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Abstract

We present full generalizations of entropic security and entropic indistinguishability,

notions introduced by Russell and Wang and then Dodis and Smith, to the quantum

world where no assumption other than a limit on the knowledge of the adversary is

made. This limit is quantified using the quantum conditional min-entropy as intro-

duced by Renner. In this fully generalized model, we allow any kind of entanglement

or correlation between the Sender and the Eavesdropper.

A proof of equivalence between the two security definitions is presented. This proof

of equivalence is much simpler and more powerful than what was previously done

and is by itself a worthy contribution. We also provide proofs of security for two

different ciphers in this model. These ciphers generalize existing schemes for approxi-

mate quantum encryption to the entropic security model. The key length requirement

of these two schemes is exactly the same as their classical counterparts for separa-

ble states. It is also, as far as we know, the first time that one can prove security

for encryption schemes while allowing entanglement with the adversary and yet not

requiring perfect security.



4

Résumé

Une généralisation complète des notions de sécurité entropique et d’indistinguabilité

entropique, telles que définies par Russell et Wang puis par Dodis et Smith, au

monde quantique est présentée. Aucune autre hypothèse qu’une borne inférieure sur

l’incertitude de l’adversaire, incertitude quantifiée par la notion de min-entropie con-

ditionelle quantique telle que définie par Renner, n’est présumée. Ce modèle permet

toute forme de corrélation ou d’intrication entre l’adversaire et l’émetteur du message.

Une Démonstration de l’équivalence entre ces deux notions de sécurité est présentée

qui est beaucoup plus simple que ce qui était connue au-paravant. Cette nouvelle

simplicité est une contribution notable. Deux chiffres sont aussi généralisés à ce nou-

veau modèle de sécurité et leur sécurité est démontrée. La taille de la clef requise afin

d’assurer la sécurité de ces deux chiffres est exactement la même que celle requise par

leur équivalent classique. Ces chiffres sont sécuritaires même en présence d’intrication

entre l’adversaire et l’émetteur, ce qui est, autant que nous le sachions, une première

sans requérir une sécurité parfaite.
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Chapter 1

Prolegomenon

1.1 Introduction

This work will focus on the oldest and purest part of cryptography, that is encryption.

What is encryption? Loosely speaking, encryption is the science of privacy. If we have

two parties, a sender and a receiver, encryption is meant to keep all messages as secret

as possible against most adversaries and in most conditions. The first question which

normally pops up in someone’s mind is: “well what do we mean by secret”. This is

the central question investigated in this thesis: what is the security of an encryption

scheme?

Currently, the most popular and practical schemes use computational assumptions.

That is, we assume that anyone who intercepts an encrypted message and who does

not know the key, is limited in his abilities to retrieve the message or part of the

message. By limited, what we really mean is: if the adversary were given enough

resources, time and space for example, then he would be able to recover at least parts

of the message. Usually, we feel secure if for powerful adversary it would take a few

centuries to retrieve part of the message. Of course, this is vague, but in practice this

11
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is exactly what is done.

In general, cryptographic schemes are constructed using trap-door one way permu-

tations: a special kind of permutation which is really easy to compute one way, but

believed to be hard to invert. It is easy to encrypt the message, but really hard to

retrieve the message without the key (or the trap-door). We have good reasons to be-

lieve such functions (permutations) exist. Factorization appears to be such a problem.

Brilliant minds have studied this problem for thousands of years and yet, we know

of no efficient algorithm that can factor systematically a given large number (this is

a gross oversimplification, not every large number is hard to factor, and of course,

the meaning of large depends on the technology available). Factorization is therefore

a good candidate to construct one-way function or permutation. There exists en-

cryption schemes that are equivalent to factorization in difficulty. If there existed an

adversary that could break the system efficiently, then one could use this hypothetical

adversary to factor large numbers efficiently. If there existed an algorithm that could

factor large numbers efficiently, then we could use this algorithm to break the system

efficiently. This is what is meant by equivalent. Using these permutations, we can

construct public-key schemes. That is a scheme in which a party creates two keys, a

public key and a private key. The party obviously keeps the private key secret and

publishes the public-key. Anyone can then use this public-key to encrypt messages

and send them to the owner of the private key, who can then decrypt the messages.

Computational cryptography is nice in that the key length is independent of the

message length. Furthermore, as long as the key has not been compromised, one

can reuse the key again and again. But this is only valid in the world in which we

live right now, that is a world where no quantum computer exists. No week goes by

lately without new discoveries bringing us closer to having real quantum computers1.

Scientists all around the world are working hard to instantiate that crazy theorist

dream that is a quantum computer. And the day that happens, most of the classical

1A query on slashdot would return many examples: http://slashdot.org/search.pl?query=

quantum

http://slashdot.org/search.pl?query=quantum
http://slashdot.org/search.pl?query=quantum
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cryptography on which we rely today will suddenly become useless.

Even though quantum computers do not exist yet, computer scientists have been busy

discovering their properties. It all began officially with the publication of a protocol

by Bennett and Brassard in 1984 [8]. This protocol, called Quantum Key Distribution,

or QKD, is a protocol that allows two parties, usually called Alice and Bob, to start

from a small private key, and, using public conversation over a quantum channel,

to expand this small key into a larger one with no limit on its final size (of course,

the final size is dictated by the amount of conversation exchanged between the two

parties). Furthermore, one can prove, albeit it took twenty years to do it convincingly

[37], that if an adversary is trying to temper with this protocol, either Alice and Bob

abort the protocol (which happens only if the adversary disturbed the communication

more than a certain predefined threshold) or they finish the protocol and the resulting

key they have is with overwhelming confidence perfectly secure (the adversary knows

nothing about it). This is a task which classically cannot be done. It did not take

too long before this protocol was proven feasible in the laboratory.

A second great boost came to the field when in 1994 Peter Shor presented an algo-

rithm, [41] that would allow a quantum computer, if it existed, to factor large numbers

efficiently. In the same paper, Shor also presented an algorithm that could compute

the discrete logarithm on a quantum computer. This was a major achievement, but,

at the same time, a major blow to modern cryptography. If one could construct such

a machine, then most public-key protocols used today could be broken.

Of course private-key schemes like AES do not rely on those specific computational

assumptions, but, then again, one does not know how to construct public-key cryp-

tography with them and, very often, their security is left open. Other public-key

schemes like the one based on coding theory from McEliece [34] are not yet affected

by quantum computers. But their security assumptions are much younger than the

factoring assumption. How much can we trust them? How long before someone finds

a way to brake them using quantum computers?
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Of course, one can choose to render quantum computers useless by requiring perfect

security. Perfect security is defined using information theory as developed by Shannon

in the forties [40]. Information is defined as a difference of two uncertainties. How

uncertain is the adversary on the message sent before seeing the cipher-text and after

seeing the cipher-text. If this difference is zero for all messages, then we say that the

adversary has learned nothing and thus that the encryption scheme is perfectly secure.

It has been known how to achieve perfect security since the forties (even earlier than

that, but no proof of security was known [43]).

Perfect security sounds good but it has huge requirements in key size that renders it

less practically appealing . Not only is it a symmetric scheme, that is both parties have

to know the secret key before communicating —they must have met and exchanged

it—, but the length of the key must be as large as the message itself. For a gigabyte

of data, one needs to have previously exchanged in secret at least a gigabyte of key!

This is the price of perfectness. But it gets worse, this is for classical messages. For

quantum messages, the key has to be twice as long. One qubit (quantum bit) requires

two classical bits of key to be encrypted [3].

For quantum messages, a relaxation on the perfect security criterion can be made in

order to cut the key length. That is, if we require that the encryption scheme cannot

be distinguished by any adversary for any non-entangled messages from the perfect

scheme, then the key length can be reduced to roughly n bits of key for n qubits. This

relaxation is pointless classically, the key length would be reduced by an insignificant

amount (less than one bit).

This last relaxation has to work for all non-entangled messages. But what if we where

to restrict what messages can be sent? What if the adversary was highly uncertain on

which message is to be sent? That is, lots of messages can be sent and the probability

that any given message is sent is never too large. Then, there is another relaxation

that one can do. It is called entropic security. It was introduced in 2002 in the classical

setting by Russell and Wang, see [39], and further studied by Dodis and Smith [4] two
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years later. It simply says that if the adversary has a large uncertainty of a special

kind, that is min-entropy, then the encryption scheme is highly secure. Security is

defined by saying that whatever the adversary could compute from seeing the cipher-

text, then he could have computed it without seeing the cipher-text. Seeing the cipher-

text does not help the adversary. This definition of security is reminiscent of semantic

security. It is in fact very similar, the main difference is that the encryption scheme

has to be secure against all adversaries, however powerful. Encryption schemes exist

that achieve this definition and they are very simple to implement. The key length

can be reduced by the amount of uncertainty by which the adversary is afflicted.

This definition is only valid for classical messages and adversaries that have no access

to side-channels. A side-channel could be an electro-magnetic reading of the computer

screen the sender is using to transmit the message for example. Coupled with the

cipher-text, this reading could unlock many possibilities for the adversary. Although

perfectly secure schemes remain secure, the definition of entropic security completely

breaks down in such a case. There are reasonable scenarios where, with very low

probability, the adversary could learn some information on the side-channel that would

allow him to easily contradict the security assumption (a phenomenon akin to that of

locking or unlocking, see [28, 33]). But most sampling of the side-channel would not

influence the ability of the adversary to break the scheme. In such a case, it seems

reasonable the scheme is mostly secure, but how can one prove this? In the past,

in the absence of correct security definition, one would simply have chosen the worst

case scenario and have made sure the encryption protected the user for that specific

case even though this was an overkill in most cases. There was simply no security

proofs to do otherwise.

This is the problem we intent to solve in this thesis. We shall propose security

definitions and encryption schemes achieving them that are resilient to side-channel

attacks of any type, including entanglement of the adversary and the message sent.

As long as one can bound the uncertainty of the adversary (this uncertainty has to be

carefully defined) then we can guarantee security. Of course bounding this uncertainty
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in practice is a problem in itself which is out of the scope of this thesis but that would

deserve more attention.

More specifically, we build these definitions in two steps. In a first step, we allow

the sender to send quantum messages which are not entangled with the adversary.

We model the adversary in the most general way allowed by quantum physics, that

is a POVM. We make two restrictions on the adversary: he has a certain amount of

uncertainty on the message sent and he is not correlated (he does not have access

to any side-channel). In the first model, §2, we propose generalizations of classical

entropic security definitions and two ciphers that achieve them. These ciphers do

not use more key than their classical entropically-secure counterparts. We also in-

troduce new proof techniques that greatly simplify proving the equivalence between

two different security definitions and that also work classically. This chapter is an

important intellectual step toward full generalization of the security definitions to all

side-channels.

In §3 we fully generalize the simpler model of chapter §2. We need to redefine un-

certainty, for that purpose, we use a definition of entropy introduced by Renner [37]

to help prove that the BB84 protocol is indeed secure. This definition allows us to

correctly quantify the uncertainty for any type of correlation between the adversary

and the sender: that is any kind of side-channel including entanglement. From this,

we can rebuild a structure of relations between the security definitions similar to §2
but in this more general model. We generalize all security definitions and prove equiv-

alence between them and also prove that two simple (the same as in §2) encryption

schemes can in fact achieve these definitions whilst reducing the key length compared

to perfect security.

Chapter §3 bridges the gap between perfect security and approximate-encryption

which are the two different quantum information theoretic definitions that existed

before. The first one requires 2n bits of key to encrypt any quantum state, and

security is achived even if the eavesdropper is entangled or correlated with the state.
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The latter definition can achieve encryption of any separable (unentangled) state

using roughly n bits of key for n qubits. Equipped with the definitions and technique

presented in this thesis, we can now smoothly go from n to 2n bits of key depending

on the uncertainty of the adversary.

1.2 Historical perspective and contributions

Let us start by defining what an encryption scheme (or cipher) is. We will be

interested only in quantum schemes (classical schemes will be a natural restriction of

everything done here). Hence the messages the sender emits are quantum by nature,

therefore we shall call a generic message ρ, where ρ is a density operator2. We shall

also use m and M for classical messages and classical random variables representing

the message distribution.

Definition 1 (Encryption scheme) An encryption scheme E is a set of super-

operators3 {Ek}k indexed by a uniformly distributed key k ∈ {1, . . . , |K|} = K such

that for each k, there exists an inverting super-operator Dk such that for all states ρ

we have

Dk(Ek(ρ)) = ρ. (1.1)

The setK is called the key space. In classical cryptography, we would replace the set of

super-operators by a set of channels or algorithms. This definition obviously applies

to most encryption scheme everyone knows. Still, it says nothing about security,

secrecy or privacy! So how could we define security? One solution is to ask for perfect

security. This is what Shannon did with information theoretic perfect security [40].

This security definition simply requires that the adversary acquires no information

whatsoever on the message from the encrypted version of that message, or:

2See §1.3 for formal definition of most concepts of this section.
3See [14] and [35] for characterization of admissible operators.
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Definition 2 (Perfect classical security) Let M be a random variable describing

the eves-dropper’s view, then a cipher is perfectly secure if for all such variables M

we have

I(M : E(M)) , H(M)−H(M |E(M)) = 0. (1.2)

Here information is defined as a difference of uncertainties, the uncertainty on the

message before seeing the encrypted text and after seeing the encrypted text and of

course, for this to make sense, the messages are classical. This definition does not make

any assumption, it does not depend on the computing power, time or even information;

if the adversary knows half the message before seeing its encrypted version, then

after seeing the encrypted version, the adversary still only knows the same half and

nothing more. There is a caveat: in order to achieve this security definition the key

size required by a cipher is, in general, as large as the message, or

H(K) > H(M). (1.3)

If one wants to send quantum messages, then the situation is even worse, perfect

secrecy requires the key length to be twice as large as the message length [3]. If

one relaxes condition (1.2) in the classical setting (i.e classical messages and classical

encryption schemes) so that I(M : E(M)) < ε, then one can only reduce the key

size by ε bit. What might seem surprising is that if one does a similar relaxation for

quantum encryption schemes applied to quantum state, then one can cut the key size

almost by one-half [28].

Definition 3 (ε-randomizing security) An encryption scheme E is ε-randomizing

if for all states ρ we have ∥∥∥∥∥E(ρ)− I
d

∥∥∥∥∥
∞

6
ε

d
(1.4)

where d is the dimension of the message space to encrypt.
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The ‖σ‖∞ notation means the operator distance: it is the largest eigenvalue of the

operator σ. Definition 3 immediately implies that ‖E(ρ) − I/d‖1 6 ε. This char-

acterization is more similar to Definition 1.2 since Definition 1.2 can be restated as

‖E(ρ)− I/d‖1 = 0. In [28], it was showed that there exist schemes that achieve Defi-

nition 3 which require n + log n + log(1/ε2) + 8 bits of key. The only assumption on

the adversary is that he is in a separable state with the sender (i.e. he is not entan-

gled with the sender). Other than that, only a relaxation of the security definition is

made; hence this model is still information theoretically secure. This result was later

improved by Dickinson and Nayak, in [17], by a factor log n. That is they showed that

any random sequence of operators taken from a perfect scheme (hence they could be

random Pauli operators) indexed by a key of size n + log log(15/ε) + log 1/ε2 + 6 is

secure (if the trace norm is used and this with high probability).

The first efficient constructions were proposed by [4]. They used diverse constructions

of δ-biased sets and families, see [1], to prove secure three different encryption schemes

using the trace norm. The first scheme is length preserving (the cipher text and the

message in clear have the same length) and uses n + 2 log n + 2 log(1/ε) +O(1) bits

of key. The second one is not length preserving but has smaller key requirements,

that is n + 2 log(1/ε) bits of key. And the third scheme is a hybrid construction

over qupits. Their result was later improved by Dickenson and Nayak, see [17], who

noticed that a different construction for δ-biased set found in [1] would bring better

key requirements: that is n + 2 log(1/ε) + 2 while being a length preserving scheme.

They actually reused the exact same proof as in [4].

Another traditional security definition is... not having one. Take RSA [38] for exam-

ple. In this famous paper, no definition of security is used, none whatsoever. Another

good example is DES [42], no real security definition is given. Hence no proof of secu-

rity can be given. Of course, for RSA, the authors had the idea of a one way function

(or permutation), but no real reduction is made in their original paper. Security is

only addressed by saying, if one could do one of a few things, then their scheme would

fail, but no one knows how to do these and they do not know how to break it; so they
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dare us to try.

It is only a few years after RSA that Goldwasser and Micali proposed believable,

intuitive and, as far as we know, correct security definitions [23, 24] — of course

the security definition depends in its details on the model of interest. In this next

definition, the adversary A is modeled by an algorithm.

Definition 4 An encryption scheme E is semantically secure if for every probabilistic

polynomial-time algorithm A, there exists a probabilistic polynomial-time algorithm A′

such that for every random variable M on messages of length n, every function f and

every positive polynomial p and all sufficiently large n we have

Pr[A(E(m)) = f(m)] < Pr[A′(·) = f(m)] +
1

p(n)
, (1.5)

where the probabilities are taken over all coins thrown by A, A′ and E.

For a more formal definition, see §5 in [22]. This security definition in itself is a

great contribution but it has one caveat. How does one prove that a given cipher

E is semantically secure? As far as we know, no direct way of doing this is known.

