
More robust security specifications
for 1 out of 2 Oblivious Transfer

Abdul Hannan Ahsan

Master of Science

School of Computer Science

McGill University

Montreal,Quebec

February 2006

A thesis submitted to Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science

c©Abdul Hannan Ahsan, 2006

ABSTRACT

An 1 out of 2 Oblivious Transfer (
(2

1

)
-OT) is a two-party computation in which

a sender A owning two secret bits b0, b1 can transfer one to them, bc, to receiver

Bob who chooses c. This is done in such a way that Alice does not learn anything

about c and Bob does not learn anything other than bit bc. Security specifications

for
(2

1

)
-OT are defined in terms of privacy and correctness. Privacy constraint en-

forces that B gets the bit of his choice and gains no knowledge about the other

input bit of A, and A does not gain any knowledge of c. Correctness constraint

enforces that the output received by B is not corrupted by a dishonest A. Tradi-

tionally privacy and correctness have been defined as disjoint security specifica-

tions, and various attempts have been made to merge these two constraints.

We present a new set of security specifications for
(2

1

)
-OT in which these two

constraints are enforced concurrently. In addition, unlike the previous specifica-

tions, our new correctness constraint deals with the correct view of the protocol

instead of output only. We also extend these security specifications to another

variant of
(2

1

)
-OT called 1 out of 2 XOR Oblivious Transfer.

i

SOMMAIRE

Le transfert inconscient (
(2

1

)
-OT) est une primitive cryptographique permet-

tant à l’expéditeur A possédant deux bits secrets (b0, b1) d’en transmettre un au

récepteur B qui obtient, au choix, bc. La primitive garantit d’une part que B

n’apprend rien de plus sur les deux bits, et d’autre part que son choix c reste

secret. Les spécifications de la sécurité de la primitive
(2

1

)
-OT comprennent deux

volets: celui de la protection du secret (privacy), et celui de la protection de la

correction (correctness). Le premier garantit que B n’obtient qu’un seul des deux

bits, au choix, et que A n’apprend rien de ce choix. Le deuxième garantit qu’un

expéditeur malhonnête admissible Ã ne pourrait pas corrompre la sortie de B.

Ces deux volets sont d’habitude traités séparément, et plusieurs tentatives de les

joindre dans une seule définition de sécurité ont été faites dans le passé.

Dans ce mémoire, nous présentons de nouvelles spécifications de sécurité

pour
(2

1

)
-OT où les deux volets sont traités conjointement. À la différence des

spécifications antérieures, nos spécifications traitent de la vue (view) des deux

parties et non seulement de leurs sorties. Nos spécifications sont ensuite adaptées

à une variante du transfert inconscient, le transfert inconscient XOR, permettant

à B d’apprendre soit l’un des deux bits soit leur ou-exclusif, tout en gardant son

choix secret.

ii

DEDICATION

This thesis would be incomplete without a mention of the support given by

my wife and my best friend, Shaheen, to whom this thesis is dedicated. She kept

my spirits up when this thesis seemed interminable. Without her I doubt it should

ever have been completed.

iii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my thesis supervisor, Claude

Crépeau for his stimulating guidance and constant encouragement during this

thesis work. I was especially impressed by not only his commitment to high

standards of research, but also his compassionate approach towards the personal

needs of the students.

I am immensely thankful to George Savvides for his generous help in proof-

reading and layout of this thesis. The thesis in the current shape would not have

been possible without his help. Using his own words: “It has been a pleasure and

a privilege” to work with him.

iv

TABLE OF CONTENTS

ABSTRACT . i

SOMMAIRE . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF NOTATIONS . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Multi-party Computation . 1
1.2 Oblivious Transfer . 3

1.2.1 1-out-of-2 Oblivious Transfer 4
1.3 Motivation of this research . 4

2 PRELIMINARIES . 7

2.1 Notation and Terminology . 7
2.1.1 Parties, Honest and otherwise 7
2.1.2 Deterministic and Probabilistic Oracle Machines 8
2.1.3 Interactive Turing Machines 8
2.1.4 Joint Computation of Two ITMs 9

2.2 View of a Protocol . 10
2.3 Simulation Paradigm . 11
2.4 Protocol and Protocol Specifications 12
2.5 Correct and Private Protocols . 14

2.5.1 Correctness . 15
2.5.2 Privacy . 17

2.6 Reduction Among Protocols . 18
2.7 Mathematical Tools . 19

v

2.7.1 Notation . 19
2.7.2 Entropy . 19
2.7.3 Conditional Entropy . 19
2.7.4 Joint Entropy . 20
2.7.5 Mutual Information . 20
2.7.6 Probability Ensembles . 21

2.8 Indistinguishability . 21
2.8.1 Equality . 21
2.8.2 Statistical Indistinguishability 22
2.8.3 Polynomial-Time Indistinguishability 22

3 CURRENT (2
1)–OT SECURITY SPECIFICATIONS 23

3.1 (2
1)–OT Specifications . 23

3.1.1 (2
1)–OT Correctness . 23

3.1.2 (2
1)–OT Privacy . 24

3.2 Motivation for new (2
1)–OT Specifications 25

3.3 Conclusion . 26

4 NEW (2
1)–OT SECURITY SPECIFICATIONS 27

4.1 (2
1)–OT Specifications . 27

4.2 New (2
1)–OT Security Specifications 28

4.2.1 Sender Specifications . 28
4.2.2 Receiver Specifications . 30

4.3 Function f is Computable . 32
4.4 Conclusion . 34

5 NEW TOX-(2
1) SECURITY SPECIFICATIONS 35

5.1 (2
1)-XOT and TOX-(2

1) . 35
5.2 TOX-(2

1) Specifications . 35
5.2.1 New TOX-(2

1) Security Specifications 36
5.3 A reduction from TOX-(2

1) to (2
1)–OT 38

5.3.1 Proof of Correctness for honest players 38
5.3.2 Proof of Security for dishonest players 40

5.4 A privacy attack on (2
1)–OT . 40

5.4.1 A (2
1)–OT privacy attack by a Dishonest Sender 41

5.4.2 Information Theoretic Proof of Privacy Reduction 44
5.4.3 A (2

1)–OT privacy attack by a Dishonest Receiver 46

vi

5.4.4 Information Theoretic Proof of Privacy Reduction 49
5.5 Conclusion . 52

6 NEW TO–(2
1) SECURITY SPECIFICATIONS 53

6.1 TO–(2
1) Specifications . 53

6.2 New TO–(2
1) Security Specifications 54

6.2.1 Construction of a TO–(2
1) Protocol 55

6.3 Conclusion . 57

7 CONCLUSION . 58

REFERENCES . 60

vii

LIST OF NOTATIONS

A Honest player Alice

B̃ Dishonest player Bob

[A,B](α, β, κ) A protocol with two players,A and B. α isA’s private input,

and β is B’s private input. κ is their common input

[A,B]∗(α, β, κ) The view of a protocol

[A,B]∗A(α, β, κ) A’s view of a protocol

H(X) Entropy of a random variable X

H(X, Y) Joint Entropy of two random variables X and Y

I(X; Y) Mutual Information between two random variables X and

Y

(2
1)–OT 1-out-of-2 Oblivious Transfer

TOX-(2
1) 1-out-of-2 Reverse XOR Oblivious Transfer

TO–(2
1) 1 out of 2 Reverse Oblivious Transfer

(2
1)-XOT 1-out-of-2 XOR Oblivious Transfer

viii

LIST OF FIGURES
Figure page

5–1 An A-attack on (2
1)–OT . 44

5–2 A B-attack on (2
1)–OT . 49

6–1 TO–(2
1)(c)(b0, b1) . 56

ix

CHAPTER 1
INTRODUCTION

1.1 Multi-party Computation

Cryptography, the science of encrypting and decrypting information, dates as

far back as 1900 BC [17] when a scribe in Egypt first used a derivation of the stan-

dard hieroglyphics of the day for secret communication. Cryptography has come

a long way since then and has rapidly evolved over the last decade to deal with

the security of more complex multi-party scenarios. Such scenarios range from

such seemingly simple tasks as fair coin flips when the participants are far apart,

to complex scenarios such as electronic voting, on-line auction and anonymous

transactions. In cryptographic terms, these scenarios are categorized as multi-

party computations. In such settings two or more parties with private inputs jointly

compute some predetermined function. The computation is done in such a way

that each honest party’s input and output is protected from the malicious intents

of dishonest participants.

A number of security definitions have been proposed for multi-party compu-

tation [8, 20, 1, 2, 4, 13] . These definitions aim to formalize important security

aspects that must be enforced while designing protocols for such computations.

The most central of these security aspects are:

1

• Privacy: No party should learn anything more than its prescribed output. In

particular, the only information that should be learned about other parties’

inputs is what can be derived from the output itself.

• Correctness: Each party is guaranteed that the output it receives is valid

according to a predefined set of protocol specifications.

• Independence of Inputs: Dishonest parties must choose their inputs inde-

pendently of honest parties’ inputs.

• Corresponding Input/Output pairs: The output of an honest party must be

consistent with its input.

Complex multi-party protocols are often built by using much simpler and

fundamental protocols as subroutines. These simple protocols are well studied

and their security has been rigorously scrutinized by the research community. We

aim to construct complex protocols so that their security directly relies upon the

security of simpler subroutines. The reasoning behind this is very simple: we can

provide a proof of security for the complex protocol based on the well-tested se-

curity of those subroutines. In cryptographic terms, these relatively simple proto-

cols are generally referred to as cryptographic primitives. Given a complex protocol

α which uses a cryptographic primitive β as a subroutine, we say that the security

of α is equivalent to the security of β, if any security violation of α results in a secu-

rity violation of β. In scientific literature the term reduction is also used in a similar

context to show equivalence of security.

2

The equivalence between cryptographic protocols is a major research area

[3, 6, 9, 18, 7, 8, 19, 10] and a large number of cryptographic protocols have been

shown to be equivalent to one another.

One very important and well studied cryptographic primitive is called Obliv-

ious Transfer.

1.2 Oblivious Transfer

The notion of Oblivious Transfer was first introduced by Rabin[21] and takes

place between two parties, a sender Alice and a receiver Bob. Alice owns a mes-

sage m that Bob does not know. After a successful run of the protocol, with prob-

ability 1
2 Bob learns the value of m. This is done in such a way that Bob knows

whether he got m or not. On the other hand Alice does not know whether m has

been learned. Rabin also suggested a an implementation based on the difficulty of

factoring. This implementation was correct provided both the parties acted hon-

estly.

