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Abstract

We show that the long-standing assumption of “no-communication” between the provers

of the two-prover model is not sufficiently precise to guarantee the security of a bit com-

mitment scheme against malicious adversaries. Indeed, we show how a simple correlated

random variable, which does not allow to communicate, can be used to cheat a simpli-

fied version (sBGKW) of the bit commitment scheme of Ben-Or, Goldwasser, Kilian, and

Wigderson [BGKW88]. Instead we propose a stronger notion of separation between the

two provers which takes into account correlated computations. To emphasize the risk that

entanglement still represents for the security of a commitment scheme despite the stronger

notion of separation, we present two variations of the sBGKW scheme that can be cheated

by quantum provers with probability (almost) one. A complete proof of security against

quantum adversaries is then given for the sBGKW scheme. By reduction we also obtain

the security of the original BGKW scheme against quantum provers. For the unfamiliar

reader, basic notions of quantum processing are provided to facilitate the understanding of

the proofs presented.
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Résumé

Dans ce mémoire, nous montrerons que l’hypothèse traditionnelle d’impossibilité de commu-

nication faite dans le modèle à deux proveurs n’est pas suffisamment précise pour garantir

la sécurité d’un protocole de mise en gage contre des prouveurs malhonnêtes. Nous mon-

trerons comment une variable aléatoire corrélée, ne permettant pas de communiquer, peut

être utilisée pour tricher une version simplifiée (sBGKW) du protocole de mise en gage de

Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88]. Pour résoudre ce problème, nous

proposerons une notion de séparation entre les deux prouveurs beaucoup plus forte que

l’hypothèse traditionnelle. Afin de mettre en évidence le risque que constitue l’intrication

pour la sécurité d’un protocole de mise en gage, nous présenterons deux variations du

protocole sBGKW qui peuvent être triché par des prouveurs quantiques avec probabilité

(presque) un. Une démonstration détaillée de la sécurité quantique du protocole sBGKW

sera ensuite donnée. La sécurité quantique du protocole original de BGKW sera ensuite

obtenue par réduction. Un bref aperçu des notions de bases d’informatique quantique sera

proposé en introduction pour faciliter la compréhension des démonstrations présentées dans

ce mémoire.
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Introduction

The two-prover model

The two-prover model, and its generalized version with k provers, was first introduced by

Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88] to prove that all NP languages

have a two-prover perfect zero-knowledge interactive proof-system, without having to make

intractability assumptions, such as the existence of one-way functions used in [GMW86]

which is necessary to prove a similar result in the one-prover model. At the time, their

result was of great importance since such a general statement was known to be impossible

in the one-prover model, unless the polynomial-time hierarchy collapsed [For87].

Loosely speaking, an interactive proof-system (IPS) consists of an all powerful prover

who attempts to convince a probabilistic polynomial-time bounded verifier of the truth of a

proposition [GMR85]. It is termed perfect zero-knowledge if there exists a prover such that

for any verifier there exists a stand-alone polynomial-time simulator, not interacting with

anybody, whose output has the same probability distribution as the output produced by

the verifier after interacting with the prover. That is, whatever can be efficiently extracted

from the interaction with the prover when input a proposition, can also be efficiently ex-

tracted from the proposition itself.

Using the formalism of IPS, the setting of the two-prover model consists of two provers,

Peggy and Paula, sometime taken to be computationally unbounded, who jointly agree on

a strategy to convince the verifier, Vic, of the truth of an assertion under the constraint
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that Peggy and Paula cannot communicate with each other once the interaction with Vic

has started. This no-communication limitation is the key point which allows Vic to decide

whether he should accept or not the proposition. We stress that the two-prover model is

defined as a synchronous model. This means that, although no prover can get the content

of the conversations between Vic and the other prover, a prover can see that messages are

exchanged between the other two participants. The model may be depicted as in Figure 1.

Vic

Paula

Peggy

separation

interaction

interaction

Figure 1: The two-prover model

The authors of [BGKW88] give a particularly enlightening example to illustrate the

power of the two-prover model, as they note:

“The main novelty of our model is that the verifier can “check” its interactions

with the provers “against each other”. One may think of this as the process of

checking the alibi of two suspects of a crime (who have worked long and hard to

prepare a joint alibi), where the suspects are the provers and the verifier is the

interrogator. The interrogator’s conviction that the alibi is valid stems from his

conviction that once the interrogation starts, the suspects can not talk to each

other as they are kept in separate rooms, and since they can not anticipate the

randomized questions he may ask them, he can trust his findings.”

From then on, the two-prover model has been extensively studied and numerous fun-

damental results in the theory of computation were found. A few years after BGKW’s
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results, Babai, Fortnow and Lund [BFL90] used the same model to prove that every lan-

guage is in NEXP (the non-deterministic exponential-time complexity class) if and only

if it has a many-rounds perfect zero-knowledge two-prover IPS. This result was in sharp

contrast to what was previously expected since Fortnow, Rompel, and Sipser [FRS94] had

shown that relative to some oracle, even the class coNP did not have a multi-prover IPS.

Several refinements of [BFL90]’s result were then made [CCL90, Fei91, LS91], until Feige

and Lovász [FL92] proved that a language is in NEXP if and only if it has a two-prover

one-round interactive proof system with perfect completeness (if a word is in the language

than the verifier always accepts) and exponentially small soundness error (if a word is not

in the language than the probability of accepting it is exponentially small). This last result

closed the subject on which complexity class may be achieved in the two-prover model with

classical provers.

In the quantum case, the situation is filled with fuzziness. To this day, it is still not

known which complexity class may be achieved with an IPS in a two-quantum-prover against

a quantum-verifier situation. One promising way to tackle the problem is by first consid-

ering one-round IPS with a classical verifier. This means that the interaction between the

verifier and a prover is limited to one round: a query and an answer. Notice that Feige and

Lovász [FL92] used the classical flavor of this setting to prove their result. This special case

of the two-prover model is particularly interesting to us as it corresponds to the setting of

the so-called non-local games (see Section 1.3). Naturally, a good understanding of such

games will help determine what happens when the provers share entanglement. Recently

Cleve, Høyer, Toner and Watrous investigated this subject [CHTW04] from the point of

view of non-locality and made clear connections with multi-prover IPS. They gave various

examples of one-round multi-prover IPS which are classically sound but where entangle-

ment seriously affects the soundness of the proof system. They also looked at the amount of

entanglement required by optimal and nearly optimal quantum strategies for these games.

More specifically, they showed why the known protocol which equates NEXP to the two-

prover IPS breaks down if the provers can share entanglement, unless EXP=NEXP.
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We claimed in the previous paragraph that it is not known which class may be achieved

in a two-quantum-prover against a quantum-verifier situation. This is not completely true.

For a restricted case, when the provers share only a polynomial number of qubits, it has

been demonstrated by Kobayashi and Matsumoto [KM03] that the class of languages ac-

cepted by a two-prover IPS is included in NEXP. Whether the two classes are equal is

still an open problem. Recently, Gavinsky [Gav06] gave a partial converse to the result

of [KM03] using a new approach for bounding entanglement, and the parallel repetition

theorem of [Raz95] for improving the soundness of a known classical two-prover IPS which

accepts NEXP. He showed that in order to cheat, the provers require a number of entangled

qubits asymptotically close to the number of parallel repetitions. Thus, by bounding the

amount of shared qubits by some a priori fixed polynomial in the input length1, enough

repetitions can be introduced to make any cheating impossible. Formally,

Theorem [Gav06]: Let MIP ∗
poly(n) be the model of two-prover IPS when the provers

are allowed to share any entangled state over poly(n) qubits, where n is the input length of

the problem. Then MIP ∗
poly(n) can accept a language L if and only if L ∈ NEXP.

In other words, the power of MIP ∗
poly(n) and that of the classical two-prover IPS (equiv-

alent to NEXP) are the same. However, more general results with respect to MIP ∗
∞ and

NEXP are not known yet. The problems of integrating the zero-knowledge aspect in a

two-prover IPS with quantum players and which complexity class may be reached are even

less known.
1In [KM03] the provers are allowed a fixed number of shared qubits per protocol. However, in [Gav06]

the provers are allowed a fixed number of shared qubits for the whole model. This is what makes [Gav06]’s

converse only partial, since in [KM03] the provers have more freedom.
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Bit commitment scheme

The cryptographic primitive known as a commitment scheme (often prefixed with bit when

the committed word is a bit) has been one of the major building blocks of cryptography

from its advent in the early 80’s. Although it seems fair to attribute the concept to M.

Blum [Blu82], the terminology of commitments, influenced by the legal vocabulary, first

appeared in the contract signing protocol of S. Even [Eve82]. Commitment lies at the heart

of important complex cryptographic applications such as coin tossing [Blu82], two-party

computation [Kil88] and zero-knowledge proofs [GMW91, BCC88].

The general idea and security of bit commitment is often best explained from this sim-

ple example: suppose Alice wants to commit to a certain secret bit value b to Bob without

him learning this value before she decides it. To do so, she writes b down on a piece

of paper, puts the paper in a box which she locks with a key; she then gives the locked

box to Bob (who does not have the ability to pick it). This first stage in the protocol is

called committing. Whenever Alice consider that Bob is ready to learn her bit, she sends to

him the key, he opens the box and learns the value of b. This second stage is called unveiling.

As illustrated in the example, there are two essential aspects to the security of a bit

commitment scheme:

1. Once Alice commits to her bit, she cannot change her mind and reveal to Bob a

different bit value. This is known as the binding property of the commitment.

2. Until unveiling starts, Bob cannot learn to which value Alice committed. This is

known as the concealing property of the commitment.

Of course, these security characteristics naturally extend to the more general form of com-

mitment scheme known as string commitment.

It has been known for long that unconditionally secure classical bit commitment is
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impossible2. So to achieve some security properties, extra assumptions need to be made.

For instance, computational assumptions can be imposed on the binding or concealing

properties. Under such restrictions, commitments come in two dual flavors: binding but

computationally concealing and concealing but computationally binding. The first type

may be achieved from any one-way function [Nao91, HILL98]. Those of the second type

may be achieved from any one-way permutation [NOVY93] or any collision-free hash func-

tion [HM96]. The problem of achieving commitments of the second type using only one-way

functions is still open.

When Bennett and Brassard [BB84] brought back to life the idea of Wiesner [Wie70]

to use quantum physics to achieve cryptographic tasks, a lot of hopes and efforts were

put by cryptographers to revitalize the security of commitment schemes without any extra

assumption. The first form of quantum bit commitment came implicitly with the BB84

coin-flipping protocol [BB84]. However, problems relating to the physical control of the

quantum system made it easy to cheat for the receiver in practice. Bennett and Brassard

also pointed out that it was possible, in theory, for the sender to cheat the binding property

of the commitment. To solve these two problems, Brassard, Crépeau, Josza and Langlois

[BCJL93] presented a new protocol, which was in fact an extension of the protocol found

in [BC90], along with a “proof” of its unconditional security against quantum adversaries.

For a while, most people were convinced that quantum bit commitment could be performed

securely.

Unfortunately, rarely do nice things happen without any surprises. Doubts on the se-

curity of the BCJL’s protocol against the sender settled in when, a couple of years after

their result, Mayers found a subtle flaw in the proof and gave a specific attack to the pro-
2The intuition behind the proof is simple. Unconditional security requires an information theoretic

argument. Let C be the random variable representing the commitment. To satisfy the binding property,

C must hold a lot of information about the committed bit. However, to satisfy the concealing property, C

must not hold any information on the committed bit. It is easy to see that C cannot satisfy both properties

at the same time.
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tocol. Mayers and the BCJL team then engaged in a battle of attacks and corrections

of the protocol for about a year, until Mayers finally draw the final strike with its gen-

eral impossibility theorem for quantum bit commitment [May96a, May96b]. We note that

a similar result was, around the same time, independently achieved by Lo and Chau [LC97].

In their ’98 paper [BCMS98], Brassard et al. nicely stated the disappointment:

“[...] In 1993 a protocol for quantum bit commitment, henceforth referred to as

BCJL, was thought to be “provably secure”. Because of quantum bit commit-

ment, the future of quantum cryptography was very bright, with new applications

such as the identification protocol of Crépeau and Salvail [CS95] coming up reg-

ularly. The trouble began in October 1995 when Mayers found a subtle flaw in

the BCJL protocol. [...] After BCJL was shown not secure, the spontaneous at-

titude was to try alternative quantum bit commitment protocols by making some

clever use of measurements and classical communication. However, all of these

protocols were found not secure against Mayers’ attack!”

Nevertheless, the fate of quantum bit commitment is not sealed definitely. The general

impossibility theorem of Mayers and Lo-Chau does not apply in all communication models.

Indeed, the possibility of unconditionally secure (quantum) bit commitment has already

been demonstrated in various models different from the standard noiseless communication

model with two players, namely:

• the noisy communication model [CK88, Cré97, DFMS04, DKS99, CMW04],

• the multi-party computations model [BGW88, CCD88],

• the multi-prover model under some relativistic time constraint [Ken05, Ken99],

• the (quantum) memory-bounded model [CCM98, DFSS05],

• the multi-prover model under some physical separation constraints [BGKW88].

The fifth scenario, where we consider the case of two provers, is our main focus here.

In [BGKW88], the authors introduced a bit commitment scheme for which they gave an
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unconditional security proof against classical adversaries. Here we wish to provide a similar

proof against adversaries that have full access to quantum resources.

Related Works

The starting point of this research is definitely the bit commitment scheme introduced by

Ben-Or, Goldwasser, Kilian and Wigderson in [BGKW88] to provide a sufficient toolbox

for their two-prover interactive proof-system to be perfect zero-knowledge. The classical

security of their scheme is proven in [BGKW88].

The security of BGKW’s scheme against quantum adversaries has been considered in

the work of Brassard, Crépeau, Mayers and Salvail [BCMS98]. They showed that if such

a bit commitment is used as a building block in the Quantum Oblivious Transfer protocol

of [CK88] then the security of the commitment scheme is not sufficient to guarantee the

security of the resulting QOT if the two provers can get back together at the end of the pro-

tocol. This result is in accordance with Mayers’ suggestion [May97] that his version of the

no-go theorem should also apply to commitment schemes based on temporary relativistic

signaling constraints. However they did not address directly the question whether BGKW’s

bit commitment scheme is itself secure against quantum adversaries while the provers are

not allowed to get back together. In the current work, we consider precisely this situation.

In a closely related work, Kent [Ken05] showed how impossibility of communication,

implemented through relativistic assumptions, may be used to obtain a bit commitment

scheme similar to BGKW’s. Although the model he considered is essentially classical, he

also discussed how his scheme behaves in a quantum setting. Kent proves the classical

security of his scheme, but he remained elusive about its quantum security. Still, he proves

the security of one round of his protocol (see [Ken05], Lemma 3, p. 329) against quantum

adversaries, which is more or less the same as our Lemma 4.1. However, the proof he gave

is erroneous in its last inequality and is not as tight as he claims. Lemma 4.1 can be viewed
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as a notable clarification, and a fix for his proof. Among the differences with the scheme

we present in this work, we note that his bit commitment scheme needs to be constantly

updated (there is always new commitments made) to avoid cheating the first commitment

made, whereas in ours we only need to maintain the physical separation assumption between

the two provers for the commitment to remain secure. This particularity of his protocol

translates in a constant blowup of the communication complexity proportional to the time

we want to sustain the commitment, since a permanent flow of communications needs to

be set between the two parties.

Another related line of research by Cleve, Høyer, Toner and Watrous [CHTW04], is

one of the main inspiration of the current research as briefly discussed in the introduction.

They have established nice relations between non-locality games and the two-prover model.

They developed methods for establishing limits on the nonlocal behavior of such games to

characterize how the soundness of two-prover IPS is affected. They also investigated the

amount of entanglement required by (nearly) optimal quantum strategies to achieve these

limits. However they did not consider how the zero-knowledge aspect of the studied IPS is

affected by quantum adversaries.