This is why the second great contribution of this seminal article is so important: they

propose a second security definition and then show that those two definitions are in

fact equivalent. This new definition has the nice property that it is easy (easier) to

prove that a given encryption scheme achieves it.

Definition 5 An encryption scheme E has indistinguishable encryptions if for every

probabilistic polynomial-time algorithm A, every positive polynomial p, all sufficiently

large n and every x, y ∈ {0, 1}poly(n) (i.e |x| = |y|) we have

∣∣∣Pr[A(E(x)) = 1]− Pr[A(E(y)) = 1]
∣∣∣ < 1

p(n)
, (1.6)

where the probabilities are taken over all coins thrown by A and E.
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In this definition, the adversary really is a distinguisher between two values, or random

variables (E(x) and E(y)). Again see §5 in [22] for details. Using these two definitions,

they were able to show that based on the existence of a one-way function or trap-door

one-way permutation, one could devise semantically secure private-key or public-key

encryption schemes. In particular, one can construct an encryption scheme which

security is equivalent to the problem of factorization. Note that RSA can be trans-

formed into a semantically secure encryption scheme provided that RSA is itself a

one-way permutation. Maybe the nicest thing about semantic security, is that its def-

inition can be adapted to different adversarial models: passive eavesdropping, chosen

plain text attack, chosen cipher text attack and non-malleable encryption schemes.

Of course, all of this was not instantly done in 1982, but still, it is a tribute to the

fundamental robustness of the definition. Semantically secure encryption schemes are

also called probabilistic encryption schemes, as Definition 1.6 requires encryption of

two known messages to be indistinguishable even in a public-key scheme.

In 2002 Russell and Wang [39] introduced the notion of semantic security (which they

renamed entropic security) into the information theoretic model. Of course, some

assumption has to be made somewhere on the adversary abilities. They introduced

an entropy assumption. That is, for a random variable M , an assumption on the

min-entropy of M from the adversary’s perspective. Sadly, their results are limited

to predicates (and not all functions), their proofs are hard to decipher and there

is no notion of indistinguishability. Still, this was a great achievement. It must

be mentioned that similar concepts for hash functions had already been developed

by Canetti et al. in [11, 12]. These hash function do not reveal any information

on their input through their output as long as the input has sufficiently high min-

entropy. Two years later, Dodis and Smith introduced in [18] the notion of entropic-

indistinguishability and entropic security for all functions which we now present.
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Definition 6 (Classical entropic security) An encryption scheme E is said to be

(t, ε)-entropically secure if for all random variables M such that H∞(M) > t, every

adversary A, there exists an adversary A′ such that for all functions f we have

∣∣∣Pr[A(E(m)) = f(m)]− Pr[A′(·) = f(m)]
∣∣∣ < ε, (1.7)

where m ∈R M .

In this definition, A′(·) means an adversary A′ which has no input, just the a priori

knowledge of the message distribution.

Definition 7 (Classical entropic indistinguishability) An encryption scheme E
is (t, ε)-entropically indistinguishable if there exists a random variable G such that for

all random variables M such that H∞(M) > t we have

‖E(M)−G‖ 6 ε, (1.8)

where ‖ · ‖ is the variational distance or statistical distance between the two distribu-

tions.

Using these definitions, they were able to prove that certain simple schemes that were

entropically-secure could significantly reduce the necessary key length compared with

perfect secrecy. Instead of requiring about n bits of key to encrypt n-bit messages,

they could instead use only n − t + 2 log (1/ε) + O(1) bits of key. This model is

still information theoretically secure, since, for any one that controls somewhat his

message distribution, there is nothing to fear from any adversary, however powerful

that adversary may be, and this with overwhelming probability.

Here is where all our contributions fit in. We propose generalizations of the definition

of entropic security and entropic indistinguishability to the quantum world and prove

their equivalence. We also prove that two encryption schemes are in fact entropically
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secure. One quantum scheme was proposed in [4] as an approximate quantum encryp-

tion scheme and the other scheme is generalization of a classically entropically secure

scheme that appears in [18]. The model proposed and many proof techniques or tricks

are new to this work and many such proofs are much simpler and powerful than the

previous state of the art; this in itself is an important contribution. In section 2, we

introduce all these concepts in a non-entangled, non-correlated model. Most results

of this section have been published in [15] In section 3 we present all these concepts in

a fully generalized model where the adversary can be entangled and/or correlated in

any complicated fashion with the sender. By correlated, we mean that the adversary

has access to a side-channel of some sort that is not necessarily incarnated by entan-

glement. Although all results in the general model subsume the non-correlated model,

we still feel that it is more pedagogical to introduce everything in a simpler model

since most of the ideas are already there. This eases comprehension of the general

model with entanglement. Most results of §3 have been published in [16], which is

joint work with Frédéric Dupuis.

In [18], Dodis and Smith observed that (t, ε)-indistinguishable schemes are in fact

extractors which happens to be invertible. Extractors are deterministic algorithms

which given n bits comming from a source of sufficiently high min-entropy and a

perfect smaller key, output m almost perfectly random bits, where m 6 n. Concur-

rently to the work contained in this thesis, Fehr and Schaffner showed in [19] that

one of the scheme contained in [4, 15] is in fact a classical extractor (classical al-

gorithm processing classical bits) secure against non-entangled quantum adversaries

(this adversary could have some quantum information on the classical input of the

extractor). Although extractors are not the focus (framework) of this thesis, [16]

generalizes this result to quantum procedures processing quantum inputs such that

they are secure against all quantum adversaries provided sufficiently high quantum

conditional min-entropy.

Quantum extractors were formally introduced byBen-Aroya and Ta-Shma in [7]. The

authors proved that constructions based on Cayley graphs are quantum extractors.
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The extractors are efficient when the graph is abelian. Our definition of indistin-

guishability in the non-correlated model is compatible with the definition of extractor

proposed in [7]. The definition of indistinguishability in the fully generalized model

also generalized the definition of extractor given [7]. More constructions of quantum

extractors were provided later on in [27] and [26].

Finally, in 2007 Bellare, Boldyreva and O’Neill introduced the notion of deterministic

encryptions in [6]. Deterministic encryption is a hybrid between entropic-encryption

and semantic-encryption. That is, by postulating both a high min-entropy on the

message space and a power limit on the adversary (the adversary is a polynomial-

probabilistic time machine), then they can get deterministic encryption which hides

any partial information on the message. The proofs of [6] are done in the random or-

acle model. Boldyreva, Fehr and O’Neill removed the necessity of the random oracle

model in [10] by introducing an indistinguishability-based definition of determinis-

tic security. Their proof of equivalence between their different notions of security

uses techniques developed here to prove equivalence between entropic-security and

entropic-indistinguishability.

1.3 Mathematical Preliminaries

A certain number of definitions were given in the last chapter which sometimes refer

to objects which have not been defined yet. For quantum information theorists, they

need not be defined in a separate chapter, but for more casual readers, we feel it is

necessary to define these objects and their main properties, as they are numerous.

Most mathematical properties of the objects described in this chapter can, of course,

be found in [36]. The rest comes from [9, 13, 30, 31].

First, our main object of study are quantum states and quantum channels. We briefly

discussed the latter but we still have to fix notation and meaning of the former. Let
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X be a complex linear space. For any unit length vector x ∈ X , we shall write |x〉.
This notation, called braket notation and introduced by Dirac, is a shortcut for a

norm one column vector, where the norm is according to the usual euclidean inner

product. For the complex transpose we shall write 〈x| = |x〉T . The euclidean inner

product is thus only 〈x||x〉 = 〈x, x〉. Since X is a linear space, one can find bases for

it. Let the set {|zi〉}i be an orthonormal basis for X . Then for any x ∈ X we can find

complex coefficient ai’s such that x =
∑
i ai|zi〉.

Linear operators from X to X are denoted by L(X ). A quantum state is simply a

trace one, positive linear operator that belongs to L(X ); we shall denote this set with

D(X ). Let ρ ∈ D(X ). So a quantum state has three important characteristics: first

it belongs to L(X ); secondly, for any basis {|zi〉}i of X then

Tr [ρ] ,
∑
i

〈zi|ρ|zi〉 = 1 (1.9)

which is also the definition of the trace operator; and thirdly, for any unit vector

|x〉 ∈ X we have that

〈x|ρ|x〉 > 0. (1.10)

If for all |x〉 we have a greater instead of greater or equal sign, then we say the state

is positive definite. It then has full rank and is invertible, see [30]. If the result is

sometimes zero, then the rank of ρ is not maximum and thus ρ is not invertible, the

operator is then said to be positive. Such operators are called density operators.

Every physical system can be described by a density operator. It will thus be the

basic object that we manipulate.

The spectral decomposition theorem tells us that any density operator ρ can be written

this way:

ρ =
∑
i

pi |zi〉〈zi| , (1.11)

where the |zi〉’s form an orthonormal basis of X and the pi’s sum up to one. The

expression |zi〉〈zi| denotes the outer-product of |zi〉 and 〈zi| which is simply a projector
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on |zi〉. The |zi〉’s are eigen-vectors of ρ and the pi’s are eigen-values of ρ. Note that

any normal operator, that is an operator M such that MM † = M †M , has a spectral

decomposition as in equation (1.11). Hermitian operators, that is M = M †, have

real eigen-values. Projectors, M = M2, have zero or one as eigen-values. Positive

operators have real non-negative eigen-values, which in the case of density operators

can be interpreted as probabilities.

One interacts with quantum system through measurements, for a good overview

see §2 in [36]. In this thesis we shall use two formalisms: POVM’s, which stands

for positive operator-valued measure, and observables. The first one, well described

in §2.2.6 in [36], is simply a set of positive operator {Em}m that produces classical

output m when applied to a given state ρ. The only condition is that
∑
mEm = I. A

POVM is used mostly when one does not care about the quantum state that results

of the measurement. The probability of observing the value m when one applies a

given POVM to a state ρ is simply

Tr [Emρ] . (1.12)

The POVM formalism is as general as can be, we shall therefore use it to model the

adversary.

An observable is a full rank Hermitian operator, see §2 in [13]. When an observable

O =
∑
m λm |ψm〉〈ψm| is applied to state ρ the output is simply the eigen-value λm

and this with probability Tr [|ψm〉〈ψm| ρ]. The residual quantum state is the associated

eigen-state |ψm〉〈ψm| of O. Note that the expected value for the observed value when

an observable O is applied to a state ρ is simply given by Tr [Oρ]. Note also that

the operator Oρ is no longer physical. We shall overload the symbol O for observable

with the big-O notation, the meaning will always be clear from the context.

How do we describe multiple quantum states? Let us imagine two parties: a sender S

and an adversary A. They each hold a quantum state in their hands. We shall denote

the full quantum state describing both states at once by ρSA, where the notation is
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self-explicative. Of course ρS and ρA then denote the state held by the sender and the

adversary respectively: that is if one looks only at the sender’s state without access

to the adversary’s state. Now if both the sender and the adversary have two totally

independent states from one another, then one can write that ρSA = ρS ⊗ ρA, where

the symbol ⊗ stands for “tensor” product.

In general for two operators M = (mij) and N the tensor product is defined by

M ⊗N =


m11N m12N . . . m1nN

m21N m22N . . . m2nN

. . .

mm1N mm2N . . . mmnN

 . (1.13)

The tensor product, also called Kronecker product, has intuitive properties, see §4 in

[31]. It is nice with scalars (αM) ⊗ N = M ⊗ (αN) = α(M ⊗ N). It is nice with

most usual matrix operation: (M ⊗ N)T = (MT ⊗ NT ), (M ⊗N) = (M ⊗ N) and

(M ⊗ N)† = (M † ⊗ N †). It is associative, (M ⊗ N) ⊗ P = M ⊗ (N ⊗ P ). It is also

distributive on addition: (M+N)⊗P = M⊗P +N⊗P . Most importantly, it can be

mixed with the standard multiplication: (M⊗N)(O⊗P ) = (MO⊗NP ). The tensor

product of Hermitian operators, unitary operators or projectors, gives respectively a

Hermitian operator, unitary operator or projector. Finally if {|yi〉S}i is a basis for

the S space and {|zj〉A}j is a basis for the A space, then {|yi〉 ⊗ |zj〉}i,j is a basis for

the SA space.

There is a corresponding operation that let’s us go from states on the SA space to

states on the subspaces S and A: ρSA to ρS or ρA. This operation is called the partial

trace and is denoted TrS
[
ρSA

]
, which gives us a state on the A subspace only, that is

ρA, and TrA
[
ρSA

]
gives us a state on the S subspace only, ρS. Take any basis for the

A space, let us say {|zj〉}j then

ρS , TrA
[
ρSA

]
,
∑
j

(IS ⊗ 〈zj|A)ρSA(IS ⊗ |zj〉A). (1.14)



28 CHAPTER 1. PROLEGOMENON

Note that it is not always true that ρSA = TrA
[
ρSA

]
⊗ TrS

[
ρSA

]
= ρS ⊗ ρA. When

this is true we say that ρSA is a tensor product state. We say that ρSA is separable if

there exist probabilities {pi}i and sets of states {σSi }i and {γAi }i such that

ρSA =
∑
i

piσ
S
i ⊗ γAi .

Otherwise we say the state is entangled. We shall not discuss here the meaning of

these three definitions. They are fundamental and very important, but one of the

goal of the present work is to show that one can ignore them in certain contexts.

We did not mention it yet, but the trace operator is cyclic, that is Tr [ABCD] =

Tr [DABC]. Be careful, operators do not commute, that is Tr [ABCD] 6= Tr [ACBD],

they rotate. As Lemma 13 shows, we can generalize this to work on part of the space,

that is Tr [AB ⊗ CD] = Tr [BA⊗ CD].

The notion of distance between two operators is another very important concept that

will be used. We will start by defining the norm of an operator. We shall call a

function ‖ · ‖ : L −→ R a norm if it satisfies the following properties for all M and

N ∈ L:

1. ‖M‖ > 0,

2. ‖M‖ = 0 if and only if M = 0,

3. ‖cM‖ = c‖M‖ for all complex scalars c,

4. ‖M +N‖ 6 ‖M‖+ ‖N‖,

5. ‖MN‖ 6 ‖M‖|N‖.

We shall use one norm throughout this work: the trace norm. For any normal operator

M , the trace norm ‖M‖tr is simply the sum of the eigen-values of the absolute value

of M . More mathematically, ‖M‖tr , Tr [|M |], where |M | ,
√
MM †. Thus, if
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M =
∑
i λi |i〉〈i|, then ‖M‖tr =

∑
i

√
λiλi. Using this notation we can define our

distance between two operators M and N to be the trace norm of their difference,

or D(M,N) , ‖M −N‖tr. We thus get a few properties for free: D(M,N) is never

negative, D(M,N) is zero if and only if M = N and D(M,N) obeys the triangle

inequality. Most of the time, we shall abbreviate ‖ · ‖tr by ‖ · ‖ since we really use

only one norm. Sometimes, we could also write ‖ · ‖1 as it is also called the L1 norm

in literature.

For any two states ρ and σ, if their distance D(ρ, σ) is equal to δ, then the best POVM,

or algorithm, that could distinguish between the two can do so with probability at

most 1/2 + δ/4. That is if this distinguisher realized by the best POVM possible

is given ρ with probability one half and is given σ with probability one half, then

the probability that the POVM guesses correctly which state it received is simply

1/2 + δ/4, see [36, 29] for details.





Chapter 2

Uncorrelated Cryptography

In this section, we shall discuss security definitions and ciphers in a model where the

adversary is neither correlated nor entangled with the sender.

We are interested in the following scenario. The sender chooses a message from a

known message space and encrypts that message. We want that whenever an adver-

sary intercepts an encrypted message it cannot predict any function on the message.

More formally, let ρ =
∑
j γj |zj〉〈zj| be a mixed state. An interpretation of ρ is an

ensemble {(pi, σi)}i such that ρ =
∑
i piσi; we say σi is compatible with ρ. From the

adversary’s point of view, the sender chooses (receives) a message σi with probability

pi and send an encrypted version to the receiver. This is the eavesdropper’s view of

the message space — i.e. the a priori knowledge of the adversary is given by the en-

semble {(pi, σi)}i, which consists of all the possible messages (by which we mean valid

density operators, or physically possible messages) with non-zero probability along

with their probability. We want that whenever the sender chooses a message σi and

encrypts it using a cipher E , then no eavesdropper which intercepts E(σi) can guess

any function of σi. We will require this property to hold for all ρ with sufficiently

high min-entropy.

31



32 CHAPTER 2. UNCORRELATED CRYPTOGRAPHY

�� ��
�� ��ρ =

∑
i piσi

σi //S
E(σi) //A //f(σi)

Figure 2.1: Uncorrelated Model

Definition 8 (Quantum min-Entropy) For a state ρ which has spectral decompo-

sition
∑
j γj|zj〉〈zj|, the quantum min-entropy is defined by − log maxj γj and is written

H∞(ρ)1.

One can see a quantum state γ =
∑
j pj |zj〉〈zj| as a classical probability distribution

if one measures it in the {|zj〉〈zj|}j basis. Then, H∞(ρ) is simply the negative binary

logarithm of the event with maximum probability; the one on which one would bet if

one had to guess the output of the measurement.