Oblivious Transfer (OT) is a cornerstone in the foundation of cryptography

and has become the basis for realizing a broad class of interactive protocols such

as bit commitment, zero-knowledge proofs, and more general secure multi-party

computations [22, 14, 15, 18]. The importance and extreme generality of this pro-

tocol was evidenced by the work of Brassard, Crépeau, and Robert [3], Crépeau

[6], and Kilian [18], who basically showed that every two-party protocol can be

securely realized using only Oblivious Transfer as cryptographic primitive. The

results of [3] and [6] show that a very general disclosure problem (all-or-nothing

disclosure of secrets (ANDOS)) can be solved through a set of reductions from an

3

Oblivious Transfer protocol. Kilian showed how to use the ANDOS primitive to

implement the very general oblivious transfer circuit evaluation protocol.

1.2.1 1-out-of-2 Oblivious Transfer

A 1-out-of-2 Oblivious Transfer ((2
1)–OT) is a primitive in which a sender Al-

ice owning two secret bits b0, b1 can transfer one to them, bc, to receiver Bob who

chooses c. This is done in such a way that Alice does not learn anything about c

and Bob does not learn anything other than bit bc. This primitive was first intro-

duced by Even, Goldreich and Lempel [11] with applications to contract signing

protocols.

1.3 Motivation of this research

The security of two-party computation like (2
1)–OT has been traditionally de-

fined in terms of privacy and correctness. In recent literature, various attempts have

been made [20, 1, 5, 13] to merge these two fundamental properties into a uni-

fied definition of security. Micali [20] argued that though privacy and correctness

are the fundamental aspects of secure computation, the logical connective “and”

does not combine them adequately. Correctness and privacy may seem to be con-

flicting requirements, and capturing in the most general sense what it means to

simultaneously enforce them is quite difficult. To obtain a satisfactory notion of

security, privacy and correctness should not be handled independently but need

to be blended in a proper manner.

The main motivation for this research was to investigate a new and more

robust set of security specifications for (2
1)–OT in which privacy and correctness

4

constraints were defined concurrently and treated as a single unified security con-

straint. We present our main results in chapter 4.

In the latter part of the thesis, we present the security specifications of another

variant of (2
1)–OT called 1-out-of-2 Reverse XOR Oblivious Transfer (TOX-(2

1)). We

also present an efficient reduction showing that an attacker to TOX-(2
1) privacy can

be reduced to an attacker to (2
1)–OT privacy.

Due to the breadth of material and for the purpose of clarity, we have ex-

panded the background material to span the next two chapters, each dealing with

individual topics. The breakup of chapters is as follows:

• Chapter 2 presents the notations and definitions used in this thesis. This

chapter also discusses in detail what we mean by protocol and protocol secu-

rity, and provides formal definitions. Mathematical tools used in this thesis

are also presented in this chapter.

• Chapter 3 presents the current security specifications of (2
1)–OT dealing for-

mally with correctness and privacy. This definition was first presented in [2, 4]

and constitutes the starting point of this research work. We present certain

reservations about the completeness of these security specifications due to

the disjoint nature of the privacy and correctness constraints.

• Chapter 4 presents our main results and provide new security specifications

for (2
1)–OT.

• Chapter 5 presents new security specifications for TOX-(2
1). We also present

an efficient reduction showing that an attacker to TOX-(2
1) privacy can be

reduced to an attacker to (2
1)–OT privacy.

5

• Chapter 6 presents the security specifications and a construction of TO–(2
1).

• Chapter 7 presents the conclusions.

6

CHAPTER 2
PRELIMINARIES

We present the notation and terminology used in this research work. This

chapter also provides the necessary mathematical tools used in this research work.

2.1 Notation and Terminology

2.1.1 Parties, Honest and otherwise

Throughout this research work, the interaction will take place between two

parties, Alice and Bob. We will denote Alice byA and Bob by B. If we want to indi-

cate that a party is acting honestly (i.e. the party is participating in accordance to

a legitimate set of steps as described by the protocol specifications), we will place

a bar over that party’s symbol. For example A denotes an honest Alice. We define

dishonest behavior to be any action taken by a party which is not valid according

to protocol specifications. This includes a party not following a legitimate set of

steps as prescribed by the protocol specifications. A dishonest behavior will be

denoted by a placing a tilde on the party’s symbol. B̃ denotes a dishonest Bob.

We denote as ℘ any program that a party may run to execute the protocol.

The ownership of the program is denoted by putting the owner’s symbol as a

subscript to ℘. Similar to the previous set of notations, the symbol on the top of

℘ describes the behavior of the program. For example, ℘̃a represents a dishonest

program run by Alice for the execution of the protocol.

7

2.1.2 Deterministic and Probabilistic Oracle Machines

An Oracle machine is a Turing machine that is augmented so that it can ask

questions to an outside oracle. An oracle machine has an additional tape, called

the oracle tape, and two special states called oracle invocation and oracle appeared

[12]. The output distribution of the oracle machine M, on input x and with ac-

cess to oracle f is denoted byM f (x). The computation of a deterministic oracle

machine M on input x, with access to oracle f : {0, 1}∗ → {0, 1}∗ is defined by

the successive-configuration relation. For configurations with states other than ora-

cle invocation, the next configuration is defined as usual. Let γ be a configuration

in oracle invocation state having q as the contents of the oracle tape. Then the con-

figuration following γ is identical to γ, except that the state will be oracle appeared,

and the contents of the tape will be f (q). The string q is M’s query and f (q) is

called oracle reply. The computation of a probabilistic oracle machine is defined

analogously.

2.1.3 Interactive Turing Machines

We represent the behavior of a party by an Interactive Turing Machine (ITM).

An ITM M is a deterministic multi-tape Turing machine [12] consisting of the

following tapes.

• A read-only input tape which holdsM’s private input.

• A read-only random tape which holdsM’s random coin flips.

• A read-and-write work tape used byM for private internal computations.

• A write-only output tape whose contents at termination are called the output

ofM.

8

• A read-and-write switch tape which indicates whether M is active or not.

Each ITM is associated with a single bit σ ∈ {0, 1} called its identity. An ITM

is said to be active in a configuration if the content of its switch tape equals

the machine’s identity, Otherwise the machine is said to be idle. While idle,

the state of the machine, the location of its head on the various tapes, and

the contents of the writable tapes of the ITM are not modified.

• A pair of communication tapes which are used to communicate with the

other ITM. One of the tapes is read-only and the other one is write-only. The

content written on the write-only communication tape when M is active is

called the message sent at that period. Likewise, the content read from the

read-only communication tape during an active period is called the message

received.

In addition to these tapes, we allow ITM to have an additional read-only tape

called the auxiliary-input tape. We use auxiliary tapes to model individual local

inputs of each machine. These tapes may contain the results of any local compu-

tation done on the inputs, or the history of previous interactions.

2.1.4 Joint Computation of Two ITMs

We represent the protocol as a joint computation of Two ITMs. Two ITMs

are said to be linked if they have opposite identities, their input tapes coincide,

their switch tapes coincide, and the read-only communication tape of one machine

coincides with the write-only communication tape of the other machine and vice

versa. The other tapes of both machines (i.e. random tape, work tape, output tape,

and auxiliary input tape) are distinct and inaccessible by the other machine.

9

The joint computation of a linked pair of ITM, on a common input x is a sequence

of pairs representing the local configurations of both machines. That is, each pair

consists of two strings, each representing the local configuration of one of the

machines. In each pair one machine is active while the other is idle. The first pair

in the sequence consists of initial configurations corresponding to the common

input x, with the contents of the switch tape set to zero.

If one machine halts while the switch tape still holds its identity, then we say

that both machines have halted. The outputs of the protocol can be determined by

looking at the output tapes of each party. Given two parties A and B, denote as

(A,B) a connecting pair of parties (CPP) doing joint computations.

2.2 View of a Protocol

During the execution of a protocol, both A and B have access to some in-

formation. This information is completely determined by the internal coin tosses

and the messages received from the other party. This is a random variable and is

called the view of the protocol. We formalize the notation as follows:

[℘a, ℘b](α)(β) denotes the random variable that describes the outputs ob-

tained by A and B when they execute together the programs ℘a and ℘b on inputs

α and β respectively. Note that [℘a, ℘b](α)(β) is a random variable since ℘̃a and ℘̃b

may be probabilistic programs.

Let [℘a, ℘b]∗(α)(β) be a random variable that describes the total information

(including not only the messages received and issued by the parties but also the

result of any local random sampling they may have performed) acquired dur-

ing the execution of the protocol [℘a, ℘b] on inputs (α, β). Let [℘a, ℘b]P(α)(β) and

10

[℘a, ℘b]∗P(α)(β) be the marginal random variables obtained by restricting the above

to only one party P. The latter is called the view of P [16].

2.3 Simulation Paradigm

Simulation is one of the most important paradigms used in providing proofs

of security of cryptographic protocols. This paradigm is used in a setting when

two parties A and B interact with each other and one party (say B) has a secret

which he wants to keep private. To ensure that B’s secret is kept private during

the execution of the protocol, we simulate the entire protocol with A. This is

done such that the simulator has no or very controlled access to B’s input. If

we are able to simulate a view for A that is indistinguishable from the one created

during an actual interaction, it implies that the steps of the protocol do not provide

any knowledge of B’s secret to A, beyond what she can discover on her own by

looking at her output. A crucial point is that we do not wantA to gain knowledge

even if she arbitrarily deviates from the protocol when interacting with B. This

approach is reminiscent of Goldwasser, Micali and Rackoff’s definition of zero-

knowledge [16]. In the case of zero-knowledge proofs, one problem that a simulator

faces is that it is impossible for it to generate a convincing proof without having

access to B’s input. The question that arises is how can the simulator generate a

view that is indistinguishable from that of an actual interaction with B ? The answer

is, the simulator has two advantages over the B which compensate for the serious

disadvantage of not knowing the inputs. The first advantage is that the simulator

has access to A’s random tape. This means that it can actually determine her next

question. The second advantage is, unlike in the actual interaction, the simulator

11

has many attempts to answer the questions. During an interaction if it fails, it can

try again and output only the attempt in which it succeeds. This is in contrast to

an actual interaction where if the party fails even once to answer the question, the

proof is rejected. This technique is called rewinding because when the simulator

fails to answer a question posed by the verifier, it simply rewinds the verifier back

to the last successful state and tries again.

In cases where A gets some output related to B’s input, we extend the defi-

nition of the simulator and allow it to access an oracle running the protocol. The

oracle has access to B’s input and behaves according to the legitimate steps of the

protocol. The simulator runs in two stages. In the first stage, it determines the

effective input of A used in the protocol. This allows us to take into account the

fact that Ã on input α can choose to do some local computation and use the results

(effective input α̃) in the protocol. In the second stage, the simulator acting as A

at an appropriate step invokes the oracle with α̃. It gets the output from the oracle

and then provides it to A.