Organization of the thesis and contributions

The remainder of the present document is organized as follows. Chapter 1 presents an

overview of the basic notions of quantum mechanics needed to understand this work. We

review the security definitions of a bit commitment scheme against classical and quantum

adversaries, and briefly discuss a new binding definition recently introduced by Damgaard,

Fehr, Salvail and Schaffner [DFSS06]. We also present some definitions and theorems that

relate to non-local games. Chapter 2 introduces the original two-prover bit commitments of

[BGKW88] and exposes the various problems (weakness) of the model’s assumption “that

the two provers are not allowed to talk to each other”; this chapter concludes with a re-

finement of BGKW’s original assumption. In Chapter 3 we present two bit commitment

16



schemes in the two-prover model and show how entanglement-based strategies can be used

to cheat each of them. Finally, Chapter 4 presents a variation of the bit commitment of

Section 2.2 and prove its security against quantum adversaries. We obtain by reduction

that the original BGKW’ scheme is also secure against quantum adversaries. We conclude

with some open problems. Appendix A treats of the classical and quantum optimal strate-

gies to implement what we call the “NL-box” (see Section 2.3) and the Magic Square game

(see Section3.2).

Parts of Chapter 2 (specifically sections 2.2, 2.3, and 2.4), Chapter 3, and Chapter

4 are all original contributions in which the author of the present work has intensively

participated, in collaboration with Claude Crépeau, Louis Salvail, and Alain Tapp.

17



Chapter 1

Preliminaries and background

This chapter introduces the basic definitions and results that relate to quantum mechanics

and information processing, to the security of bit commitment, and to the so-called non-

local games. In no circumstances is this chapter meant to be a comprehensive introduction

to the three subjects. Its sole purpose is to provide the reader with the specific tools

required for the understanding of the present work. The interested reader is invited to

consult [NC00] and [Bro04] for more information on these areas.

1.1 Basic notions of quantum mechanics

1.1.1 Hilbert space, the bra-ket notation and the qubit

The basic objects of linear algebra are vector spaces, themselves composed of elements

called vectors. For instance, Cn is the space of all n-tuples (a.k.a. vectors) of complex

numbers (v1, . . . , vn). A useful representation for vectors is the column matrix notation
v1
...

vn

 . (1.1)
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Let ϕ be such an object. In linear algebra, the standard notation to indicate that ϕ is a

vector is to write it toped with an arrow pointing in the right direction

~ϕ.

The type of vectors used in quantum mechanics are those of norm one. However, for

historical reasons physicists have decided not to use the previous notation. Instead, in

quantum mechanics the standard way to indicate that the object ϕ is a vector of norm one

is to label it as

|ϕ〉.

The entire object |ϕ〉 is sometimes called a ket, and it is part of a set of similar labels known

as the Dirac notation. In the same manner, we define the bra as the dual vector of |ϕ〉

〈ϕ| :=
[
v̄1 . . . v̄n

]
,

where v̄i is the complex conjugate of vi. One can see that a bra is simply a ket conjugated

and transposed. These two transformations are usually represented using a dagger sign †

〈ϕ| def= |ϕ̄〉T def= |ϕ〉†.

Most vector spaces are not interesting unless an inner product function is defined on

that space. For the vector space Cn, the inner product between vectors |ψ〉 = [u1, . . . , un]T

and |ϕ〉 = [v1, . . . , vn]T is defined as

〈ψ|ϕ〉 :=
[
ū1 . . . ūn

]
·


v1
...

vn

 =
∑

i

ūivi.

Similarly, the outer product between vectors |ψ〉 and |ϕ〉 is defined as

|ψ〉〈ϕ| :=


u1

...

un

 · [ v̄1 . . . v̄n

]
.

In quantum mechanics’ terminology, the complex vector space of dimension d equipped

with such an inner product is usually referred to as a Hilbert space, denoted Hd. For a
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finite d, the Hilbert space is exactly the same as the complex inner product space. More-

over, quantum mechanics postulates that, to any isolated physical system we can associate

a Hilbert space, known as the state space. The state of the system is completely described

by a vector of norm one in that Hilbert space, known as the state vector. This first pos-

tulate is particularly important as it makes a connection between the physical world and

the mathematical formalism of quantum mechanics. To avoid any irrelevant description of

a system, from now on we assume that all the vectors in Hd are of norm one.

We know that a vector space of dimension d is spanned by a set of d vectors |ϕ0〉 to

|ϕd−1〉, such that any vector |ϕ〉 in that space can be written as a linear combination of the

vectors in that set, that is,

|ϕ〉 =
d−1∑
i=0

ai|ϕi〉 where ai ∈ C.

This set of vectors is called a basis of the vector space. It is conventional to define the

computational basis of dimension 2d as the set {|i〉}i∈{0,1}d where

|i〉 =


z0
...

z2d−1

 s.t. zj =

 0 j 6= i

1 j = i
.

The simplest quantum mechanical system, and the one with which we will be most

concerned for quantum computation and information, is called the qubit. A qubit lives is

a two-dimensional Hilbert space H2; that is, it has a two-dimensional state space. Using

the computational basis {|0〉, |1〉}, we can express an arbitrary state vector |ϕ〉 ∈ H2 of the

qubit as a superposition

|ϕ〉 = α|0〉+ β|1〉,

where |α|2 + |β|2 = 1. Hence, contrary to the classical bit that can take only values zero

and one, the qubit can take any combinations of those values in H2, and in particular |0〉

and |1〉.
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1.1.2 The trace function

The trace of an arbitrary matrix A = {aij} is defined to be the sum of its diagonal elements,

Tr(A) :=
∑

i

aii. (1.2)

For A,B and C, arbitrary matrices, and z a complex number, the following important

properties hold:

1. Cyclic property of trace

Tr(ABC) = Tr(BCA).

2. Linearity of trace

Tr(A+B) = Tr(A) + Tr(B),

Tr(zA) = zTr(A).

Consider the operator A and a unit vector |ϕ〉, then an extremely useful corollary of the

cyclic property of trace is

Tr(A|ϕ〉〈ϕ|) = 〈ϕ|A|ϕ〉. (1.3)

Let A be of dimension d and |i〉 any orthonormal basis of dimension d. Using (1.3) and

the completeness relation of the basis,
∑

i |i〉〈i| = Id, we can give an alternative definition

for the trace function,

Tr(A) = Tr(A · Id) = Tr

(
A
∑

i

|i〉〈i|

)
=

∑
i

Tr (A|i〉〈i|)

=
∑

i

〈i|A|i〉.
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1.1.3 Tensor product

The tensor product construction is a crucial element to manipulate a multi-particle system.

Indeed, the fourth postulate of quantum mechanics stipulates that the state space of a

composite system is the tensor product of the state space of the component systems.

Let us first give a concrete idea of the tensor product with a matrix representation. Let

A be an m × n matrix, and B a p × q matrix. The tensor product of A with B is defined

as the nq ×mp matrix

A⊗B :=


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
...

...

am1B am2B . . . amnB

 .

The terms like a11B denote a submatrix

aA11 ·


b11 . . . b1q

...
...

...

bp1 . . . bpq

 .
With that in mind, it is easier to understand the situation for Hilbert spaces, and more

generally vector spaces. Let V and W be Hilbert spaces of dimension m and n respec-

tively. If |i〉 and |j〉 are orthonormal bases for V and W respectively, then |i〉 ⊗ |j〉 is an

orthonormal basis for the tensor product of V with W , also labelled V ⊗W . Note that the

abbreviated notations |i〉|j〉, |i, j〉 or |ij〉 are often used to write the tensor product |i〉⊗ |j〉.

So V ⊗W is a mn dimensional Hilbert space and any of its elements can be represented as

a combination of the basis elements.

By definition, for arbitrary |v1〉, |v2〉 ∈ V , |w1〉, |w2〉 ∈W and z ∈ C, the tensor product

satisfies the following properties:

1. z(|v1〉 ⊗ |w1〉) = (z|v1〉)⊗ |w1〉 = |v1〉 ⊗ (z|w1〉),
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2. (|v1〉+ |v2〉)⊗ |w1〉 = |v1〉 ⊗ |w1〉+ |v2〉 ⊗ |w1〉 (distributivity),

3. |v1〉 ⊗ (|w1〉+ |w2〉) = |v1〉 ⊗ |w1〉+ |v1〉 ⊗ |w2〉 (associativity),

4. (V ⊗W )† = V † ⊗W †.

Let A and B be linear operators on V and W respectively, then we can define an operator

A⊗B acting on V ⊗W by the equation

(A⊗B)
(∑

i

ai|vi〉 ⊗ |wi〉
)

def=
∑

i

aiA|vi〉 ⊗B|wi〉.

The inner product on V and W can also be used to define the inner product on V ⊗W .

Let |ϕ〉 =
∑

i ai|vi〉 ⊗ |wi〉 and |ψ〉 =
∑

j bj |v′j〉 ⊗ |w′j〉, then

〈ϕ|ψ〉 def=
∑
ij

āibj〈vi|v′j〉〈wi|w′j〉.

1.1.4 Important matrix properties

In this section we review the common matrix properties found in the literature of quantum

mechanics. Let A be an operator on a d-dimensional vector space V .

A is said to be a Hermitian or self-adjoint operator if it is its own adjoint,

A = A†.

An important class of Hermitian operators is the projector. An operator P is said to be

a projector if P = P 2. Intuitively, this means that once a projector has been applied on

a vector space, successive applications of the same projector on the resulting space will

have no further effect. More interestingly, suppose W is a k-dimensional vector subspace

of V such that, without loss of generality, V ’s orthonormal basis is |1〉, . . . , |d〉 and W ’s

orthonormal basis is |1〉, . . . , |k〉. Then by definition the projector P onto the subspace W

is

P
def=

k∑
i=1

|i〉〈i|.
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Another important class of Hermitian operators is the positive operators. A is said to

be a positive operator if and only if

∀ |v〉 ∈ V 〈v|A|v〉 ≥ 0.

If ∀ |v〉 ∈ V, 〈v|A|v〉 > 0 then we say that A is a positive definite operator.

A is said to be normal ifAA† = A†A. By definition, Hermitian operators are also normal.

An extremely useful representation theorem follows from the normality of an operator.

Theorem 1.1 (Spectral decomposition) Any operator M on V is normal if and only

if it is diagonal with respect to some orthonormal basis for V.

In terms of outer product representation, it means that M can be written as the matrix∑
i λi|i〉〈i|, where λi are the eigenvalues of M and |i〉 is an orthonormal eigenbasis of V .

Finally, A is said to be unitary if AA† = I. Unitary transformations are fundamental to

quantum mechanics as they describe the evolution of the state of a quantum system. For

a closed quantum system, the state |ϕ〉 at time t1 is related to the state |ϕ′〉 at time t2 by

a unitary operator A which depends only on t1 and t2, that is,

|ϕ′〉 = A|ϕ〉.

Notice that a unitary operator also satisfies A†A = I, and so A is normal and has a spectral

decomposition. Notice also that a unitary operator preserves inner products between states

(or vectors):

∀ |u〉, |v〉 ∈ V 〈u|A†A|v〉 = 〈u|I|v〉 = 〈u|v〉.

1.1.5 Measurements

The general way of talking about a quantum measurement is by describing it with a col-

lection {Mm} of measurement operators satisfying the completeness equation∑
m

M †
mMm = I.
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These operators act on the state space of the system being measured, and the index m

refers to the measurement outcomes that may occur from the measurement. Let |ϕ〉 be the

state of the quantum system immediately before the measurement takes place, then the

probability that result m occurs is

Pr[m] = 〈ϕ|M †
mMm|ϕ〉,

and the state after the measurement evolves to

Mm|ϕ〉√
〈ϕ|M †

mMm|ϕ〉
=

Mm|ϕ〉√
Pr[m]

.

Measurement in the computational basis is often given to illustrate how measurement

works. From the definition we gave in Section 1.1.1, the computational basis on one qubit

is {|0〉, |1〉}. The measurement of one qubit in the computational basis is hence defined

using the measurement operators M0 = |0〉〈0| and M1 = |1〉〈1|. Measuring some state

|ϕ〉 = α|0〉+ β|1〉 with M0 and M1 results in a state |ϕ′〉 such that

|ϕ′〉 = |0〉 with probability Pr[0] = |α|2

|ϕ′〉 = |1〉 with probability Pr[1] = |β|2

Two special cases of the previous general measurement scenario are widely used in the

quantum literature and are worth seeing as they often greatly simplify the analysis of a

quantum circuit for quantum computation and information: the projective or von Neu-

mann measurements and the POVM measurements.

A projective measurement is described by an observable M , a Hermitian operator acting

on the state space of the system being observed (note the difference with the measurement’s

terminology). Being a Hermitian operator, M has a spectral decomposition

M =
∑
m

mPm,

where Pm is the projector onto the eigenspace of M with eigenvalue m. The set {m}, the

eigenvalues of the observables, also corresponds to the possible outcomes of the measure-
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ment. As in the general definition, m occurs with probability

Pr[m] = 〈ϕ|Pm|ϕ〉 = Tr[Pm|ϕ〉〈ϕ|],

and the state immediately after measurement is

Pm|ϕ〉√
Pr[m]

.

One of the main reason why projective measurements are so much enjoyed is that, when

augmented with the ability to perform unitary transformations, they are actually equivalent

to the previous general description! We refer the reader to [NC00] for further details.

Whenever the statistics associated with the different possible measurement outcomes

are of main interest rather than the post-measurement state, the mathematical tool known

as POVM, which stands for Positive Operator-Valued Measurement, is particularly well

adapted. We review here the important points of this formalism.

Let Mm be the measurement operator describing a measurement. We define

Em = M †
mMm.

Then, Em is a positive operator such that

∑
m

Em = I and Pr[m] = 〈ϕ|Em|ϕ〉 = Tr[Em|ϕ〉〈ϕ|],

where |ϕ〉 is the state on which the measurement is applied. The operators Em are known

as the POVM elements and are sufficient to determine the probabilities of the different

measurement outcomes. The set {Em} is known as the POVM.

The interest for such a tool is best explained with a simple example. Suppose Bob is

given one of two states, |ϕ1〉 and |ϕ2〉, such that these two states cannot be distinguished

perfectly. Bob wants to determine which of the two states he has received such that when-

ever his technique returns an answer, he never makes an error of mis-identification. It turns
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out that using the POVM formalism, it is possible for Bob to perform the measurement

described by the POVM {E1, E2, E3} such that E1 and E2 are cleverly chosen to satisfy

〈ϕ1|E1|ϕ1〉 = 0 and 〈ϕ2|E2|ϕ2〉 = 0 (and E3 is taken to be I − E1 − E2 for the POVM to

satisfy the completeness relation). This way, whenever outcome E1 occurs, Bob is sure that

he received the state |ϕ2〉, when outcome E2 occurs he is sure that he received the state

|ϕ1〉, and he learns nothing when outcome E3 occurs.

1.1.6 Entanglement

We finish our review of quantum mechanics with what is probably the most puzzling be-

havior of composite systems: entanglement. Let H2m⊗H2n be a composite system of m+n

qubits. A pure state |ϕ〉 ∈ H2m ⊗ H2n is said to be a product state if there exists states

|σ〉 ∈ H2m and |ψ〉 ∈ H2n such that |ϕ〉 = |σ〉⊗ |ψ〉; otherwise |ϕ〉 is said to be an entangled

state.

The most common entangled states present in the quantum literature are the famous

two qubit Bell states:

|Φ+〉 =
1√
2
(|00〉+ |11〉)

|Φ−〉 =
1√
2
(|00〉 − |11〉)

|Ψ+〉 =
1√
2
(|01〉+ |10〉)

|Ψ−〉 =
1√
2
(|01〉 − |10〉)

The last state, |Ψ−〉, is also known as the Einstein-Podolsky-Rosen (EPR) pair, or as the

singlet state.

The best way to get the flavor of the mysterious behavior unique to entangled state is

certainly with a simple example. To do so consider the entangled state |Φ+〉. This is a two

qubit state, so let Alice have one of the qubit and Bob have the other. Then Alice and Bob

are separated as far as they can be. Both are instructed to measure their respective qubit
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in the computational basis {|0〉〈0|, |1〉〈1|}. If we consider only Alices’ system, her qubit is

in the state with density matrix

1√
2
(|0〉〈0|+ |1〉〈1|), (1.4)

see [NC00] page 106 for the details on how to carry such a computation. Notice that this

is also the state of Bob’s qubit alone.

