Protocol together with its properties.

The original idea of the Σ-Protocol was first introduced by Cramer in his Ph.D

thesis [8].

We need some basic definitions and notations. We denote by:

R[Φ(k)] = {((ϕ, h), g) : ϕ homomorphism, ϕ : G → H, g ∈ G, ϕ(g) = h} where k

is an integer security parameter.

Definition

Let Φ be a collection of homomorphisms having a finite domain G and let’s con-

sider ((ϕ, h), g) an element in R[Φ(k)]. If (P, V ) is an interactive protocol with a

Prover P and a Verifier V where the common information for P and V is the pair

(ϕ, h) and the secret information of P is g, then we say that a Σ-Protocol with the
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challenge set C = {0, 1, 2, ..., c(k)} is the following 4-step protocol between the Prover

and the Verifier:

Steps:

1. The Prover chooses a random value uniformly distributed r ∈U G; he then

computes t = ϕ(r) and he sends t to the Verifier.

2. The Verifier chooses a random c ∈U C and he sends c to the Prover.

3. The Prover computes: s = r + cg and he sends it to the Verifier.

4. The Verifier calculates ϕ(s). If ϕ(s) = ϕ(r)ϕ(g)c then he outputs 1, otherwise

he outputs 0.

Graphically the protocol can be represented as:

The Prover (P) The Verifier (V)

1. r ∈U G

t = ϕ(r)

t −→

2. c ∈U C

←− c

3. s = r + cg

s −→

4. If ϕ(s) = thc then he outputs 1, otherwise

he outputs 0.
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Now at step 4 the Verifier is convinced that the Prover has the secret information

g because:

ϕ(s) = ϕ(r + cg) = ϕ(r)ϕ(cg) =

= ϕ(r)ϕ(g)c

= thc

The Σ-Protocol is proved to be honest-verifier zero-knowledge and zero-knowledge

if the set C is polynomially bounded in k.

Because of the binary challenges, the Σ-Protocol has a knowledge error of 1
2 and

we need to repeat the protocol sufficiently many times to obtain a small enough overall

knowledge error.

To obtain properties of the Σ-Protocol we need to introduce another helpful no-

tion: the pseudo-preimage problem.

Given the homomorphism ϕ : G→ H and h ∈ H then we call a pseudo-preimage

of h under ϕ a pair (c, g) with hc = ϕ(g) where c is a non-zero integer and g ∈ G.

The integer c is called the exponent of the pseudo-preimage (c, g).

In general to find a preimage g of h under ϕ given a pseudo-preimage (c, g) of h

under ϕ where h ∈ Image(ϕ) is called The Pseudo-Preimage Problem.

For the invertible homomorphisms the pseudo-preimage problem is trivial. An-

other easy case is for certain one-way homomorphisms like the ones underlying the

Schnorr and the Guillou-Quisquater schemes. The fact that the pseudo-preimage

problem is easy for these cases allows us to construct knowledge extractors for the

Σ-Protocol.

The Pseudo-Preimage Problem is hard for homomorphisms in groups where

the Root Problem is hard (ex. RSA groups [18]).

Pseudo-preimages have the property that if we are given two pseudo-preimages of

the same element h ∈ H then there is a method to calculate a preimage of h by using
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Shamir’s trick [11].

If (c1, g1), (c2, g2) are two pseudo-preimages of h ∈ H under ϕ and if gcd(c1, c2) = 1

then g = ag1 + bg2 is a preimage of h under ϕ where a, b are integers such that:

ac1 + bc2 = 1.

The standard knowledge extractor of the Σ-Protocol can be constructed as

follows:

We consider P ′ an arbitrary Prover who has the common input (ϕ, h). Suppose

that he has arbitrary private information and his probability of success inside the

protocol is: A > 1
c(k) + 1

Now, if we give access to rewinding the Prover P ′ then we can obtain the following

vectors: (t, c, s), (t′, c′, s′) both verifying the condition in step 4 of the Σ-Protocol

where t = t′, c′ > c.

We denote: ∆s = s′ − s, ∆c = c′ − c. Then ∆c > 0.

From step 4 we can obtain:

ϕ(s) = thc

ϕ(s′) = t′hc′ = thc′

We divide these two equations as follows:

ϕ(s′)
ϕ(s)

= thc′

thc

ϕ(s′)(ϕ(s))−1 = hc′−c

ϕ(s′ − s) = hc′−c

ϕ(∆s) = h∆c

If we choose C = {0, 1} then ∆c = 1, h = ϕ(∆c) and we obtain a preimage of h

under ϕ. In this way we construct a knowledge extractor for the challenge set with

cardinality 2.