Note that failure to provide a simulation of a protocol does not necessarily

mean that this interaction results in some gain in illegal information. What mat-

ters is that any real gain cannot occur whenever we are able to present a simula-

tion.

2.4 Protocol and Protocol Specifications

A protocol is a multi-party synchronous program that describes the computa-

tions to be performed by each party, and the messages to be sent to some other

12

party at every point in time. The protocol terminates when no party has any mes-

sage to send or information to compute. A set of protocol specifications not only

defines what a protocol must achieve at the end of a successful run, but also pro-

vides bounds on the dishonest behavior of the participants.

Definition 2.1 (Protocol) Let (A, B) be a CPP. A protocol is a pair of programs ℘ =

(℘a, ℘b) where ℘a and ℘b are probabilistic programs run by A and B respectively.

Let α and β be A’s and B’s private inputs respectively and let κ be their com-

mon input. The output after the execution of the protocol is a pair of strings (γ, δ),

where γ and δ are the contents of the output tapes of A and B respectively. We

can view the protocol as the description of a process that, for any fixed contents

of the random tape, transforms a triplet of inputs (α, β, κ) into a pair of outputs

(γ, δ). As the contents of the random tapes of A and B are uniformly distributed,

for all inputs α, β, κ ∈ Σ∗, a protocol ℘ specifies a probability distribution over

Σ∗ × Σ∗ (the output domain) namely ℘(α, β, κ). These probabilities are taken over

all possible contents of the random tapes.

Definition 2.2 (Protocol Specifications) Let D= {D(α, β, κ)}α,β,κ∈Σ∗ be a family of

probability distributions over Σ∗ × Σ∗. We call D a protocol specification. Da(α, β, κ)

and Db(α, β, κ) are marginal distributions that are obtained by restricting D(α, β, κ) to

A or B respectively.

Da(α, β, κ) and Db(α, β, κ) correspond to the output specifications of A and B

respectively after a successful run of the protocol. We say that a protocol imple-

ments specifications D if ∀α, β, κ ∈ Σ∗

13

[℘(α, β, κ) = D(α, β, κ)]

In general given a protocol specification, our task is to construct a protocol to

implement it.

2.5 Correct and Private Protocols

Two-party protocol security specifications consist of two fundamental no-

tions of security: correctness and privacy. By correctness we mean two things:

Firstly, when the parties are acting honestly, the protocol must accomplish the

task it was designed for. Secondly, a dishonest party must not be able to induce

an illegitimate output distribution on honest participants1 . The notion of pri-

vacy ensures that the protocol does not give any information about the inputs other

than what each output inherently reveals. These security specifications were first

presented in [8] and have been extended to include dishonest behavior of the par-

ticipants.

Two-party protocols can be categorized as being symmetric or asymmetric. In

symmetric protocols both parties get an output at the end, while in asymmetric pro-

tocols only one party receives an output. In the following specifications, the equal-

ity sign (=) means that the distribution on the left-hand side and the right-hand

1 An illegitimate output distribution is any output distribution which does not
conform to the protocol specifications.

14

side are indistinguishable.2 Assume without any loss of generality that A does

not receive any output in the asymmetric case.

2.5.1 Correctness

Definition 2.3 (Protocol Correctness) A Protocol is correct if it is both A-correct

and B-correct

• A-Correctness

– ∀α, β, κ

[℘a, ℘b]A (α, β, κ) = DA(α, β, κ) (2.1)

– ∀℘̃a, α, β, κ, ∃ ℘̃a
′ s.t

(
[℘̃a, ℘b]B (α, β, κ),B accepts

)
=

(
DB(℘̃a

′(α, κ), β, κ),B accepts
)

(2.2)

• B-Correctness

– ∀α, β, κ

[℘a, ℘b]B (α, β, κ) = DB(α, β, κ) (2.3)

– ∀℘̃b, α, β, κ, ∃℘̃b
′ s.t

(
[℘a, ℘̃b]A (α, β, κ),A accepts

)
=

(
DA(α, ℘̃b

′(β, κ), κ),A accepts
)

(2.4)

2 Discussion about various forms of indistinguishability will be presented later
in this chapter.

15

Condition (2.1) defines what the protocol must achieve when both parties are

acting honestly. A must get the output it is entitled to in accordance with the

protocol specifications. Condition (2.2) defines the bounds on the dishonest be-

havior of A. Any distribution that Ã may try to induce on B’s view during the

execution of the protocol, either B rejects, or there must exist a valid input which

is efficiently computable (effective input) that Ã can use in an otherwise honest

execution of the protocol to achieve that same results. This is an equivalent way

of saying that her dishonest behavior is restricted to doing efficient local compu-

tations on her input bits and then using the results of these computations in the

protocol and acting honestly.

We define B-Correctness specifications analogously. B must get the output

he is entitled to in accordance with the protocol specifications (equation (2.3)).

Similarly for any output distribution that B̃ may try to induce on A’s view, either

A rejects, or there must exist a valid input that is efficiently computable (effective

input) that B̃ can use in an otherwise honest execution of the protocol to achieve

that same result.

16

2.5.2 Privacy

We demonstrate that a protocol is private by showing that a party can simulate

its own view of the protocol having no or controlled access3 to the other party’s

inputs.

Let ViewA
de f
= [℘̃a, ℘b]∗A(α, β, κ) and ViewB

de f
= [℘a, ℘̃b]∗B(α, β, κ). Let M de-

note the simulator. We now provide individual definitions of privacy for both

parties for asymmetric and symmetric cases.

Symmetric Case

• A-Privacy

∃M ∀℘̃a, α, β, κ

M℘(∗,β,κ)(℘̃a, α, κ) = ViewA (2.5)

• B-Privacy

∃M ∀℘̃b, α, β, κ

M℘(α,∗,κ)(℘̃b, β, κ) = ViewB (2.6)

For the symmetric case, a simulatorM interacting with either participant (℘̃a

or ℘̃b) must be able to create a view that is indistinguishable from that of an actual

instance of the protocol. As both parties get an output at the end of the protocol,

we allowM to access an outside oracle running the protocol.

3 In cases where a party gets an output at the end of the protocol, the simulator
must make an oracle call to get that output. The oracle has access to other party’s
inputs.

17

Asymmetric Case

• A-Privacy

∃M ∀℘̃a, α, β, κ

M(℘̃a, α, κ) = ViewA (2.7)

• B-Privacy

∃M ∀℘̃b, α, β, κ

M℘(α,∗,κ)(℘̃b, β, κ) = ViewB (2.8)

Equation (2.7) defines the bounds on the behavior of any program ℘̃a run by

Ã. For any ℘̃a interacting with B, a simulatorM interacting with ℘̃a must be able

to create an indistinguishable view from that of an actual instance of the protocol.

Equation (2.8) defines the bounds on the behavior of B̃. As B̃ gets an output

in the end, we provideM with access to an oracle. This oracle is running a copy

of the protocol and has access to A’s inputs. M interacting with ℘̃b must be able

to create an indistinguishable view from that of an actual instance of the protocol.

2.6 Reduction Among Protocols

In order to formalize how our parties can use existing protocols as subroutines

we modify our notion of CPP to allow execution of abstract protocols. In addi-

tion to the description of CPP given before, each party has an extra read/write

protocol tape. These tapes are to be used in connection with a special purpose

device known as abstract protocol. The abstract protocol is a trusted device that

implements a protocol specification. At each step of its computation, a machine

can read or write a single character on the protocol tape. The parties would first

18

write the input on their protocol tape, then request the execution of the abstract

protocol, and then finally extract their output from the tape. After execution, the

abstract protocol loses its inputs and both protocol tapes contain only the output

or result of the execution.

We say that a protocol ℘ reduces to ℘̂ if ℘ uses a set ℘̂ of abstract protocols.

2.7 Mathematical Tools

2.7.1 Notation

Let U be a set. The expression u ∈R U means that an element is chosen from

set U randomly i.e each u ∈ U has an equal probability of being chosen.

2.7.2 Entropy

The entropy of a random variable X is defined as

H(X) = ∑
x∈X

p(x) log
(

1
p(x)

)
where p(x) is the probability that X is in state x.

2.7.3 Conditional Entropy

The conditional entropy of a pair of discrete random variables (X, Y) with joint

distribution p(x, y) is defined as

H(Y | X) = ∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

19

This can also be written in the following equivalent way

H(Y | X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log(p(y|x)

= − ∑
x∈X

p(x)H(Y|X = x)

2.7.4 Joint Entropy

The joint entropy of a pair of discrete random variables (X, Y) with joint dis-

tribution p(x, y) is defined as

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

Joint entropy can be expressed in terms of conditional entropy as

H(X, Y) = H(X) + H(Y | X)

2.7.5 Mutual Information

Intuitively mutual information is a measure of how much information one ran-

dom variable contains about another. The mutual information between two vari-

ables X and Y denoted by I(X; Y) is given by

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

The mutual information can be expressed in terms of conditional entropy as

I(X; Y) = H(X)−H(X | Y)

20

The mutual information between two random variables X and Y conditioned

upon a third random variable Z is given by

I(X; Y|Z) = H(X | Z)−H(X | Y, Z)

2.7.6 Probability Ensembles

For w ∈ {0, 1}∗, let X be a probability distribution ranging over binary strings w.

Let I be a countable index set. A probability ensemble X = {Xi}i∈I is a sequence of

random variables each ranging over all values of w, and indexed by I. (Sometimes

we omit i ∈ I from the notation.)

2.8 Indistinguishability

Let X = {Xn}n∈N and Y = {Yn}n∈N be two probability ensembles. Con-

sider the following framework. A random sample is selected from either X or Y

and is handed to a judge. After studying the sample, the judge makes a decision

about the origin of the sample. We say that X becomes replaceable by Y when the

verdict of any judge becomes uncorrelated with the distribution from which the

sample came. There are two relevant parameters in this framework: the size of

the sample and the amount of time the judge is given to produce his verdict. By

bounding these two parameters in different ways we obtain different notions of

indistinguishability.

2.8.1 Equality

We say that X = {Xn} and Y = {Yn} are indistinguishable or equal if for any

judge, the judge’s verdict is independent from the origin of the sample even if he

21

is given samples of arbitrary size and he can study them for an arbitrary length of

time.

Formally, two ensembles X and Y are said to be perfectly indistinguishable or

equal if ∀α, n

Pr(Xn = α) = Pr(Yn = α)

2.8.2 Statistical Indistinguishability

We define the two ensembles to be statistically indistinguishable if they are re-

placeable by each other, with respect to a judge that may have unbounded com-

putational power but is given polynomial size samples to work on.