Therefore, when Alice measures, she obtains |0〉 with probability 1/2 and |1〉 with prob-

ability 1/2. Without loss of generality, suppose that she obtains |0〉, then when Bob perform

his measurement, he will also obtain |0〉. If instead Alice had obtained |1〉, then Bob would

have also obtained |1〉. The strange thing is that, on one hand, as soon as Alice measures

her part of |Φ+〉 she knows exactly that the result of Bob’s measurement will be the same

as hers, whether he as already measured his part or not. On the other hand, whether Alice

has measured or not her state, as long as Bob does not perform his measurement, his part

of |Φ+〉 is still, for him, in state (1.4) and from his point of view he still has probability

1/2 to obtain either |0〉 or |1〉, even if Alice has measured! And this is true the other way

around. No matter who measures first, we know for sure that Alice and Bob’s respective

outcomes will be the same!

No wonder why Einstein qualified this surprising feature of entanglement as “spooky

action at a distance” [EPR35]. To get a glimpse why this is possible, we need to consider

the global state of the two qubits. When one of the participants performs his measurement

and obtains outcome |i〉 = |0〉 or |1〉, the global state |Φ+〉 collapses to |i〉|i〉. Of course, the

view of the other participant’ state is still (1.4), but from the global point of view he his

sure to obtain outcome |i〉 with certainty.

1.2 Security definitions

First let us define the condition on the two provers. We say that Peggy and Paula are iso-

lated from one another. The intuitive meaning of this term is that Peggy and Paula cannot
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communicate with each other, since this condition is explicitly imposed by the two-prover

model. However, we introduce this new terminology instead of the traditional “cannot

communicate with one another” because, as explained in Section 2.3 and 2.4, we noticed

that the meaning of “no-communication” is too weak and must be very clearly defined to

produce valid security proofs. This isolation will be formally defined in Section 2.4. For

now, the reader may follow his intuition and picture Peggy and Paula as being separated1

and unable to communicate with each other.

We use the following security definitions for bit commitment against a classical malicious

pair Peggy-Paula. Let n be the security parameter.

Definition 1.1 We call a function µ : N → R negligible if for every polynomials p(·) and

all sufficiently large n’s,

µ(n) <
1

p(n)
.

Henceforth, the function µ(n) will always refer to a negligible function in n.

Definition 1.2 A bit commitment scheme is statistically concealing if only a negligible

amount of information on the committed bit can leak to the verifier before the unveiling

stage. It is unconditionally concealing if no information leaks.

Definition 1.3 A bit commitment scheme is statistically binding if the isolated provers

Peggy and Paula successfully unveil for any other value than the one committed with negli-

gible probability. It is unconditionally binding if the probability is zero.

In this work, all the bit commitment schemes presented are unconditionally concealing and

statistically binding. To lighten the lecture, we will simply use the term concealing and

binding. The term secure will be used when both properties hold at the same time.

1Such a split can be implemented by physically trapping the two provers in Faraday cages or using some

relativistic effects keeping them separated by a long enough distance.
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In the case where the cheating pair Peggy-Paula can manipulate, share, and store quan-

tum information, the binding condition 1.3 is too strong to be satisfied. With its general

impossibility proof for quantum bit commitment, Mayers [May96a, May96b], and indepen-

dently Lo and Chau [LC97], was the first to point out that the condition where either

p0 ≤ µ(n) or p1 ≤ µ(n) (note that this is only a restatement of Definition 1.3), where pb is

the probability of successfully unveiling b, could never be satisfied since it was always possi-

ble to cheat by performing the honest protocol at the quantum level. Note that “quantum

level” simply means that we perform the honest protocol with a superposition representing

all the possible commitments. Subsequently, Dumais, Mayers and Salvail [DMS00] proposed

the following weaker binding condition.

Definition 1.4 A bit commitment scheme is statistically binding if, for b ∈ {0, 1}, the

probability pb that isolated Peggy and Paula successfully unveil for b satisfies

p0 + p1 ≤ 1 + µ(n). (1.5)

As the authors noted, for classical applications, this binding condition with µ(n) = 0 is

as good as if the committer were permitted to honestly commit to a bit, according to the

probability distribution of his choice, and only had the power to abort in view of the bit

he is about to unveil. Notice also that using the language of Definition 1.4, the essential

result of Mayers and Lo and Chau, that unconditionally concealing (or with probability at

least 1 − q(n)) quantum bit commitment protocols are insecure according to the binding

property, can be rephrased with the equation

p0 + p1 = 2− q(n),

where q(n) is the probability that the concealing property is cheated. These two cases

clearly define the bounds of equation (1.5) between a secure and (near-) maximally inse-

cure scheme. It follows that the concealing and binding conditions cannot be simultaneously

satisfied.

Moreover, as Kent [Ken05] argues, another reason to prefer this definition to define

the security of a quantum protocol rather than Definition 1.3 is that the classical defi-
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nition implies something stronger he calls classical certification [Ken04]. A protocol that

has classical certification guarantees that its quantum inputs belong to a fixed basis, so

that the inputing parties are effectively required to input classical information. If such a

requirement were part of the definition of a quantum bit commitment, then showing that

unconditionally secure quantum bit commitment is impossible would only require showing

that no quantum protocol can prevent the commitment of superposed bits. This is a much

simpler result [Ken04] which does not give any insights on the fundamental reasons2 why

unconditionally secure quantum bit commitment is impossible.

Although this work sticks to Definition 1.4 to characterize the security of quantum

bit commitment, Damg̊ard, Fehr, Salvail and Schaffner recently [DFSS06] introduced a

new definition stronger than 1.4, but still weaker than its classical counterpart. This new

definition is motivated by the following imaginary, but not that hard to construct, quantum

bit commitment scheme: with probability 1/2, you can unveil to whatever you want and

with probability 1/2, you cannot unveil at all. Of course, this is clearly not what we want,

and expect, from a bit commitment scheme, at least intuitively. However, since for this

example

p0 + p1 =
1
2

+
1
2

= 1 < 1 + µ(n).

Existence of such a scheme is not excluded if we only require equation (1.5) to be satisfied

for the commitment scheme to be binding. Instead they propose to use a stronger variant

closer to the classical binding condition:

Definition 1.5 [DFSS06] A bit commitment scheme is statistically binding if for every

possibly dishonest committer there exists a binary random variable D ∈ {0, 1} such that

p1−D is negligible.

The crucial point of their definition is that it still allows to commit to a superposition!

The reason is that the random variable D is defined to be the outcome obtained when the
2E.g. if the commitment is unconditionally concealing, then we can rotate from the state representing

the commitment of a zero to the state representing the commitment of a one.
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superposition of commitments is measured. It then follows by definition of measurements

that the information to unveil as 1−D is destroyed and so the value of D cannot be changed.

Alternatively we might say that the dishonest committer does not control the probability

distribution of D. That is, he cannot change with certainty its value from zero to one, or

from one to zero. Using the same language as its classical counterpart, it boils down to

saying that in Definition 1.4 the probabilities p0 and p1 take values before the superposition

is measured, whereas in the new Definition 1.5 the probabilities p0 and p1 take values after

the superposition has been measured. Although it has not been proven yet, it wouldn’t be

surprising if this new definition were the strongest possible with respect to what it means

for a commitment scheme to be quantum and binding. A stronger definition would proba-

bly require a classical certification of the quantum system used for the commitment.

Moreover, as the authors of [DFSS06] point out, it is not hard to prove that committing

bit by bit on a string with a scheme satisfying Definition 1.5 yields a string commitment

fulfilling the same definition (adapted for strings). This natural extension was impossible

using Definition 1.4.

For our matter, it is still an open problem if the quantum scheme presented in Section

4.2 is binding with respect to Definition 1.5.

1.3 Non-local games

Informally speaking, a two-party non-local game is a scenario where two players, Peggy

and Paula, who are isolated from each other, cooperate against a verifier, Vic, in order

to produce a consistent answer to a question that Vic independently asked to both Peggy

and Paula. Of course, these kind of games can be cast using more than two players. Our

interest in such games is that the two-prover model is exactly the setting in which these

games take place. Hence, some theoretical results from this field will be quite useful to ease

the classical security proofs of our protocols.
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The reader familiar with the subject might already have noticed the similarities with

the so-called pseudo-telepathy games. It is true that the framework is the same, and that

when Peggy and Paula are classical players, they have an unavoidable nonzero probability

of failure. However, following the definition given in [Bro04], when Peggy and Paula are

quantum players, a pseudo-telepathy game is guaranteed to have a perfect winning quan-

tum strategy. In our case, we do not need to ask so much from a quantum strategy. It is

why we prefer to use the term “non-local”.

The next definitions and theorems are taken from the work of A. L. Broadbent [Bro04]

on pseudo-telepathy games. LetW be a predicate (a relation) on the finite sets S×T×U×V .

A two-party non-local game G = (W,S, T, U, V ) is defined as follows. Peggy and Paula are

isolated. Vic randomly selects a pair of elements (questions) (s, t) ∈ S × T (he may do so

according to a specific probability distribution Π on S × T ). Vic sends s to Peggy and t to

Paula, who respond with u ∈ U and v ∈ V respectively, according to the pre-agreed strat-

egy of their choice. They win if W evaluates to one on input (s, t, u, v) and lose otherwise.

Definition 1.6 A deterministic strategy is successful in proportion p if the ratio of number

of instances of G for which the players win and the total number of instances of G is p.

Definition 1.7 A strategy is successful with probability q if it wins any instance of G with

probability at least q.

Using the two previous definitions, we define the following bounds reached by optimal

strategies.

Definition 1.8 ω̃c(G) is the maximum success proportion, over all possible deterministic

strategies, for classical Peggy-Paula that play the game G.

Definition 1.9 ωc(G) is the maximum success probability, over all possible strategies, for

classical Peggy-Paula that play the game G.
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and likewise,

Definition 1.10 ωq(G) is the maximum success probability, over all possible strategies, for

quantum Peggy-Paula that play the game G.

It is a common fact that for a non-local game G, to determine ωc(G), one needs only

to consider deterministic strategies. Intuitively, a shared random variable R can always be

fixed to the randomness of the best strategy, hence transforming the probabilistic strategy

into a deterministic one; a formal proof is given next.

Lemma 1.2 [Bro04] For any non-local game G, ω̃c(G) is the maximum probability that

the players win if the questions are asked uniformly at random among the set of possible

questions.

Proof : Let s be a probability distribution over a finite set of deterministic strategies

{s1, s2, . . . , sm}; s represents a probabilistic strategy. Let Pr(si) be the probability that

strategy si is chosen, and pi be the success proportion of strategy si, then the probability

that the players win the game is
m∑

i=1

Pr(si)pi ≤
m∑

i=1

Pr(si)ω̃c(G)

= ω̃c(G)

2

Theorem 1.3 [Bro04] For any non-local game G, ωc(G) ≤ ω̃c(G).

Proof : Consider any strategy s successful with probability ωc(G). Let χ be the set of

possible questions for G. By definition, ∀ x ∈ χ, the probability of winning on question x is

Pr(win | x) ≥ ωc(G). Let the question be chosen uniformly at random, then the probability

q of winning the game using s is

q =
∑
x∈χ

1
|χ|

· Pr(win | x)

≥
∑
x∈χ

1
|χ|

· ωc(G)

= ωc(G) (1.6)
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By Lemma 1.2, ω̃c(G) ≥ q, and from (1.6), we get that ωc(G) ≤ ω̃c(G).

2

The next lemma will also be useful.

Lemma 1.4 [Bro04] Let G = (W,S, T, U, V ) be a game with ω̃c(G) < 1, then

ω̃c(G) ≤ |S| · |T | − 1
|S| · |T |

.

Proof : Recall that ω̃c(G) is the ratio of the maximum number of questions on which the

classical players can win, and the total number of questions possible. Since ω̃c(G) < 1,

and the total number of questions possible is |S| · |T |, the next best alternative is that

ω̃c(G) = |S|·|T |−1
|S|·|T | . So we conclude that ω̃c(G) ≤ |S|·|T |−1

|S|·|T | .

2
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Chapter 2

Bit commitment in the two-prover

model

As explained in the beginning of this work, the idea of bit commitment in the two-prover

model was first introduced by Ben-Or, Goldwasser, Kilian and Wigderson [BGKW88], along

with the notion of Multi-Prover Interactive proofs, as an efficient way to prove that every

language L ∈ NP has a two-prover perfect zero-knowledge interactive proof system. In

order to present a classically secure bit commitment scheme, which we call the “BGKW”

scheme, they used the simple assumption that the two provers could not communicate with

one other once the protocol had started. We show in this chapter that, stated as above,

this assumption, on which the security of their scheme depends, is too weak and needs to

be made more precise to preserve the soundness of their construction.

2.1 The original scheme

We now present the BGKW scheme together with some intuitive explanations of its security.

We strongly refer the reader to [BGKW88] for more details.

Define the functions σ0, σ1 : {0, 1, 2} → {0, 1, 2} such that

1. ∀ i, σ0(i) = i,
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2. σ1(0) = 0, σ1(1) = 2, σ1(2) = 1.

The bit commitment for a bit b is as follows. Note that we are in the setting of BGKW,

so in this case the term isolation means that Peggy and Paula are separated and cannot

communicate with each other.

BGKW

Peggy and Paula agree on a trit w ∈ {0, 1, 2}. They are then isolated.

Commit to b:

- V chooses at random r ∈ {0, 1} and sends it to Peggy.

- Peggy computes z := E(r, w, b) = σr(w) + b mod 3 and sends it to

Vic.

Unveil b:

- Paula sends to Vic the trit w.

- Vic computes σr(w) and sets b := z − σr(w) mod 3.

It is not hard to understand why the BGKW scheme is secure against classical adversaries.

The key idea is simply that Paula does not know r and has never seen the trit z = E(r, w, b).

Notice however that the two-prover model allows Paula to detect when messages are trans-

mitted between Vic and Peggy, as defined in the introduction. Therefore, the probability

that Paula successfully reveals a bit value b̄ is upper bounded by her probability to correctly

determine r, which is 1/2. More formally,

Lemma 2.1 [BGKW88] ∀ w ∈ {0, 1, 2}, b ∈ {0, 1}, having that Peggy sent the trit z, if

Paula sends to Vic the trit ŵ then

Pr[ŵ is s.t. b̄ = z − σr(ŵ) mod 3] ≤ 1
2
.

The BGKW scheme is also secure against Vic since knowing r and the trit z = E(r, w, b)

gives no advantage in guessing b. It is assume that the value b is selected uniformly. More

formally,
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Lemma 2.2 [BGKW88] Let the variable B represents the committed bit, then ∀ r ∈ {0, 1}

Pr[B = 0 | E(r, w, 0), r] = Pr[B = 1 | E(r, w, 1), r] =
1
2
.

Observing that independent executions of the above protocol can be performed in parallel

without affecting the security, we can decrease the probability of successfully cheating to

2−n by performing n independent commitments and unveils to b.

2.2 A simpler version

For a protocol to be considered cryptographically secure, its probability of successfully

being cheated must be at most negligible in n, the security parameter. Hence, for cryp-

tographic ends, we are looking at n executions of the BGKW scheme. In this context, the

BGKW scheme turns out to be unnecessarily complicated. With no loss in security, it can

be replaced by a far simpler and compact version, called “simplified-BGKW” (or sBGKW

as a short hand), where the σ functions are removed and only one execution is needed to

achieve the same security probability of 2−n. For a n-bit string r and a bit b, we define the

n-bit string b · r := b ∧ r1 . . . b ∧ rn.

sBGKW

Peggy and Paula agree on an n-bit string w. They are then isolated from one

another.

Commit to b:

- Vic sends a random n-bit string r to Peggy,

- Peggy replies with x := (b · r)⊕ w.

Unveil b:

- Paula announces b and an n-bit string w,

- Vic accepts iff w = (b · r)⊕ x.
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Note that at the unveiling stage, as in the original scheme it is not required that Paula be

the one announcing b. It is as good to let Vic deduce b: Vic computes Z := w⊕x, if Z = 0n

he sets b := 0 and if Z = r he sets b := 1, and otherwise rejects. Indeed, Paula may not

even know b!

For obvious simplicity reasons, we use the sBGKW scheme for what follows. The as-

sumption made in [BGKW88] is that Peggy and Paula are not allowed to communicate

with each other. Based solely on that isolation constraint, the following seems a “correct

proof” that the sBGKW scheme is secure classically:

Theorem 2.3 Defining isolation as in [BGKW88], the sBGKW is secure classically.