For the general case when the cardinality is greater than 2 we need to use the

collision extractability property, the existence of pseudo-preimage finders for special

homomorphisms and also Shamir’s trick to find a preimage [8].
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Chapter 6

The Σ+ -Protocol

The Σ+ -Protocol is a new protocol which provides efficient proofs of knowledge

of x given hx, for any exponentiation homomorphism ϕ : Z → H, ϕ(x) = hx, where

H is a group with hidden order. It was shown that the efficiency of the proofs of

knowledge is related to the smallest order of the homomorphism’s image.

Our intention is to present how this protocol will provide efficient proofs of knowl-

edge for the discrete logarithm in RSA groups where the modulus n is a product of

two safe primes [2].

Damg̊ard and Fujisaki showed that the Σ -Protocol can be used to prove the

knowledge of the discrete logarithm in groups with hidden order assuming that the

Prover does not know the order of the group. They developed a new scheme which

will be named the DF Scheme [10],[9]. Their work was based on [13].

The DF Scheme is not a computational proof of knowledge according to the

definition presented in [3].

To obtain proofs of knowledge using the DF Scheme we need to make weaker

assumptions so we can later obtain in a restricted case what we initially wanted. Ideas

shared with the DF Scheme are used in the Σ+ -Protocol to obtain standard proofs

of knowledge.
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The DF Scheme requires some initial conditions such as that the order of the

group H is not revealed and the generalized Root Problem is hard (in other words,

for any h ∈U H it is hard to find an integer e 6= 1 and u ∈ H such that ue = h ).

In comparison with the DF Scheme, the Σ+ -Protocol does not require any initial

assumption.

Organized like the model of the DF Scheme, the Σ+ -Protocol has the Σ -

Protocol executed several times. The computational cost of the Σ+ -Protocol is

roughly three times bigger than the cost of the Σ -Protocol.

To describe in detail the protocol we will need some introductory notions and

assumptions.

The Σ+ -Protocol - description

Let n be of the form n = (2p + 1)(2q + 1) with p, q, 2p + 1, 2q + 1 prime numbers

and let’s consider k an integer security parameter. We assume that there exists a

generator GS(k) which provides pairs (n, g), g ∈ Z∗
n with the property that it is hard

to calculate a u ∈ Z∗
n and an integer e > 1 such that ue = g.

If we denote by QRn the subgroup of Z∗
n of the quadratic residues modulo n we

assume in the following part that g ∈ QRn.

As we mentioned at the beginning, the Σ+ -Protocol can be applied for simple or

multiple exponentiation.

For simplicity we present the case of the simple exponentiation.

We start with:

ϕ : Z→ Z∗
n

ϕ(x) = hx, for h ∈ Z∗
n
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By: c+ := c+(k)

∆x := ∆x(k)

lz := lz(k)

we denote integer parameters.

Definition

We consider Φ a collection of simple-exponentiation homomorphisms and let

ϕ : Z→ Z∗
n, ϕ(x) = hx, h ∈ Z∗

n, ((ϕ, y), x) ∈ R[Φ](:= R[Φ(k)]), x ∈ [−∆x, ∆x].

Let χ : {0, 1}ld → {0, 1}lc be a crypto hash function (see definition 1.12). This

means that finding collision is hard and given χ(ω) is difficult to find parts of ω) with

ld(k) := ld, lc(k) := lc and ld > EncLen+(Z∗
n) (which is an upper bound on the length

of the binary encoding of elements of Z∗
n).

Now if we have a Prover P with the input ((ϕ, y), x) and a Verifier V with the

input (ϕ, y) then a Σ+ -Protocol with the challenge set C := {0, 1, ..., c+} is described

as follows:

Steps:

1. The Verifier chooses (n, g) generated by GS(k), ρ ∈U [0, 2kbn/4c] and he

calculates g1 := gρ mod n

He sends g1, g, n to the Prover.

For simplicity we denote:

v(x1, x2) := gx1
1 gx2 mod n

2. The Prover randomly chooses r ∈U [−2lzc+∆x, 2lzc+∆x] then he calculates

t = ϕ(r); he chooses X ∈U [0, 2lzn]. He calculates Y = v(x, X).