Formally, two ensembles X = {Xn} and Y = {Yn} are said to be statistically

indistinguishable if for every positive polynomial p(.), ∃Np, ∀n > Np

∑
α

|Pr(Xn = α)− Pr(Yn = α)| < 1
p(n)

2.8.3 Polynomial-Time Indistinguishability

Two ensembles X = {Xn}n∈N and Y = {Yn}n∈N are indistinguishable in poly-

nomial time if for every probabilistic polynomial-time algorithm D, every positive

polynomial p(.), and all sufficiently large n,

|Pr(D(Xn, 1n) = 1)− Pr(D(Yn, 1n) = 1)| < 1
p(n)

The term computational indistinguishability is also used to represent indistin-

guishability in polynomial time.

22

CHAPTER 3
CURRENT (2

1)–OT SECURITY SPECIFICATIONS

We present the current security specifications of (2
1)–OT based on privacy and

correctness.

3.1 (2
1)–OT Specifications

(2
1)–OT is a cryptographic protocol between two parties, a sender A and a

receiver B. This protocol enables A to transfer one of her two input bits (b0, b1)

to B who secretly chooses which bit (bc) to get. The choice of B is represented by

c. This is done in such a way that A does not gain any knowledge about c, while

B gets only one of A’s input bits. We use the (2
1)–OT security specifications first

introduced by Brassard, Crépeau, and Wolf [2, 4].

Let (B0, B1) and C be random variables (RV) representing the inputs of A and

B respectively. Let C′ be a random variable representing B̃’s effective input. We

assume that both A and B are aware of the arbitrary joint probability distribution

of these random variables PB0,B1,C. A sample (b0, b1, c) is generated from the distri-

bution and (b0, b1) is provided as A’s secret input while c is provided as B’s secret

input. As mentioned previously, the equality sign(=) in the following specifica-

tions means that the distributions on the left-hand side and the right-hand side

are indistinguishable.

3.1.1 (2
1)–OT Correctness

Definition 3.1 (OT-Correctness) Protocol [A,B] is correct for (2
1)–OT if

23

• ∀b0, b1 ∈ F2, c ∈ F2, [
A,B

]
(b0, b1)(c) = (ε, bc) (3.1)

• ∀Ã, ∃Ã′ s.t ∀b0, b1 ∈ F2, c ∈ F2,

(
[Ã,B]B(b0, b1)(c),B accepts

)
=

(
[A,B]B(Ã′(b0, b1))(c)

)
(3.2)

Equation (3.1) defines what a (2
1)–OT protocol must achieve when both par-

ties are acting honestly. B should only get the bit corresponding to his choice c (i.e

bc), and A does not get any output from the protocol. We use ε to denote that A’s

output is an empty string.

Equation (3.2) defines A-Correctness. It defines the bounds on the dishonest

behavior of A. Any distribution that Ã may try to induce on B’s output, either

B is given the knowledge that Ã is cheating and he aborts, or there must exist a

pair of input bits (b′0, b′1) efficiently computable from (b0, b1) that Ã can use in the

protocol while otherwise acting honestly, to achieve that same result. This is an

equivalent way of saying that her dishonest behavior is restricted to doing local

computation on her input bits and then using the results of these computations

(her effective input) and acting honestly. (b′0, b′1) denote Ã’s effective input i.e.

(b′0, b′1) ← Ã
′
(b0, b1).

3.1.2 (2
1)–OT Privacy

Definition 3.2 (OT-Privacy) Protocol [A,B] is private for (2
1)–OT if

∀(B0, B1) ∈ RV(F2)2, C ∈ RV(F2)

24

• ∀b0, b1 ∈ F2, ∀Ã,

I
(

C; [Ã,B]∗A (B0, B1)(C) | (B0, B1) = (b0, b1)
)

= 0 (3.3)

• ∀c ∈ F2, ∀B̃, ∃C̃ ∈ RV(F2) s.t

I
(

B¬C̃; [A, B̃]∗B(B0, B1)(C) | (BC̃, C = c)
)

= 0 (3.4)

These two privacy constraints guarantee that each party is limited to the in-

formation he or she should get at the end of a successful run of the protocol.

Equation (3.3) defines A-privacy. Ã’s view must not provide any knowledge

of B’s input bit c.

Equation (3.4) defines B-privacy. B̃may acquire complete knowledge of either

b0 or b1 from the protocol but not both. This includes information about any joint

function these two input bits. Note that we cannot make any assumptions that B̃

will use the provided input bit c in the protocol. B̃may do some local computation

on his input bit and use the result (effective input c′) as his input. Similarly, during

the execution of the protocol, he may try to gain knowledge of both bits by trying

to get any joint information about input bits of A Due to these reasons, these

constraints are conditioned on providing one of A’s input bits to B̃. We do not

require that B̃ be given bc because there is no way to prevent him from obtaining

any other bc′ through otherwise honest use of the protocol.

3.2 Motivation for new (2
1)–OT Specifications

The security of multi-party computation has been traditionally defined in

terms of privacy and correctness. In recent literature, various attempts have been

25

made [20, 1, 5, 13] to merge these two fundamental properties into a unified defi-

nition of security. Micali [20] argued that though privacy and correctness are the

fundamental aspect of secure computation, the logical connective “and” does not

combine them adequately to provide complete protocol security, and capturing in

the most general sense what simultaneously enforcing them means is quite dif-

ficult. To obtain a satisfactory notion of security, privacy and correctness should

not be handled independently but need to be blended in a proper manner. In cer-

tain cases correctness and privacy may seem to be conflicting requirements. The

negative effect of this definitional approach is thus considering secure some pro-

tocols that may not be such. In a secure protocol, privacy is taken to mean that

a protocol admits a certain type of simulator, and correctness is a concept defined

through the same simulator proving the protocol private.

The main motivation of this research was to investigate and present a new

and more robust set of security specifications for (2
1)–OT in which privacy and cor-

rectness are defined concurrently and treated as interlinked security constraints.

We present new security specifications of (2
1)–OT in chapter 4.

3.3 Conclusion

We have presented a set of current security specifications for (2
1)–OT which

deal with privacy and correctness as separate and disjoint constraints. In the next

chapter we present a new set of security specifications for (2
1)–OT.

26

CHAPTER 4
NEW (2

1)–OT SECURITY SPECIFICATIONS

We present a new set of security specifications for (2
1)–OT in this chapter.

4.1 (2
1)–OT Specifications

We start by looking at what a protocol implementing (2
1)–OT must achieve. In

accordance with the naming conventions used in the previous chapters, assume

that A is the sender and B is the receiver.

Definition 4.1 ((2
1)–OT) Protocol [A,B] implements (2

1)–OT if

∀b0, b1, c ∈ F2

[A,B](b0, b1)(c) = (ε, bc) (4.1)

In a (2
1)–OT protocol, A does not get any output, and the protocol must not pro-

vide any information about B’s input to A (denoted by ε). B must get the bit of

his choice c. The following definition was presented as one of the correctness con-

straints (see section 3.1.1), and it helped us conceptualize what (2
1)–OT security

specifications must achieve. This equation defines the input/output relation in an

ideal execution of (2
1)–OT protocol and provides bounds for the behavior of both

parties.

27

4.2 New (2
1)–OT Security Specifications

Let (B0, B1) and C be the random variables taking values overF2 that describe

the inputs of A and B respectively. Let T (transcript) denote the random variable

that describes the view of the protocol.

T = [A,B]∗(B0, B1)(C)

T contains all details including the messages received, the result of any local ran-

dom sampling done and the internal coin tosses of both parties.

Let T A and T B denote the view restricted to A and B respectively. Let T and

T̃ denote the transcripts produced by honest and dishonest parties respectively.

Let X be a discrete random variable. The function fX(x) = Pr[X = x] is

called the discrete probability function of X. Discrete probability function gives the

probability that a discrete random variable is exactly equal to some value. Given

two random variables X and Y taking values over the same sample space S and

having discrete probability functions fX(x) and fY(x) respectively, we use the def-

inition of L1 norm to denote the difference of their discrete probability functions

as follows.

L1 (X; Y) =
1
2
× ∑

x∈S
| fX(x)− fY(x)|

4.2.1 Sender Specifications

Equation (4.1) defines what information the two parties are restricted to after

a successful run of the (2
1)–OT protocol. A does not get any information about B’s

28

input bit, while B gets one of A’s input bits of his choosing. We look at what a Ã

may try to gain from the protocol.

• A-Privacy: Ãmay try to gain knowledge of B’s input bit c from the protocol.

Our security specifications must ensure that Ã does not learn about c. As

T is the view of the protocol and encapsulate all possible behaviors, T̃A
must not provide any information about c. This condition must hold for all

scenarios including an abort of the protocol by Ã.

• A-Correctness: Ideally we would like Ã to use her provided input bits during

the protocol. As this would be unenforceable in practice because Ã can pre-

compute another set of inputs and then act honestly without raising suspi-

cion, Ã is allowed to choose from the four possible input pairs with a certain

probability distribution. For any distribution that Ã can induce on B’s tran-

script, there must exist (B′0, B′1) representingA’s input pair (b′0, b′1) which she

can use and act honestly to achieve the same distribution on TB . i.e for any

Ã there must exist an associated probability distribution on her new input

pair such that she can pick an input pair according to this distribution and

act honestly in the protocol to achieve the same results.

Note that Ã’s dishonest behavior is dependent upon the contents of her ran-

dom tape, the messages received from B, what she sees as the output of the

intermediate steps of the protocol, and her own bias towards her input pair.

Our definition is therefore conditioned on the existence of a function f which

takes an instance of T̃A as input and outputs a pair of output bits (b′0, b′1). If

f is run on all the possible outcome instances of T̃A, and is able to output

29

a bit pair (b′0, b′1) each time, we get a specific probability distribution on the

four possible input pairs of Ã. This function f validates any such dishon-

est behavior as acceptable or unacceptable for the protocol, and provides

bounds on Ã by mapping her dishonest behavior to a specific probability

distribution on her input pair (b′0, b′1).

This condition must hold for all scenarios when the protocol finishes suc-

cessfully and B does not reject. Note that we do not require this function to

be efficiently computable, and mere existence of such function is sufficient

for the definition to hold.

We now formalize these two constraints.