Proof : Vic does not know w, that is, from its point of view w is uniformly distributed

among all possible n-bit strings. It follows that the two strings w and r⊕w he can receive

as commitment are perfectly indistinguishable from one another. Hence, absolutely no

information on the committed bit is learned by Vic before the unveiling stage. This proves

that sBGKW is concealing.

Now suppose that Peggy and Paula would like to be able to unveil a certain instance of b

both as 0 and as 1. To do so, Paula would like to announce ŵb such that ŵb = (b ·r)⊕x. We

note that this models the two possible dishonest behaviors for Peggy and Paula: honestly

commit to b̄ and try to change to b afterwards, and commit to nothing by sending some x

and decide which b they want to unveil only at the unveiling stage. It follows that in both

scenarios, a successful cheating strategy would allow to produce the two strings ŵ0 and ŵ1,

such that ŵ0 = x and ŵ1 = r ⊕ x. However, ŵ0 ⊕ ŵ1 = (0 · r) ⊕ x ⊕ (1 · r) ⊕ x = r is

completely unknown to Paula by the no-communication assumption. Therefore, even using

unlimited computational power, her probability of issuing a valid pair ŵ0, ŵ1 is at most

1/2n. This proves that sBGKW is binding (see Definition 1.3).

2

Nevertheless, this result is incomplete! We noticed that the meaning of isolation as “no-

communication” must be very clearly defined for the statement to be correct. Indeed,
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we show next how a correlated random variable can be used to invalidate the result of

Theorem 2.3 while not violating the “no-communication” assumption. This suggest that

the conventional wording “no-communication” is intuitively insufficient as it is not explicit

enough to cover any kind of cheating mechanism Peggy and Paula can employ.

2.3 Cheating sBGKW with a NL-box

The NL-box, short-hand for “Non-Locality box”, is a device with two input bits s and t,

and two output bits u and v such that u and v are individually uniformly distributed and

the following relation is satisfied

s ∧ t = u⊕ v. (2.1)

The pair (s, u) is on Peggy’s side and the pair (t, v) is on Paula’s side. Equivalently

v := u ⊕ s ∧ t. Notice that v is also uniformly distributed and u := v ⊕ s ∧ t. There-

fore, because u and v are individually uniformly distributed the NL-box does not allow

Peggy and Paula to communicate.

Note that here the NL-box is taken as a black box, that is, as a workable device whose

building is hidden and cannot be influenced or changed. This “non-local primitive” was

first introduced as a black box by Popescu and Rohrlich [PR94, PR97] as a tool to achieve a

better understanding of the non-local behavior of quantum mechanics. Appendix A covers

in details the optimal classical and quantum strategy to implement this type of device,

usually referred as the CHSH game in this context (which leads to the seminal CHSH Bell

inequality).

s //
NL

too

u //oo v := u⊕ (s ∧ t)

Figure 2.1: the cheating NL-box

This NL-box allows Peggy and Paula to unveil the bits committed through sBGKW in

either way, at Paula’s will. For each position i, 1 ≤ i ≤ n, Peggy inputs in the NL-box

the bit s := ri received from Vic and obtains output xi := u from the NL-box, which
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corresponds to the i-th bit of the commitment string. To unveil bit b, Paula inputs t := b

in the NL-box and obtains the output ŵi := v from the NL-box, which she sends to Vic. If

b = 0 then b ∧ ri = 0 and thus ŵi = xi which is the right value she must disclose. If b = 1

then b ∧ ri = ri and thus ŵi ⊕ xi = ri or ŵi = xi ⊕ ri which is again the right value she

must disclose.

2.3.1 The NL-box that breaks the original BGKW scheme

Similarly, we can define an analogous cheating box for the original BGKW scheme with two

binary inputs s, t, and two uniformly generated ternary outputs x, y. We first note that the

σ functions defined in Section 2.1 can be re-written as the single expression

∀ r ∈ {0, 1}, w ∈ {0, 1, 2} σr(w) = (1 + r)w mod 3. (2.2)

So using (2.2), we want from the cheating NL-box that u := (s + 1)v − t mod 3 for each

s, t, and uniformly chosen v. Because for any binary s, t we can easily define the inverse

permutation over trits to be v := (t + u)(s + 1) mod 3, the following NL3-box does not

allow to communicate since individually u and v are uniformly distributed.

s //
NL3

too

u //oo v := (t+ u)(s+ 1) mod 3

Figure 2.2: A non-local box to cheat BGKW

It is not hard to verify that the NL3-box that implements this non-local computation

from s, t is exactly the one needed to cheat the original BGKW scheme. As with the NL-

box, for each round i, Peggy inputs in the box s := ri and obtains the trit xi := u, which

she sends to Vic. If Paula wants to unveil for b, she inputs t := b in the NL3-box, which
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correctly outputs ŵi := v. Clearly, they successfully cheat since

∀ i (1 + ri)ŵi − xi mod 3 = (1 + ri)(b+ xi)(1 + ri)− xi mod 3

= (1 + ri)2(b+ xi)− xi mod 3

= (b+ xi)− xi mod 3

= b.

2.4 Defining isolation

The existence of such an inputs-correlated1 random variable, which does not allow commu-

nication but allows cheating of the sBGKW two-prover bit commitment scheme sheds some

light on the original assumption of Ben-Or, Goldwasser, Kilian and Wigderson:

“Our construction does not assume that the verifier is polynomial time bounded.

The assumption that there is no communication between the two provers while

interacting with the verifier, must be made in order for the verifier to believe

the validity of the proofs. It need not be made to show that the interaction is

perfect zero-knowledge.”

Indeed this assumption is necessary but not sufficient to guarantee the binding property of

the bit commitment scheme. Among its weakness, we note that it does not explicitly force

any cheating strategy to be repeatable. Still, it is not hard to see that this was something

implicitly assumed in the proof of Theorem 2.3, when we wrote that in both cheating sce-

narios, a successful cheating end up in knowing ŵb for both b ∈ {0, 1}. The NL-box not

being a repeatable process2 gives a first understanding why we can still cheat the sBGKW

1We emphasize that at least one of the “inputs” to the random variable needs to be obtained once the

provers are isolated, otherwise such a random variable can be shared while the provers are together, and is

thus useless to cheat the sBGKW scheme.
2Of course, the NL-box can be repeated as often as one wants. For instance, Peggy and Paula can easily

generate the output pair (x0, ŵ0) from the input pair (r, 0), and the output pair (x1, ŵ1) from the input

pair (r, 1), and all these outputs are individually uniformly distributed. However, Peggy can send only one

of x0 and x1 to Vic, and thus only the corresponding ŵ will be valid on Paula’s side for unveiling. There
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despite the result of Theorem 2.3.

Clearly, to achieve the binding condition a stronger assumption must be made. How-

ever, pin-pointing it precisely is not easy. At first sight, one could require the following

assumption:

“Once the provers are isolated, there exists no mechanism by which they may

sample a joint random variable which is dependent on inputs they provide.”

We note that, among other things, this new condition excludes communication between the

two provers, as desired. However, it excludes a lot more, such as shared entanglement! This

last observation is somewhat constraining as it forbids to Peggy and Paula the use of some

of the nicest properties of quantum mechanics. In a context where quantum processing is

used but entanglement is not allowed, some results (e.g [BBKM04, KMR05]) showed that

it is still possible to slightly outperform classical computations. Yet, it would be surprising

that this small separation from the classical setting is enough to cheat the sBGKW scheme.

Moreover, such a scenario is far fetch: to get interesting security results we need to consider

entanglement. This new assumption is simply too strong; we need to be more subtle in the

way we define this “mechanism to sample a joint random variable”.

It seems reasonable to believe that nature does not allow the existence of an NL-box as

described in Section 2.3 (that is, as a black-box or an implementation exponentially close

to a black-box). So why even ask for a stronger assumption than the no-communication

assumption of [BGKW88]? Part of the answer is that Vic can play the role of the NL-box,

or any other joint sampler. In no circumstances can we ignore the fact that both Peggy and

Paula individually talk to Vic. Definitely, we need to consider this aspect of the protocol

with great care. For instance, consider the scenario where r is sent to Peggy but commit-

ting and unveiling is not done immediately after, but rather once Vic and the two provers

have been involved in other, unrelated, interactive protocols. It is perfectly conceivable

is no way for them to force the relation x0 = x1. This means that, in our context, the NL-box cannot be

repeated to generate two valid strings ŵ0 and ŵ1.
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that within those protocols, for each i, Peggy and Paula succeed in sending ri and b to Vic,

and then in a completely different context, or a moment of unawareness, Vic performs the

required computation and output xi and ŵi, which are then sent to respectively Peggy and

Paula. It is obvious that if such a computation, or any alike, can take place with enough

probability then Peggy and Paula would succeed in cheating the sBGKW protocol!

More generally, we must not only consider Vic but any other third party, call it Ted, to

which Peggy and Paula might have access to obtain correlated information. The previous

situation highlights the fact that there is a whole class of functions with inputs coming

from Peggy and Paula for which Ted must not send the outputs. Intuitively, each time Ted

sends a message to either Peggy or Paula, he must ensure that the message does not:

• allow Peggy and Paula to communicate;

• allow Peggy and Paula to achieve correlations better than what can be attained by

local variables if Peggy and Paula are classical players, or shared entanglement if they

are quantum provers.

That is, Ted must not outperform what Peggy and Paula can achieve using local vari-

ables in the sense of quantum mechanics. We wish to formulate that statement as a con-

venient computable criteria. A natural way to tackle the problem is to look at the entropy

of the message Ted is about to send conditioned on what was previously sent from and to

Ted. Suppose Ted is sending a message M to Peggy. Loosely speaking, if the uncertainty

about M is the same whether Peggy has access to Paula’s information or a local variable

independent of Paula’s information, then there is no problem sending M to Peggy because

she can produce M on her own. However, if there is less uncertainty when Paula’s infor-

mation is available, then it means that Peggy needs some information held by Paula to

produce this M with the same probability distribution. Hence, if Ted sends M , he gives

to Peggy a string with a probability distribution (correlations) she could not have obtained

otherwise. In the quantum case, the local variables are replaced by a quantum state, which

often allows more correlations between Peggy and Paula than local variables do. At this
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point, we will not consider the quantum case.

The above gives the flavor of an information theoretic approach to the problem; this

is suitable as long as we stay at the variable level of a protocol. However, when Ted is

involved in some computations with Peggy and Paula, he his working with instances of

variables, and he may not know exactly, or have access to, the whole distribution from

which come the instances he receives from Peggy and Paula. Of course, running the same

computation multiple times on new instances would allow to re-generate the distribution of

each variable, but it would be much more practical to have a criteria from which Ted can

decide directly with the messages he has if he can send a message, or not. To this end, we

start by introducing the following criteria.

Let Peggy be represented by P0 and Paula by P1. The variable D ∈ {0, 1} is a reference

to player PD, and T ∈ {∅, {0}, {1}, {0, 1}} is a tag appended to each message that indicates

to Ted the player(s) that are eligible for receiving this message, where T = {0, 1} means by

both players and T = ∅ means by none of them. The message about to be sent from Ted

to prover PD is represented by (m,T )D. We formalize Ted’s behavior as follows.

Definition 2.1 (Practical definition) Ted is said to be a “secure third party” if ∀D ∈

{0, 1}, Ted follows these points.

1. A message received from player PD is tagged with T := {D}.

2. A message generated without involving any of the previous messages, e.g. picking a

random string, is tagged with T := {0, 1}.

3. A message obtained from a computation involving previous messages is tagged with

the intersection of the tags of all the messages involved in that computation.

4. A message (m,T )D is sent to player PD only if D ∈ T .
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We now explain why Ted will not send a message that allows P0 and P1 to communicate

or establish non-local correlations. Let (m,T )D be the message Ted is about to send to

player PD. From the fourth point of Definition 2.1, Ted will send (m,T )D only if it is

tagged T = {D} or {0, 1}. Looking at the message’s tag assignment rule number 3, this

happens only if there is absolutely no message tagged {1 − D} or ∅ used in the compu-

tation of (m,T )D. Using an induction argument, it is not hard to see that this happens

only when all the variables involved in the computation of (m,T )D are independent of the

information of P1−D, that is, they have been themselves generated using variables tagged

{D} or {0, 1}. Thus, such a message (m,T )D is also independent of the information known

only to P1−D. Therefore, the messages sent by Ted do not let the two players communicate.

The case of non-locality is slightly more subtle, yet pretty straightforward. Recall that

in a general non-local process, both players use a message each and receive a message

uniformly distributed, from their point of view, such that the four messages satisfy a cer-

tain relation. The received message does not allow to communicate with the other player.

Suppose P1−D receives his message first. Since from his point of view, this message is uni-

formly distributed, Ted can in fact generate a uniformly distributed message, tag it with

T := {0, 1} and send it to P1−D. At this point, this behavior does not violate anything

because non-locality has not been created yet. Then, Ted computes the message for PD.

Because this message needs to satisfy the relation that binds together the four messages,

at least a message tagged with T 6= {D} and one tagged with T 6= {1 − D} are used in

its computation (it can be the same message), so the resulting message (m,T )D will be

assigned a tag T := ∅ because the intersection does not contain {D} and {1 − D}. This

message (m, ∅)D is the one creating the non-local relation. However, from point 4 of Defi-

nition 2.1, since D /∈ ∅, Ted will never send (m, ∅)D.

As mentioned before the previous definition, we can alternatively formalize Ted’s be-

havior in terms of entropy. Let the message about to be sent from Ted to prover PD be

represented by the variable (M,T )D. The set of variables SD,T represents all the variables
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(messages) with tag T sent by prover PD to Ted, and the set of variables RD,T all the

variables (messages) with tag T sent by Ted to prover PD before (M,T )D.

Definition 2.2 (Information based definition) Ted is said to be a “secure third party”

if ∀D ∈ {0, 1}, Ted follows these points.

1. An information received from player PD is tagged with T := {D}3.

2. A variable M to be sent to PD is tagged with the less restrictive tag T ∈ {∅, {D}, {0, 1}}

that satisfies the following relation4,5. Note that the calligraphic tag T ′ stands for the

tag {0, 1}/
(
T∩{D}

)
and the calligraphic tag T ′′ stands for the tag {D}∪

(
T∩{1−D}

)
.

H((M,T )D|SD,{D}, RD,{D}, RD,{0,1}, S1−D,T ′ , R1−D,T ′ , R1−D,{0,1})

= H((M,T )D|SD,T ′′ , RD,T ′′ , RD,{0,1}, R1−D,{0,1}) (2.3)

3. A variable (M,T )D is sent to player PD only if D ∈ T .

We warn the reader that the tags and players’ variables D and 1−D do not play any

role in the computation of the entropies; they are only present to discriminate the variables

and determine which ones to include in the conditional part of the entropies. Notice also

that, contrary to Definition 2.1, a variable’s tag is set only when Ted consider sending it to a

player, except for incoming variables. This relaxation will turn out to be the key point to ex-

plain why this generalized definition is not stronger than local variables on the players’ side.

To strengthen the understanding, we first give an example of the application of this

definition using the relation of the NL-box. Recall that P0 has input X, P1 input Y 6,
3This implies that the sets SD,{0,1} and S1−D,{0,1} are always empty. Therefore we did not include them

in equation (2.3), but a formal expression should include them in the conditional part on both sides of the

equality.
4In order to write a clear equation, we had to specify to which player the message is intended. As a

result, we did not include {1−D} in the set of possible tags. It turns out that the empty set tag is sufficient

to cover both communication and correlation.
5Explanations for equation (2.3) will be provided after the example of its application.
6We are not using S and T for the variables’ name to avoid notation conflicts with the set S and tag T

used in Definition 2.2.
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and they want to produce respectively a variable U and V such that the following relation

holds,

X ∧ Y = U ⊕ V.

Both players send their input to Ted, who tags them accordingly, i.e. (X, {0})0 and

(Y, {1})1. Suppose U is the first message to be sent. Recall from Section 2.3 that U

and V are individually uniformly distributed. Hence, Ted can pick U uniformly and send it

to P0, and U is tagged with {0, 1} 7. Then Ted would like to send V = U ⊕ X ∧ Y .

Let’s compute the left- and right-hand sides for the three possible tags. Notice that

S1,{1} = {(Y, {1})1}, S0,{0} = {(X, {0})0}, R0,{0,1} = {(U, {0, 1})0}, and all the other sets

are empty.