Definition 9 (Entropic Security) An encryption system E is (t, ε)-entropically se-

cure if for all states ρ such that H∞(ρ) > t, all interpretations {(pi, σi)}i and every

adversary A, there exists an adversary A′ such that for every function f , we have∣∣∣∣Pr
i

[A(E(σi)) = f(σi)]− Pr
i

[A′(·) = f(σi)]
∣∣∣∣ 6 ε. (2.1)

Explanations are in order. First, in this equation, only one state is physical, that

is, E(σi). For this equation to be meaningful, all other states are not considered to

be physical but purely mathematical. By this we mean that the σi’s are considered

to be strings of bits that can be interpreted (parsed) as density operators. This is

reasonable since A′ never gets his hands on any ciphers, exactly as in the classical

indistinguishability security definition, see [24, 22]. Hence, {(pi, σi)}i is the a priori

knowledge of A and A′ on the message space from which the sender samples. We

therefore naturally consider that the output of f(σi) is simply a string of bits.2 Fur-

thermore we do not impose any restriction on f . In particular, we do not require that

1All logarithms throughout this work are taken base 2.
2Note that instead of considering functions on strings of bits, one could consider that the function

f acts on the indices i of the σi and get an equivalent framework.
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f be a physical process, hence f is not required to be linear or to be a function on

operators (g(ρ) =
∑
i g(γj) |zj〉〈zj|). We are not interested in a quantum output for

two reasons. First, if such an output were useful to some post-processing that would

help in predicting the function f , then any such post-processing could be included

in the original POVM. Second, it is already known that entropic security does not

compose very well, see [18], since we are not interested in any more complicated model

like universal composability, then this is of no consequence.

In this model, the goal of A is to predict the output of the function f on the string

of bits that represents the state σi, which is unknown to A, by only analyzing E(σi)

which is a physical state — no restriction is put on A, we only require it to be a

physical process, i.e a POVM. The adversary A′ does not get this chance, he must

predict the same function f on the same bit string but having access to nothing else

than the message interpretation {(pi, σi)}i. The obvious best strategy for A′ is to bet

on the most probable output for f , since all other outputs have a smaller chance of

occurring. In this case, by definition Pri[A
′(·) is right] = Maxf , maxz Pri[f(σi) = z]

where Z = {z} is the set of possible outputs for the interpretation {(pi, σi)}i. Note

that we assume A and A′ know the correct interpretation which is considered to

be the message space. Quantum entropic security states that if A can predict the

function f with a given probability, then this probability can be matched by A′ up

to ε, equivalently Pri[A(E(σi)) = f(σi)] 6 Maxf + ε. Of course, the definition does

not specify that A′ should be the best adversary possible, but, usually, one wants to

do better with the cipher text than without the cipher text, hence it is a natural

comparison.

The intuition behind this choice of model comes from quantum state tomography.

Quantum state tomography, QST, is a procedure which takes multiple copies of a

state γ and produces a string of bits which can be parsed as the complex coefficient

of the matrix that represents the density operator of a single state γ. Once we know

that matrix, we can predict everything about γ (statistically speaking). For the sake

of arguing, let us dream up the procedure of instant quantum state tomography,
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IQST, an impossible task that takes one copy of a given state γ and outputs all the

coefficients of the density operator in a single string. We think of the function f as

a function that is applied to the output of IQST. Or that A(E(σi)) tries to guess the

value f(IQST (σi)).

We shall introduce a strong version of Definition 9 that will use f only as a pretext3.

This should bring comfort to those uneasy with definition 9 and its interpretation.

Definition 10 (Strong Entropic Security) An encryption system E is said to be

(t, ε)-strongly entropically secure if for all states ρ such that H∞(ρ) > t, all interpre-

tations {(pj, σj)}j and every adversary A we have that for all functions f∣∣∣∣Pr
i

[A(E(σi)) = f(σi)]− Pr
i

[A(E(ρ)) = f(σi)]
∣∣∣∣ 6 ε. (2.2)

The only difference with Definition 9 is that we have restricted the notion of A′: this

adversary is now the same as A but it receives a forged encryption of ρ, the mixture

of all messages. Basically, Equation (2.2) means that whatever A can compute from

E(σi), the real message, with probability up to ε he could have computed it using only

an oracle serving an encryption of ρ which is totally independent of σi. This strategy

is clearly worse than the optimal one, since

Pri[A(E(σi)) = f(σi)] 6 Pri[A(E(ρ)) = f(σi)] + ε 6 Maxf + ε, (2.3)

because no strategy can do better than Maxf without seeing the cipher text. This is

why we say that this last definition is stronger than entropic security. We argued that

definition 9 really compares A’s ability to predict f with that of the best adversary

that has not seen the cipher text, call it Amax. Of course, since Amax is the best

adversary, then if we call A with a dummy state, here E(ρ) instead of E(σi), then

A(E(ρ)) cannot be better than Amax at guessing f(i). Yet the encryption scheme is

3This becomes apparent in the proof of equivalence.
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secure and A(E(σi)) is not much better at predicting f(i) than A(E(ρ)). Then, it must

be that definition 10 requires an encryption scheme that is certainly no weaker than

the encryption scheme achieving Definition 9. Hence the use of the term “stronger”.

Also, as Lemma 2 shows, strong entropic security implies entropic security.

As in [24] and [18], we can introduce a notion of indistinguishability and then show

that indistinguishability and entropic security are equivalent.

Definition 11 (Entropic Indistinguishability) A cipher E is said to be (t, ε)-

indistinguishable if there exists a state Ω such that for all states ρ for which H∞(ρ) > t

we have

‖E(ρ)− Ω‖1 6 ε. (2.4)

For most practical ciphers, Ω will simply be the perfectly mixed state I/d. It is also

easy to see, using the triangle inequality, that Definition 11 implies this next one:

Definition 12 (Weak Entropic Indistinguishability) An encryption scheme E
is said to be weakly (t, ε)-indistinguishable if for all operators ρ and ρ′, such that

H∞(ρ) > t and H∞(ρ′) > t, we have

‖E(ρ)− E(ρ′)‖1 6 2ε. (2.5)

One final comment on all these definitions. Contrary to the classical case, it is not

the probability of each message in the interpretation which is important, but the

largest eigen-value of the mixture. In fact, the interpretation could have only two

messages, both happening with probability one-half, and yet, one could still get very

high security provided the mixture of both has small eigen-values. This is not a

quantum phenomenon but simply the consequence of generalizing the messages to

distributions. There might be classical situations where having to distinguish between



36 CHAPTER 2. UNCORRELATED CRYPTOGRAPHY

distributions, or trying to guess functions on distributions would be reasonable, then

surely the same effect would manifest itself.

As is traditionally the case in semantic security, Definition 9 carries the meaning of

what is considered a secure encryption scheme. Definition 11 will allow us to prove

that a given scheme is secure and Definition 10 will let us show more easily that these

two definitions are equivalent for all functions and not just for predicates.

2.1 Equivalence of the definitions

In this section we show equivalence between all 4 definitions of security that were

given in the preceding section: that is entropic security (ES), strong-entropic security

(SES), Indistinguishability (I) and Weak-Indistinguishability (WI).

Figure 2.2 shows the graph of implications that we shall prove. An arrow signifies

implication. For example, strong entropic security implies entropic security as was

argued in the previous section. The fact that indistinguishability implies weak indis-

tinguishability was also already argued. The graph does not show how the ε and t

parameters in the proofs vary.

Lemma 1 Weak (t, ε)-indistinguishability implies (t, 2ε)-indistinguishability.

Proof:

Just fix Ω to be E( I
d
). The state I

d
has maximum min entropy, that is n = log d, hence

all state E(ρ), where H∞(ρ) is sufficiently high, must be 2ε close to this state. QED

Lemma 2 Strong (t, ε)-entropic security implies (t, ε)-entropic security.

Proof:

In Strong entropic security not only does there exists an adversary, but we know how

to build it. This immediately implies that one exists. QED
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ES

SES

WI I
Lemma 1

Theorem 1

Theorem 2Lemma 2

Figure 2.2: Graph of implications

We shall now prove a restricted version that entropic security implies indistinguisha-

bility: that is we shall prove it only for ciphers for which the perfectly mixed state

is an eigen-state. We shall prove the general case in the next chapter. Although

this proof is less general, it is a stronger result (parameters wise) and since practical

schemes all have this property, they get better guaranty from this proof than the

general proof presented in chapter §3.

Theorem 1 If t ≤ n − 1, then if E(I/d) = I/d we have that (t, ε)-entropic security

implies (t− 1, 4ε)-indistinguishability.

Proof:

We are translating, and improving, for this lemma the proof from Dodis and Smith to

the quantum setting. The last part, for non-orthonormal states, is new to this work

and can be applied to the classical proof. It is well known that a classical t-source4 can

be decomposed into a convex combination of flat sources over 2t points5. Moreover

the two are linked in an easy way: if X is a classical t-source, and Y is an equiprobable

4A t-source is a random variable with min-entropy no less than t.
5A flat t-source, is a uniform distribution over 2t points.
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distribution on the first 2t points (the order is arbitrary), then there exists {Pi}i such

that X =
∑
i piPiY , where

∑
i pi = 1 and the Pi’s are permutation matrices.

It is less known, yet also true, that we can say the same thing about density operators.

Let ρ be a state such that H∞(ρ) > t and let σ be a perfectly mixed state with

H∞(σ) = H(σ) = t (i.e the support of σ has size 2t). Then we can decompose ρ this

way

ρ =
∑
i

piUiσU
†
i , (2.6)

where
∑
i pi = 1 and the Ui’s are unitary operators. It must also be said that if ρ and

σ commute, then the Ui’s are just permutation matrices.6

These observations will allow us to prove the lemma for flat t−1 sources only. Indeed,

E can not decrease entropy, so H∞(E(ρ)) > t and I/d is of course a t-source. So we

can write ρ =
∑
i piXi where Xi = UiσU

†
i , the Ui’s are permutation matrices and

σ is a flat (t − 1)-source which we choose in the eigen-basis of ρ. Similarly, we can

write I/d =
∑
j qjYj, where Yj = VjσV

†
j (the reader should keep in mind that we can

diagonalize I/d in the basis of our choice, so we choose the eigen-basis of ρ, hence ρ,

I/d and σ all commute with one another). We know that E(I/d) = I/d.

So ‖E(ρ)− E(I/d)‖ =
∥∥∥E(

∑
i piXi)− E(

∑
j qjYj)

∥∥∥. Since
∑
i pi =

∑
j qj = 1, we can

write this: ∥∥∥∥∥∥E((
∑
j

qj)
∑
i

piXi)− E((
∑
i

pi)
∑
j

qjYj)

∥∥∥∥∥∥
which can be simplified to ∥∥∥∥∥∥E(

∑
i,j

piqjXi)− E(
∑
i,j

piqjYj)

∥∥∥∥∥∥ .

Since E is a linear operator we can rewrite everything this way:∥∥∥∥∥∥
∑
i,j

piqjE(Xi)−
∑
i,j

piqjE(Yj)

∥∥∥∥∥∥ ,
6For proofs of all these statements, read the section on majorization theory in [36]: §12.5.1.
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which we can simplify to
∥∥∥∑i,j piqj(E(Xi)− E(Yj))

∥∥∥ . Using the triangle inequality, we

can conclude that:

‖E(ρ)− E(I/d)‖ 6
∑
i,j

piqj ‖E(Xi)− E(Yj)‖ . (2.7)

This equation tells us that if every term ‖E(Xi)− E(Yj)‖ is less than 4ε, then Equation

(2.7) is bounded by 4ε.

Fix any i and j and let W0 be Xi, where ρ =
∑
i piXi, and let W1 be Yj. Assume for

now that they have orthonormal support. Consider the operator Z = 1
2
W0 + 1

2
W1: an

equal mixture of the 2 given operators. By construction, H∞(Z) = t. Let g be the

predicate that maps Wb to b; it is not necessary to define the value of g for any other

state. Any adversary, A, that can predict g given E(Wb), for b ∈R {0, 1}, is therefore

a distinguisher between E(W0) and E(W1).

It is common knowledge (see [36, 29]) that, at best, such an adversary can distinguish

between the two with probability:

Pr[A(E(Wb)) = g(Wb) = b] =
1

2
+

1

4
‖E(W0)− E(W1)‖1 . (2.8)

We can now invoke the entropic security, definition (2.1). Thus we can also write:

Pr[A(E(Wb)) = g(Wb) = b] 6 Pr[A′(·) = g(Wb) = b] + ε =
1

2
+ ε. (2.9)

By construction, no adversary A′ can guess the correct answer with probability better

than one half. Using Equations (2.8) and (2.9), we can conclude:

‖E(W0)− E(W1)‖1 6 4ε. (2.10)

We are almost done. Let us now suppose that W0 and W1 are not orthogonal but not

equal either and remember that they commute. Since they have an intersection, then

H∞(Z) = t− 1. So we need to work a little more to get back decent min-entropy.

Define three mutually orthogonal projectors Π0, Π1 and Π01 such that

W0 =
1

2t−1
Π0 +

1

2t−1
Π01
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and

W1 =
1

2t−1
Π1 +

1

2t−1
Π01.

This tells us that Π01 projects on the intersection of W0 and W1. Now, choose a fourth

projector Π+ orthogonal to the first three projectors and such that rank Π01 = rank Π+

(note that since t 6 n− 1, we always have enough space to choose such a projector)

and define the two new states:

– W ′
0 = 1

2t−1 Π0 + 1
2

(
1

2t−1 Π01 + 1
2t−1 Π+

)
– W ′

1 = 1
2t−1 Π1 + 1

2

(
1

2t−1 Π01 + 1
2t−1 Π+

)
.

Obviously, these are valid states, and we simply increased the rank of their intersection

without increasing its measure. Let us compute the distance of their image under E .

‖E(W ′
0)− E(W ′

1)‖ =
∥∥∥∥E ( 1

2t−1
Π0 +

1

2t
(Π01 + Π+)

)
− E

(
1

2t−1
Π1 +

1

2t
(Π01 + Π+)

)∥∥∥∥
=

∥∥∥∥E ( 1

2t−1
(Π0 − Π1)

)
+ E

(
1

2t
(Π01 + Π+)− 1

2t
(Π01 + Π+)

)∥∥∥∥
=

∥∥∥∥E ( 1

2t−1
(Π0 − Π1)

)∥∥∥∥ ,
whilst,

‖E(W0)− E(W1)‖ =
∥∥∥∥E ( 1

2t−1
(Π0 + Π01)

)
− E

(
1

2t−1
(Π1 + Π01)

)∥∥∥∥
=

∥∥∥∥E ( 1

2t−1
(Π0 − Π1)

)
+ E

(
1

2t−1
(Π01 − Π01)

)∥∥∥∥
=

∥∥∥∥E ( 1

2t−1
(Π0 − Π1)

)∥∥∥∥ .
We conclude that ‖E(W ′

0)− E(W ′
1)‖ = ‖E(W0)− E(W1)‖. And now define the state

Z ′ =
1

2
W ′

0 +
1

2
W ′

1 =
1

2t
Π0 +

1

2t
Π1 +

1

2t
Π01 +

1

2t
Π+,

an equal mixture of W ′
0 and W ′

1. From the previous equation, we deduce that

H∞(Z ′) = t. We can use this Z ′, define a predicate g′(W ′
b) = b and then use the

same reasoning that led us to equation (2.8) and (2.9). We conclude that

‖E(W0)− E(W1)‖ = ‖E(W ′
0)− E(W ′

1)‖ 6 4ε.
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Hence we have shown that for every state ρ such that H∞(ρ) > t,

‖E(ρ)− E(I/d)‖ 6 4ε,

therefore (t, ε)-entropic-security implies (t−1, 4ε)-indistinguishability where Ω is equal

to E(I/d). QED

Note that this last proof can be reinterpreted to say that (t, ε)-entropic-security implies

(t− 1, 8ε)-indistinguishability if Ω is not equal to the perfectly mixed state.

Theorem 2 If t 6 n − 1, then (t − 1, ε/4)- weak indistinguishability implies (t, ε)-

strong entropic security.

To prove this theorem we shall use a few intermediate results.

Lemma 3 Let A be a binary physical adversary, i.e. a POVM with two elements,

that has advantage ε at guessing h on a state ρ = p0τ0 + p1τ1, where h(i) = i. Then

for any sub-interpretation of τ0 and τ1 and a predicate g that partitions the output

space as in the original interpretation, A’s advantage is still ε at guessing g(i) in the

new interpretation.