Definition 4.2 ((2
1)–OT A-Security) Protocol [A,B] is A-secure for (2

1)–OT if

∀C ∈ RV(F2), b0, b1 ∈ F2, adv. Ã, ∃ function f ,

Let T̃ =
[
Ã,B

]∗
(b0, b1)(C)

(B′0, B′1) = f (T̃ A)

Let T =
[
A,B

]∗(B′0, B′1)(C)

max

I
(

C; T̃ A
)

,

Pr
(
B accepts

)
× L1

(
T B ; T̃ B

)
 = 0

4.2.2 Receiver Specifications

We look at what B̃ may try to gain from the protocol.

• B-Privacy: Equation (4.1) enforces that B should only get the input bit corre-

sponding to his provided input c and nothing else. We relax this restriction

30

and allow B̃ to get any one of the input bits of A. The reason is that we can-

not assume that B̃ will use the provided input bit c in the protocol. B̃ may

do some local computation on c, and use the result (effective input c′) in the

protocol. The security specifications must ensure that when B̃ is given bc′ ,

T̃ B must not provide any additional information about A’s other input bit

b¬c′ . This includes any joint information about the two input bits of A.

• B-Correctness: Ideally we would like B̃ to use the provided input c in the

(2
1)–OT protocol. As this would be enforceable because B̃ can pre-compute

another input c′ (effective input) and act honestly in the protocol. B̃ is al-

lowed to choose from the two possible input choices with a certain proba-

bility distribution. For any distribution that B̃ can induce on A’s transcript

TA, there must exist C′ representing B’s input bit c′ which he can use and act

honestly to achieve the same distribution on TA. i.e for any B̃, there must

exist an associated probability distribution on his new input bit such that

he can pick an input according to this distribution and act honestly in the

protocol to achieve the same results.

Similar toA-correctness, our specifications for B-correctness are conditioned

on the existence of a function f which takes an instance of T̃B as input and

outputs a bit c′. If f is run on all the possible outcome instances of T̃B , and is

able to output a bit c′ each time, we get a specific probability distribution on

the two possible input bits of B̃. This function f validates any such dishon-

est behavior as acceptable or unacceptable for the protocol, and provides

31

bounds on B̃ by mapping his dishonest behavior to a specific probability

distribution on his input c′.

This condition must hold for all scenarios when the protocol finishes suc-

cessfully and A does not reject. Note that we do not require this function to

be efficiently computable, and mere existence of such function is sufficient

for the definition to hold.

We now formalize B’s security specifications.

Definition 4.3 ((2
1)–OT B-Security) Protocol [A,B] is B-secure for (2

1)–OT if

∀(B0, B1) ∈ RV(F2)2, c ∈ F2, adv. B̃, ∃ function f ,

Let T̃ =
[
A, B̃

]∗
(B0, B1)(c),

C′ = f (T̃ B) and I(C′; B0, B1 | c) = 0

Let T =
[
A,B

]∗(B0, B1)(C′)

max

I
(

B¬C′ ; T̃ B
∣∣∣ C′, BC′

)
Pr

(
A accepts

)
× L1

(
T A; T̃ A

)
 = 0

Combining both sender and receiver security specifications, we define (2
1)–OT

security as follows.

Definition 4.4 ((2
1)–OT Security) Protocol [A,B] is secure for (2

1)–OT if it is both

A-Secure and B-Secure.

4.3 Function f is Computable

Our definition uses the notion of a global view of the protocol T , and enforces

security by defining privacy and correctness on the marginal views created by

both parties. For A-correctness, we require that f produce a pair (b′0, b′1) for every

32

instance τ̃a of T̃A. However there is no reason to assume that each τa is compati-

ble with only one such pair. If we are provided with a specific τa for which such a

pair (b′0, b′1) exist, we can provide an algorithm Z which can find two bits b̂0 and

b̂1 that are compatible with τ̃a. b̂0 and b̂1 are found independently of each other

and have the same marginal probability distribution as b′0 and b′1 respectively. The

reason is that if there exist a certain probability distribution P1 according to which

a pair (b′0, b′1) is selected, there exists another probability distribution P2 such that

bit b̂0 (corresponding to the first bit in the pair) and b̂1 (corresponding to the sec-

ond bit in the pair) have the same marginal probability distributions. Note that

as a pair these bits may not have the same probability distribution as (b′0, b′1). If

B-privacy is enforced, B cannot differentiate if his transcript was created with Ã

selecting input from P1 or P2, and B’s transcript from his viewpoint would be in-

distinguishable. Z has access to the programs for Ã and B, and is provided a

specific transcript τ̃a of Ã as input.

Algorithm 4.1 (Z(τ̃a))

1. Extract the random tape from τ̃a and set it as the random tape of Ã.

2. Set B’s input c = 0.

3. Select a random tape for B.

4. Let B run an instance of (2
1)–OT with Ã. B receives output b0.

5. Compare Ã’s transcript with τ̃a. If both transcripts are identical, set b̂0 = b0,

and go to step 6. Else, rewind Ã and go to step 2.

6. Set B’s input c = 1.

33

7. Select a random tape for B.

8. Let B run an instance of (2
1)–OT with Ã. B receives output b1.

9. Compare Ã’s transcript with τ̃a. If both transcripts are identical, set b̂1 = b1,

and stop. Else, rewind Ã and go to step 6.

4.4 Conclusion

We have presented a new set of security specifications for (2
1)–OT which en-

forces privacy and correctness concurrently. Unlike the previous specifications

presented in section 3.1, the new specifications enforce correctness on the tran-

script created by the honest party. This is a more stronger and robust notion of

security as it enforces correctness for not only the output obtained by the honest

party, but also the output of any intermediate steps of the protocol. In the next

chapter we provide a new set of security specifications for TOX-(2
1).

34

CHAPTER 5
NEW TOX-(2

1) SECURITY SPECIFICATIONS

We extend the new (2
1)–OT security specifications presented in chapter 4 to

another variant of (2
1)–OT called TOX-(2

1). We present a reduction of TOX-(2
1)

protocol to (2
1)–OT, and show that if we are provided with a privacy attacking

algorithm to TOX-(2
1), it can be efficiently reduced to attack (2

1)–OT privacy.

5.1 (2
1)-XOT and TOX-(2

1)

1-out-of-2 XOR Oblivious Transfer ((2
1)-XOT) is a variant of (2

1)–OT and is de-

fined as follows: Sender Alice has two bits b0, b1 to offer and receiver Bob can

choose one of b0, b1 or b⊕ where b⊕ = b0 ⊕ b1. At the end of the protocol Bob gets

bc, while Alice does not gain any knowledge of c.

1-out-of-2 Reverse XOR Oblivious Transfer (TOX-(2
1)) is (2

1)-XOT in the reverse

direction. In this protocol, Bob acting as a sender offers two bits b0, b1 to Alice, and

Alice can choose one of b0, b1 or b⊕ where b⊕ = b0 ⊕ b1. At the end of the protocol

Alice gets bc, while Bob on the other hand does not gain any knowledge about c.

5.2 TOX-(2
1) Specifications

We start by looking at what a TOX-(2
1) protocol should achieve at the end of

a successful instance. Assume that A is the receiver and B is the sender.

Definition 5.1 (TOX-(2
1)) Protocol [A,B] implements TOX-(2

1) if

∀b0, b1 ∈ F2, c ∈ {0, 1,⊕}

35

[A,B](c)(b0, b1) = (bc, ε) (5.1)

The protocol must not provide any information aboutA’s input bit c to B(denoted

by ε), and A must get the bit of her choice and nothing else i.e bc ∈ {b0, b1, b⊕}.

The protocol must not provide any additional information about B’s input bits to

A other than what she can infer from the output alone.

5.2.1 New TOX-(2
1) Security Specifications

Let B0, B1 denote the random variables representing the input of sender B.

Let B⊕ = B0 ⊕ B1. Let C′ denote the effective choice of A, and let BC′ denote the

random variable representing the bit corresponding to A’s choice. Let B−C′ , B+C′

denote the random variables representing the other two choices.

Definition 5.2 (TOX-(2
1)-Security) Protocol [A,B] is secure for TOX-(2

1) if it is both

A-secure and B-secure.

• A-Security

Protocol [A,B] is A-secure for TOX-(2
1) if

∀(B0, B1) ∈ RV(F2)2, c ∈ {0, 1,⊕}, adv. Ã, ∃ function f

Let T̃ =
[
Ã,B

]∗
(c)(B0, B1)

C′ = f (T̃ A) and I(C′; B0, B1 | c) = 0

Let T =
[
Ã,B

]∗
(C′)(B0, B1)

max

I
(

B−C′ ; T̃ A
∣∣∣ C′, BC′

)
+ I

(
B+C′ ; T̃ A

∣∣∣ C′, BC′
)

Pr
(
B accepts

)
× L1

(
T B ; T̃ B

)
 = 0 (5.2)

36

• B-Security

Protocol [A,B] is B-secure for TOX-(2
1) if

∀C ∈ RV(0, 1,⊕), b0, b1 ∈ F2, adv. B̃, ∃ function f

Let T̃ =
[
A, B̃

]∗
(C)(b0, b1)

(B′0, B′1) = f (T̃B)

Let T =
[
A,B

]∗(C)(B′0, B′1)

max

I
(

C; T̃ B
)

,

Pr
(
A accepts

)
× L1

(
T A; T̃ A

)
 = 0 (5.3)

Equation (5.2) defines A-security. Ã may acquire only one of b0, b1 or b⊕

from the protocol. T̃ A must not provide any information about the other two

values to Ã other than what she can infer from the output alone. Secondly, for any

distribution that Ã can induce on B’s transcript, there must exist C′ representing

A’s input bit c′which she can use and act honestly to achieve the same distribution

on TB . i.e for any Ã there must exist an associated probability distribution on

her input such that she can pick an input according to this distribution and act

honestly in the protocol to achieve the same results.

Equation (5.3) defines B-security. T̃ B must not provide any information about

A’s choice c to B̃. The second part of equation (5.3) enforces that at the same time,

for any distribution that B̃ can induce on A’s transcript, there must exist (B′0, B′1)

representing B’s input pair (b′0, b′1) which he can use and act honestly to achieve

37

the same distribution on TA. i.e for any B̃ there must exist an associated prob-

ability distribution on his input such that he can pick an input according to this

distribution and act honestly in the protocol to achieve the same results.

5.3 A reduction from TOX-(2
1) to (2

1)–OT

We now present a TOX-(2
1) reduction which uses two runs of (2

1)–OT. This

construction was first presented by Crépeau and Sántha [10], and formal proof

of correctness was presented for honest players only. In the later section, we will

use this construction to show that under certain conditions, if a dishonest party is

given access to an ε-attacker to this specific TOX-(2
1) protocol, this attacker can be

can be used as an ε′-attacker to a (2
1)–OT instance.

Assume A is the receiver, and B is the sender in the TOX-(2
1) protocol.