- If we set T := ∅, then T ′ = {0, 1} and T ′′ = {1}. The left-hand side is

H((V, ∅)1|S1,{1}, R1,{1}, R1,{0,1}, S0,{0,1}, R0,{0,1}) =

H((V, ∅)1|(Y, {1})1, (U, {0, 1})0) =
1
2
.

The right-hand side is

H((V, ∅)1|S1,{1}, R1,{1}, R1,{0,1}, R0,{0,1}) =

H((V, ∅)1|(Y, {1})1, (U, {0, 1})0) =
1
2
.

- If we set T := {1}, then T ′ = {0} and T ′′ = {1}. The left-hand side is

H((V, {1})1|S1,{1}, R1,{1}, R1,{0,1}, S0,{0}, R0,{0}, R0,{0,1}) =

H((V, {1})1|(Y, {1})1, (X, {0})0, (U, {0, 1})0) = 0.

The right-hand side is

H((V, {1})1|S1,{1}, R1,{1}, R1,{0,1}, R0,{0,1}) =

H((V, {1})1|(Y, {1})1, (U, {0, 1})0) =
1
2
.

7It is straightforward to verify that this is the less restrictive tag.
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- If we set T := {0, 1}, then T ′ = {0} and T ′′ = {0, 1}. The left-hand side is

H((V, {0, 1})1|S1,{1}, R1,{1}, R1,{0,1}, S0,{0}, R0,{0}, R0,{0,1}) =

H((V, {0, 1})1|(Y, {1})1, (X, {0})0, (U, {0, 1})0) = 0.

The right-hand side is

H((V, {0, 1})1|S1,{0,1}, R1,{0,1}, S0,{0,1}, R0,{0,1}) =

H((V, {0, 1})1|(U, {0, 1})0) = 1.

Thus the equation (2.3) holds only when T := ∅. It follows from point 3 that Ted won’t

send V to P1, as expected.

The process of determining which tag to assign can be broken into two steps. We start

with the empty tag ∅. The first step is to decide whether we can add {D} to the tag, or not.

Notice that the right-hand side of equation (2.3) is the same for T ∈ {∅, {D}}. This results

from the calligraphic tag T ′′, which is equivalent to {D} in this case. On the other hand,

the calligraphic tag T ′ introduces the terms S1−D,{1−D} and R1−D,{1−D} in the left-hand

side of equation (2.3) when T = {D}. Thus, if the result of this first step is that the tag

is at least {D}, then it means that the message to be sent is independent of the private

information held by P1−D. However, if we find that the tag is not even {D}, then it means

that the message to be sent has some dependencies with the private information of P1−D,

and therefore the message should not be sent.

If the first step terminates with a tag containing at least {D}, then we can move on to

determine whether we can add {1−D} to the tag, or not. We note that T ′ won’t change

for T ∈ {{D}, {0, 1}}, so the left-hand side is invariant. However, the calligraphic tag T ′′

will remove the terms SD,{D} and RD,{D} from the right-hand side if we consider the tag

T = {0, 1}. Hence, if equation (2.3) is satisfied with T = {0, 1}, it means that the message

to be sent is not only independent of the private information of P1−D (from first step), but

also of the private information of PD. It follows naturally that this message be eligible for
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distribution to both players.

The interest of Definition 2.2 is that it is more flexible in the tag assignation than

the practical definition 2.1. Indeed, whenever Ted deliberately randomizes a message with

new [uniformly distributed] information, the information-based tag assignment rule con-

clude that there is no problem to send to PD a message that would have been tagged with

T = {1−D} or ∅ in the practical definition. We give two examples of these particular cases.

Let P0 send to Ted a message represented by (X, {0})0 (the variable X is tagged with

{0} and comes from P0). Then Ted generates a uniform random variable (W,T )D (its tag

and receiver have not been set yet) and produces the message M = X⊕W for P1. Checking

with equation (2.3) we see there is no problem setting M’s tag to {1}, as

H((M, {1})1|(X, {0})0) = H((W,T )D) = H((M, {1})1).

This is satisfied since (W,T )D is uniform and has never been sent. However, the practical

definition would have assigned the tag T := {0} since W ’s tag would have been {0, 1} (by

the second rule) and {0} = {0} ∩ {0, 1}. Let Ted send (M, {1})1. We now get that for both

D = 0 and 1, if T = {D} or {0, 1} then the left-hand side of equation (2.3) for W is

H((W,T )D|(X, {0})0, (M, {1})1) = 0,

and the right-hand side is respectively

H((W, {0})0|(X, {0})0) = H((W, {0})0) = 1,

H((W, {1})1|(M, {1})1) = H((X, {0})0) = 1,

H((W, {0, 1})D) = 1.

Because equation (2.3) is not satisfied for both T = {D} and {0, 1}, W ’s tag is set to

T := ∅, and Ted should not send (W, ∅)D to neither of PD, for D = 0, 1.

Similarly, we can send to P1 a messageM that would have been tagged ∅ by the practical

definition. We again take the NL-box relation for example. Suppose the variables (X, {0})0
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and (Y, {1})1 have already been sent to Ted by the players (and tagged accordingly), and

(U, {0, 1})0 8 has been sent by Ted to P0. Let (W,T )D be a uniformly distributed random

variable chosen by Ted, with D ∈ {0, 1}. Consider the following variable for P1,

V = U ⊕
(
W ⊕X

)
∧ T,

that is, we randomized the variable tagged {0} (i.e. X) in the NL-box relation. In the

practical definition, because W is chosen uniformly and independently of previous variables,

the second rule would have assigned a tag {0, 1} to it, and so V ’s tag would have been set

to ∅ = {0, 1} ∩ {0, 1} ∩ {0} ∩ {1}. However, checking with equation (2.3), because W has

not been sent yet, we get that there is no problem setting V ’s tag to {1}, as

H((V, {1})1|(Y, {1})1, (X, {0})0, (U, {0, 1})0) =
1
2

= H((V, {1})1|(Y, {1})1, (U, {0, 1})0).

So Ted would send this message (V, {1})1 to P1. Is this a problem? No, because the classical

limitations of non-locality have not be violated yet! The reason is simple: by randomizing

completely all the [private] variables related to P0, Ted is reducing the message he sends

to P1 to what P1 can exactly achieve using local variables. That is to say, P1 already

has a random view of P0’s variables, so there is no problem for Ted to first randomize P0’s

variables and then send this message to P1. If we make the calculations, we see that indeed,

for the variable V sent, the relation

V = U ⊕X ∧ Y

holds with probability 75%, just as in the classical scenario, and no W will never let us

beat that. Of course, as in the previous example, the variable (W,T )D used to randomize

can never be disclosed to any of the two players, and equation (2.3) agrees with that (W ’s

tag will be set to T := ∅ for both D).

Thus, if the message intended to PD is computed in such a way that it is independent of

S1−D,T and R1−D,T , for T ∈ {{0}, {1}, ∅}, i.e. it is randomized such that it no longer carries

8It is straightforward to verify that this is the less restrictive tag.
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information that is known only to P1−D, then the criteria of Definition 2.2 does let Ted send

a message that would have been tagged {1−D} or ∅ in the practical definition. However,

the variables used to randomize such a message can never be disclosed to any of the players.

But this is correct since it is now these variables that carry the information dependent on

S1−D,T and R1−D,T , for T ∈ {{0}, {1}, ∅}. In this sense, Definition 2.2 is more general than

Definition 2.1 as it does not consider only the tag of a message to determine whether Ted

should send it, but rather its relevant information content. Moreover, Definition 2.2 does

let Ted send messages to the players that achieve the classical limitations of non-locality,

that is, Ted never sends a message that outperforms what the players can achieve with local

variables!

Henceforth, the two-prover model’s assumption is based on this refined definition of

isolation.

Definition 2.3 Peggy and Paula are isolated from one another if they cannot communicate

with one another, and for any third party Ted that interacts with Peggy and Paula, Ted is

a secure third party.

2.5 Fixing the proof of Theorem 2.3

We now prove the security of the sBGKW scheme with respect to this new definition. But

let’s first express the sBGKW scheme with the new terminology, to show that the protocol

can indeed be completed in the context of the practical definition of isolation.

sBGKW

P0 and P1 agree on an n-bit string w. They are then isolated from one another

according to Definition 2.3.

Commit to b:

- Vic sends a random n-bit string (r, {0, 1})0 to P0,
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- P0 computes x := (b · r)⊕w and sends it to Vic. Upon reception, Vic

tags it (x, {0})0.

Unveil b:

- P1 announces b and an n-bit string w to Vic. Upon reception, Vic tags

them (b, {1})1 and (w, {1})1.

- Let e = 0 if “w = (b · r) ⊕ x”, and e = 1 otherwise. Vic accepts iff

e = 0, and tags e with (e, ∅)D for both D ∈ {0, 1}.

Since the only communication from Vic to the provers is a random n-bit string, it is straight-

forward that the protocol will complete with the new isolation assumption.

Theorem 2.4 Let Peggy (P0) and Paula (P1) be isolated as in Definition 2.3, then the

sBGKW is secure classically.

Proof : As before, the concealing condition is satisfied since Vic does not know w.

The previous section explained that in the setting of Definition 2.3, we are now guar-

anteed that any strategy that Peggy and Paula try to perform through a third party can

be achieved using only local variables on each side. We also know from Theorem 1.3 that

there’s no gain for Peggy and Paula to use a probabilistic strategy; we can thus assume,

without loss of generality, that a deterministic strategy is employed.

Suppose the two provers have a deterministic strategy that successfully produces w0

when they want to unveil as B = 0, and w1 when they want to unveil as B = 1. Because

we are dealing with classical information, the instances of the local variables and the infor-

mation of Peggy and Paula can be copied. From the deterministic behavior of the strategy,

their classical strategy can be run on each copy of the information to output both ŵ0 and ŵ1,

something we could not assert from only the no-communication assumption of [BGKW88].

Thus, any successful deterministic strategy would let Paula compute the string ŵ0⊕ŵ1 = r.

However r is completely unknown to her by the no-communication assumption. Therefore,

even using unlimited computational power, her probability of issuing a valid pair ŵ0, ŵ1 is

at most 1/2n. This proves that sBGKW is binding.

2
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Chapter 3

Intermediate schemes towards

quantum secure bit commitment

We first exhibit two intermediate schemes to emphasize how shared entanglement can be

used to cheat with probability one (or almost one) a classically secure two-prover bit com-

mitment. The first protocol is a weaker version of the sBGKW scheme, called wBGKW,

where the acceptance criteria of the unveiling stage is loosen to tolerate some errors. The

second protocol is also a modified version of the sBGKW scheme where the acceptance

criteria is based on the Magic Square game (see Section 3.2).

3.1 A weaker acceptance criteria: the wBGKW scheme

We need the following notion.

Definition 3.1 The distance d(x, y) of a pair of binary words x, y is the number of bit-

positions where x and y differ.

In this section we consider a weaker version of sBGKW, called wBGKW, where the

acceptance criteria of the verifier Vic is to accept b and ŵ if d(ŵ, x ⊕ (b · r)) < n/5. This

means that the string ŵ sent by Paula differs in at most n/5 positions from what it should

be. In comparison, in sBGKW the acceptance criteria is d(ŵ, x ⊕ (b · r)) = 0. Note that
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the choice of b is part of the expectation. The interest of such a modification is that now a

cheating quantum pair Peggy and Paula, isolated as in Definition 2.3, can use the non-local

property of entanglement to implement an NL-box and successfully cheat wBGKW, while,

as we show next, the bit commitment is secure classically. To facilitate notation we add an

index b to the string ŵ, since ŵ is different whether we unveil zero or one. Also, define as

B the random variable corresponding to the value they unveil.

Theorem 3.1 For any classical strategy, the probability that it outputs a string ŵ0 when

B = 0 and ŵ1 when B = 1 such that E[d(ŵb, x ⊕ (b · r))] < n/5 for both values of b, is

exponentially small in n.

Proof : Using the same arguments as in the proof of Theorem 2.4, we can assume the

provers use a deterministic strategy that may produce such a ŵ0 when B = 0, and ŵ1 when

B = 1, so they can in fact output both ŵ0 and ŵ1. Hence, Paula can compute the string

ŵ0⊕ŵ1. Recall that when d(ŵb, x⊕(b ·r)) = 0 then ŵ0⊕ŵ1 = r. We want to determine the

distance between ŵ0 ⊕ ŵ1 and r for this situation. From the theorem’s assumption, there

exists a classical strategy that outputs ŵ0 and ŵ1 such that E[d(ŵb, x⊕ (b · r))] < n/5, for

B = 0, 1. We easily obtain that for such a strategy, the expected distance from r is

E[d(ŵ0 ⊕ ŵ1, r)] = E[d(ŵ0 ⊕ ŵ1, x⊕ (x⊕ r))] ≤ E[d(ŵ0, x)] + E[d(ŵ1, x⊕ r)] < 2n/5

by the triangular inequality. Using a standard Chernoff Bound argument, and since r is

absolutely unknown to Paula, her probability of outputting a string z = ŵ0 ⊕ ŵ1 such that

E[d(z, r)] < (1/2 − ε) · n is exponentially small in n for any 0 < ε ≤ 1/4. Hence, because

2/5 < 1/2, we conclude that such a strategy cannot exist except with exponentially small

probability, and so unveiling must fail for one of the two possibilities.

2

Conversely, this scheme is almost totally insecure against quantum adversaries.

Theorem 3.2 There exists a quantum strategy that successfully cheats the wBGKW scheme

with probability 1− µ(n).
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Proof : We saw in Section 2.3 that the NL-box, taken as a black box, correctly produced

the needed ŵb to unveil as b. Using the result of Theorem A.5 of Appendix A, we get

that through entanglement, Peggy and Paula can optimally simulate the NL-box such

that for each i taken independently, 1 ≤ i ≤ n, the NL-box produces correlated outputs

with probability cos2(π/8) ≈ 0.85. Therefore, using the standard Chernoff Bound, this

independent quantum strategy yields that for both values of b

E[d(ŵ, x⊕ (b · r))] = (1− cos2(π/8)) · n,

with probability exponentially close to one. Having that

(1− cos2(π/8)) · n < 0.15 · n < n/5,

we conclude that a pair of quantum provers defeat the binding condition of the scheme with

probability 1− µ(n).

2

3.2 The Magic Square

The magic square game is a two-player pseudo-telepathy game that was presented by Pad-

manabhan Aravind [Ara02, Ara03], who built on work by Mermin [Mer90]. The most

interesting feature of this game is that it is extremely easy to show that there cannot be

a classical strategy that wins with probability one (see Section A.2.1). It follows that a

successful implementation of the quantum winning strategy (see Section A.2.2) would con-

vince any observer that something classically impossible is happening, with no need for the

observer to understand why the quantum strategy works.

3.2.1 The game

A magic square is a 3× 3 matrix whose entries are in {0, 1}, with the property that the sum

of each row is even and the sum of each column is odd. Such a square is magic because it

cannot exist! Indeed, suppose we calculate the parity of the nine entries, that is, the parity
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of the whole square. This value is equal to the parity of the parities of the three rows and

equal to the parity of the parities of the three columns. However, according to the rows the

parity is even, yet according to the columns, the parity is odd! This is obviously impossible.

The task that the players face while playing the game is the following. Let x, y ∈

{0, 1, 2}. Peggy is asked to give the entries of the x-th row, labeled rx := rx
0r

x
1r

x
2 , and Paula

is asked to give the entries of the y-th column, labeled cy := cy0c
y
1c

y
2. To win the game,

the parity of the row rx must be even, the parity of the column cy must be odd, and the

intersection of the given row and column must agree, that is rx
y = cyx.

Classical and quantum optimal strategies can be found in Section A.2 of Appendix A.

3.2.2 Magic Square bit commitment

The Magic Square bit commitment scheme, named MSBC, is an original idea due to Claude

Crépeau. This scheme is particularly relevant in our study of bit commitments in the two-

prover model as it is perfectly secure classically but can easily be cheated with probability

one using a quantum strategy. First, define the validity of a square.

Definition 3.2 A (3× 3) matrix Sx is valid for bit x if all rows of Sx xor to 0 when x = 0

and all columns of Sx xor to 1 when x = 1.

For instance the following matrix S0 is valid for zero while S1 is valid for one:

S0 =
[

0 0 0
0 1 1
1 0 1

]
, S1 =

[
1 0 1
1 1 0
1 0 0

]
. (3.1)

The scheme is as follows.