He chooses R ∈U [−22lzc+n, 22lzc+n] and then calculates T = v(r, R) and choose

randomly RZ∗
n
∈U {0, 1}ld .

Let K := χ(T‖Y ‖RZ∗
n
) be a commitment to T and Y . The Prover sends K to the
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Verifier.

3. The Verifier chooses randomly c ∈U C = {0, 1, ..., c+} and he sends it to the

Prover.

4. The Prover calculates s := r + cx, S := R + cX and he transmits (s, S) to the

Verifier.

5. The Verifier sends ρ to the Prover.

6. The Prover calculates gρ. If gρ ≡ g1 (mod n) is not verified then he stops the

protocol.

Otherwise, he continues and he unveils T and Y to the Verifier.

7. The Verifier checks the equalities:

K = χ(T‖Y ‖RZ∗
n
)

ϕ(s) = tyc

v(s, S) ≡ TY c (mod n)

If all of the equations are verified then he outputs 1 (he accepts); otherwise, he

outputs 0 (he rejects).

We observe that x ∈ [−∆x, ∆x] is necessary for the Σ+ -Protocol to be statistical

zero knowledge which means that someone needs to know how large x can be to blind

x in the messages sent by the Prover.

The parameter lz controls the tightness of the statistical zero knowledge property

of the Σ+ -Protocol.

It should be mentioned that the common input for the Prover and the Verifier is

(ϕ, y) and the secret information of the Prover is x.

Graphically, the protocol can be represented as:
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Verifier(V) (ϕ, y) Prover (P) ((ϕ, y), x)

Step 1.

GS(k)→ (n, g)

ρ ∈U [0, 2kbn/4c]

g1 := gρ mod n

v(x1, x2) := gx1
1 gx2 mod n

(g1, g, n) −→

Step 2.

r ∈U [−2lzc+∆x, 2lzc+∆x]

t = ϕM(r), X ∈U [0, 2lzn]

Y = v(x, X)

R ∈U [−22lzc+n, 22lzc+n]

T = v(r, R)

RZ∗
n
∈U {0, 1}ld

K := χ(T‖Y ‖RZ∗
n
)

←− (K, t)

Step 3.

c ∈U C = {0, 1, ..., c+}

c −→
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Step 4.

s := r + cx

S := R + cX

←− (s, S)

Step 5.

ρ −→

Step 6.

If gρ 6= g1 (mod n) he stops,

otherwise he continues.

←− (T, Y,RZ∗
n
)

Step 7.

He verifies if the following equalities are true:

K = χ(T‖Y ‖RZ∗
n
)

ϕ(s) = tyc

v(s, S) ≡ TY c (mod n)

If all of the equations are verified then he outputs 1 (he accepts); otherwise, he

outputs 0 (he rejects).

The key to the construction of the knowledge extractor for the The Σ+ -

Protocol is the next theorem.

Assuming the above conditions are verified. We define a generator GV (l, k) that

outputs multi-exponentiations V : Zl → QRn as follows:

(1) Choose GS(k)→ (n, g)
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(2) For i = 1, ..., (l − 1) choose ρi ∈U [0, 2kbn/4c]

(3) We set gi := gρi

(4) We define V (x1, ..., xl) := g1
x1 ...gl−1

xl−1gxl

(5) Output (V, n)

Theorem

Under strong RSA assumption it is hard given GV (l, k)→ (V, n) to find a y ∈ Z∗
n

and a pseudo-preimage (v, (w1, w2, ..., wl) of y under V such that v 6= 1 and v does

not divide wj for some j ∈ {1, ..., l}. The proof of the theorem can be found in [7].

We observe that the protocol beginning with step 2 is similar to two Σ -Protocols

ran in parallel for the homomorphisms ϕ and v.

By using the fact that ϕ has the argument the same as the first argument of v we

can construct a knowledge extractor for the Σ+ -Protocol.

In Chapter 5 we showed how to construct a knowledge extractor for the Σ -

Protocol. Since the Σ+ -Protocol consists of repeating the Σ -Protocol then we

conclude that we can create a pseudo-preimage (∆c = c′ − c, ∆s = s′ − s) of y under

ϕ and a pseudo-preimage (∆c, (∆s, ∆S)) of Y under v.

In other words:

ϕ(∆s) = h∆s = y∆c

v(∆s, ∆S) = g∆s
1 g∆S = Y ∆c

For the homomorphism v we can apply the theorem mentioned before for l = 2

and we obtain that ∆c|∆s, ∆c|∆S.