Protocol 5.1 ((c)(b0, b1)TOX-(2
1))

1: A has a choice trit c ∈ {0, 1,⊕} and B has two bits (b0, b1).

2: A constructs a random bit-matrix C =

c00 c01

c10 c11

such that c00 ⊕ c01 = 1 if and only if c = 0 or c = ⊕

c10 ⊕ c11 = 1 if and only if c = 1 or c = ⊕
3: A runs (2

1)–OT(c00, c01)(b0) with B. B gets c0b0 .

4: A runs (2
1)–OT(c10, c11)(b1) with B. B gets c1b1 .

5: B computes b′ = c0b0 ⊕ c1b1 and sends b′ to A.

6: A computes bc = c00 ⊕ c10 ⊕ b′

5.3.1 Proof of Correctness for honest players

Theorem 5.1 If A and B follow the protocol honestly, then A’s output will be bc

38

Proof. We make use of the following trivial identity.

Lemma 5.2

∀b, c0, c1[c0 ⊕ cb = b ∧ (c0 ⊕ c1)]

We have the following equalities.

output = c00 ⊕ c10 ⊕ b′

= c00 ⊕ c10 ⊕
(
c0b0 ⊕ c1b1

)
= (c00 ⊕ c0b0)⊕ (c10 ⊕ c1b1)

= b0 ∧ (c00 ⊕ c01)⊕ b1 ∧ (c10 ⊕ c11) by Lemma 5.2

output = bc (5.4)

Equation (5.4) is correct because,

if c = 0, then we have c00 ⊕ c01 = 1 and c10 ⊕ c11 = 0. Equation (5.4) becomes

output = (b0 ∧ 1)⊕ (b1 ∧ 0)

= b0

If c = 1 then we have c00 ⊕ c01 = 0 and c10 ⊕ c11 = 1. Equation (5.4) becomes

output = (b0 ∧ 0)⊕ (b1 ∧ 1)

= b1

39

If c = ⊕ then we have c00 ⊕ c01 = 1 and c10 ⊕ c11 = 1. Equation (5.4) becomes

output = (b0 ∧ 1)⊕ (b1 ∧ 1)

= b⊕

5.3.2 Proof of Security for dishonest players

For honest players, theorem (5.1) provides a correctness proof for the TOX-(2
1)

protocol. We cannot provide a proof of correctness of our construction for dishon-

est players, because in step 5 of the protocol, B̃ can set b′ to any value and send it

toA. This is a violation of the correctness constraint of TOX-(2
1), as for a fixed set of

B̃’s effective input bits (b′0, b′1), and for any choice c used by A the output b′0, b′1 or

b⊕ A gets from the protocol may not be consistent. For instance when b0 = b1 = 0,

b⊕ = 1. Note that this is not equivalent to B̃ doing local computation on its initial

input bits and then using the results in the protocol and acting honestly.

Let’s denote this faulty construction as TOX-(2
1). In the next chapter, we will

present a construction of Reverse Oblivious Transfer (TO–(2
1)) which uses TOX-(2

1)

as a subroutine.

5.4 A privacy attack on (2
1)–OT

Assume that a dishonest party is given access to a cheating algorithm which

can successfully attack the privacy of TOX-(2
1) protocol. Given such an algo-

rithm, a dishonest party can use it to create a privacy compromising transcript

of a (2
1)–OT instance. This is an efficient reduction without any assumptions or

bounds on the power of the attacker. Note that we do not claim that the informa-

tion can be retrieved (efficiently or otherwise) from the transcript.

40

5.4.1 A (2
1)–OT privacy attack by a Dishonest Sender

Given access to a TOX-(2
1) attacking program H, we show that Ã acting as

a sender, can successfully attack the privacy of an (2
1)–OT instance. Let (B0, B1)

and C be random variables (RV) representing the inputs of A and B respectively.

We assume that both A and B are aware of the arbitrary joint probability distri-

bution of these random variables PB0,B1,C. A sample (b0, b1, c) is generated from

the distribution and (b0, b1) is provided as A’s (2
1)–OT input while c is provided

as B’s (2
1)–OT input. Ã embeds this (2

1)–OT instance in a run of TOX-(2
1). During

the execution of TOX-(2
1), she randomly selects one of the two instances of the un-

derlying (2
1)–OT and allows H to run that instance with B. Ã acting as an honest

receiver runs the other instance of (2
1)–OT with H using a dummy input bit. Note

that during the execution of the protocol, H is oblivious to the fact that it is run-

ning the two instances of (2
1)–OT of TOX-(2

1) with two different parties. Also note

that Ã does not provide any initial (2
1)–OT input to H. We show with non-zero

probability, that H produces a transcript (for (2
1)–OT) that contains illegal infor-

mation about Bob’s choice bit, thereby violating the privacy of (2
1)–OT. Note that

our only claim is that a transcript containing illegal information can be created

with non-zero probability.

Complete description of the attack is provided as follows. For the (2
1)–OT

instance which Ã wants to initiate with B, (x0, x1) is provided as her input while

c is provided as B’s input. Figure 5.4.1 provides a visualization of the attack.

41

Protocol 5.2 (An attack on (2
1)–OT A-privacy)

1: Ã chooses s ∈u {0, 1} and selects bit bs̄ ∈u {0, 1}.

2: Ã initializes the cheating algorithm H and lets it run until it is ready to run TOX-(2
1).

3: Ã initiates an instance of TOX-(2
1) with H.

4: • If s = 0, Ã uses H (sender) to run (2
1)–OT(c00, c01)(b0) with B. Ã (receiver) runs

(2
1)–OT(c10, c11)(b1) with H.

• If s = 1, Ã (receiver) runs (2
1)–OT(c00, c01)(b0) with H. Ã uses H (sender) to

run (2
1)–OT(c10, c11)(b1) with B.

5: Ã stops H and gets the effective inputs (cs0, cs1) used by H in the (2
1)–OT(cs0, cs1)(bs)

instance from its transcript. If (cs0, cs1) = (x0, x1) , Ã outputs H’s transcript of the

(2
1)–OT(cs0, cs1)(bs) instance, else she aborts the attack.

Note that in step 5 of the protocol, Ã extracts the effective input bits used by

H. By the definition of (2
1)–OT A-security (section 4.2.1), we are guaranteed that

there exist a function f which when given the transcript as input, maps the given

transcript to a pair of effective input bits.

Also note that Ã discards the transcript if H effective input bits are not the

same as the ones (x0, x1) provided to Ã at the start of the protocol. The reason is

thatH chooses his effective input bits independently of Ã’s inputs. Even if Ã only

wishes to learn B’s choice bit, she can’t use information based on the different set

of inputs chosen by H as both parties’ inputs are correlated through a joint prob-

ability distribution. It may be the case that the bit pair chosen by H has a zero

probability of occurring. Provided that all four possible pairs of input of Ã have a

42

non-zero probability of occurring (according to the joint probability distribution),

then we have a non-zero probability of producing an illegal transcript. For exam-

ple, lets say that all four input pairs have non-zero probabilities (a, b, c, d). Then

however H chooses its own effective input bits, the probability they match is at

least min(a, b, c, d). As H chooses independently of what was handed to Ã, so in

the worst case, it always chooses the least frequent pair.

Another important point to note is that Ã stopped H before getting bit b′

which is a required step of TOX-(2
1) protocol. By the construction of TOX-(2

1) pro-

tocol, any illegal information gained about the choice bit (c) of B in (2
1)–OT has to

be obtained prior to receiving bit b′. If both (2
1)–OT are privacy preserving, then

the knowledge of b′ alone does not suffice to compromise privacy. We also provide

a bound on the information carried by b′ to show that it does not help in compro-

mising TOX-(2
1) A-privacy. Let Cs̄ and Cs denote the outputs of the two (2

1)–OT

instances. The outcome values of Cs̄ and Cs can be fixed, or a function of B’s input

bits bs̄ and bs respectively, i.e. Cs̄ ∈ {0̄, 1̄, bs̄,¬bs̄}1 2 , and Cs ∈ {0̄, 1̄, bs,¬bs}2 .

Therefore b′ ∈ {0̄, 1̄, bs̄ ⊕ bs,¬bs̄ ⊕ bs, bs̄ ⊕ ¬bs,¬bs̄ ⊕ ¬bs}. This set only provides

the knowledge of only one of bs̄, bs or (bs̄ ⊕ bs) to H which is not a violation of

privacy.

We now present an information-theoretic proof that TOX-(2
1) privacy with

dishonest sender reduces to (2
1)–OT privacy with dishonest sender.

1 ¬bs̄ = 1⊕ bs̄

2 0̄ and 1̄ are functions which constantly output 0 and 1 respectively.

43

H

Ã

(2
1)–OT(Cs̄0, Cs̄1)(Bs̄)

(2
1)–OT(Cs0, Cs1)(Bs)

Bob

⇐⇒

⇐⇒

Figure 5–1: An A-attack on (2
1)–OT

5.4.2 Information Theoretic Proof of Privacy Reduction

Let C′ denote the effective choice computed as C′ = Cs̄0 ⊕ Cs̄1|Cs0 ⊕ Cs1. C′ ∈

{0, 1,⊕}. Let −C′ and +C′ denote the other two choices.

Given:

I
(

B−C′ ; T̃A
∣∣∣ C′, BC′

)
+ I

(
B+C′ ; T̃A

∣∣∣ C′, BC′
)

> ε (5.5)

Equation (5.5) can be written as:

H
(

B−C′ | C′, BC′
)
−H

(
B−C′ | C′, T̃A, BC′

)
+

H
(

B+C′ | C′, BC′
)
−H

(
B+C′ | C′, T̃A, BC′

)
> ε (5.6)

44

Note that

H
(

B−C′ , B+C′ | C′, BC′
)

= H
(

B−C′ |C′, BC′
)

+ H
(

B+C′ |C′, B−C′ , BC′
)

= H
(

B−C′ |C′, BC′
)

(5.7)

and

H
(

B−C′ , B+C′ | C′, T̃A, BC′
)

= H
(

B−C′ |C′, T̃A, BC′
)

+ H
(

B+C′ |C′, T̃A, B−C′ , BC′
)

= H
(

B−C′ |C′, T̃A, BC′
)

(5.8)

Similarly,

H
(

B−C′ , B+C′ | C′, BC′
)

= H
(

B+C′ |C′, BC′
)

(5.9)

and

H
(

B−C′ , B+C′ | C′, T̃A, BC′
)

= H
(

B+C′ |C′, T̃A, BC′
)

(5.10)

Comparing equation (5.6) with equation (5.7) and equation (5.8), we have

I
(

B−C′ ; T̃A
∣∣∣ C′, BC′

)
= H

(
B−C′ , B+C′ | C′, BC′

)
−H

(
B−C′ , B+C′ | C′, T̃A, BC′

)
(5.11)

Comparing equation (5.6) with equation (5.9) and equation (5.10), we have

I
(

B+C′ ; T̃A
∣∣∣ C′, BC′

)
= H

(
B−C′ , B+C′ | C′, BC′

)
−H

(
B−C′ , B+C′ | C′, T̃A, BC′

)
(5.12)

Equation (5.11) and equation (5.12) show that both terms on the left hand side

of equation (5.6) contribute equally towards the final outcome value ε.