Proof:

Let us expand the lemma’s statement. We know that ρ = p0τ0 + p1τ1 and that

|Prk[A(τk) = h(k)]− A′(·)| = ε, (2.11)

where h is a predicate, A = {A0,A1} ( A is a POVM with two elements: A0 and A1) and

Pr[A(τk) = h(k)] = Tr
[
Ah(k)τk

]
. The statement also talks of a second interpretation

ρ =
∑
i qiσi and of a second predicate g that partitions the indices i into two sets:

F0 , {σi|g(σi) = 0}i and F1 , {σi|g(σi) = 1}i, such that p0τ0 =
∑
i∈F0

qiσi and

p1τ1 =
∑
i∈F1

qiσi.
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Let us compute the advantage of A over A′ with this new interpretation:

|Pri[A(σi) = g(i)]− A′(·)| =

∣∣∣∣∣∑
i

qiPr[A(σi) = g(i)]− A′(·)
∣∣∣∣∣

=

∣∣∣∣∣∣
∑
i∈F0

qiPr[A(σi) = 0] +
∑
i∈F1

qiPr[A(σi) = 1]− A′(·)

∣∣∣∣∣∣
(a)
=

∣∣∣∣∣∣
∑
i∈F0

qiTr [A0σi] +
∑
i∈F1

qiTr [A1σi]− A′(·)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Tr

A0

∑
i∈F0

qiσi

+ Tr

A1

∑
i∈F1

qiσi

− A′(·)

∣∣∣∣∣∣
= |Tr [A0p0τ0] + Tr [A1p1τ1]− A′(·)|

= |p0Tr [A0τ0] + p1Tr [A1τ1]− A′(·)|

= |p0Pr[A(τ0) = 0] + p1Pr[A(τ1) = 1]− A′(·)|

= |Prk[A(τk) = k]− A′(·)|

= ε,

where (a) follows from equation (1.12). Note that the probability that A′ predicts

correctly is unchanged in this new interpretation. QED

Lemma 4 Let A be a binary physical adversary, i.e. a POVM with two elements,

that has advantage ε at guessing h on a state ρ = p0τ0 + p1τ1, where h(i) = i, in the

strong-entropic setting. Then for any sub-interpretation of τ0 and τ1 and a predicate

g that partitions the output space as in the original interpretation, A’s advantage is

still ε at guessing g(i) in the new interpretation.

Proof:

We have the same context as in Lemma 3. The only difference is that we wish to

show, using the following two facts: ρ =
∑
j qjσj =

∑
l plτl and Pri[A(ρ) = g(i)] =

Pri,j[A(σj) = g(i)], that

|Pri[A(σi) = g(i)]− Pri,j[A(σj) = g(i)]| = |Prk[A(τk) = h(k)]− Prk,l[A(τl) = h(k)]|

= ε, (2.12)
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We already know from the previous proof that

Pri[A(σi) = g(i)] = Prk[A(τk) = h(k)] (2.13)

So we only need the following to finish the proof :

Pri,j[A(σj) = g(i)] =
∑
i

qiPrj[A(σj) = g(i)]

=
∑
i∈F0

qiPrj[A(σj) = 0] +
∑
i∈F1

qiPrj[A(σj) = 1]

=
∑
i∈F0

qi
∑
j

qjPr[A(σj) = 0] +
∑
i∈F1

qi
∑
j

qjPr[A(σj) = 1]

=
∑
i∈F0

qi

∑
j∈F0

qjTr [A0σj] +
∑
j∈F1

qjTr [A0σj]


+
∑
i∈F1

qi
∑
j

qjPr[A(σj) = 1]

=
∑
i∈F0

qi (p0Tr [A0τ0] + p1Tr [A0τ1]) +
∑
i∈F1

qi
∑
j

pjPr[A(σj) = 1]

=
∑
i∈F0

qiPrl[A(τl) = 0] +
∑
i∈F1

qi
∑
j

pjPr[A(σj) = 1]

= p0Prl[A(τl) = 0] +
∑
i∈F1

qi
∑
j

pjPr[A(σj) = 1]

= p0Prl[A(τl) = 0] + p1Prl[A(τl) = 1]

= Prk,l[A(τl) = k].

Both terms being equal, the difference must be equal. QED

Lemma 5 An adversary A cannot have an advantage in the strong-entropic security

setting for constant predicate and binary interpretation.

Proof:

Without loss of generality let h(i) = 0. Let γ0 = Pr[A(σ0) = 0] and γ1 = Pr[A(σ1) =

0]. Observe that γ0 and γ1 are fixed values that depend only on A and σ0 and σ1.

Then, using the fact that
∑
k pk = 1,∣∣∣∣Pri[A(σi) = h(i)]−Pri,j[A(σj) = h(i)]

∣∣∣∣=
∣∣∣∣∣∑
k

pkPri[A(σi) = h(i)]− Pri,j[A(σj) = h(i)]

∣∣∣∣∣
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becomes, using the fact that ∀i, h(i) = 0:

p0(p0γ0 + p1γ1) + p1(p0γ0 + p1γ1)−
(
p0(p0γ0 + p1γ1) + p1(p0γ0 + p1γ1)

)
,

which is simply zero. QED

Lemma 6 Let ρ be a state such that H∞(ρ) > t and let {(pi, σi)}i be an interpretation

of ρ. Then for every i we have that pi · λmaxi 6 2−t, where λmaxi is the largest

eigenvalue of σi.

Proof:

Suppose, on the contrary, that pi · λmaxi > 2−t. Since λmaxi is an eigenvalue of σi,

there exists a vector |v〉 such that 〈v|σi|v〉 = λmaxi . These two statements together

let us conclude that 〈v|ρ|v〉 > pi〈v|σi|v〉 > 2−t. We also know that ρ =
∑
k γk |k〉〈k|,

so 〈v|ρ|v〉 =
∑
k γk〈v|k〉〈k|v〉 6

∑
k 2−t〈v|k〉〈k|v〉 = 2−t. Hence we conclude that

2−t < 〈v|ρ|v〉 6 2−t, which is obviously a contradiction. QED

Theorem 3 Let ρ be a state, {(pi, σi)}i be an interpretation, E be a cipher, f be a

function and A be an adversary such that∣∣∣Pri[A(E(σi)) = f(σi)]− Pri[A(E(ρ)) = f(σi)]
∣∣∣ > ε,

then there exists an adversary B and a predicate h such that∣∣∣Pri[B(E(σi)) = h(σi)]− Pri[B(E(ρ)) = h(σi)]
∣∣∣ > ε

2
.

Proof:

Let our predicate be a Goldreich-Levin predicate [21], that is hr(x) = r� f(x), where

� denotes the scalar product of the binary vectors represented by the strings f(x)

and r. Let p = Pri[A(E(σi)) = f(σi)] and q = Pri[A(E(ρ)) = f(σi)]. Then we know

that |p− q| ≥ ε. Let us compute

E =
∣∣∣Er [Pri[r � A(E(σi)) = hr(σi)]− Pri[r � A(E(ρ)) = hr(σi)]]

∣∣∣, (2.14)
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where the expectation is taken over all r of adequate size and uniformly distributed.

We need two observations. First, when A predicts correctly, then r�A(E(σi)) = hr(σi)

for every r. Second, when A does not predict correctly, the probability over all r that

r � A(E(σi)) = hr(σi) is exactly one half. Hence Equation (2.14) reduces to

E =
∣∣∣∣1 · p+

1

2
· (1− p)−

(
1 · q +

1

2
· (1− q)

)∣∣∣∣ =
∣∣∣∣p− q2

∣∣∣∣ > ε

2
. (2.15)

There exists at least one value r such that the following is true:∣∣∣Pri[r � A(E(σi)) = hr(σi)]− Pri[r � A(E(ρ)) = hr(σi)]
∣∣∣ > ε

2
.

The lemma is proven if we define adversary B as r � A for this appropriate r.

QED

We need one last result which is Theorem 9.1 in [36].

Theorem 4 The trace distance has the following characterization:

‖ρ− σ‖1 = max
{Em}m

[∑
m

∣∣∣Tr [Em(ρ− σ)]
∣∣∣] ,

where the maximization is taken over all possible POVMs {Em}m and Em is a POVM

element.

Proof of Theorem 2:

The proof technique used in this Theorem is, as far as we know, new to this work.

Suppose that there exists an adversary B, a state ρ such that H∞(ρ) > t, an interpre-

tation {(pi, σi)}i for ρ and a function f such that

|Pri [B(E(σi)) = f(σi)]− Pri[B(E(ρ)) = f(σi)]| > ε. (2.16)

We want to show that this adversary implies that the encryption scheme E is not

(t − 1, ε/4)-indistinguishable. From Theorem 3, we know that there exists another

adversary A and a predicate h such that strong (t, ε/2)-entropic security is violated.

Let us define two sets E0 and E1 this way:
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– E0 = {i|h(σi) = 0}i

– E1 = {i|h(σi) = 1}i,

where by Lemma 5 we can claim that both sets are non-empty. Let r0 =
∑
i∈E0

pi

and r1 =
∑
i∈E1

pi. Let τ0 = (
∑
i∈E0

piσi) /r0 and τ1 = (
∑
i∈E1

piσi) /r1. Obviously, ρ

is equal to r0τ0 + r1τ1 and both τ0 and τ1 are valid density operators. Using Lemma

4 which states that A’s advantage is as large with this new interpretation of ρ as it

was before, we can restate the entropic security violation in terms of the τi, we get

|Pri [A(E(τi)) = h(τi)]− Pri [A(E(ρ)) = h(τi)]| >
ε

2
, (2.17)

where h(τi) = i. The adversary A is a POVM with two elements — A0 and A1—, so

we can rewrite equation (2.17) this way:∣∣∣∣∣∣
∑
i=0,1

ri

(
Tr [AiE(τi)]− Tr [AiE(ρ)]

)∣∣∣∣∣∣ > ε

2
(2.18)

where Tr [Akγ] is the probability that A outputs k on input γ. In our case, there are

only two possible outputs: zero and one. From the last equation, since there are only

two terms in the sum, we can conclude that there exists i such that∣∣∣∣ri(Tr [AiE(τi)]− Tr [AiE(ρ)]
)∣∣∣∣ > ε

4
. (2.19)

Let us assume without loss of generality that i is in fact zero and let us construct the

two following states (choosing i to be one, would lead to a similar argument):

– τ ′0 , r0τ0 + r1
I
d

– ρ′ , r0ρ+ r1
I
d

We claim that ρ′ and τ ′0 are in contradiction with (t−1, ε/4)-weak-indistinguishability.

Obviously, ρ′ is a t-source since it is a convex combination of two t-sources that
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commute. On the other hand, the largest eigen-value of τ ′0 cannot be larger than

2−t + r1 · 1
d

(we have used Lemma 6, and the fact that we can decompose I/d in the

same basis as the eigen basis of τ0). Since r1/d 6 2−t, we conclude that the largest

eigen-value of τ ′0 is not larger than 2−(t−1). Hence, H∞(τ ′0) > t− 1.

Let us now compute the following expression:

|Tr [A0E(τ ′0)]− Tr [A0E(ρ′)]| =
∣∣∣Tr

[
A0

(
E(τ ′0)− E(ρ′)

)]∣∣∣ , (2.20)

which will give us a lower bound on the trace distance between E(τ ′0) and E(ρ′) as

Theorem 4 tells us, since A0 is a fixed POVM element, we get:∣∣∣∣Tr [A0E(τ ′0)]− Tr(A0E(ρ′))
∣∣∣∣

=

∣∣∣∣∣Tr

[
A0E

(
r0τ0 + r1

I
d

)]
− Tr

[
A0E

(
r0ρ+ r1

I
d

)]∣∣∣∣∣
=

∣∣∣∣∣Tr [A0E (r0τ0)] + Tr

[
A0E

(
r1

I
d

)]
− Tr [A0E (r0ρ)]− Tr

[
A0E

(
r1

I
d

)]∣∣∣∣∣
=
∣∣∣∣r0

(
Tr [A0E (τ0)]− Tr [A0E (ρ)]

)∣∣∣∣
>
ε

4
,

where the last step comes from equation (2.19). Let us now compute the second term

in the lower bound to the trace distance, that is:
∣∣∣∣Tr [A1E(τ ′0)]− Tr(A1E(ρ′))

∣∣∣∣.
|Tr [A1E(τ ′0)]− Tr(A1E(ρ′))| =

∣∣∣(1− Tr [A0E(τ ′0)]
)
−
(
1− Tr(A0E(ρ′))

)∣∣∣
= |1− Tr [A0E(τ ′0)]− 1 + Tr(A0E(ρ′))|

= |Tr [A0E(τ ′0)]− Tr(A0E(ρ′))| .

(2.21)

We conclude, using Theorem 4, that

‖E(τ ′0)− E(ρ′)‖1 >
∑
i=0,1

|Tr [Ai(τ
′
0 − ρ′)]| > ε/4 + ε/4 = ε/2.
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Hence τ ′0 and ρ′ constitute a violation of (t− 1, ε/4)-weak-indistinguishability, which,

using Lemma 1, in turns implies a violation of the (t − 1, ε/2)-indistinguishability.

QED.

We have now established that entropic-indistinguishability and entropic-security are

equivalent. We shall now use entropic-indistinguishability to prove that two different

encryption schemes are in fact secure according to entropic security.

2.2 Ciphers

We shall use the following trick in the proof of security of both ciphers, a trick which

is mentioned, with hints on how to proof it, in [4]. We do a full demonstration here

for the sake of completeness.

Lemma 7 For any density operator imbedded in a space of dimension d, if Tr [ρ2] 6
1
d
(1 + ε2), then we have that

∥∥∥ρ− I
d

∥∥∥
1

6 ε.

Proof:

We shall start by proving the following fact for Hermitian operator of rank d:

Tr [|∆|]2 6 dTr
[
∆2
]

(2.22)

The left hand side is equal to (
∑
i |λi|)

2, where ∆ =
∑
i λi |ψi〉〈ψi|. Multiplying by one,

we get: d2
(

1
d

∑
i |λi|

)2
. Squaring is a convex function, we can therefore apply Jensen’s

inequality and obtain that

d2

(
1

d

∑
i

|λi|
)2

6 d2 (
∑
i |λi|2)

d
. (2.23)
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We can simplify this to: (
∑
i |λi|)

2 6 d (
∑
i λ

2
i ) = dTr [∆2], which is what we wanted.

Let us now apply (2.22) to the Hermitian operator ρ− I/d.

Tr

[∣∣∣∣∣ρ− I
d

∣∣∣∣∣
]2

6 dTr

[
ρ2 − 2

ρ

d
+

I
d2

]
(2.24)

= dTr
[
ρ2
]
− 2 + 1, (2.25)

since ρ and I/d are density operators. Adding one to both sides and dividing by d we

get that

Tr
[∣∣∣ρ− I

d

∣∣∣]2
d

+
1

d
6 Tr

[
ρ2
]
. (2.26)

From the statement of the Lemma, we know that Tr [ρ2] 6 1
d
(1 + ε2). Therefore

Tr
[∣∣∣ρ− I

d

∣∣∣]2
d

+
1

d
6

1

d
(1 + ε2). (2.27)

Multiplying by d and subtracting 1, we get Tr
[∣∣∣ρ− I

d

∣∣∣]2 6 ε2 from which we conclude

that Tr
[∣∣∣ρ− I

d

∣∣∣] 6 ε. QED

Scheme based on δ-biased sets

Let A be random variable over {0, 1}n. The bias of A with respect to a string α is

the distance from uniform of the bit α� A. More formally:

bias(A) =
∣∣∣Pr[α� A = 0]− Pr[α� A = 1]

∣∣∣ = EA[(−1)α�A]. (2.28)

If E is a set of n-bit strings, E ⊆ {0, 1}n, then we call the bias of E with respect

to α the bias of the uniform random variable over E with respect to α. If that bias

is inferior to δ for all possible strings α, excluding the zero string, we say the set is

δ-biased.

The Ambainis-Smith scheme uses a construction by Alon, Goldreich, H̊astad and

Peralta [2], which requires polynomial time to construct and has size O(n2/δ2). Hence

it requires 2 log(n) + 2 log(1/δ) bits to index the set.
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We can write any Pauli operator over a 2n dimension space this way:

XuZv = Xu1Zv1 ⊗ · · · ⊗XunZvn ,

where u and v are two n-bit strings. Let B be a δ-biased set over strings of length 2n,

and interpret every string in B as a‖b, where both a and b are n-bit strings. Then

the following is an approximate quantum encryption scheme:

E(ρ) =
1

|B|
∑
a‖b∈B

XaZbρZbXa. (2.29)

It is proven in [4] that whenever this scheme uses n+ 2 log(n) + 2 log(1/ε) bits of key

to index a δ-biased set, where δ = ε2−n/2, then for all ρ0∥∥∥∥∥E(ρ0)− I
2n

∥∥∥∥∥
1

6 ε. (2.30)

The only remaining thing to prove is that we can cut on the key length if we use

the (t, ε)-indistinguishability security criterion instead of the approximate encryption

criterion. So let ρ =
∑
k γk |k〉〈k| =

∑
i piσi, where H∞(ρ) > t. Observe that an

approximate encryption scheme requires that for all σi∥∥∥∥∥E(σi)−
I

2n

∥∥∥∥∥
1

6 ε,

whilst (t, ε)-indistinguishability requires equation (2.30) to hold for ρ0 = ρ =
∑
i piσi.

I the min-entropy of the adversary on the message space is high enough, higher than

2 log(n) + 2 log(1/ε) + O(1), then this scheme requires less than n bits of key for n

qubits.

Theorem 5 Let B be a δ-biased set over strings of length 2n, and interpret every

string in B as a‖b, where both a and b are n-bit strings. Then the following scheme

E(ρ) =
1

|B|
∑
a‖b∈B

XaZbρZbXa, (2.31)

where the private key is used to index the elements of B, is (t, ε)-indistinguishable.
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Proof:

We shall use Lemma 7. If ρ is embedded in a d-dimensional space and Tr [E(ρ)2] 6

1/d(1+ε2), then ‖E(ρ)−I/d‖tr 6 ε, which implies the desired (t, ε)-indistinguishability.