MSBC

Peggy and Paula agree on a random n-bit string w and an identical random

square SPeggy
i = SPaula

i for each bit wi of w such that Si is valid for wi. They

are then isolated as in Definition 2.3.

57



Commit to b:

- Vic chooses a random n-bit string a and sends it to Peggy. Label

a0 := 0n, the all 0’s n-bit string, and a1 := a.

- Peggy computes x := ab ⊕ w and sends x to Vic.

Unveil b:

- Peggy sends b to Vic.

- Vic computes ŵ := ab ⊕ x.

- Vic challenges Peggy and Paula for each bit ŵi of ŵ using a test on

the squares SPeggy
i and SPaula

i . Vic picks a pair of random trits tPeggy
i

and tPaula
i and asks Peggy for row number tPeggy

i of SPeggy
i and Paula

for column number tPaula
i of SPaula

i .

- Vic accepts b if for each i, the row or column that should xor to ŵi

does, and if the intersection of the row and column is identical from

both Peggy and Paula. Vic rejects otherwise.

Note that this scheme does not differ much from the sBGKW scheme. Instead of having

Paula send explicitly w, both Peggy and Paula send information to Vic to allow him to

reconstruct w. Indeed, we can easily see that the magic squares are just a very redundant

version of w. If Vic sees all the magic squares of Peggy-Paula at unveiling, it is just repeat-

ing him what w was for each of Peggy and Paula. He can then compare this w to his ŵ

and decide whether or not he should accept b.

We now prove that the MSBC is secure classically. It is straightforward to see that the

concealing property holds for Vic who does not know w.

Theorem 3.3 Any classical strategy successfully cheats the binding property of the MSBC

scheme with probability at most
(

8
9

)n/6, except with exponentially small probability.

Proof : In order to cheat the bit commitment scheme, Peggy and Paula must be able to win

a weaker form of the Magic Square pseudo-telepathy game given in Section 3.2.1, where
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for each i Vic verifies only that the row or column that should xor to ŵi does, instead

of verifying that the row xores to zero and the column xores to one. Using the result of

Theorem 1.3, we only need to consider deterministic strategies.

To simplify the proof, assume that Peggy always knows when she is being tested. The

probability of successfully cheating we will obtain under this assumption will be an upper

bound on the probability for any other strategy. One of the key point is that we cannot

make the same assumption regarding Paula: since she doesn’t know the random string

a1 := a sent by Vic to Peggy, she cannot tell whether she is being tested or not. Hence,

when she’s asked a column that does not xor to 1, she doesn’t know if she has to change

one of the bit to make it xor to 1.

However, Paula is using a deterministic strategy and Peggy knows all the information

possessed by Paula, except for the number tPaula
i asked by Vic. This means that Peggy can

do the same computations as defined by Paula’s strategy to get the three possible columns

that Paula could output. Note that, put together, these three columns form a square S

which is the square that holds the most relevant information regarding Paula’s choices1.

Without lost of generality, we can thus assume that Paula always output a column that

xores to 1, and if needed, modifies the first bit of the column. So Paula always succeeds

her challenges. To simplify the proof further, we can assume that the last two rows of all

the squares SPeggy
i = SPaula

i they share in the beginning of the protocol always xor to 0.

Consider a challenge i where Peggy is being tested (otherwise she simply outputs the

row tPeggy
i asked by Vic and they succeed the challenge). As long as tPeggy

i = 1 or 2, she

can simply outputs the required row and succeed without being caught. However, with

probability 1/3, tPeggy
i = 0, and from Paula’s strategy, this row xores to 1 in the square S

corresponding to the three possible columns answered by Paula. So Peggy has to modify
1Hence, to maximize her probability of cheating, Peggy needs to base her strategy on S when returning

the row asked by Vic.
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one bit of the row. With probability 1/3, she will modify the bit corresponding to the

column number tPaula
i , and they will get caught. Therefore, for a challenge i, when Peggy

is being tested, their probability of success is at most 8/9.

By independence of the challenges, we get that the success probability is at most 8/9 for

each one where Peggy is being tested. Let x be the string sent by Peggy, prepared according

to the strategy of her choice. Since ŵi = x⊕ab, the test will toggle between Peggy and Paula

whenever ab = 1. The problem for Peggy is that whenever the test toggles, she can succeed

with certainty for at most only one of b ∈ {0, 1}. Since a is uniformly distributed, using a

Chernoff argument, except with exponentially small probability, the string a1 := a contains

n/3 1’s. Thus, there is at least one of b ∈ {0, 1} for which in at least n/6 challenges Peggy

will answer correctly with probability at most 8/9 (the sum of the challenges where she

succeeds with probability at most 8/9 for 0 and those where she succeeds with probability

at most 8/9 for 1 adds up to n/3). Therefore, their probability of successfully cheating is

at most (
8
9

)n/6

for any classical strategy.

2

It follows that for n big enough, the MSBC scheme is binding. Conversely, this scheme is

totally insecure against quantum adversaries.

Theorem 3.4 There exists a quantum strategy that successfully cheats the MSBC scheme

with probability one.

Proof : Using the quantum strategy presented in Section A.2.2, a quantum pair Peggy-

Paula can always produce a row and column that satisfy the winning condition of the Magic

Square game (Section 3.2.1). Hence they can unveil for both values of b with probability

one.

2
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Chapter 4

Quantum secure bit commitment

in the two-prover model

We now present the modified version of the sBGKW scheme, called the mBGKW scheme,

and prove its security against quantum adversaries. Although the two schemes are almost

identical, it turns out the proof against quantum provers is easier with the latter. The

security of the sBGKW and BGKW schemes will follow as a corollary of mBGKW’s security.

4.1 The scheme

mBGKW

Peggy and Paula agree on an n-bit string w. They are then isolated as in

Definition 2.3.

Commit to b:

- Vic sends two random n-bit strings r0, r1 to Peggy.

- Peggy replies with x := rb ⊕ w.

Unveil b:

- Paula announces an n-bit string ŵ to Vic.
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- Vic computes r := ŵ ⊕ x. He accepts iff r ∈ {r0, r1} and deduces b

from r = rb.

4.2 mBGKW is secure against quantum adversaries

We want to show that the mBGKW scheme is secure against a quantum adversary. Clearly

the commitment is concealing because Vic does not know w. This means that there exists

w and w′ such that x = r0 ⊕ w = r1 ⊕ w′, and Vic cannot determine which of w or w′ has

been used. This is merely an application of the One-Time Pad (Vernam Cipher). We refer

the reader to [Sti05] for a complete proof of its security, which provides a nice information

theoretic argument why Vic cannot learn any information about rb.

Before diving into the formal proof that the binding property holds, let’s first sketch the

background intuition. We use Definition 1.4 to give the security argument for the binding

property. As in Definition 1.4, let p0 be the probability of successfully unveiling zero and p1

be the probability of successfully unveiling one. Imagine Peggy and Paula are able to open

B = 0 or B = 1 with a good probability of success. This means that Paula can announce

ŵ0 such that r0 = ŵ0 ⊕ x or ŵ1 such that r1 = ŵ1 ⊕ x, depending upon whether B = 0

or B = 1 is unveiled. We stress that, unlike in the classical scenario, even if they use a

deterministic1 quantum strategy to get ŵ0 or ŵ1, we cannot assert that Paula is able to

generate both, since quantum states cannot be copied (see [NC00], pages 24 and 532 for

details), so the process cannot be repeated exactly. It follows that with a quantum strategy,

we can always hope to have ŵ0 and ŵ1, but not both at the same time, with non-negligible

probability. We refer the reader to the introductory Section 1.2 for clarifications on this

important distinction with the classical setting, particularly with Definition 1.3.

Yet, the crucial observation on which our proof relies is the same as in the classical

case, namely that if Paula could simultaneously compute (ŵ0, ŵ1), then she would learn
1The process (algorithm) can be deterministic, still the final result will be random, by the probabilistic

nature of quantum mechanics and measurements.
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r0 ⊕ r1 = ŵ0 ⊕ ŵ1. Clearly, this should not be possible with probability higher than 2−n

since Paula does not have any information about r0 and r1 2. However, we will not use this

bound directly as the security marker, but rather as an optimal limit to upper bound the

equation p0 + p1 of Definition 1.4.

Ideally, one expects that for any cheating strategy

p0 + p1 ≤ 1 +
1
2n
, (4.1)

the bound achieved when Peggy and Paula are classical. However, it turns out this upper

bound is not so easy to reach; the analysis needed to produce an upper bound that tight

needs to be incredibly precise. Fortunately, as long as we get something bounded above by

1 + µ(n) the binding condition is satisfied. The consequence of the next lemma gives an

upper bound slightly weaker than (4.1) by about a square root distance to 1.

Define

p⊕ := Pr[Paula determines r0 ⊕ r1].

The next lemma relates p⊕ to p0 + p1. We show that whenever p0 + p1 is greater than

1 + ε, Paula can guess r0 ⊕ r1 with probability at least ε2. Then, exploiting the fact that

the probability p⊕ to determine r0⊕ r1 is 2−n, the binding condition will naturally follows.

Lemma 4.1 Assume Peggy and Paula have probability pb to open b successfully such that

p0 + p1 ≥ 1 + ε for ε > 0. Then, Paula can guess r0 ⊕ r1 with probability p⊕ ≥ ε2/4.

Proof : Assume without loss of generality that when the unveiling phase of mBGKW starts,

Paula holds the pure state |ψ〉 ∈ HN of dimension N ≥ 2n. Note that we do not need to

consider the whole bipartite state between Peggy and Paula since when the unveiling phase

starts, Peggy does no longer play an active role in the protocol and no communication is

allowed between the two; hence her system can be traced-out of the global Hilbert space.
2Recall that no quantum process can send information from Peggy to Paula without communicating some

classical information. Therefore r0 ⊕ r1 remains uniformly distributed over {0, 1}n during the execution of

the whole protocol.
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Moreover, by linearity, the proof also holds if |ψ〉 is replaced by a mixed state. Notice also

that, from the new model’s assumption (see Section 2.4), Peggy and Paula cannot do better

using a third party than what they can achieve with entanglement; the state |ψ〉 can thus

be seen as her part of the shared entangled state.

Generally speaking, Paula has two possible strategies depending upon the bit b she

wants to unveil. When B = 0, she applies a unitary transform U0 to |ψ〉 in order to get the

state |ψ0〉 := U0|ψ〉 that she measures in the computational basis {|w〉〈w|}w∈{0,1}n applied

to the first n qubits of |ψ0〉. When B = 1, she proceeds similarly with unitary transform

U1 allowing to prepare the state |ψ1〉 := U1|ψ〉. She then measures |ψ1〉 using the same

measurement as for B = 0. All general measurement can be realized in this fashion, this

is thus a general strategy for Paula. Notice that in the proof of Kent [Ken05], the use of

unitary transformations U0 and U1 is obscured by the fact that he works with projective

measurements. Notice also that the measurement on the first n qubits of |ψb〉 can alter-

natively be expressed by the measurement operators {|w〉〈w| ⊗ IM}w∈{0,1}n on the whole

state |ψb〉, where IM is the identity matrix on the system of dimension M = N/2n.

From the values r0, r1, x ∈ {0, 1}n announced by Vic and Peggy during the committing

phase, we define ŵb := rb ⊕ x as the string Paula has to announce in order to open b with

success. We have,

pb = 〈ψb|ŵb〉〈ŵb|ψb〉, (4.2)

which by assumption satisfies

p0 + p1 ≥ 1 + ε, ε > 0. (4.3)

Notice that 〈ψb|ŵb〉 is a generalized inner product3 since |ŵb〉 lives in a subspace of dimension

2n in HN . Therefore when ŵb is obtained, there is some state left in HN of dimension N/2n

which we label as |v̂b〉 (i.e. |ψb〉 has not been completely collapsed by the measurement).

3If |w〉 ∈ HM and |ψ〉 ∈ HN then for |ψ〉N =
P

i αi|ai〉M ⊗ |bi〉N/M we define 〈w|ψ〉 =
P

i αi〈w|ai〉|bi〉.
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Thus, using (4.2) we can write |ψb〉 as

|ψb〉 =
√
pb|ŵb〉|v̂b〉+

√
1− pb|ŵ⊥b 〉, (4.4)

where ‖〈v̂b|〈ŵb|ŵ⊥b 〉‖2 = 0. Note that the “state” |ŵ⊥b 〉 has not necessarily a physical signi-

fication. It is simply a mathematical tool that allows us to conveniently carry the statistics.

We want to determine a lower bound for the probability p⊕. One possible way for Paula

to compute r0 ⊕ r1 is to obtain ŵ0 and ŵ1 individually. Again, one possible way to do this

is to use the following strategy:

1. Paula applies the strategy allowing to open B = 0 from |ψ0〉 = U0|ψ〉 resulting in

the state |ψ̃0〉 after the measurement in the computational basis {|w〉〈w|}w∈{0,1}n has

been performed on the first n qubits, and

2. Paula prepares |ψ̃1〉 := U1U
†
0 |ψ̃0〉 before applying again the measurement in the com-

putational basis {|w〉〈w|}w∈{0,1}n on the first n qubits.

Note that when preparing |ψ̃1〉, we applied U †
0 before U1. This is to put back the state

|ψ̃0〉 as close as possible as the original state |ψ〉. From (4.3) and for N big enough, the

probability to measure ŵ0 in the first step is not too small and so, by applying the inverse

of all the unitary transformations generated by U0, the state |ψ̃〉 we get before applying U1

is a good enough approximation of the original |ψ〉. Similarly we can say that the fidelity

F (|ψ̃〉, |ψ〉) is large enough. By invariance under unitary transformation, it follows that

|ψ̃1〉 approximates |ψ1〉 with the same fidelity F (|ψ̃〉, |ψ〉).

In the strategy described above, the probability to determine r0 ⊕ r1 is

p0 · pŵ1|ŵ0
.

As we said earlier, this is only one of the possible strategies to determine r0 ⊕ r1, thus

p⊕ ≥ p0 · pŵ1|ŵ0
.
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Let us first find a lower bound on the probability pŵ1|ŵ0
to produce ŵ1 given that ŵ0 has

already been produced after step 1. Since ŵ0 was obtained, the state |ψ̃0〉 is equal to

|ŵ0〉|v̂0〉. We have,

|ψ̃1〉 = U1U
†
0 |ψ̃0〉

= U1U
†
0 |ŵ0〉|v̂0〉

= U1

(
U †

0

|ψ0〉√
p0
− U †

0

√
1− p0

p0
|ŵ⊥0 〉

)
(4.5)

= U1
|ψ〉
√
p0
− U1U

†
0

√
1− p0

p0
|ŵ⊥0 〉 (4.6)

=
|ψ1〉√
p0
− U1U

†
0

√
1− p0

p0
|ŵ⊥0 〉 (4.7)

=
1
√
p0

(√
p1|ŵ1〉|v̂1〉+

√
1− p1|ŵ⊥1 〉 − U1U

†
0

√
1− p0|ŵ⊥0 〉

)
, (4.8)

where (4.5) follows from isolating |ŵ0〉|v̂0〉 in (4.4), (4.6) and (4.7) are obtained by definition

of U0 and U1 respectively, and (4.8) also follows from (4.4). At this point, Paula applies

the measurement in the computational basis in order to obtain ŵ1. Since we are interested

only in finding a lower bound, the probability to obtain ŵ1 is minimized when U1U
†
0 |ŵ⊥0 〉 =

|ŵ1〉|v̂1〉. It easily follows that,

pŵ1|ŵ0
= 〈ψ̃1|ŵ1〉〈ŵ1|ψ̃1〉

≥ 1
p0

(√
p1 −

√
1− p0

)2
(4.9)

≥ 1
p0

(√
p1 −

√
p1 − ε

)2 (4.10)

≥ ε2

4p0
, (4.11)

where (4.9) follows from (4.8), (4.10) is obtained from (4.3), and (4.11) follows from a Taylor

expansion. Finally, (4.11) gives the desired result since

p⊕ ≥ p0 · pŵ1|ŵ0
≥ ε2

4
.

2

Theorem 4.2 The binding condition of mBGKW satisfies p0 + p1 ≤ 1 + 1√
2n−2

.
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Proof : From the isolation assumption, we have

p⊕ =
1
2n

.