45

We have

I
(

B+C′ ; T̃A
∣∣∣ C′, BC′

)
>

ε

2
(5.13)

and

I
(

B−C′ ; T̃A
∣∣∣ C′, BC′

)
>

ε

2
(5.14)

Ã is concerned about the knowledge of B’s input Bs. Note that it is possible

that H can set c′ = s as its effective choice. As s is randomly chosen, B either

participates in the first or the second instance of (2
1)–OT with probability exactly

1
2 . Therefore in at least half of the cases, either −c′ or +c′ will correspond to B’s

input bit. In these cases,

I
(

Bs; T̃ As
|C′, BC′

)
>

ε

2

> ε′ ∵ ε′ =
1
2
× ε (5.15)

if H is able to gain knowledge about B−C′ and B+C′ , at least half of the time

this knowledge is gained through a compromise of the A-privacy of the (2
1)–OTs.

5.4.3 A (2
1)–OT privacy attack by a Dishonest Receiver

Given access to a TOX-(2
1) attacking program K, we show that B̃ acting as a

receiver, can successfully attack the receiver-privacy of an (2
1)–OT instance. Let

(B0, B1) and C be random variables (RV) representing the inputs of A and B re-

spectively. We assume that both A and B are aware of the arbitrary joint probabil-

ity distribution of these random variables PB0,B1,C. A sample (b0, b1, c) is generated

46

from the distribution and (b0, b1) is provided as A’s (2
1)–OT input while c is pro-

vided as B’s (2
1)–OT input. B̃ embeds this (2

1)–OT instance in a run of TOX-(2
1).

During the execution of TOX-(2
1), he randomly selects one of the two instances of

the underlying (2
1)–OT and allows K to run that instance with A. B̃ acting as an

honest sender runs the other instance of (2
1)–OT with K. For this instance, B̃ se-

lects two input bits (cs̄0, cs̄1) such that cs̄0⊕ cs̄1 = 1. This is to imitate a valid choice

c in the TOX-(2
1) protocol as K may only be able to successfully compromise the

B-privacy if the other party is honest.

Note that during the execution of the protocol, K is oblivious to the fact that it

is running the two instances of (2
1)–OT of TOX-(2

1) with two different parties. Also

note that B̃ does not provide any initial (2
1)–OT input to H. We show with non-

zero probability, that K produces a transcript (for (2
1)–OT) that contains illegal

information about A’s choice bits, thereby violating the privacy of (2
1)–OT. Note

that our only claim is that a transcript containing illegal information can be created

with non-zero probability.

Complete description of the attack is provided as follows. For the (2
1)–OT

instance which B̃ wants to initiate with A, (x0, x1) is provided as A’s input while

c is provided as B̃’s input.

47

Protocol 5.3 (Attack on (2
1)–OT using an adversary to TOX-(2

1))

1: B̃ chooses s ∈u {0, 1}. B̃ selects bits (cs̄0, cs̄1) such that cs̄0 ⊕ cs̄1 = 1.

2: B̃ initializes the cheating algorithm K, and lets it run until it is ready to run TOX-(2
1).

3: B̃ initiates an instance of TOX-(2
1) with K.

4: • If s = 0, B̃ uses K (receiver) to run (2
1)–OT(c00, c01)(b0) with A. B̃ (sender) runs

the second instance (2
1)–OT(c10, c11)(b1) with K.

• If s = 1, B̃ (sender) runs the first instance (2
1)–OT(c00, c01)(b0) with K. B̃ uses K

(receiver) to run (2
1)–OT(c10, c11)(b1) with A.

5: B̃ runs K until it provides b′.

6: B̃ lets K run to completion.

7: B̃ gets K’s input (bs) used in (2
1)–OT(cs0, cs1)(bs) from its transcript. If bs = c, B̃

outputs K’s (2
1)–OT(cs0, cs1)(bs) transcript, else he aborts the attack.

Note that in step 7 of the protocol, B̃ extracts the effective input bit used by K.

By the definition of (2
1)–OT B-security (section 4.2.2), we are guaranteed that there

exist a function f which when given the transcript as input, maps the transcript

to an effective input bit.

Also note that B̃ discards the transcript if bs 6= c . The reason is thatK chooses

its effective input bit independently of B̃’s input. Even if B̃ only wishes to learn

A’s input bits, he can’t use information based on a different input chosen by K as

both parties’ inputs are correlated through a joint probability distribution. It may

be the case that the bit chosen by K has a zero probability of occurring.

48

K

Alice (2
1)–OT(Cs̄0, Cs̄1)(Bs̄)

(2
1)–OT(Cs0, Cs1)(Bs)

Bob

⇐⇒

⇐⇒

Figure 5–2: A B-attack on (2
1)–OT

Another important point to note is that if B̃’s two possible inputs (c = {0, 1})

have a non-zero probability of occurring (according to the joint probability dis-

tribution), then we have a non-zero probability of producing an illegal transcript.

The reason is that however K chooses its own effective input bit, the probability

they match is the minimum of the probabilities of the two possible choices. As K

chooses independently of what was handed to B̃, so in the worst case, it always

chooses the least frequent bit.

5.4.4 Information Theoretic Proof of Privacy Reduction

Let C denote receiver’s choice in TOX-(2
1). C is determined by the two pairs

of inputs used in the two (2
1)–OT instances i.e C = Cs0⊕Cs1|Cs̄0, Cs̄1. If K is able to

successfully gain knowledge of C from TOX-(2
1), we claim that this is only possible

49

if K was able to successfully compromise the B-privacy of the underlying (2
1)–OT

instances.

Given:

I
(

C; T̃B
)

> ε

=⇒ H(C)−H
(

C|T̃B
)

> ε (5.16)

Note that C is a random variable which defines and is defined by Cs0 ⊕ Cs1 and

Cs̄0 ⊕ Cs̄1. Hence H(C) can be written as as a joint entropy of these random vari-

ables.

H(C) = H(Cs0 ⊕ Cs1, Cs̄0 ⊕ Cs̄1) (5.17)

and

H
(

C | T̃B
)

= H
(

Cs0 ⊕ Cs1, Cs̄0 ⊕ Cs̄1 | T̃B
)

(5.18)

Substituting the values in equation (5.16).

H(Cs0 ⊕ Cs1, Cs̄0 ⊕ Cs̄1)−H
(

Cs0 ⊕ Cs1, Cs̄0 ⊕ Cs̄1 | T̃B
)

> ε (5.19)

For sake of reading clarity denote:

X = Cs0 ⊕ Cs1

Y = Cs̄0 ⊕ Cs̄1

(2
1)–OTs = (2

1)–OT(Cs0, Cs1)(Bs)

(2
1)–OTs̄ = (2

1)–OT(Cs̄0, Cs̄1)(Bs̄)

Equation (5.19) is can now be written as:

H(X, Y)−H
(

X, Y | T̃B
)

> ε (5.20)

50

Now

H(X, Y) = H(X) + H(Y | X) (5.21)

and

H
(

X, Y | T̃B
)

= H
(

X | T̃B
)

+ H
(

Y | X, T̃B
)

(5.22)

Substituting the values from equations (5.21) and (5.22) in equation (5.20)

H(X) + H(Y | X)−H
(

X | T̃B
)
−H

(
Y | X, T̃B

)
> ε

H(X)−H
(

X | T̃B
)

+ H(Y | X)−H
(

Y | X, T̃B
)

> ε

I
(

X; T̃B
)

+ I
(

Y; T̃B | X
)

> ε (5.23)

Note that depending upon the outcome value of X and K’s apriori knowledge of

Y, I
(

Y; T̃B | X
)

can take a range of values. The two extreme cases are:

I
(

Y; T̃B | X
)

=

0 When X provides complete knowledge of Y,

I
(

Y; T̃B
)

When X provides no knowledge of Y.

When I
(

Y; T̃B | X
)

= 0, equation (5.23) becomes

I
(

X; T̃B
)

> ε (5.24)

When I
(

Y; T̃B | X
)

= I
(

Y; T̃B
)

, equation (5.23) becomes

I
(

X; T̃B
)

+ I
(

Y; T̃B
)

> ε (5.25)

51

The probability of A participating in either the first or the second instance of the

(2
1)–OT is exactly 1

2 as s is chosen randomly. Therefore,

I
(

X; T̃B
)

=
1
2
×

[
H(C00 ⊕ C01) + H

(
C00 ⊕ C01|T̃B

)]
−

1
2
×

[
H(C10 ⊕ C11) + H

(
C10 ⊕ C11 | T̃B

)] (5.26)

Similarly,

I
(

Y; T̃B
)

=
1
2
×

[
H(C00 ⊕ C01) + H

(
C00 ⊕ C01|T̃B

)]
−

1
2
×

[
H(C10 ⊕ C11) + H

(
C10 ⊕ C11 | T̃B

)] (5.27)

Comparing equations (5.26) and (5.27), it is clear that

I
(

X; T̃B
)

= I
(

Y; T̃B
)

(5.28)

Both these terms contribute equally in equation (5.23). Therefore,

H(X)−H
(

X | T̃B
)

>
1
2
× ε

> ε′ where ε′ =
1
2
× ε

(5.29)

From equation (5.24) and equation (5.28) it is clear that if K is able to gain knowl-

edge about C, at least half of the time, this knowledge is gained through a com-

promise of the receiver-privacy of the desired (2
1)–OTs instance.

5.5 Conclusion

We have presented new security specifications for TOX-(2
1) protocol. We have

presented a reduction from TOX-(2
1) to (2

1)–OT and provided a partial proof of

security for privacy attacking adversaries. In the next chapter we present a con-

struction of TO–(2
1) based on TOX-(2

1).

52

CHAPTER 6
NEW TO–(2

1) SECURITY SPECIFICATIONS

We present the security specifications for 1 out of 2 reverse Oblivious Transfer

(TO–(2
1)) in this chapter. We also present a TO–(2

1) protocol which is based on

TOX-(2
1) protocol first presented in chapter 5.