The next equation is already proven in [4]:

Tr
[
E(ρ)2

]
6

1

2n
(1 + δ22nTr

[
ρ2
]
). (2.32)

Now, knowing that H∞(ρ) > t, we can evaluate Tr [ρ2] more precisely than saying it

is inferior to one. We know that Tr [ρ2] =
∑
k γ

2
k 6

∑
k 2−tγk = 2−t. We simply use it

in equation (2.32) and we get:

Tr
[
E(ρ)2

]
6

1

2n
(1 + δ22n−t︸ ︷︷ ︸

ε2

). (2.33)

So if we pose ε2 = δ22n−t, then by using Lemma 7 we can compute how large B

needs to be for this scheme to work. We conclude that the size of the key belongs to

log(O(n
22n−t

ε2
)), which is equal to n− t+ 2 log(n) + 2 log(1/ε) +O(1). QED

Scheme based on XOR-Universal functions

Definition 13 Let Hn = {hi}i∈I be a family of functions from n-bit strings to n-bit

strings. We say the family Hn is strongly-XOR-universal if for all n-bit strings a, x,

and y such that x 6= y we have

Pri[hi(x)⊕ hi(y) = a] =
1

2n
.

Take the Field of size 2n, F = GF (2n). Let hi(x) be ix where i ∈ F and x ∈ F

and we use the Field operation for multiplication between the two elements. For this

field, addition is simply the xor of the strings that represent the elements. Hence,

hi(x)⊕ hi(y) = a if and only if ix+ iy = a or if i(x+ y) = a. And this obviously has

a unique solution for every pair (x, y). Hence, the probability that this happens for
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x 6= y is exactly 1/2n, since there are 2n different i possible. Note that this property

does not depend at all on the distribution of the x and y, as long as they are not

equal.

Theorem 6 Let H2n be a strongly-XOR-universal family of functions. Consider the

super-operator Ek(ρ) = 1
|I|
∑
i∈I |i〉〈i|S

′⊗XaZbρZbXa, where S ′ is an ancillary system,

a‖b = hi(k), |a| = |b| = n, hi ∈ H2n and k is the secret key selected uniformly at

random from a set K ⊆ {0, 1}2n. Then, if H∞(K) + H∞(ρ) > n + 2 log(1/ε), E
is (t, ε)-indistinguishable. This scheme is not length preserving since the ancillary

system S ′ is part of the cipher text.

Proof :

We use Lemma 7 again. If ρ is embedded in a d-dimensional space and Tr [E(ρ)2] 6

1/d(1+ε2), then ‖E(ρ)−I/d‖tr 6 ε, which implies the desired (t, ε)-indistinguishability.

Observe that E(ρ)2 = E(ρ)E(ρ), two independent instances of E(ρ) which are using

independent key and coins. The adversary’s view can be written this way: ρ′ =

E(ρ) = Ek,i[|i〉〈i| ⊗XaZbρZbXa], where the |i〉〈i| are equiprobable. We are interested

in the following quantity:

Tr
[
E(ρ)2

]
(a)
= Tr

[
Ek,k′,i,j[(|i〉〈i| ⊗XaZbρZbXa)(|j〉〈j| ⊗XcZdρZdXc)]

]
= Tr

[
Ek,k′,i,j[|i〉〈i| |j〉〈j| ⊗XaZbρZbXaXcZdρZdXc]

]
(b)
=

1

|I|
Tr
[
Ek,k′,i[|i〉〈i| ⊗XaZbρZbXaXcZdρZdXc]

]
=

1

|I|
Tr
[
Ek,k′,i[|i〉〈i| ⊗ ZdXcXaZbρZbXaXcZdρ]

]
=

1

|I|
Tr
[
Ek,k′,i[|i〉〈i| ⊗ (−1)d�c(−1)d�aXcXaZdZbρZbXaXcZdρ]

]
=

1

|I|
Tr
[
Ek,k′,i[|i〉〈i| ⊗ ((−1)d�c)2((−1)d�a)2XcXaZdZbρZbZdXaXcρ]

]
(c)
=

1

|I|
Tr
[
Ek,k′,i[|i〉〈i| ⊗XeZfρZfXeρ]

]
(2.34)
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where at step (a) a‖b = hi(k) and c‖d = hj(k
′) and where k and k′ are independent

instances of the key. Step (b) follows since |i〉〈i| |j〉〈j| = δij and both terms have a 1/|I|
probability associated with them. In step (c) e‖f = (a⊕ c)‖(b⊕ d) = (a‖b)⊕ (c‖d).

Let us divide Equation (2.34) into two terms, one term for k = k′ and the other for

k 6= k′. Let us introduce the following notation: ρef instead of XeZfρZfXe and pef

for the probability that e‖f is observed. Thus, after taking the partial trace on the

ancillary system, we can rewrite everything like this:

Tr
[
E(ρ)2

]
=

1

|I|
Tr

 ρ
2

|K|
+

(
1− 1

|K|

) ∑
e,f

where k 6=k′

pefρefρ

 . (2.35)

We know that when k = k′ then for every i we have e‖f = 0 whilst for k 6= k′

by Definition 13, we know that the probability over all i of seeing any string e‖f is

equal to 1/22n. Of course
∑
e,f 1/2nρef = I/2n [3]. Hence the second term reduces to

Tr [I/2nρ] = 1/2nTr [ρ] = 1/2n.

Tr
[
E(ρ)2

]
6

1

|I|

(
Tr

[
ρ2

|K|

]
+

1

2n

)
. (2.36)

Let us denote H∞(K) by tK = log |K| and H∞(ρ) by tρ. By hypothesis, we have

H∞(K) + H∞(ρ) > n + 2 log(1/ε), hence 2n−tk−tρ 6 ε2. We can thus rewrite (2.36)

this way:

Tr
[
E(ρ)2

]
6

1

|I|
1

2n

(
2n−tk−tρ + 1

)
6

1

|I|
1

2n

(
ε2 + 1

)
, (2.37)

since Tr [ρ2] 6 1/2tρ . This, in turn, implies that
∥∥∥E(ρ)− I

d

∥∥∥
1

6 ε for tk = log |K| >
n− t+ 2 log(1/ε). QED.

The reader should note that the previous scheme is proven to be (t, ε)-indistinguishable

using n−t+2 log(1/ε) bits of key in this model, whilst the same scheme was proven in

[18] to be (t, ε)-indistinguishable in the classical model using n− t+2 log(1/ε)+2 bits

of key. A very slight improvement which is a gift of the better proof technique. But

the most interesting thing to notice, is that in a stronger model than [18], we can now



54 CHAPTER 2. UNCORRELATED CRYPTOGRAPHY

send quantum messages and the adversary can now be any POVM, we do not require

more key in order to achieve security. This is, as far as we know, the only relaxation

on perfect security which has this property: that is, both classical and quantum key

size requirements are the same.

Furthermore, the reader should notice that the entropy on the key is not necessary

maximum. The statement says that the scheme is secure if H∞(K) + H∞(ρ) >

n+ 2 log(1/ε). This is not new as Dodis and Smith already had stated their theorem

this way, but they did not attracted the attention of the reader to the fact that the

key did not need to be perfectly secret. We do believe that it is a very interesting

feature of this second scheme.

But there is a small problem with what was proven. There is a tiny probability that

the message is not encrypted and that the adversary is told that it is so. If i = 0, then

we have the trivial identity function and since the sender puts i on the wire with the

cipher text, he just told the adversary the message was in clear. This is not a very

prudent thing to do, even though this can only happen with negligible probability.

Fortunately, we can slightly modify the previous scheme and prove security in all

cases.

Consider the event Z = hi(x)⊕ hi(y). Now consider the same xor-function discussed

earlier but modify it such that the probability that i = 0 is zero, and all other values

for i happen with uniform probability 1
2n−1

. Then, using this new family of xor-

function, there is two different probabilities that a given value z that Z could take.

Either Z is zero with probability 1/|K| or for any other value Z = z, this value has

probability

pz =

(
1− 1

|K|

)
· 1

2n − 1
, (2.38)

that is, once x 6= y (the left term) the probability is uniform since i is chosen uniformly

over 2n − 1 strings (right term). We want to prove that pz is in fact inferior to 1/2n.

High school arithmetic can convince us that if |K| 6 2n ⇐⇒ pz 6 1/2n.
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Using this variation on XOR-universal functions, we can modify the proof of Theorem

6 to show the scheme is still (t, ε)-indistinguishable. We start with equation (2.34)

which we parse exactly the same way. Let us divide it into two terms: one term for

e‖f = 0 and one term for e‖f 6= 0 (it used to be k = k′ and k 6= k′). Thus, after

taking the partial trace on the ancillary system, we can rewrite everything like this:

Tr
[
E(ρ)2

]
=

1

|I|
Tr

 ρ
2

|K|
+

∑
e,f

where e‖f 6=0

pefρefρ

 . (2.39)

Observe two things: for all e‖f 6= 0 we know that pef 6 1/22n and
∑
ef

1
22nρef =

I/2n, the perfectly mixed state. Quantum mechanic also tells us that Tr [ρσ] is the

expectation of the observed eigenvalue if one measures the observable ρ on the state

σ. A specific case is Tr
[

I
2n
ρ
]

= 1/2n, since all eigenvalues of the perfectly mixed state

are equal to 1/2n, the average can not be different from this number.

Let A be the positive operator
∑

e,f
e‖f 6=0

pefρef . From the previous observations, we can

conclude that there exists a positive operator B such that A + B = I/2n. More

specifically B =
∑
e,f (

1
2n
− pef )ρef and p0‖0 = 0. Therefore Tr [(A+B)ρ] 6 1

2n
, thus

Tr [Aρ] + Tr [Bρ] 6 1
2n

and finally Tr [Aρ] 6 1
2n

.

So we can rewrite Equation (2.39) this way:

Tr
[
E(ρ)2

]
6

1

|I|

(
Tr

[
ρ2

|K|

]
+

1

2n

)
(2.40)

which is exactly the same as equation (2.36), hence we can conclude for this modify

scheme the same thing concluded in Theorem 6.

This completes our study of the model excluding any kind of correlation or entangle-

ment. We provided different proofs of security, mainly entropic-security and entropic-

indistinguishability, and we proved that they are in fact, up to small parameter ad-

justment , equivalent. Very importantly, we showed that these definitions are indeed
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achievable and do provide improvement on the state of the art cryptography by pre-

senting two different efficient ciphers which are indeed entropically-secure,

We shall now generalize all these results to a model where any correlation or entan-

glement between the sender and the adversary is be permitted.



Chapter 3

Correlated Cryptography

In this section, we discuss security definitions and ciphers in a model where the ad-

versary could be correlated and/or entangled with the sender. From the adversary’s

point of view, the sender chooses (receives) a message σSAi with probability pi where

σSAi is a state shared by both the sender and the adversary. They each receive a

register R that holds their part of the shared state: RS for the sender and RA for the

adversary. Hence the adversary’s view (a priori knowledge) of the Sender-Adversary

space is ρSA =
∑
i piσ

SA
i and H∞(ρSA|ρA) > t (defined below) where ρA = TrS(ρSA).

We call the set {(pi, σSAi )}i an interpretation for ρSA. Then the sender encrypts his

half, RS, and gives it to the adversary.

Here, the adversary can see the entire encrypted system as the following source

(ES ⊗ IA)(ρSA) =
∑
i pi(ES ⊗ IA)(σSAi ), and he tries to predict i, or f(i), or f(σSAi )

from what he is given, that is the two registers. We shall use the notation f(i) to

lighten an already very heavy notation from now on. Note that the encryption scheme

is now a tensor of operators, that is the sender encrypts the RS register and sends

its content to the receiver and nothing is done to the adversary’s register: thus the

encryption operator is (ES ⊗ IA), but we shall write E for simplicity.

57
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�� ��
�� ��ρSA =

∑
i piσ

SA
i

σSAi // RS
//

RA

77S
E(RS) //A //f(i)

Figure 3.1: The generalized Model of the sender-adversary interaction

Definition 14 (Quantum conditional min-entropy) For any quantum state ρSA

shared between the sender and the adversary, we define the conditional min-entropy

of ρSA given ρA as

H∞(ρSA|ρA) = − log λ,

where λ is the minimum real number such that the Hermitian operator λIS⊗ρA−ρSA

is positive semi-definite.

Observe that the last operator is defined using the identity matrix on the S space

and not the perfectly mixed state. The following notation is occasionally used in

the literature for quantum conditional min-entropy H∞(S|A)ρ , H∞(ρSA|ρA); the

subscript indicates the state with respect to which the min-entropy is calculated.

Observe also that we can obtain an equivalent definition for λ using the following:

H∞(ρSA|ρA) = − log min{λ : λIS ⊗ ρA − ρSA > 0}

= − log min
{
λ : ∀|ψ〉, 〈ψ|λIS ⊗ ρA|ψ〉 > 〈ψ|ρSA|ψ〉

}
= − log min

{
λ : ∀|ψ〉, λ >

〈ψ|ρSA|ψ〉
〈ψ|IS ⊗ ρA|ψ〉

}

= − log max
|ψ〉

{
〈ψ|ρSA|ψ〉
〈ψ|IS ⊗ ρA|ψ〉

}
.

This last expression is reminiscent of the definition of classical conditional min-

entropy, which we reproduce here:

H∞(X|Y ) = − log max
x,y

{
p(x, y)

p(y)

}
(3.1)

Some properties about the quantum conditional min-entropy can be proven which

will be handy later on. First, this lemma:
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Lemma 8 Let the joint state of the sender and the adversary be a tensor product

state, ρSA = ρS ⊗ ρA, then H∞(ρSA|ρA) = H∞(ρS).

Proof:

The structure of ρSA lets us write this equality: λIS ⊗ ρA − ρSA = (λIS − ρS) ⊗ ρA.

We know that ρA is positive, since it is a valid density operator, hence if we want this

expression to be positive semi-definite, we need λIS − ρS to be positive semi-definite.

This implies, since I commutes with everything, that λ = γmax, where γmax is the

largest eigenvalue of ρS. QED

But there are states which are still more general than tensor product states and yet

imply no quantum correlation (i.e. entanglement). We say a state ρAB is separable if

it can be written as ρAB =
∑
z pzσ

A
z ⊗ τBz , where

∑
z pz = 1 and the pz’s are positive

real numbers.

In this case, Lemma 3.1.8 of Renner’s Ph.D thesis [37] allows us to conclude something

interesting. Using Renner’s notation, we say that a state ρABZ is classical with respect

to the space Z if there exists an orthonormal basis {|z〉} for Z such that ρABZ =∑
z pzρ

AB
z ⊗ |z〉〈z|. Therefore, for any separable state ρAB there exist a space Z and a

state ρABZ such that TrZ [ρABZ ] = ρAB, that is ρABZ =
∑
z pzσ

A
z ⊗ τBz ⊗|z〉〈z|. Lemma

3.1.8 in [37] states that

H∞(ρABZ |ρBZ) = inf
z
H∞(ρABz |ρBz ). (3.2)

Note that this quantity for separable states is very classical and contains no perverse

quantum effects: by Lemma 8 we can conclude H∞(ρABz |ρBz ) = H∞(σAz ⊗ τBz |τBz ) =

H∞(σAz ).

Lemma 3.1.7 of the same thesis also tells us that for any system C, H∞(ρABC |ρBC) 6

H∞(ρAB|ρB). Hence, putting all this together, we get for separable states that

H∞(ρAB|ρB) > inf
z
H∞(σz) > 0. (3.3)
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Sadly, as far as we know, no better expression is known for the min-entropy of separa-

ble states. Note that this also implies that using the definition of quantum conditional

min-entropy will enable us to subtract more key bit than pure paranoia, quantified

by infzH∞(σz), would allow us.

Note also that if the S and A spaces are maximally entangled, for example the state∑d
i=1

1√
d
|i〉S|i〉A, where n = log d, then

H∞(ρSA|ρA) = −n. (3.4)

The reader should also take note that all proofs in this work are compatible with

a generalization of the conditional min-entropy known as smooth-entropy as defined

in section 3 of [37]. Readers interested by the operational meaning of conditional

min-entropy should consult [32].

Definition 15 (Entropic Security) An encryption system E is (t, ε)-entropically

secure if for all states ρSA such that H∞(ρSA|ρA) > t, all interpretations {(pi, σSAi )}i
and all adversaries A, there exists an A′ such that for all functions f , we have 1

∣∣∣∣Pr
i

[A(E(σSAi )) = f(i)]− Pr
i

[A′(σAi ) = f(i)]
∣∣∣∣ 6 ε. (3.5)

We have to give σi to A′ otherwise even a perfect scheme would not be able to achieve

this definition. Take for example the following state: ρ =
∑
i∈I 1/|I|

∣∣∣iS ⊗ iA〉〈iS ⊗ iA∣∣∣.
That is, when S gets i, then A also gets i; a perfectly correlated classical variable and

let f(
∣∣∣iS ⊗ iA〉〈iS ⊗ iA∣∣∣) = i. Then Pri[A(E(

∣∣∣iS ⊗ iA〉〈iS ⊗ iA∣∣∣)) = f(i)] = 1 whilst

Pri[A
′(·) = f(i)] = 1/|I|. Which is obviously a bad definition, since even a perfect

scheme would not achieve it for ε 6 1/2.

1One can also get an equivalent definition by using functions on the states σSA
i rather than on

the indices i.
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Definition 16 (Strong entropic security)

An encryption system E is strongly (t, ε)-entropically secure if for all states ρSA such

that H∞(ρSA|ρA) > t, all interpretations {(pi, σSAi )}i, all adversaries A, and all func-

tions f , we have

∣∣∣∣Pr
i

[A(E(σSAi )) = f(i)]− Pr
i

[A(E(ρS)⊗ σAi ) = f(i)]
∣∣∣∣ 6 ε, (3.6)

where ρS = TrA(ρSA).