Using the result from Lemma 4.1,

1
2n

≥ ε2

4
=⇒ ε ≤ 1√

2n−2
. (4.12)

It follows that the binding condition is satisfied: plugging (4.12) in (4.3), we get for any

cheating strategies

p0 + p1 ≤ 1 +
1√

2n−2
.

2

The next corollary summarizes the security of the mBGKW against a cheating pair

Peggy-Paula with access to quantum resources.

Corollary 4.3 If there exists an algorithm A that can cheat the mBGKW bit commitment

scheme with probabilities p0 +p1 ≥ 1+1/p(n), for every polynomials p(·) and all sufficiently

large n’s, then there exists an algorithm A′ that can predict an unknown n-bit string (r0⊕r1)

with probabilities 1/4p(n)2, which is impossible.

Indeed the following stronger statement is also true:

Corollary 4.4 If there exists an algorithm A that can cheat the mBGKW bit commitment

scheme with probabilities p0 + p1 > 1 + (1/
√

2)n then there exists an algorithm A′ that

can predict an unknown n-bit string (r0 ⊕ r1) with probabilities better than 1/2n, which is

impossible.

Notice the square root gap between the intuitively expected binding condition 1 + 1
2n

and the proven result of Corollary 4.4. This is merely the consequence of the crude lower

bound we found for p⊕. A more precise analysis covering more strategies to compute r0⊕r1

and results on the maximum information we can extract from optimal measurement on |ψ〉

might close the gap. Nevertheless, this small hole is not important enough to compromise
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the security of the mBGKW scheme because the binding condition is still exponentially close

to one.

Notice also that the proof presented in Lemma 4.1 can easily be generalized to a whole

class of bit commitment schemes with the properties that information unknown to Paula

is sent to Peggy to commit, and an exact answer is needed from Paula to unveil success-

fully the committed bit. Corollary 4.4 therefore holds for a whole class of bit commitment

scheme in the two-prover model.

Note finally that sBGKW is the same as mBGKW where r0 := 000...0 is the all-zero

string all the time. The statement and proof of Lemma 4.1 is equally valid for any fixed

choice of either (but not both) r0 or r1 because the probability to predict r0 ⊕ r1 remains

exponentially small. Hence using only the model’s assumption we get

Corollary 4.5 If there exists an algorithm A that can cheat the sBGKW bit commitment

scheme with probabilities p0 + p1 > 1 + (1/
√

2)n then there exists an algorithm A′ that can

predict an unknown n-bit string r with probabilities better than 1/2n, which is impossible.

4.3 Reduction to the original BGKW scheme

Building on Corollary 4.5, we can easily derive a similar result for the original BGKW

scheme. Consider the following reduction from the BGKW scheme to the sBGKW scheme.

First, Peggy and Paula perform their cheating algorithm for the BGKW scheme as usual.

Suppose they successfully cheat for b; check Section 2.3.1 and Figure 2.2 to get a flavor of

what a successful strategy is supposed to output. For each bit of the random string r and

choice of bit b, Peggy receives the trit xi and Paula receives the trit yi := (ri + 1)(b + xi)

mod 3 from their strategy. They then convert these trits into bits to answer the sBGKW

scheme, as follows:

1. Peggy sends the bit x′i :=
(
(ri + 1)xi mod 3

)
mod 2.

2. Paula sends the bit y′i :=
(
yi + 2b mod 3

)
mod 2.
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It is straightforward to check that x′ and y′ are indeed the correct outputs to cheat the

sBGKW scheme. When b = 0 then the successful strategy for BGKW outputs yi := (ri+1)xi

mod 3. Setting y′i := yi mod 2 yields y′i = x′i, which is the correct value to unveil as b = 0

in the sBGKW scheme. When b = 1 then yi := (ri+1)xi+ri+1 mod 3. Setting y′i :=
(
yi+2

mod 3
)

mod 2 we get

y′i =
(
yi + 2 mod 3

)
mod 2

= (ri + 1)xi + ri + 1 + 2 mod 3 mod 2

=
(
(ri + 1)xi mod 3 mod 2 + ri mod 3 mod 2

)
mod 3 mod 2

= x′i + ri mod 2.

where we can drop the “mod 3” in the last equality since both x′i and ri are bits (their sum

is always less than three). Again this is the correct value to unveil as b = 1 in the sBGKW

scheme. In the black-box model, the reduction can be depicted as in Figure 4.1.

NL
s //

NL3
oo t

x //oo y

�� ��
x′ := (s+ 1)x mod 3 mod 2 y′ := y + 2t mod 3 mod 2

Figure 4.1: Reduction from the NL-box to the NL3-box.

Thence, from this reduction it holds that

pb
def= Pr[unveil for b in sBGKW] ≥ Pr[unveil for b in BGKW],

and we can conclude that the original BGKW scheme is also secure against quantum provers

under the new model’s assumption.

Corollary 4.6 If there exists an algorithm A that can cheat the BGKW bit commitment

scheme with probabilities p0 + p1 > 1 + (1/
√

2)n then there exists an algorithm A′ that can

predict an unknown n-bit string r with probabilities better than 1/2n, which is impossible.
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Conclusion and open problems

In this thesis we have shown that the long-standing assumption of no-communication be-

tween the two provers was not sufficiently precise to preserve the binding property of a

bit commitment scheme against all possible attacks. An extra assumption concerning the

verifier, and more generally any third party the two provers may have access to, needs to

be made to prevent him to send correlated messages to the provers, even if those messages

do not allow to explicitly communicate. This refinement has been formally modeled with

Definition 2.1.

The questions whether there exists classically secure commitment schemes that are

insecure against quantum provers, and whether there exists commitment schemes secure

against quantum provers, have both found affirmative answers. Once again, this highlights

the fact that even in the two-prover model, the question as whether a classically secure

commitment scheme is also secure against quantum adversaries is non-trivial. Indeed, we

have presented two schemes, the wBGKW and MSBC schemes, that can be cheated with

probability one, or exponentially close to one, if the provers share entanglement. On the

other hand, we also presented a scheme, the mBGKW scheme, for which a proof that no

quantum strategy can cheat the commitment was given. The security of the original BGKW

commitment scheme has been proved by reduction from the security of the mBGKW scheme.

A natural question with respect to our new model’s assumption is how can it be loos-

ened. Actually, it forbids Peggy an Paula to have access to any kind of non-local boxes
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(which may be perfectly implemented through a third party); however such a strong re-

striction does not necessarily need to be imposed. Take for instance the sBGKW scheme in

the classical setting. Permitting Peggy and Paula to have access to a non-local box for the

Magic Square game would not give them the ability to cheat the commitment scheme: if

instead of the non-local box we let them have the entanglement that implements perfectly

such a box (see Section A.2.2), something that makes them strictly more powerful, then we

know from Lemma 4.1 that it does not help them to cheat. Still, our model’s assumption

does not allow such an inconsequential box! So how can the assumption be further refined?

Which boxes can we allow in the assumption, and which can we not? How can we prove

that a non-local box is futile without invoking Lemma 4.1?

The various applications of the sBGKW scheme also need to be studied. A direct conse-

quence of its security against quantum adversaries is probably the possibility to elaborate

quantum zero-knowledge proofs in the two-prover model. Using simple classical techniques

from [BGG+89] and [IY87] its seems rather straightforward for the two provers to prove in

zero-knowledge any statements in IP=PSPACE. However, as discussed in the introduction,

up to which complexity class it is possible to do so is not known, unless the amount of

entanglement shared between the provers is bounded by some a priori fixed polynomial in

the input length.

Questions like is it possible to build a quantum oblivious transfer protocol using the

construction of [CK88, Cré97], or a quantum mutual identification protocol as in [CS95]

are also intriguing. Determining if the quantum scheme presented in Section 4.2 is binding

with respect to the stronger Definition 1.5 is still an open problem.
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Appendix A

Classical and quantum optimal

implementation of the NL-box and

the Magic Square game

Since its discovery by Einstein, Podolsky and Rosen, in the famous “thought experiment”

of [EPR35], and taking all its profound fundamentality with the controversial result of John

Bell in 1964 [Bel64], non-locality and its impact has been one of the major line of research

in quantum mechanics. As presented in [NC00],

“ [...] substantial experimental evidence together with the large set of inequalities

generically known as the Bell inequalities showed that non-local correlations are

a fundamental difference between classical and quantum physics, often referred

as the non-classical property of quantum mechanics.”

On a more practical hand, in quantum computation and information, non-locality is intro-

duced as entanglement shared between two (or more) parties. It is surprising to see how

non-locality can be exploited as a resource to perform information processing task impos-

sible using classical physic, e.g. quantum teleportation [BBC+93] and superdense coding

[BW92].
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A.1 The CHSH game

Non-locality is often best explained in the framework of cooperative games, where two (or

more) players play cooperatively against a verifier. In this section, we are mostly interested

by the so-called CHSH game, after the initials of its four discovers Clauser, Horne, Shimony,

and Hold [CHSH69]. The CHSH game, which leads to the well-known CHSH inequality,

is among the first cooperative game ever studied for which the simple question “can we

do better using entanglement” found an affirmative answer. The following shows how and

by which amount we can do better than if we bound ourselves to use a classical strategy.

Although it would be quite interesting to give a new technique for answering the question,

elegant solutions already exist in the literature. The rest of the work presented in this

chapter is heavily inspired from [CHTW04].

The structure of the CHSH game goes as follows. A verifier Vic uniformly chooses at

random two bits (s, t) ∈ {0, 1} × {0, 1}, then sends s to Peggy and t to Paula. Peggy

responds with u ∈ {0, 1} and Paula responds with v ∈ {0, 1}. To win the game, Peggy and

Paula must answer (u, v) such that

u⊕ v = s ∧ t, (A.1)

under the constraint that Peggy and Paula are isolated and u, alternatively v, is uniformly

distributed.

It is not hard to see that winning this game corresponds exactly to the behavior we

expect from the NL-box of Section 2.3. Note that using GF (2) terminology, (A.1) can be

expressed as

u+ v ≡ st (mod 2). (A.2)

A.1.1 Optimal classical strategy for the CHSH game

Recall from Section 1.3 that ωc is the maximum success probability over all possible strate-

gies that the classical pair Peggy-Paula win the game. From Theorem 1.3, we get that to
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upper bound ωc, one needs only to consider deterministic strategies.

To produce u and v with a deterministic strategy, Peggy, respectively Paula, evaluates a

function depending on s, respectively t. Let u(s) and v(t) be these functions. For instance,

on input (s, t), a strategy that would output

u(s) = u and v(t) = v

would succeed.

Lemma A.1 ωc ≤ 3/4.

Proof : From (A.2)

u(s) + v(t) ≡ st (mod 2)

−→ v(t) ≡ u(s) + st (mod 2).

For any strategy, there is two possibilities regarding the value of u(s).

i. The function u(s) is independent of s, that is u(s) = u0 where u0 is a constant. Thus

v(t) ≡ u0 + st (mod 2). (A.3)

ii. The function u(s) is dependent of s, that is u(s) = u0+u1s where u0, u1 are constants.

Thus

v(t) ≡ u0 + s(u1 + t) (mod 2). (A.4)

Peggy and Paula win on every input (s, t) only if there exists a strategy where v(t) is

independent of s. Clearly, from (A.3) and (A.4), this is not the case; Peggy and Paula

cannot win every time. Because there are four possible input pairs (s, t), they can win for

at most three of them. Hence ωc ≤ 3/4, which proves the claim.

2

In fact it is not hard to show the stronger result:
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Theorem A.2 ωc = 3/4.

Proof : Consider the truth table.

s t s ∧ t

0 0 0

0 1 0

1 0 0

1 1 1

The strategy where

u(s) = 0 and v(t) = 0

always output u(s)⊕v(s) = 0. It is straightforward that this strategy wins the CHSH game

3/4 of the time.

2

Among other things, the result of Theorem A.2 means that the NL-box cannot be simulated

perfectly using local variables on each side.

A.1.2 Optimal quantum strategy for the CHSH game

We now turn to the scenario where Peggy and Paula are allowed to use a quantum strategy.

We show that sharing entanglement, Peggy and Paula can beat the classical bound of 3/4.

As in [CHTW04], consider this specific strategy. Peggy and Paula share the entangled one

qubit state

|Φ+〉 =
1√
2

(
|00〉+ |11〉

)
.

Define

|ψ0(θ)〉 := cos(θ)|0〉+ sin(θ)|1〉,

|ψ1(θ)〉 := sin(θ)|0〉 − cos(θ)|1〉.
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Given s, Peggy will perform a projective measurement determined by the measurement

operators {Xu
s | u ∈ {0, 1}} and report u to Vic. Likewise, given t, Paula will perform a

projective measurement determined by the operators {Y v
t | v ∈ {0, 1}} and send v to Vic.

Let the operators be

Xu
0 = |ψu(0)〉〈ψu(0)|,

Xu
1 = |ψu(π/4)〉〈ψu(π/4)|,

Y v
0 = |ψv(π/8)〉〈ψv(π/8)|,

Y v
1 = |ψv(−π/8)〉〈ψv(−π/8)|.

To prove this quantum strategy outperforms ωc, we need the following little identity.

Lemma A.3 Let |ϕ〉 ∈ Cd ⊗ Cd be any maximally entangled state, then for any d × d

complex matrix X (
X ⊗ I

)
|ϕ〉 =

(
I ⊗XT

)
|ϕ〉.

Proof : Using the Schmidt decomposition, the maximally entangled state |ϕ〉 can be ex-

pressed as

|ϕ〉 =
1√
d

d−1∑
j=0

|j〉|j〉.

Similarly, the d× d complex matrix X can be expressed as

X =
d−1∑
k=0

d−1∑
l=0

λkl|k〉〈l| λkl ∈ C.

Using some elementary linear algebra,

(
X ⊗ I

)
|ϕ〉 =

1√
d

d−1∑
j=0

d−1∑
k=0

d−1∑
l=0

λkl|k〉〈l|j〉|j〉

=
1√
d

d−1∑
k=0

d−1∑
l=0

λkl|k〉|l〉. (A.5)
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And likewise,

(
I ⊗XT

)
|ϕ〉 =

1√
d

d−1∑
j=0

d−1∑
k=0

d−1∑
l=0

λkl|j〉|l〉〈k|j〉

=
1√
d

d−1∑
k=0

d−1∑
l=0

λkl|k〉|l〉. (A.6)

Clearly (A.5) and (A.6) are equal, which conclude the claim.

2

Following the line of arguments developed in [CHTW04, Hay], we can lower bound ωq.

Lemma A.4 ωq ≥ cos2(π/8).

Proof : Define p(u, v | s, t) as the probability of measuring u and v given that s and t were

sent. Peggy and Paula are using the projective measurements described above. Hence, the

operators for the joint measurement are {Xu
s ⊗Y v

t | u, v ∈ {0, 1}}. Label U the system held

by Peggy and V the system held by Paula, then we get

p(u, v | s, t) = 〈Φ+|Xu
s ⊗ Y v

t |Φ+〉 (A.7)

= 〈Φ+|
(
Xu

s ⊗ I
)
⊗
(
I ⊗ Y v

t

)
|Φ+〉

= 〈Φ+|
(
Xu

s ⊗ I
)
⊗
(
Y vT

t ⊗ I
)
|Φ+〉 (A.8)

= 〈Φ+|
(
Xu

s Y
vT

t ⊗ I
)
|Φ+〉

= 〈Φ+|
(
Xu

s Y
v
t ⊗ I

)
|Φ+〉 (A.9)

=
1
2
(
〈0|U 〈0|V + 〈1|U 〈1|V

)(
Xu

s Y
v
t ⊗ I

)(
|0〉U |0〉V + |1〉U |1〉V

)
=

1
2

(
〈0|UXu

s Y
v
t |0〉U 〈0|V |0〉V + 〈0|UXu

s Y
v
t |1〉U 〈0|V |1〉V

+〈1|UXu
s Y

v
t |0〉U 〈1|V |0〉V + 〈1|UXu

s Y
v
t |1〉U 〈1|V |1〉V

)
=

1
2

(
〈0|UXu

s Y
v
t |0〉U + 〈1|UXu

s Y
v
t |1〉U

)
=

1
2
Tr
(
Xu

s Y
v
t

)
,
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where (A.7) is by definition of measurement, (A.8) is by applying the identity of Lemma A.3

and (A.9) is because, given our particular choice of measurement operators for Paula, Y v
t

is invariant under transpose. It is now routine to check that for every pair of inputs (s, t),

Peggy and Paula give the correct answer with probability cos2(π/8). As an example, we

do the case where (s, t) = (1, 1). Because s ∧ t = 1, Peggy and Paula need (u, v) ∈

{(0, 1), (1, 0)}. The first pair gives

p(0, 1 | 1, 1) =
1
2
Tr
(
X0

1Y
1
1

)
=

1
2
Tr
(
|ψ0(π/4)〉〈ψ0(π/4)||ψ1(−π/8)〉〈ψ1(−π/8)|

)
=

1
2
|〈ψ0(π/4)|ψ1(−π/8)〉|2 by cyclicity of the trace

=
1
2
|(cos(π/4)〈0|+ sin(π/4)〈1|)(sin(−π/8)|0〉 − cos(−π/8)|1〉)|2

=
1
2
| − cos(π/4) sin(π/8)− sin(π/4) cos(π/8)|2

=
1
2
| − sin(π/4 + π/8)|2 =

1
2
| − cos(π/2− π/4− π/8)|2

=
1
2

cos2(π/8).