We suppose additionally that gcd(∆c, |Image(ϕ)|) = 1 and we obtain a preimage

of y under ϕ.

y∆c = h∆s

y = h
∆s
∆c and x := ∆s

∆c is preimage of y under ϕ.

We can conclude that we use the application of v to construct the knowledge

extractor for the homomorphism ϕ.
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As in the case of the Σ -Protocol to obtain the knowledge extractor we need

to give to the Verifier pairs (t, s), (T, (s, S)) such that the relations from step 7 are

satisfied. Now using the fact that the Σ+ -Protocol is based on the Σ -Protocol in

which we know that for given (ϕ, y), and (v, Y ) we can create the vectors (t, c, s),

(T, c, (s, S)) such that they verify the required equations.

In the Σ -Protocol the initial input (ϕ, y) and (v, Y ) should be provided. The

difference in the Σ+ -Protocol is that (v, Y ) is chosen inside the protocol. In order

to be zero-knowledge we have to simulate the choices of Y .

Now if X ∈U [0, 2lzn] then by definition Y = v(x, X) will be randomly chosen in

the subgroup < g > since the length of the interval is bigger than ord(g).

In the protocol we want to prevent the situation where a dishonest Verifier can

choose a v such that Y will reveal information about the secret x. Otherwise we will

lose the zero-knowledge property of the Σ+ -Protocol. The change proposed in the

protocol is to use a hash function χ as follows: in step 2 the Prover does not know if

v is correctly chosen and he only sends the hash K of T and Y also combined with

a random string RH , instead of the values T and Y themselves. Then in steps 5 and

6 the Verifier convinces the Prover that g1 ∈ < g > and the function v is correctly

formed. After the Verifier V succeed in convincing the Prover P about the correctness

of v he then sends the discrete logarithm ρ of g1 to the Prover P.

The Prover P, convinced by the Verifier, can now send the information (T, Y ) to

the Verifier V. The information (s, S) should be calculated by the Prover P with-

out having the discrete logarithm ρ of g1 (to apply the theorem mentioned in the

construction of the knowledge extractor).

In the description of the Σ+ -Protocol there are some parameters n and g chosen

by the Verifier V. The Prover P does not verify these parameters and he does not

have the tools to check them. If we introduce these particular verifications inside the

protocol then we will reduce its efficiency. This will be studied in the next chapter.
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Chapter 7

Our Result

In the description of the Σ+ -Protocol there are some initial settings of some

parameters. The Prover P accepts these conditions but he does not have the tools to

verify them and in fact he does not check them during the algorithm. The efficiency

of the protocol depends pretty much on the fact that this verification is not done by

the prover P.

This observation will give the possibility of constructing different attacks to the

security of the protocol. Sébastien Kunz-Jacques, Gwenaëlle Martinet, Guillaume

Poupard and Jacques Stern tried in [16] to show that some attacks can be constructed

to break the Σ+ -Protocol.

In the cited paper they studied the following cases when a dishonest Verifier can

obtain the secret information of the Prover:(breaking the Zero Knowledge property)

(1) the parameter n can be chosen such that the discrete logarithms in Z∗
n can

be efficiently computed. One way of doing that is to take n of the form n = pq, p,

q primes and p − 1, q − 1 are smooth (which means that they are products of small

primes). Camenisch and Michels have found some zero knowledge proofs to show that

a modulus is a product of two safe primes [6];

In case 1 a cheating Verifier can choose the modulus n such that it is easy to
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compute:

xρ + X mod ord(g) = logg y

rρ + R mod ord(g) = logg T

By executing the Σ+ -Protocol the Verifier obtains the values of:

s := r + cx and

S := R + cX

In this way we have four equations with the given information ρ, ord(g), s, S,

c and four unknowns x, X, r, R. The equations are not independent therefore, the

system cannot be solved to find the secret information x.

A possible idea to extend this case is to take ρ = 1. The attacker can obtain x+X

mod ord(g) which can be seen as x mod ord(g) combined with X.

Since ord(g) ≈ n
2 one bit of information is revealed if x is uniformly distributed

mod ord(g).

By repeating this method the secret information x can be deduced bit by bit.

(2) the parameter ρ can be chosen such that the multiplicative order of g1 is small,

n is such that p, q are primes, p−1, q−1 are smooth, (p−1)/2, (q−1)/2 are relatively

prime and g is an element of Z∗
n of maximal order λ(n) = (p− 1)(q − 1)/2.