Definition 17 (Entropic Indistinguishability)

An encryption system E is (t, ε)-indistinguishable if there exists a state ΩS′ such that

for all states ρSA for which H∞(ρSA|ρA) > t we have

∥∥∥E(ρSA)− ΩS′⊗ ρA
∥∥∥

1
< ε, (3.7)

where, E sends the sender space S to the cipher space S ′.

It is also easy to see, using the triangle inequality, that Definition 17 implies:

Definition 18 (Weak Entropic Indistinguishability) An encryption scheme E
is said to be weakly (t, ε)-indistinguishable if for all operators ρSA and γSA, where

TrS [γSA] = ρA , such that H∞(ρSA|ρA) > t and H∞(γSA|γA) > t we have

∥∥∥E(ρSA)− E(γSA)
∥∥∥

1
< 2ε. (3.8)

Note that in the previous definition, we could have use all state γSA and not just

separable ones, but the definition would then be even weaker.
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3.1 Equivalence of the definitions

In this section, we shall prove that all four definitions of security in the general model

are all equivalent. We use the same abbreviation as in §2 that is entropic security (ES),

strong-entropic security (SES), Indistinguishability (I) and Weak-Indistinguishability

(WI). Note that we have one more implication than in the uncorrelated model.

ES

SES

WI I
Lemma 1

Theorem 10

Theorem 7Lemma 2
Theorem 9

Figure 3.2: Graph of implications in the general Model

Theorem 7 If t 6 n− 1, then (t− 1, ε/4)-weak entropic indistinguishability implies

strong (t, ε)-entropic security.

We shall prove a few intermediate results which will be useful.

Lemma 9 Let A be a binary physical adversary in the general strong-entropic setting,

i.e. a POVM with two elements, that has advantage ε at guessing h on a state ρ =

p0τ
SA
0 + p1τ

SA
1 , where h(i) = i. Then for any sub-interpretation of τSA0 and τSA1 and

a predicate g that partitions the output space as in the original interpretation, A’s

advantage is still ε at guessing g(i) in the new interpretation.
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Proof:

We shall omit, as in Lemmas 3 and 4, to write the encryption E in order to lighten the

notation. Let us develop the lemma’s statement. We know that ρ = p0τ
SA
0 + p1τ

SA
1

and that

∣∣∣Prk[A(τSAk ) = h(k)]− Prk[A(ρS ⊗ τAk ) = h(k)]
∣∣∣ = ε, (3.9)

where h is a predicate, A = {A0,A1} and Pr[A(τSAk ) = h(k)] = Tr
[
Ah(k)τ

SA
k

]
. The

statement also mentions a second interpretation, and predicate, ρ =
∑
i qiσ

SA
i and

of a partition of the indices, F0 , {i|g(i) = 0}i and F1 , {i|g(i) = 1}i, such that

p0τ
SA
0 =

∑
i∈F0

qiσ
SA
i and p1τ

SA
1 =

∑
i∈F1

qiσ
SA
i . We shall assume for simplicity that

h(k) = k. We wish to show that

∣∣∣Pri[A(σSAi ) = g(i)] − Pri,j[A(σSj ⊗ σAi ) = g(i)]
∣∣∣

=
∣∣∣Prk[A(τSAk ) = h(k)]− Prk,l[A(τSl ⊗ τAk ) = h(k)]

∣∣∣
= ε.

(3.10)

Let us first start by proving that the first terms of both sides are the same.

Pri[A(σSAi ) = g(i)] =
∑
i

qiPr[A(σSAi ) = g(i)]

=
∑
i∈F0

qiPr[A(σSAi ) = 0] +
∑
i∈F1

qiPr[A(σSAi ) = 1]

=
∑
i∈F0

qiTr
[
A0σ

SA
i

]
+
∑
i∈F1

qiTr
[
A1σ

SA
i

]
= p0Tr

[
A0τ

SA
0

]
+ p1Tr

[
A1τ

SA
1

]
= p0Pr[A(τSA0 ) = 0] + p1Pr[A(τSA1 ) = 1]

= Prk[A(τSAk ) = k].
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Now for the second terms:

Pri,j[A(σSj ⊗σAi ) = g(i)]

=
∑
i

qiPrj[A(σSj ⊗ σAi ) = g(i)]

=
∑
i∈F0

qiPrj[A(σSj ⊗ σAi ) = 0] +
∑
i∈F1

qiPrj[A(σSj ⊗ σAi ) = 1]

(a)
=
∑
i∈F0

qi

∑
j∈F0

qjPr[A(σSj ⊗ σAi ) = 0] +
∑
j∈F1

qjPr[A(σSj ⊗ σAi ) = 0]

+ . . .

=
∑
i∈F0

qi

∑
j∈F0

qjTr
[
A0(σSj ⊗ σAi )

]
+
∑
j∈F1

qjTr
[
A0(σSj ⊗ σAi )

]+ . . .

=
∑
i∈F0

qi
(
p0Tr

[
A0(τS0 ⊗ σAi )

]
+ p1Tr

[
A0(τS1 ⊗ σAi )

])
+ . . .

=
∑
i∈F0

qi
(
Prl[A(τSl ⊗ σAi ) = 0]

)
+ . . .

where (a) follows by simply replacing the second term in the sum by dots for the

meanwhile. Bringing back the long forgotten second term lost in (a) we can continue

Pri,j[A(σSj ⊗σAi ) = g(i)]

=
∑
i∈F0

qi
(
Prl[A(τSl ⊗ σAi ) = 0]

)
+
∑
i∈F1

qiPrj[A(σSj ⊗ σAi ) = 1]

=
∑
i∈F0

qi
(
Prl[A(τSl ⊗ σAi ) = 0]

)
+
∑
i∈F1

qi
(
Prl[A(τSl ⊗ σAi ) = 1]

)
= p0Prl[A(τSl ⊗ τA0 ) = 0] + p1Prl[A(τSl ⊗ σAi ) = 1]

= Prl,k[A(τSl ⊗ τAk ) = k].

Both term being equal, it must be that the difference has not changed in the new

interpretation. QED

Theorem 8 Let ρSA be a state, {(pi, σSAi )}i be an interpretation, E be a cipher, f be

a function and A be an adversary such that∣∣∣Pr[A(E(σSAi ))=f(i)]−Pr[A(E(ρS)⊗ σAi )=f(i)]
∣∣∣>ε.
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then there exist an adversary B and a predicate h such that∣∣∣Pr[B(E(σSAi ))=h(i)]−Pr[B(E(ρS)⊗ σAi )=h(i)]
∣∣∣> ε

2
.

Proof:

Let our predicate be a Goldreich-Levin predicate [21], that is hr(x) = r � f(x). Let

p = Pr[A(E(σSAi )) = f(i)] and q = Pr[A(E(ρS) ⊗ σAi ) = f(i)]. Then we know that

|p− q| > ε. Let us compute

E =
∣∣∣∣Er

[
Pr[r � A(E(σSAi )) = hr(i)]− Pr[r � A(E(ρS)⊗ σAi ) = hr(i)]

]∣∣∣∣, (3.11)

where the expectation is taken over all r of adequate size. We need two observations.

First, when A predicts correctly, then for every r we have r � A(E(σSAi )) = hr(i).

Second, when A does not predict correctly, the probability that r�A(E(σSAi )) = hr(i)

is exactly one half. These two observations also hold for r � A(E(ρS) ⊗ σAi ). Hence

Equation (3.11) reduces to

E =
∣∣∣∣1 · p+

1

2
· (1− p)−

(
1 · q +

1

2
· (1− q)

)∣∣∣∣
=
∣∣∣∣p− q2

∣∣∣∣ > ε

2
.

(3.12)

Thus there exists at least one value r such that the following is true:∣∣∣Pr[r � A(E(σSAi )) = hr(i)]− Pr[r � A(E(ρS)⊗ σAi ) = hr(i)]
∣∣∣ > ε

2
. (3.13)

The lemma is proven if adversary B is defined, using this appropriate r, as r � A.

QED

Not surprisingly, one cannot immediately generalize Lemma 5 to the correlated model

of security. Inspection of the proof of Lemma 5 reveals that the probability of correctly

predicting the predicate is not the same between A and A(·) (where here A(·) means

that A is called with a forged input), hence simplification will not occur. This reveals

something interesting about the correlated model: there might be predicates for which,
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if E is not good enough, then the predicting capabilities of A and A(·) are not the

same on a constant predicate.

Here is an example of this phenomenon. Let the message space have two states in it:

Φ+SA = 1/
√

2(|00〉 + |11〉) and Φ−
SA

= 1/
√

2(|00〉 − |11〉). Let the adversary A be

the POVM Π, constituted of the two following measurement operators: ΠΦ, which is

a projector on the space spanned by Φ+SA and Φ−
SA

, and Πψ which is a projector

on the space spanned by Ψ+SA = 1/
√

2(|01〉 + |10〉) and Ψ−
SA

= 1/
√

2(|01〉 − |10〉).
Note that Π is a complete binary measurement of the space and that Π is in fact a

constant predicate on the message space. So the advantage of A over A(·) is∣∣∣∣Pr
i

[A(E(Φ±
SA

)) = f(i)]− Pr
i

[A(E(ρS)⊗ Φ±
A

) = f(i)]
∣∣∣∣

If we choose the really bad encryption scheme which is the identity — Lemma 5 does

not even mention encryption in order to get it’s result, hence its result holds even

using I as an encryption scheme — clearly we get∣∣∣∣Pr
i

[A(Φ±
SA

) = f(i)]︸ ︷︷ ︸
=1

−Pr
i

[A(IS ⊗ IA) =f(i)]︸ ︷︷ ︸
=1/2

∣∣∣∣ =
1

2
.

This is once more a strange effect of correlation and entanglement. We need to be

more creative.

Lemma 10 For any function f if there exits an adversary A that has advantage ε

at guessing its value, then there is another adversary A′ and a non-constant predicate

h′r such that A′ has advantage ε/2 at guessing h′r in the generalized strong-entropic

security.

Proof:

We start from the adversary constructed in Theorem 8. We shall construct a new

function f ′ and use it instead of f in constructing the predicate h′r which will use the

same r as hr. Let us start with equation (3.13) and again choose a r such that

E =
∣∣∣∣Pr[r � A(E(σSAi )) = hr(i)]− Pr[r � A(E(ρS)⊗ σAi ) = hr(i)]

∣∣∣∣ > ε

2
. (3.14)
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Assume hr is constant. Let us now assume that the range of f is over m-bit strings:

∀i, f(i) ∈ {0, 1}m. Let F , {f(i)}i, F0 = {j ∈ {0, 1}m|j � r = 0}i and F1 = {j ∈
{0, 1}m|j � r = 1}i. Since hr(i) is constant, it must be that |F | 6 2m−1. The value r

partitions the input space into two sets: the one whose element have their image in

F0 and the one whose element have their image in F1. Since hr(i) is constant, then it

must be that all i belong to one of those two sets.

Let us construct a new function f ′. This function will simply remap part of the output

of f to lie in the other set. Let us assume without loss of generality that for all i,

f(i) ∈ F0. Since f is a function, it has at least 3 different outputs with non-zero

measure (otherwise, we would consider it to be a predicate, and we would not need

this Lemma). Let the set Z = {z|∃i s.t. z = f(i)}z be the set of possible outputs for

f and consider the sets Ez = {i|f(i) = z}i. The sets Ez partition the input to f . To

construct f ′, choose a totally arbitrary number of set Ez (at least one and not all of

them) and reassign all the points i ∈ Ez to some z′ ∈ F1. That is, for part of the

input, f ′(Ez) = f(Ez) = z and for the other part f ′(Ez) 6= f(Ez) and f(Ez)� r = 1.

This remapping is unitary, it is in fact simply a permutation of the output of f . Let

us call this remap U , where U is the unitary operator that remaps the output of f .

Then, obviously A′ = UAU † will be as good at predicting f ′ as A is good at predicting

f . Hence we can conclude

E =
∣∣∣∣Pr[r � UA(E(σSAi ))U † = h′r(i)]− Pr[r � UA(E(ρS)⊗ σAi )U † = h′r(i)]

∣∣∣∣ > ε

2
,

where h′r(i) = r � f ′(i) and hr is not constant. QED

Proof of Theorem 7:

We shall prove the contrapositive. Suppose there exists an adversary B, a state ρSA

such that H∞(ρSA|ρA) > t, an interpretation
{

(pj, σ
SA
j )

}
j

for ρSA and a function f

such that ∣∣∣∣Pr
i

[B(E(σSAi )) = f(i)]− Pr
i

[B(E(ρS)⊗ σAi ) = f(i)]
∣∣∣∣ > ε. (3.15)
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Then we know, see Theorem 8, that there exists another adversary and a predicate h

such that (t, ε/2)-strong-entropic security is violated. Let’s call this adversary A and

let us define the sets E0 and E1 as follows:

E0 = {i|h(i) = 0}i (3.16)

E1 = {i|h(i) = 1}i . (3.17)

Define the following:

r0 =
∑
i∈E0

pi, (3.18)

r1 =
∑
i∈E1

pi, (3.19)

τSA0 =
1

r0

∑
i∈E0

piσ
SA
i

 (3.20)

τSA1 =
1

r1

∑
i∈E1

piσ
SA
i

 . (3.21)

Note that ρSA = r0τ
SA
0 + r1τ

SA
1 . Lemma 9 tells us that A’s advantage is still larger

than ε/2 when used as a black box to predict h on E(ρSA) when ρSA is interpreted as

ρSA = r0τ
SA
0 + r1τ

SA
1 . Our violation over the τSAi is now:∣∣∣∣∣∣

∑
i=0,1

pi

(
Pr[A(E(τSAi )) = i]− Pr[A(E(ρS)⊗ τAi ) = i]

)∣∣∣∣∣∣ > ε

2
. (3.22)

So there exist i such that∣∣∣pi(Pr[A(E(τSAi )) = i]− Pr[A(E(ρS)⊗ τAi ) = i]
)∣∣∣ > ε/4 (3.23)

Now, Theorem 4 tells us that if this last equation is true then the trace distance

between E(τSAi ) and E(ρS ⊗ τAi ) is at least (ε/4)/pi. We are not done yet since we

have no guaranty on the quantities H∞(τSAi |τAi ) and H∞(ρS ⊗ τAi |τAi ). We need to

construct new states. Let us define the following two states:

τ̃SAi = riτ
SA
i + rj

IS

dS
⊗ τAj (3.24)

ρ̃SAi = riρ
S ⊗ τAi + rj

IS

dS
⊗ τAj , (3.25)



3.1. EQUIVALENCE OF THE DEFINITIONS 69

where i ∈ {0, 1} and j = 1 − i. Note that TrS
[
τ̃SAi

]
= TrS

[
ρ̃SAi

]
= ρA. Now as

Lemma 11 proves, both these new states have at least t− 1 conditional min-entropy.

And we can now evaluate the following equation, which is one element of the trace

distance: ∣∣∣Pr[A(E(τ̃SAi )) = i]− Pr[A(E(ρ̃SAi )) = i]
∣∣∣ . (3.26)

So, assuming without loss of generality, that i = 0, we have:∣∣∣Pr[A(E(τ̃SA0 )) = 0]− Pr[A(E(ρ̃SA0 )) = 0]
∣∣∣

=
∣∣∣Tr

[
A0E(τ̃SA0 )

]
− Tr

[
A0E(ρ̃SA0 )

]∣∣∣
=

∣∣∣∣∣Tr

[
A0E(r0τ

SA
0 + r1

IS

dS
⊗ τA1 )

]
− Tr

[
A0E(r0ρ

S ⊗ τA0 + r1
IS

dS
⊗ τA1 )

]∣∣∣∣∣
=

∣∣∣∣∣Tr
[
A0E(r0τ

SA
0 )

]
+ Tr

[
A0E(r1

IS

dS
⊗ τA1 )

]

− Tr
[
A0E(r0ρ

S ⊗ τA0 )
]
− Tr

[
A0E(r1

IS

dS
⊗ τA1 )

]∣∣∣∣∣
=
∣∣∣r0Tr

[
A0E(τSA0 )

]
− r0Tr

[
A0E(ρS ⊗ τA0 )

]∣∣∣
=
∣∣∣∣r0

(
Pr[A(E(τSA0 )) = 0]− Pr[A(E(ρS ⊗ τA0 )) = 0]

)∣∣∣∣
>
ε

4
(3.27)

where the last step uses (3.23). Using the same trick as in equation (2.21) and Theorem

4, we conclude that
∥∥∥E(τ̃SA0 )− E(ρ̃SA0 )

∥∥∥
1

is larger than ε/2.

Hence τ̃SA0 and ρ̃SA0 constitute a violation of (t − 1, ε/4)-weak-indistinguishability,

which, by Lemma 1, in turns implies a violation of the (t−1, ε/2)-indistinguishability.