Doing the calculations, (u, v) = (1, 0) also gives p(1, 0 | 1, 1) = 1/2 cos2(π/8). Therefore the

probability to win when (s, t) = (1, 1) is 1
2 cos2(π/8) + 1

2 cos2(π/8) = cos2(π/8). The same

holds for the three other sets of inputs (s, t).

2

Theorem A.5 ωq = cos2(π/8).

Proof : The intuition behind what follows is that a strategy that could do better than

cos2(π/8) would require more “power” from entanglement. Our goal is then to show that

the strategy presented above exploits entanglement’s correlations to its maximum.

First, let us translate the measurement operators Xu
s , Y

v
t into observables with eigen-

values ±1 ([NC00] p. 87). It is straightforward from its definition that the projector Xu
0

corresponds exactly to a measurement in the computational basis {|0〉〈0|, |1〉〈1|}. Consider

the observable Z,

Z =

 1 0

0 −1

 = |0〉〈0| − |1〉〈1|. (A.10)
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If Peggy applies the observable Z to her part of |Φ+〉, if she obtains the eigenvalue 1 it

means her part of |Φ+〉 has been projected in the state |0〉〈0|. On the other hand, if she

obtains the eigenvalue -1 it means her part of |Φ+〉 has been projected in the state |1〉〈1|.

One easily realizes that this has the same effect as applying the measurement {|0〉〈0|, |1〉〈1|}.

The measurement operator Xu
1 corresponds to a measurement in the diagonal basis

{H|0〉〈0|H,H|1〉〈1|H}. We know from a simple calculation ([NC00] p. 459) that

HZH = X.

Hence, using the expression for Z in (A.10),

X = H|0〉〈0|H −H|1〉〈1|H.

As it was the case for the observable Z, the eigenvalue obtained after applying the observable

X has the same effect on the observed state as a measurement in the diagonal basis. Using

the same type of reasoning, we get that the observable for a general rotation Rθ by angle

θ is defined by

RθZRθ =

 cos(θ) sin(θ)

sin(θ) − cos(θ)

 ·

 1 0

0 −1

 ·

 cos(θ) sin(θ)

sin(θ) − cos(θ)


=

 cos2(θ)− sin2(θ) 2 cos(θ) sin(θ)

2 cos(θ) sin(θ) −(cos2(θ)− sin2(θ))


=

 cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 .

Thus, the observable Y0 associated with the measurement in basis defined by Y v
0 is

Y0 = Rπ/8ZRπ/8 =
1√
2

 1 1

1 −1

 =
Z +X√

2
.

and the observable Y1 associated with the measurement in basis defined by Y v
1 is

Y1 = R−π/8ZR−π/8 =
1√
2

 1 −1

−1 −1

 =
Z −X√

2
.
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To summarize, upon reception of (s, t) Peggy and Paula perform their measurement

using the observables

X0 = Z, Y0 =
Z +X√

2
,

X1 = X, Y1 =
Z −X√

2
.

Plugging these observables in the famous Bell inequality known as the CHSH inequality,

we get

〈X0Y0〉+ 〈X1Y0〉+ 〈X1Y1〉 − 〈X0Y1〉 = 2
√

2, (A.11)

where 〈XiYj〉 = 〈Φ+|Xi ⊗ Yj |Φ+〉 denotes the mean value of Xi and Yj ; see [NC00] p. 116

for more details.

But wait! Using Tsirel’son [Cir80, Cir87] upper bound1 for any observable (X0 and X1

being applied by Peggy and Y0 and Y1 by Paula)

〈X0Y0〉+ 〈X1Y0〉+ 〈X1Y1〉 − 〈X0Y1〉 ≤ 2
√

2,

we get that our strategy already uses the maximum out of the correlations produced by

entanglement. This conclude the theorem since no other strategy can do better.

2

A.2 The Magic Square game

A description of the Magic Square game can be found in Section 3.2.1.

For the interested reader, there are other pseudo-telepathy games that are related to

the magic square game. Adán Cabello’s game [Cab01b, Cab01a] does not resemble the

magic square game on first approach. However, closer analysis reveals that the two games

are totally equivalent! A formal proof of this claim can be found in [Bro04], along with the
1Although Tsirel’son proved is bound using the singlet state 1√

2
(|01〉− |10〉), a generalization by Wehner

[Weh06] showed it holds for any bipartite state.
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definition of equivalence between pseudo-telepathy games.

Furthermore, Aravind has generalized his own magic square idea [Ara03] to a two-player

pseudo-telepathy game in which the players share n Bell states, n being an arbitrary odd

number larger than one.

A.2.1 Optimal strategy for classical players

Theorem A.6 When restricted to classical strategies, Peggy and Paula can win the Magic

Square game with probability at most 8
9 .

Proof : Using Theorem 1.3, we only have to consider deterministic strategies to establish

a bound for ωc(G), the maximum success probability of winning when the game G is the

Magic Square game.

A deterministic classical strategy would have to assign definite binary values to each of

the nine entries of the magic square. From our set of winning conditions (see Section 3.2.1),

it implies that the parity of the nine entries is even according to the rows and odd according

the columns. Obviously, no such set of entries can exist, so ω̃c(G) < 1. Using Lemma 1.4,

we get that ω̃c(G) ≤ 8
9 .

Consider the following square and associated deterministic strategy.

0 1 2

0

1

2

0 0 0

0 0 0

1 1 ?

The parity of rows zero and one is even, and the parity of columns zero and one is odd, so

Peggy and Paula win every time for these four possible cases without changing anything. If

Peggy is asked row two, then she changes the ? of entry (2,2) to zero to get an even parity,

and similarly Paula changes it to one to get a odd parity for column two. It is not hard
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to see that they get caught cheating only when the intersection of the answered row and

column is the entry (2,2). Therefore ω̃c(G) = 8
9 , which conclude the proof together with

Lemma 1.2.

2

A.2.2 Quantum winning strategy

The quantum winning strategy for the magic square game is not as simple as the classical

impossibility proof. We refer the reader to [Ara02, Bro04] for a clear and detailed proof,

since we will present here only a swift overview.

Let Peggy and Paula share the entangled state

|ψ〉 = 1
2 |0011〉 − 1

2 |0110〉 − 1
2 |1001〉+ 1

2 |1100〉 . (A.12)

The first two qubits belong to Peggy and the last two to Paula. Upon receiving their inputs

x and y from the verifier Vic, Peggy and Paula apply respectively the unitary transformation

Rx and Cy, according to the following matrices. Note that, as a reminder, we used Rx as

the transformation associated with the computation for the row, and Cy for the column.

R0 =
1√
2

[ ı 0 0 1
0 −ı 1 0
0 ı 1 0
1 0 0 ı

]
, R1 = 1

2

[ ı 1 1 ı
−ı 1 −1 ı

ı 1 −1 −ı
−ı 1 1 −ı

]
, R2 =

1
2

[−1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

]
,

C0 =
1
2

[ ı −ı 1 1
−ı −ı 1 −1

1 1 −ı ı
−ı ı 1 1

]
, C1 = 1

2

[−1 ı 1 ı
1 ı 1 −ı
1 −ı 1 ı

−1 −ı 1 −ı

]
, C2 =

1√
2

[ 1 0 0 1
−1 0 0 1

0 1 1 0
0 1 −1 0

]
.

Then, Peggy and Paula measure their qubits in the computational basis. This provides

two bits to each player, which are the first two bits of their respective output rx and cy.

Finally, Peggy and Paula determine their third output bit from the first two, so that their

parity condition is satisfied. The intersection condition is also always satisfied.

Consider for example inputs x = 1 and y = 2. After Peggy and Paula apply R1 and C2,
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respectively, the state evolves to

(R1 ⊗ C2)|ψ〉 = 1
2
√

2

[
|0000〉 − |0010〉 − |0101〉+ |0111〉 (A.13)

+|1001〉+ |1011〉 − |1100〉 − |1110〉
]
. (A.14)

Suppose for instance that after measurement, Peggy and Paula obtained 10 and 01. In that

case, Peggy would complete with bit one so that her output r1 = 101 has even parity and

Paula would complete with bit zero so that her output c2 = 010 has odd parity. Vic will

be satisfied with the answer since both Peggy and Paula agree that the third entry of the

second row is indeed the same as the second entry of the third column: c21 = r12 = 1. It is

easy to check that the seven other possible answers that Peggy and Paula could have given

on this example are all appropriate. The verification that this quantum strategy wins also

on the other eight possible questions is tedious but straightforward.
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[CS95] C. Crépeau and L. Salvail. Quantum oblivious mutual identification. In

EUROCRYPT, pages 133–146, 1995.

[DFMS04] I. B. Damg̊ard, S. Fehr, K. Morozov, and L. Salvail. Unfair noisy channels and

oblivious transfer. In Theory of Cryptography Conference - TCC ’04, pages

355–373, February 2004.

[DFSS05] I. Damg̊ard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded

quantum-storage model. In 46th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2005), pages 449–458. IEEE Computer Society, 2005.

[DFSS06] I. Damg̊ard, S. Fehr, L. Salvail, and C. Schaffner. 1-2 OT in the bounded

quantum-storage model with applications. In preparation, 2005-06.

87



[DKS99] I. Damg̊ard, J. Kilian, and L. Salvail. On the (im)possibility of basing obliv-

ious transfer and bit commitment on weakened security assumptions. In

EUROCRYPT, pages 56–73, 1999.

[DMS00] P. Dumais, D. Mayers, and L. Salvail. Perfectly concealing quantum bit com-

mitment from any quantum one-way permutation. In EUROCRYPT, pages

300–315, 2000.

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description

of physical reality be considered complete? Physical Review, volume 47, pages

777–780, 1935.

[Eve82] S. Even. Protocol for signing contracts. In Allen Gersho, editor, Advances in

Cryptography, pages 148–153, Santa Barbara, California, USA, 1982.

[Fei91] U. Feige. On the success probability of two provers in one-round proof systems.

In Sixth Annual Conference on Structure in Complexity Theory, pages 116–123,

1991.

[FL92] U. Feige and L. Lovász. Two-prover one-round proof systems: their power

and their problems (extended abstract). In Proceedings of the twenty-fourth

annual ACM symposium on Theory of computing, STOC ’92, pages 733–744,

New York, NY, USA, 1992. ACM Press.

[For87] L. Fortnow. The complexity of perfect zero-knowledge. In Proceedings of the

nineteenth annual ACM conference on Theory of computing, STOC ’87, pages

204–209, New York, NY, USA, 1987. ACM Press.

[FRS94] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive

protocols. Theory of Computer Science, volume 134, number 2, pages 545–557,

1994.

[Gav06] D. Gavinsky. On the role of shared entanglement. ArXiv Quantum Physics

e-prints quant-ph/0604052, 2006.

88



[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-

tive proof-systems. In Proceedings of the seventeenth annual ACM symposium

on Theory of computing, STOC ’85, pages 291–304, New York, NY, USA, 1985.

ACM Press.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their

validity and a methodology of cryptographic protocol design. In IEEE, 27th

Annual IEEE Symposium on Foundations of Computer Science, pages 174–187,

New York, 1986.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. In Journal

of The Association for Computing Machinery, volume 38, pages 691–729, 1991.

[Hay] P. Hayden. Comp761 course notes, winter 2005. McGill university.

[HILL98] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator

from any one-way function. SICOMP: SIAM journal on Computing, volume

28, number 4, 1998.

[HM96] S. Halevi and S. Micali. Practical and provably-secure commitment schemes

from collision-free hashing. In Koblitz, editor, Advances in Cryptology:

Crypto’96, pages 201–215. Springer-Verlag, 1996.

[IY87] R. Impagliazzo and M. Yung. Direct minimum knowledge computations. In

Springer-Verlag, editor, Advances in Cryptology: Crpyto’87, volume 293, pages

40–51, 1987.

[Ken99] A. Kent. Unconditionally secure bit commitment. Physical Review Letters,

volume 83, pages 1447, 1999.

[Ken04] A. Kent. Promising the impossible: classical certification in a quantum world.

ArXiv Quantum Physics e-prints quant-ph/0409029, 2004.

89



[Ken05] A. Kent. Secure classical bit commitment using fixed capacity communication

channels. In Journal of Cryptology, volume 18, number 4, pages 313–335, 2005.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM Sympo-

sium on theory of Computing, STOC’88, pages 20–31. ACM, 1988.

[KM03] H. Kobayashi and K. Matsumoto. Quantum multi-prover interactive proof

systems with limited prior entanglement. Journal of Computer System Science,

volume 66, number 3, pages 429–450, 2003.

[KMR05] D. Kenigsberg, T. Mor, and G. Ratsaby. Quantum advantage without entan-

glement. ArXiv Quantum Physics e-prints quant-ph/0511272, 2005

[LC97] H-K Lo and H. F. Chau. Is quantum bit commitment really possible? Physical

Review Letters, volume 78, number 17, pages 3410–3413, April 1997.

[LS91] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for

nexp-time. In 32nd Annual Symposium on foundations of Computer Science,

FOCS’91, pages 13–18, 1991.

[May96a] D. Mayers. The trouble with quantum bit commitment. ArXiv Quantum

Physics e-prints quant-ph/9603015, March 1996.

[May96b] D. Mayers. Unconditionally secure quantum bit commitment is impossible.

ArXiv Quantum Physics e-prints quant-ph/9605044 November 1996.

[May97] D. Mayers. Unconditionally secure quantum bit commitment is impossible.

Physical Review Letters, volume 78, pages 3414–3417, 1997.

[Mer90] N. D. Mermin. Simple unified form for the major no-hidden-variables theorems.

Physical Review Letters, volume 65, number 27, pages 3373–3376, 1990.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,

volume 4, number 2, pages 151–158, 1991.

90



[NC00] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum informa-

tion. Cambridge University Press, New York, NY, USA, 2000.

[NOVY93] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge

arguments for NP can be based on general complexity assumptions. In Advances

in Cryptology: Procceedings of Crypto’ 92. Springer-Verlag, 1993.

[PR94] S. Popescu and D. Rohrlich. Nonlocality as an axiom. Foundations of Physics,

volume 24, pages 379, 1994.

[PR97] S. Popescu and D. Rohrlich. Causality and nonlocality as axioms for quantum

mechanics. In Symposium on Causality and Locality in Modern Physics and

Astronomy, 1997.

[Raz95] R. Raz. A parallel repetition theorem. In Proceedings of the twenty-seventh

annual ACM symposium on Theory of computing, STOC ’95, pages 447–456,

New York, NY, USA, 1995. ACM Press.

[Sti05] D. R. Stinson. Cryptography: Theory and Practice, Third Edition. CRC Press,

2005.

[Weh06] S. Wehner. Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt

inequalities. Physical Review A, volume 73, pages 022110, 2006. quant-

ph/0510076.

[Wie70] S. J. Wiesner. Conjugate coding. SIGACT News, volume 15, number 1, pages

78–88, 1983. original manuscript around 1970; subsequently published in 1983.

[Yao95] Andrew Chi-Chih Yao. Security of quantum protocols against coherent mea-

surements. In 27th Twenty-Seventh Annual ACM Symposium on Theory of

Computing, STOC ’95, pages 67–75. ACM, 1995.

91