6.1 TO–(2
1) Specifications

When we visualize protocols such as (2
1)–OT, traditionally we assume the

sender A to be on the left and the receiver B on the right and the flow of infor-

mation is from left to right. TO–(2
1) is an (2

1)–OT in reverse direction. We denote

receiver as A, and sender as B.

We start by first presenting what TO–(2
1) must achieve after a successful run.

This protocol takes place between a receiver A and a sender B. This protocol

allows B to transfer one of his two input bits (b0, b1) to A who secretly chooses

which bit (bc) to get. The choice of A is represented by c. This is done in such a

way that B does not gain any knowledge about c, while A gets only one of B’s

input bits as an output.

Definition 6.1 (TO–(2
1)) Protocol [A,B] implements TO–(2

1) if

∀b0, b1, c ∈ F2

[A,B](b0, b1)(c) = (bc, ε) (6.1)

53

6.2 New TO–(2
1) Security Specifications

The security specifications of TO–(2
1) are exactly the same for (2

1)–OT, only

the roles of A and B are changed.

Definition 6.2 (TO–(2
1)-Security) Protocol [A,B] is secure for TO–(2

1) if it is both

A-Secure and B-Secure.

• A-Security

Protocol [A,B] is A-secure for TO–(2
1) if

∀c ∈ F2, (B0, B1) ∈ RV(F2)2, adv. Ã, ∃ function f ,

Let T̃ =
[
Ã,B

]∗
(c)(B0, B1)

C′ = f (T̃ A) and I(C′; B0, B1 | c) = 0

Let T =
[
A,B

]∗(C′)(B0, B1)

max

I
(

B¬C′ ; T̃ A
∣∣∣ C′, BC′

)
Pr

(
B accepts

)
× L1

(
T B ; T̃ B

)
 = 0 (6.2)

• B-Security

Protocol [A,B] is B-secure for TO–(2
1) if

∀C ∈ RV(F2), b0, b1 ∈ F2, adv. B̃, ∃ function f ,

Let T̃ =
[
A, B̃

]∗
(C)(b0, b1)

(B′0, B′1) = f (T̃ B)

Let T =
[
A,B

]∗(C)(B′0, B′1)

54

max

I
(

C; T̃ B
)

Pr
(
A accepts

)
× L1

(
T A; T̃ A

)
 = 0 (6.3)

We now present the construction of a TO–(2
1) protocol. Such constructions are

useful when we have a secure implementation of a cryptographic primitive in one

direction only and we need to achieve the flow of output in other direction. This

construction is based on an implementation of TOX-(2
1). In chapter 5, we argued

that TOX-(2
1) construction had an inherent design fault which led to a compromise

of sender-correctness without the knowledge of the receiver. In TOX-(2
1), privacy

is enforced if we assume that the the underlying (2
1)–OT instances are secure. Fig-

ure 6–1 shows a visualization of the construction.

6.2.1 Construction of a TO–(2
1) Protocol

Protocol 6.1 (TO–(2
1)(c)(b0, b1))

1: A has a choice bit c and B has two bits (b0, b1).

2: B picks two random n-bit strings x0 and x1.

3: DOn
i=1 TOX-(2

1)(c)(xi
0, xi

1). A gets ti.

4: B selects two 1× n matrices M0, M1 over F2, such that b0 = M0x0 and b1 = M1x1. B

announces M0, M1 to A.

5: A calculates bc = Mct.

From the construction, it is clear that the security of TO–(2
1) directly depends

upon a privacy enforcing construction of TOX-(2
1). A and B only interact with each

other through the TOX-(2
1) instances in the protocol. In the case of Ã, she may try

55

Alice Bob

Alice has a choice bit c Bob has two bits (b0, b1)
Bob picks two strings
x0, x1 ∈R {0, 1}n

TOX-(2
1)(c)(x1

0, x1
1)

t1 ←

← x1
0, x1

1

TOX-(2
1)(c)(xi

0, xi
1)

← xi
0, xi

1

ti ←

tn ←

c →
TOX-(2

1)(c)(xn
0 , xn

1)
← xn

0 , xn
1

...

Bob picks two random 1× n
matrices M0, M1 over F2
∵ b0 = M0x0 and b1 = M1x1
and announces them to Alice

Alice calculates bc = Mct

TO–(2
1)(c)(b0, b1)

...

c →

c →

Figure 6–1: TO–(2
1)(c)(b0, b1)

to gain information about both xi
0 and xi

1 through the TOX-(2
1) instances. She may

put c = ⊕ and use it in the TOX-(2
1) instances to get xi

0 ⊕ xi
1, but this is useless

to her as at the end of the protocol she cannot recover bc from this information.

Similarly in the case of B̃, he may try to gain information about c. Therefore if the

privacy of TOX-(2
1) is enforced, the privacy of TO–(2

1) is also enforced. A formal

proof of security for this specific construction is beyond the scope of this research

and we leave it as an exercise for the esteemed reader.

56

6.3 Conclusion

We have presented a construction of TO–(2
1) based on TOX-(2

1). We have also

presented a new set of security specifications for TO–(2
1).

57

CHAPTER 7
CONCLUSION

This thesis has sought to provide new and more robust security specifications

for (2
1)–OT. Unlike the previous security specifications presented in chapter 3, the

new correctness constraint now deals with the view of honest party instead of out-

put only. This is a more robust and stronger notion of correctness as we provide

bounds on all the information seen by the honest party during the protocol. This

includes outputs of any intermediate steps.

In addition we have also shown an efficient reduction of TOX-(2
1) privacy

to (2
1)–OT privacy. Given access to privacy attacker to TOX-(2

1), we have shown

that it can be efficiently used to compromise the privacy of (2
1)–OT. This is done

without making any assumptions about the setup of (2
1)–OT, or the power of the

attacker. We have also provided a TO–(2
1) protocol using a faulty TOX-(2

1) protocol

first presented in chapter 5.

This research work can be extended to answer at least two important open

questions. Intuitively it seems that our new security specifications for (2
1)–OT are

composable under sequential settings. It would be nice to have a formal proof

of composability under such settings. Goldreich in [13] presented a new set of

security specifications for two-party computation. He defined security in the real

model as an emulation of the ideal model in which a trusted party computes the

function and provides outputs to the players. In defining the behavior of an ideal

58

malicious adversary, he argued that three types of adversarial behaviors cannot

be avoided. These are, refusal to participate, substitution of its local input with any one

of its choosing, and premature abortion of the protocol. A real protocol is secure, if it

emulates the ideal model in which the behavior of ideal adversary is restricted to

these three actions. He also presented a formal proof to show that these specifica-

tions are composable under sequential settings. Our new security specifications

also allow such adversarial behavior and enforce security under such conditions.

Another extension to our work would be to present a formal proof of equivalence

between our new security specifications and the ones presented by Goldreich.

Another possible venue to explore would be to present a formal proof of se-

curity of the TO–(2
1) protocol presented in chapter 6.

Two-party security is a very important and ever evolving field, and in the end

we hope that this research work contributes toward the proper understanding of

the topics we have tackled.

59

REFERENCES

[1] BEAVER, D. Foundations of secure interactive computing. Advances in Cryp-
tology: Proceedings of Crypto ’92 (1992), 377–391.

[2] BRASSARD, G., AND CRÉPEAU, C. Oblivious transfers and privacy amplifi-
cation. Lecture Notes in Computer Science 1233 (1997), 334–345.

[3] BRASSARD, G., CRÉPEAU, C., AND ROBERT, J. Information theoretic reduc-
tions among disclosure problems. Proceedings of 27th Annual IEEE Symposium
on Foundations of Computer Science (1986), 168–173.

[4] BRASSARD, G., CRÉPEAU, C., AND WOLF, S. Oblivious transfers and privacy
amplification. Journal of Cryptology 16 (2003), 219–237.

[5] CANETTI, R. Universally composable security: a new paradigm for crypto-
graphic protocols. In 42nd IEEE Symposium on Foundations of Computer Science
(2001), IEEE Computer Society Press, pp. 136–145.

[6] CRÉPEAU, C. Equivalence between two flavours of oblivious transfers. In
CRYPTO (1987), pp. 350–354.

[7] CRÉPEAU, C. Verifiable disclosure of secrets and applications (abstract). In
Advances in Cryptology — EUROCRYPT ’89 (1989), vol. 434 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 150–154.

[8] CRÉPEAU, C. Correct and Private Reductions Among Oblivious Transfers. PhD
thesis, Massachusetts Institute of Technology, 1990.

[9] CRÉPEAU, C., AND KILIAN, J. Achieving oblivious transfer using weakened
security assumptions (extended abstract). In IEEE Symposium on Foundations
of Computer Science (1988), pp. 42–52.

[10] CRÉPEAU, C., AND SÁNTHA, M. On the reversibility of oblivious transfer.
Advances in Cryptology: Proceedings of Eurocrypt (1991), 106–113.

60

61

[11] EVEN, S., GOLDREICH, O., AND LEMPEL, A. A randomized protocol for
signing contracts. Commun. ACM 28, 6 (1985), 637–647.

[12] GOLDREICH, O. Foundations of Cryptography, vol. 1. Cambridge University
Press, 2001.

[13] GOLDREICH, O. Foundations of Cryptography, vol. 2. Cambridge University
Press, 2004.

[14] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to play any men-
tal game. In Proceedings of the nineteenth annual ACM conference on Theory of
computing (1987), ACM Press, pp. 218–229.

[15] GOLDREICH, O., AND VAINISH, R. How to solve any protocol problem- an
efficieny improvement. Advances in Cryptology CRYPTO ’87 293 (1988), 73–86.

[16] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowledge complexity
of interactive proof-systems. SIAM Journal on Computing 18 (1989), 186–208.

[17] KAHN, D. The Codebreakers: The Story of Secret Writing. Scribner, New York,
NY, 1986.

[18] KILIAN, J. Founding cryptography on oblivious transfer. Proceedings of 20th
Annual ACM Symposium on Theory of Computing (1988), 20–31.

[19] KILIAN, J. More general completeness theorems for secure two-party com-
putation. In Proceedings of the thirty-second annual ACM symposium on Theory
of computing (2000), ACM Press, pp. 316–324.

[20] MICALI, S., AND ROGAWAY, P. Secure computation. Advances in Cryptology
CRYPTO ’91 Proceedings (1991), 392–404.

[21] RABIN, M. O. How to exchange secrets by oblivious transfer. Tech. Rep.
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[22] YAO, A. C.-C. How to generate and exchange secrets. In Proceedings of the
27th IEEE Symposium on Foundations of Computer Science (FOCS) (1986), IEEE
Computer Society, pp. 162–167.