QED

Lemma 11 Let ρSA = r0τ
SA
0 + r1τ

SA
1 be a state such that H∞(ρSA|ρA) > t and

t 6 n − 1. Then the four states τ̃SAi = riτ
SA
i + rj

IS
dS
⊗ τAj and ρ̃SAi = riρ

S ⊗ τAi +

rj
IS
dS
⊗ τAj where i ∈ {0, 1} and j = 1− i, all have high conditional min-entropy, that

is H∞(τ̃SAi |τ̃Ai ) > t− 1 and H∞(ρ̃SAi |ρ̃Ai ) > t− 1.
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Proof:

Let us first deal with the first two states. Observe that TrS
[
ρ̃SAi

]
= TrS

[
τ̃SAi

]
= ρA

since the partial trace is linear — TrS
[∑

i piσ
SA
i

]
=
∑
i piTrS

[
σSAi

]
. By definition, we

know that

H∞(τ̃SAi |τ̃Ai ) = − log max
|ψ〉

〈ψ|τ̃SAi |ψ〉
〈ψ|IS ⊗ τ̃Ai |ψ〉

.

We can develop the right hand side into

max
|ψ〉

〈ψ|τ̃SAi |ψ〉
〈ψ|IS ⊗ τ̃Ai |ψ〉

6 ri max
|ψ〉

〈ψ|τSAi |ψ〉
〈ψ|IS ⊗ ρA|ψ〉

+ rj maxψ
〈ψ| IS

dS
⊗ ρA|ψ〉

〈ψ|IS ⊗ ρA|ψ〉
.

Let us develop the first term:

ri max
|ψ〉

〈ψ|τSAi |ψ〉
〈ψ|IS ⊗ ρA|ψ〉

(a)

6 ri max
|ψ〉

〈ψ|τSAi + rj
ri
τSAj |ψ〉

〈ψ|IS ⊗ ρA|ψ〉

6 max
|ψ〉

〈ψ|riτSAi + rjτ
SA
j |ψ〉

〈ψ|IS ⊗ ρA|ψ〉

6 max
|ψ〉

〈ψ|ρSA|ψ〉
〈ψ|IS ⊗ ρA|ψ〉

6 2−t,

where j = 1− i and (a) follows since adding a non-negative term, 〈ψ|rj/riτSAj |ψ〉 > 0,

to the numerator cannot decrease the expression. Now for the second term:

rj max
ψ

〈ψ| IS
dS
⊗ ρA|ψ〉

〈ψ|IS ⊗ ρA|ψ〉
6 rj2

−t

6 2−t < 2−n,

since H∞( IS
dS
⊗ ρA|ρA) = − log max|ψ〉

〈ψ| I
S

dS
⊗ρA|ψ〉

〈ψ|IS⊗ρA|ψ〉 and, by Lemma 8, H∞( IS
dS
⊗ ρA|ρA)

is maximum, that is larger than t 6 n− 1.
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Putting all this together we get

max
|ψ〉

〈ψ|τ̃SAi |ψ〉
〈ψ|IS ⊗ τ̃Ai |ψ〉

6 2−t + 2−t

= 2−(t−1).

Now for the last two states:

max
|ψ〉

〈ψ|ρ̃SAi |ψ〉
〈ψ|IS ⊗ ρ̃Ai |ψ〉

= max
|ψ〉

〈ψ|riρS ⊗ τAi + rj
IS
dS
⊗ τAj |ψ〉

〈ψ|IS ⊗ (riτAi + rjτAj )|ψ〉

6 ri max
|ψ〉

〈ψ|ρS ⊗ τAi |ψ〉
〈ψ|IS ⊗ (riτAi + rjτAj )|ψ〉

+rj max
|ψ〉

〈ψ| IS
dS
⊗ τAj |ψ〉

〈ψ|IS ⊗ (riτAi + rjτAj )|ψ〉
We can develop the second term this way:

rj max
|ψ〉

〈ψ| IS
dS
⊗ τAj |ψ〉

〈ψ|IS ⊗ (riτAi + rjτAj )|ψ〉
(a)

6 rj max
|ψ〉

〈ψ| IS
dS
⊗ τAj |ψ〉

〈ψ|IS ⊗ rjτAj |ψ〉

= max
|ψ〉

〈ψ| IS
dS
⊗ τAj |ψ〉

〈ψ|IS ⊗ τAj |ψ〉
(b)

6 2−n

6 2−t,

where (a) follows since removing a non-negative term in the denominator cannot

decrease the expression and (b) follows by Lemma 8. We can bound the first term as

follows:

ri max
|ψ〉

〈ψ|ρS ⊗ τAi |ψ〉
〈ψ|IS ⊗ (riτAi + rjτAj )|ψ〉

(a)

6 ri max
|ψ〉

〈ψ|ρS ⊗ τAi + rj
ri
ρS ⊗ τAj |ψ〉

〈ψ|IS ⊗ ρA|ψ〉

= max
|ψ〉

〈ψ|riρS ⊗ τAi + rjρ
S ⊗ τAj |ψ〉

〈ψ|IS ⊗ ρA|ψ〉

= max
|ψ〉

〈ψ|ρS ⊗ ρA|ψ〉
〈ψ|IS ⊗ ρA|ψ〉

b
6 max

|ψ〉

〈ψ|ρSA|ψ〉
〈ψ|IS ⊗ ρA|ψ〉

6 2−t,
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where (a) follows since adding a non-negative term to the numerator cannot decrease

the expressions and (b) is justified by the following chain of implications that uses

the first definition of λ in the conditional min-entropy: λIS ⊗ ρA − ρSA > 0 =⇒
TrA

(
λIS ⊗ ρA − ρSA

)
> 0 =⇒ λIS ⊗ ρA − ρS ⊗ ρA > 0, hence the conditional min-

entropy cannot decrease along that chain of implication.

Putting all this together, we get :

max
|ψ〉

〈ψ|ρ̃SAi |ψ〉
〈ψ|IS ⊗ ρ̃Ai |ψ〉

6 2−t + 2−t = 2−(t−1).

QED

At the cost of being a little more obscure, we can eliminate the need to use weak-

indistinguishability in the proof and prove directly that indistinguishability and strong

entropic security are equivalent.

Theorem 9 (t−1, ε/2)-entropic indistinguishability implies strong (t, ε)-entropic se-

curity for all functions.

Proof:

We can follow the proof of Theorem 7 until equation (3.21). We shall construct two

different states in order to get a contradiction with indistinguishability:

τ̃SA0 = r0τ
SA
0 + r1ρ

S ⊗ τA1 (3.28)

τ̃SA1 = r1τ
SA
1 + r0ρ

S ⊗ τA0 , (3.29)

where, as usual, τAi = TrS[τSAi ]. Lemma 12 tells us that both states have conditional

min-entropy no less than t − 1. We want to show that A can distinguish E(τ̃SA0 )

from E(τ̃SA1 ) with probability strictly better than 1/2 + ε/4. Let’s denote by η the

probability that A will correctly distinguish E(τSA0 ) from E(τSA1 ) in an r0, r1 mixture,

and by α the probability that A will correctly distinguish E(ρA)⊗ τE0 from E(ρA)⊗ τE1
in an r0, r1 mixture. Also assume without loss of generality that η > α (otherwise
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consider an adversary identical to A but which returns the opposite answer). Now

assume that we feed it E(τ̃SA0 ) with probability 1/2 and E(τ̃SA1 ) with probability 1/2.

Observe that this is exactly as if we gave it an r0, r1 mixture of E(τSA0 ) and E(τSA1 ) with

probability 1/2 and an r0, r1 mixture of E(ρA)⊗ τE0 and E(ρA)⊗ τE1 with probability

1/2. We then have that the probability of distinguishing E(τ̃SA0 ) from E(τ̃SA1 ) using A

is
1

2
η +

1

2
(1− α) =

1

2
+

1

2
(η − α)

since the correct answer is reversed for E(ρA)⊗ τE0 and E(ρA)⊗ τE1 .

But by Lemma 9 and the assumption that A violates entropic security, we know that

η − α = Pr[A(E(τSAi )) = i]− Pr
[
A
(
E(ρA)⊗ τEi

)
= i
]

> ε/2.

Hence, the probability of distinguishing E(τ̃SA0 ) from E(τ̃SA1 ) is at least 1/2 + ε/4,

which implies that for all ΩS ′ we have:

ε <
∥∥∥E(τ̃SA0 )− E(τ̃SA1 )

∥∥∥
1

=
∥∥∥(E(τ̃SA0 )−ΩS′⊗ ρA

)
−
(
E(τ̃SA1 )−ΩS′⊗ ρA

)∥∥∥
1

6
∥∥∥E(τ̃SA0 )− ΩS′⊗ ρA

∥∥∥
1

+
∥∥∥E(τ̃SA1 )− ΩS′⊗ ρA

∥∥∥
1

and therefore either
∥∥∥E(τ̃SA0 )− ΩS′⊗ ρA

∥∥∥
1
> ε/2 or

∥∥∥E(τ̃SA1 )− ΩS′⊗ ρA
∥∥∥

1
> ε/2,

which is a violation of (t− 1, ε/2)-indistinguishability. QED

Lemma 12 Assuming H∞(ρSA|ρA) > t, we then have that both H∞(τ̃SA0 |τ̃A0 ) and

H∞(τ̃SA1 |τ̃A1 ) are at least t− 1 for τ̃SAi as define in 9.

Proof:

First, since the partial trace is linear, it is clear that τ̃A0 = τ̃A1 = ρA. We then have

max
|ψ〉

〈ψ|τ̃SA0 |ψ〉
〈ψ|IS ⊗ ρA|ψ〉

6 r0 max
|ψ〉

〈ψ|τSA0 |ψ〉
〈ψ|IS ⊗ ρA|ψ〉

+ r1 max
|ψ〉

〈ψ|ρA ⊗ τA1 |ψ〉
〈ψ|IS ⊗ ρA|ψ〉

.
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We already bounded both terms in Lemma 11 by 2−t.

Combining these two results, we obtain

max
|ψ〉

〈ψ|τ̃SA0 |ψ〉
〈ψ|IS ⊗ ρA|ψ〉

6 2× 2−t = 2−(t−1).

Of course, an identical calculation yields the same result for τ̃SA1 . QED

Theorem 10 If t 6 n − 1 and one defines ΩS′ to be E(IS/d), then (t, ε)-entropic-

security implies (t− 1, 6ε)-indistinguishability.

Proof:

We shall prove the contrapositive. Let E(I/dS) = ΩS′ and let ρSA be a state such that

H∞(ρSA|ρA) > t− 1 and
∥∥∥E(ρSA)− ΩS′ ⊗ ρA

∥∥∥
1
> 6ε. Consider the following state

ρ̃SA =
1

3
ρSA +

2

3

I
dS
⊗ ρA.

.

We show that H∞(ρ̃SA|ρ̃A) = H∞(ρ̃SA|ρA) > t:

〈ψ|ρ̃SA|ψ〉
〈ψ|IS ⊗ ρA|ψ〉

=
1

3

〈ψ|ρSA|ψ〉
〈ψ|IS ⊗ ρA|ψ〉

+
2

3

〈ψ| IS
dS
⊗ ρA|ψ〉

〈ψ|IS ⊗ ρA|ψ〉

6
1

3
2−(t−1) +

2

3

1

2n

=
2

3

(
2−t +

1

2n

)
6

2

3

(
2−t +

2−t

2

)
= 2−t.

Since
∥∥∥E(ρSA)− ΩS′⊗ ρA

∥∥∥
1
> 6ε, we know that there exists an adversary that can

distinguish E(ρSA) from ΩS ′ ⊗ ρA with probability at least 1
2

+ 3
2
ε. Let’s call this
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adversary A, and let’s assume that it gives the right answer with probability η1 when

it is given E(ρSA) and with probability η2 when it is given ΩS ′ ⊗ ρA. We then have
1
2
(η1 + η2) > 1

2
+ 3

2
ε.

Now, consider the following interpretation of ρ̃SA:

ρ̃SA =
1

3
σSA1 +

1

3
σSA2 +

1

3
σSA3 (3.30)

where σSA1 = ρSA and σSA2 = σSA3 = IS
dS
⊗ ρA. We shall show that A violates entropic

security for ρ̃SA, with this interpretation and the function h(i) = i.

First of all, it is clear that by having access only to the adversary’s system, no ad-

versary can guess the value of h with a probability greater than 1/3. Let us now

determine what A can do by having access to the encrypted version of ρ̃SA. It is clear

that A’s best strategy is to try to distinguish between E(ρSA) and ΩS′⊗ρA and return

1 when it gets E(ρSA) and randomly return either 2 or 3 when it gets ΩS′⊗ ρA. We

then have:

Pr[A(E(σSAi )) = h(i)] =
1

3
η1 +

2

3

η2

2

=
1

3
(η1 + η2)

>
1

3
(1 + 3ε)

=
1

3
+ ε.

Finally we get ∣∣∣∣∣∣∣∣Pr[A(E(σSAi ))=h(i)]−Pr[A′(σAi )=h(i)]︸ ︷︷ ︸
= 1

3

∣∣∣∣∣∣∣∣>ε
a violation of entropic security. QED

We have now generalized the definitions of §2 and have established that entropic-

indistinguishability and entropic-security are also equivalent in the generalized model.

We shall now use entropic-indistinguishability to prove that two different encryption

schemes are in fact secure according to entropic security in the generalized model.
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3.2 ciphers

Both encryption schemes from Section 2.2 are still secure in this generalized frame-

work.

We shall first show three technical lemmas which will be useful as intermediate steps

for both encryption schemes security proofs.

Lemma 13 For any operator A, B, C and D, the following is true: Tr [AB ⊗ CD] =

Tr [BA⊗ CD]

Proof:

We start from Tr [AB ⊗ CD] and massage it until we get the result

Tr [AB ⊗ CDI] = Tr [(A⊗ CD)(B ⊗ I)] = Tr [(B ⊗ I)(A⊗ CD)] = Tr [BA⊗ CD] .

QED

Lemma 14 The partial trace operator commutes with operators on the space not being

traced out, or

TrS
[
(ES ⊗ FA)σSA

]
= FATrS

[
(ES ⊗ IA)σSA

]
.

Proof:

TrS
[
(ES ⊗ FA)σSA

]
=

∑
i

〈i|S ⊗ IA(ES ⊗ FA)σSA|i〉S ⊗ IA

=
∑
i

〈i|S ⊗ IA(IS ⊗ FA)(ES ⊗ IA)σSA|i〉S ⊗ IA

=
∑
i

〈i|S ⊗ FA(ES ⊗ IA)σSA|i〉S ⊗ IA

=
∑
i

FA(〈i|S ⊗ IA(ES ⊗ IA)σSA|i〉S ⊗ IA)

= FATrS
[
(ES ⊗ IA)σSA

]
.
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QED

Note that in this last Lemma, E and F can be any kind of operator. It is well known

that the Pauli operators XuZv form a basis for the linear space of complex matrices.

We can furthermore say that the operators XuZv/
√
d, where d is the dimension of the

operators, form an orthonormal basis according to the Hilbert-Schmidt inner product

given by 〈A,B〉 = Tr
[
A†B

]
. Therefore any operator can be decomposed in this basis.

For any operator ρ, we can write

ρ =
∑
u,v

αu,v
XuZv

√
d
. (3.31)

We can also compute the αu,v using the following formula

αu,v = Tr

[
ZvXu

√
d
ρ

]
. (3.32)

Note that the last two equations are true for any orthonormal basis {Ei}i. Then we

can write that

ρ =
∑
i

αiEi (3.33)

where

αi = Tr
[
E†i ρ

]
. (3.34)

Lemma 15 For every bi-partite state σSA, we have

σSA =
∑
uv

XuZv

√
dS
⊗ TrS

[(
ZvXu

√
dS
⊗ I

)
σSA

]
.

Proof:
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Let {Ej}j be any orthonormal basis for the space L(HA). Then we can write

σSA
(a)
=
∑
uvj

XuZv

√
dS
⊗ Ej Tr

[(
ZvXu

√
dS
⊗ E†j

)
σSA

]

(b)
=
∑
uvj

XuZv

√
dS
⊗ Ej Tr

[
E†j TrS

[(
ZvXu

√
dS
⊗ I

)
σSA

]]

=
∑
uv

XuZv

√
dS
⊗

∑
j

Ej Tr

[
E†j TrS

[(
ZvXu

√
dS
⊗ I

)
σSA

]]
(c)
=
∑
uv

XuZv

√
dS
⊗ TrS

[(
ZvXu

√
dS
⊗ I

)
σSA

]
,

where (a) follows by equations (3.31) to (3.34), (b) follows by Lemma 14 and remem-

bering that Tr
[
ρSA

]
= Tr

[
TrS

[
ρSA

]]
and finally (c) is justified by equations (3.33)

and (3.34). QED

The proofs of security for both encryption schemes will use Lemma 5.1.3 of Renner’s

Thesis [37]. We reproduce the Lemma here:

Lemma 16 Let S be a Hermitian operator and let σ be any positive definite operator.

Then

‖S‖1 6
√

Tr [σ] Tr [Sσ−1/2Sσ−1/2].

Let us define the operator ρ̃SA , ρSA − IS
dS
⊗ ρA and observe that for any encryption

schemes that maps the identity to the identity, albeit not necessarily in the same

space, we can write E(ρ̃SA) = E(ρSA) − IS′

dS′
⊗ ρA. Using Lemma 16, and fixing σ in

that Lemma to be IS′ ⊗ ρA, then we can write:∥∥∥∥∥E(ρSA)− IS′

dS′
⊗ ρA

∥∥∥∥∥
1

=
∥∥∥E( ˜ρSA)

∥∥∥
1

(3.35)

6
√
dS′Tr

[
E(ρ̃SA)(IS′ ⊗ ρA−1/2)E(ρ̃SA)(IS′ ⊗ ρA−1/2)

]
.
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Scheme based on δ-biased set

Theorem 11 If H∞(ρSA|ρA) > t, then the Ambainis-Smith scheme

E(ρSA) =
1

|B|
∑
a‖b∈B

((XaZb)S ⊗ IA)ρSA((ZbXa)S ⊗ IA),

where B is a δ-biased set, is (t, ε)-entropically indistinguishable using n− t+ 2 log n+

2 log(1
ε
) + 2 bits of key to index the set B, where n = log dS.