In this case the idea is similar to case 1 but the most significant bit of logg y reveals

the least significant bit of x, i.e. the value x mod 2. With a high probability this can

be done from a single execution of the protocol. It is good to mention that a Prover

who follows the protocol cannot detect this fact.

The attack can be extended and the next bit of x can be found. Each bit requires

at least one execution of the protocol, therefore to recover a l-bit secret x the total

number of protocol executions would be l × (1 + 1√
n

).

All the attacks mentioned above are not possible if the Prover verifies the fact

that n is an RSA modulus (which means that n = pq with p, q, 2p + 1, 2q + 1 are

primes) and g is a quadratic residue (g ∈ QRn).
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The authors of [16] assume that the Prover P checks the quadratic residuosity of

g. By changing g0 to g = g2
0 mod n then the Prover P makes sure that g ∈ QRn.

The other parameter n which should have a specific form is n. Our attention is

concentrated on the verification of the correctness of n. If we modify the Σ+ -Protocol

such that we add two extra steps, then all these possible assumptions are no longer

valid.

Verifier(V) (ϕ, y) Prover (P) ((ϕ, y), x)

Step 1.

GS(k)→ (n, g)

ρ ∈U [0, 2kbn/4c]

g1 := gρ mod n

v(x1, x2) := gx1
1 gx2 mod n

(g1, g, n) −→

Step 2.

r ∈U [−2lzc+∆x, 2lzc+∆x]

t = ϕ(r), X ∈U [0, 2lzn]

Y = v(x, X)

R ∈U [−22lzc+n, 22lzc+n]

T = v(r, R)

RH ∈U {0, 1}ld

K := χ(T‖Y ‖RH)

←− (K, t)
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Step 3.

c ∈U C = {0, 1, ..., c+}

c −→

Step 4.

s := r + cx

S := R + cX

←− (s, S)

Step 4’.

The Verifier sends p, q primes

with 2p + 1, 2q + 1 prime numbers

such that n = (2p + 1)(2q + 1).

p, q −→

Step 4”.

The Prover checks if p, q, 2p + 1, 2q + 1 are

prime numbers and n = (2p + 1)(2q + 1).

Then he continues the protocol, otherwise

he stops.

Step 5.

ρ −→
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Step 6.

If gρ 6= g1 (mod n) he stops,

otherwise he continues.

←− (T, Y,RH)

Step 7.

He verifies if the following equalities are true:

K = χ(T‖Y ‖RH)

ϕ(s) = tyc

v(s, S) ≡ TY c (mod n)

If all of the equations are verified then he outputs 1 (he accepts); otherwise he

outputs 0 (he rejects).

When we added the extra step 4’ we added at the right place inside the protocol

to keep it zero knowledge. If we add the step earlier in the protocol then we loose the

soundness property. If we put it later in the protocol, after step 5 then we disclose

some information and we loose the zero knowledge property.

Now we study how the verification of the correctness of n will affect the efficiency

of the protocol. If we choose the Rabin Miller primality test then the cost will be

O(n3).

If we run the test at most lz
3 times, we do not change the over all time complexity

of the algorithm while getting very small error probability. Notice that the most

expensive operation of this protocol is in step 2 in the calculation of T .

Therefore in the case when the test is done more than lz
3 we affect the efficiency

of the protocol.

Another aspect is that if the step 4” fails then the information accumulated by

the Verifier is not enough to recover the secret of the Prover. An important step in
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this observation is the fact that we use the cryptographic hash function χ and the

Verifier, by having K = χ(T‖Y ‖RH), he cannot find the values T and Y . Therefore,

in this situation, the protocol is zero knowledge.
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Conclusion

In the present thesis our purpose was to try to give more attention to some parts

of two existing and well known protocols in cryptography.

The two results presented were developed by trying to understand the Schnorr

Identification Scheme and the Σ+-Protocol. Considering in both cases the different

approaches that exist in the literature we discovered that some parts were not very

well studied and some cases were missing. Therefore, the general idea was to try to

provide new arguments and new directions for each protocol.

This thesis should be interpreted as a simple attempt to give a slight improvement

to the existing work done in each of the two protocols. Certainly this work can be

continued and it will probably improve parts of the schemes presented.

The field of cryptography gives us an enormous number of protocols and schemes,

each with different presentations in the literature. There is a great variety and by

using mathematical tools we can try all the time to make the existing cryptographic

protocols more and more complete and secure.
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