Proof:

Let us assume for now that ρA is full rank, that is ρA is invertible (we shall fix this

later on for all states). We start from Lemma 15 and write

ρ̃SA =
∑
uv

XuZv

√
dS
⊗ M̃uv, (3.36)

where M̃uv is a shortcut notation for TrS
[(

ZvXu
√
dS
⊗ IA

)
ρ̃SA

]
. We shall also write Muv

instead of TrS
[(

ZvXu
√
dS
⊗ IA

)
ρSA

]
. We can now apply a δ-biased scheme, defined by

the δ-biased set B, to this operator and get

E(ρ̃SA) =
∑
uv

E
(
XuZv

√
dS

)
⊗ M̃uv

=
∑
uvab

1

|B|

(
XaZbX

uZv

√
dS

ZbXa

)
⊗ M̃uv

(a)
=

∑
uvab

1

|B|

(
XaZbZbXa(−1)a�v(−1)b�u

XuZv

√
dS

)
⊗ M̃uv

=
∑
uv

αuv
XuZv

√
dS
⊗ M̃uv, (3.37)

where αuv = 1
|B|
∑
a||b∈B(−1)a||b�v||u and where (a) follows by the anti-commuting

property of Pauli operators (i.e XZ = −ZX, or XaZb = (−1)a�bZbXa). Since B is

δ-biased, we can conclude that for all v||u 6= 0 we have that |αuv| 6 δ. For uv = 0,

observe that

M̃00 =
1√
dS

TrS

[
ρSA − IS

dS
⊗ ρA

]
= 0A, (3.38)
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the zero matrix.

Now, continuing with (3.35) we can write

Tr
[(
E(ρ̃SA)(IS⊗−2

√
ρA)

)2
]

= Tr

[(∑
uv

αuv
XuZv

√
dS
⊗M̃uv

)(∑
rs

αrs
XrZs

√
dS
⊗ −2
√
ρAM̃rs

−2
√
ρA
)]

(a)
= Tr

[(∑
uv

αuv
XuZv

√
dS
⊗M̃uv

)(∑
rs

αrs
ZsXr

√
dS
⊗ −2
√
ρAM̃ †

rs
−2
√
ρA
)]

(b)
= Tr

[∑
uv

α2
uv

IS

dS
⊗ M̃uvρ

A−1/2
M̃ †

uvρ
A−1/2

]
(c)

6 δ2Tr

[∑
uv

IS

dS
⊗ M̃uvρ

A−1/2
M̃ †

uvρ
A−1/2

]
(d)

6 δ2Tr

[∑
uv

IS

dS
⊗Muvρ

A−1/2
M †

uvρ
A−1/2

]

=δ2Tr

[(∑
uv

XuZv

√
dS
⊗Muv

)(∑
rs

ZsXr

√
dS
⊗ −2
√
ρAM †

rs
−2
√
ρA
)]

(e)
= δ2Tr

[
ρSA

([
IS ⊗ −2

√
ρA
]
ρSA

[
IS ⊗ −2

√
ρA
])†]

(f)
= δ2Tr

[
ρSA

([
IS ⊗ −2

√
ρA
]
ρSA

[
IS ⊗ −2

√
ρA
])]

(g)

6 δ2Tr
[
ρSA2−tISA

]
=δ22−t.

We can justify step (a) since for any Hermitian operator S and any operator R we have

R†SR is Hermitian; this is obvious by checking that (R†SR)† = (R†S†R†
†
) = (R†SR).

Here R = (IS⊗−2

√
ρA) and S = E(ρ̃SA). Step (b) follows since (A⊗B)(C⊗D) = (AC⊗

BD) and that pauli operators are orthonormal according to Tr [(XuZv)(ZsXr)] =

dSδvsδur, where δab is the dirac δ-function. Step (c) follows from the comments after

(3.37) and from the fact that every term in the sum is positive. This is easy to see by

observing that

Tr

[∑
uv

IS

dS
⊗ M̃uvρ

A−1/2
M̃ †

uvρ
A−1/2

]
= Tr

[∑
uv

IS

dS
⊗ ρA−1/4

M̃uvρ
A−1/2

M̃ †
uvρ

A−1/4†
]
,
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where we used Lemma 13. Since every operator in this equation is Hermitian, it

follows that on the right hand side we simply have the conjugation of ρA
−1/2

, which is

positive, by ρA
−1/4

M̃uv and as noted in the comment justifying (a), this is Hermitian.

It is also positive, since for any |x〉 we have that 〈x|ρA−1/4
M̃uvρ

A−1/2
M̃ †

uvρ
A−1/4†|x〉 =

〈y|ρA−1/2|y〉, where |y〉 = M̃ †
uvρ

A−1/4†|x〉, which is positive.

Step (d) needs a more complex justification. Essentially by removing the tilde, we are

only adding a tiny number to the right hand side.

Let Nuv = TrS
[(

ZvXu
√
dS
⊗ IA

)
IS
dS
⊗ ρA

]
. Therefore, by definition we can write that

M̃uv = (Muv −Nuv). Hence we have that

Tr
[∑
uv

IS

dS
⊗ M̃uv

−2
√
ρAM̃ †

uv
−2
√
ρA
]

= Tr

[
TrS

[∑
uv

IS

dS
⊗ M̃uv

−2
√
ρAM̃ †

uv
−2
√
ρA
]]

= Tr

[
TrS

[∑
uv

IS

dS
⊗ (Muv−Nuv)

−2
√
ρA(Muv−Nuv)

−2
√
ρA
]]

=
∑
uv

Tr
[
(Muv −Nuv)

−2
√
ρA(Muv −Nuv)

−2
√
ρA
]
,

(3.39)

where the last expression is simply equal to

Tr
[
Muv

−2
√
ρAMuv

−2
√
ρA
]

+ Tr
[
−Muv

−2
√
ρANuv

−2
√
ρA −Nuv

−2
√
ρAMuv

−2
√
ρA +Nuv

−2
√
ρANuv

−2
√
ρA
]
.

(3.40)

Since the Trace operator allows rotation we can rewrite the previous equation this

way

Tr
[
Muv

−2
√
ρAMuv

−2
√
ρA
]

+ Tr
[
−2Muv

−2
√
ρANuv

−2
√
ρA +Nuv

−2
√
ρANuv

−2
√
ρA
]
.

(3.41)
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Note that M00 = N00 = ρA/
√
dS. For any other uv 6= 00, we use the fact that a Pauli

operator is an observable with two projectors having eigen-values +1 and −1. Fix

any u and v and rewrite ZvXu
√
dS

= P+ − P−, where the P− and P+ are the eigen-spaces

of the Pauli operator and rank (P+) = rank (P−) = dS/2. Just ignore the
√
dS as

it will not matter. Hence there exists a basis {|pi〉}i such that
∑
i |pi〉〈pi| = I and

two sets of indices, E+ and E− (of equal size), partitioning the indices i such that

P+ =
∑
i∈E+
|pi〉〈pi| and P− =

∑
i∈E− |pi〉〈pi|. Let us compute Nuv.

TrS

[
(P+ − P−)⊗ IA(

IS

dS
⊗ ρA)

]

=TrS

∑
i∈E+

|pi〉〈pi|
IS

dS
−
∑
j∈E−

|pj〉〈pj|
IS

dS

⊗ ρA


=
∑

k∈E−∪E+

〈pk| ⊗ IA
∑

i∈E+

|pi〉〈pi|
IS

dS
−
∑
j∈E−

|pj〉〈pj|
IS

dS

⊗ ρA
 |pk〉 ⊗ IA

=
∑

k∈E−∪E+
i∈E+,j∈E−

(
〈pk| |pi〉〈pi|

IS

dS
|pk〉 − 〈pk| |pj〉〈pj|

IS

dS
|pk〉

)
⊗ IAρAIA

=

(
dS
2
− dS

2

)
⊗ ρA

=0⊗ ρA

=0A,

the zero matrix. Hence

Tr

[∑
uv

IS

dS
⊗ M̃uvρ

A−1/2
M̃ †

uvρ
A−1/2

]
= Tr

[∑
uv

IS

dS
⊗Muvρ

A−1/2
M †

uvρ
A−1/2

]
− ρA

dS

6 Tr

[∑
uv

IS

dS
⊗Muvρ

A−1/2
M †

uvρ
A−1/2

]
,

since, obviously, ρA is positive and only the uv = 00 terms of Nuv survive.

Step (e) follows by applying Lemma 15 backwards. Step (f) follows from the same

reason as step (a). Step (g) follows by applying the conditional min-entropy bound,



3.2. CIPHERS 83

that is: ρSA 6 2−tIS ⊗ ρA =⇒ (IS ⊗ −2

√
ρA)ρSA(IS ⊗ −2

√
ρA) 6 2−tISA since if B 6 C

then
√
AB
√
A 6

√
AC
√
A, see §5 in [9], therefore Tr[AB] 6 Tr[AC].

Recapitulating, we just computed the following:∥∥∥∥∥E(ρSA)− IS′

dS′
⊗ ρA

∥∥∥∥∥
1

6
√
dSδ22−t 6 ε, (3.42)

and from the proof of Theorem 5, we already know that setting δ =
√

2tε2/dS we can

construct a δ-biased set of sizeO(n
22n−t

ε2
) that requires n−t+2 log(n)+2 log(1/ε)+O(1)

bits of key to index.

We still need to show that this proof technique also works for operators ρA which are

not invertible. We will use the fact that invertible matrices are dense in the space of

all matrices. Let us define

ρSAγ = (1− γ)ρSA + γ
ISA

dSA
,

where γ takes values between 0 and 1.The operator ρSAγ is thus only ρSA to which we

added some noise. The first thing to observe is that∥∥∥ρSA − ρSAγ ∥∥∥
1

6 2γ,

hence, for small γ’s ρSAγ is a good approximation to ρSA. And of course, since trace

preserving POVM cannot increase distance, we have that∥∥∥E(ρSA)− E(ρSAγ )
∥∥∥

1
6 2γ,

which intuitively tells us that for small γ no adversary should do the difference between

the two with good probability. Hence if E is secure for ρSAγ for small γ’s, it should be

secure for ρSA.

The next thing to observe is that ρSAγ has full rank. This is easy to see since ρSA

and the perfectly mixed state commute. Thus no eigen-value of ρSAγ can be zero,

they are all at least γ/dSA. Remembering the fact that the partial trace is a linear
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operator and applying the same reasoning, we conclude that ρAγ = TrS
[
ρSAγ

]
is also

an invertible operator.

Finally, we can write the following:

lim
γ→0

∥∥∥∥∥E(ρSAγ )− IS

dS
⊗ ρAγ

∥∥∥∥∥
1

=

∥∥∥∥∥E(ρSA)− IS

dS
⊗ ρA

∥∥∥∥∥
1

. (3.43)

Hence, since (3.42) is true for all γ, we can conclude that E is (t, ε)-indistinguishable.

Therefore using Theorem 9 we conclude that the Ambainis-Smith scheme is (t+1, 2ε)-

entropically secure using n− t+ 2 log(n) + 2 log(1/ε) +O(1) bits of key.

QED

Scheme based on XOR-Universal functions

We need to observe a few things first. Let us start by denoting the perfect encryption

scheme by Ep and note that

Ep(ρ) =
∑
e,f

1

d2
ZfXeρXeZf =

I
d
.

For such a scheme we can write

Ep(ρ̃SA) =
∑
uv

Ep
(
XuZv

√
dS

)
⊗ M̃uv (3.44)

=
∑
uvef

1

d2
S

ZfXeX
uZv

√
dS

XeZf ⊗ M̃uv. (3.45)

independently, we can also write

Ep(ρ̃SA) =
IS

dS
⊗ ρA − IS

dS
⊗ ρA (3.46)

= 0, (3.47)

which we know since the scheme is perfect, see [3]. We also need to rethink equation

(3.35). In the case of the XOR-universal scheme, E does not preserve length. We
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shall consider that E takes two inputs and has two outputs. Hence E takes two states

for inputs: IS′/dS′ and ρSA. Here ˜ρSA = IS′/dS′ ⊗ ρSA − IS′S/dS′S ⊗ ρA and we use

σ = IS ⊗ IS′/dS′ ⊗ ρA instead of σ = IS ⊗ ρA in Lemma 16. So we can write:

∥∥∥∥∥E(IS′ ⊗ ρSA)− IS′S

dS′S
⊗ ρA

∥∥∥∥∥
1

=
∥∥∥E( ˜ρSA)

∥∥∥
1

(3.48)

=

√√√√√dSTr

(E(ρ̃SA)( −2

√
IS′

dS′
⊗ IS ⊗ −2

√
ρA)

)2
.

Finally, we can, in this setup, rewrite Lemma 15 this way:

IS′

dS′
⊗ σSA =

∑
uv

IS′

dS′
⊗ XuZv

√
dS
⊗Muv. (3.49)

We shall also introduce another notation for the sake of compactness. We shall write

Πu
v instead of XuZv. Observe that the anti-commutation law for Pauly operator takes

the form:

Πc
dΠ

u
v = (−1)a‖b�c‖dΠu

vΠ
c
d. (3.50)

Theorem 12 Let H2n be a strongly-XOR-universal family of functions. Consider the

super-operator Ek(ρ) = 1
|I|
∑
i∈I |i〉〈i|S

′ ⊗ (XaZb ⊗ IS)ρSA(ZbXa ⊗ IS), where S ′ is an

ancillary system, a‖b = hi(k), |a| = |b| = n, hi ∈ H2n and k is the secret key selected

uniformly at random from a set K ⊆ {0, 1}2n. Then E is (t, ε)-indistinguishable if

log |K| > n − t + 1 + 2 log(1/ε). This scheme is not length preserving since the

ancillary system S ′ is part of the cipher text.

Proof:
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We start, as in the δ-biased case with (3.48).

Tr

[
E(ρ̃SA)(

√
dS′ISS

′ ⊗ −2
√
ρA)E(ρ̃SA)(

√
dS′ISS

′ ⊗ −2
√
ρA)

]

(a)
= Tr

(∑
iuvk

1

|K|
F S′
i

dS′
⊗ Πa

b

Πu
v√
dS

Πa
b
† ⊗ M̃uv

)

·
( ∑
jrsk′

dS′

|K|
F S′
j

dS′
⊗ Πc

d

Πr
s√
dS

Πc
d
† ⊗ −2

√
ρAM̃rs

−2
√
ρA
)

(b)
= Tr

(∑
iuvk

1

|K|
F S′
i

dS′
⊗ Πa

b

Πu
v√
dS

Πa
b
† ⊗ M̃uv

)

·
( ∑
jrsk′

1

|K|
F S′
j

dS′
⊗ Πc

d

Πr
s√
dS

Πc
d
† ⊗ −2

√
ρAM̃ †

rs
−2
√
ρA
)

(c)
= Tr

[( ∑
iuvrskk′

1

|K|2
F S′
i

dS′
⊗ Πa

b

Πu
v√
dS

Πa
b
†Πc

d

Πr
s√
dS

Πc
d
† ⊗ M̃uv

−2
√
ρAM̃ †

rs
−2
√
ρA
)]

(d)
= Tr

[( ∑
iuvrskk′

1

|K|2
F S′
i

dS′
⊗ Πc

d
†Πa

b

Πu
v√
dS

Πa
b
†Πc

d

Πr
s√
dS
⊗ M̃uv

−2
√
ρAM̃ †

rs
−2
√
ρA
)]

(e)
= Tr

[( ∑
iuvrskk′

1

|K|2
F S′
i

dS′
⊗ Πe

f

Πu
v√
dS

Πe
f
† Πr

s√
dS
⊗ M̃uv

−2
√
ρAM̃ †

rs
−2
√
ρA
)]

,

(3.51)

where in (a) the symbol Fi is a shortcut for |i〉〈i| and a‖b = hi(k) and c‖d = hj(k
′).

Step (b) follows since, if A is Hermitian, then for any operator B we know that

C = BAB† is Hermitian. Step (c) follows since |i〉〈i| |j〉〈j| = δij and the fact that

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD). Step (d) follows by Lemma 13. Step (e) follows

since Πc
d
†Πa

b = ZdXcXaZb = (−1)d�c(−1)d�aXcXaZdZb = (−1)d�c(−1)d�aΠe
f , where

e‖f = (a ⊕ c)‖(b ⊕ d). Since this operation is done twice, the phase (−1)d�c(−1)d�a

is applied twice and thus cancels out.
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We shall now split the last term into two according to k = k′ or k 6= k′.

Tr

[( ∑
iuvrsk=k′

1

|K|2
F S′
i

dS′
⊗ Πe

f

Πu
v√
dS

Πe
f
† Πr

s√
dS
⊗ M̃uv

−2
√
ρAM̃ †

rs
−2
√
ρA
)]

+ Tr

 ∑
iuvrsk 6=k′

1

|K|2
F S′
i

dS′
⊗ Πe

f

Πu
v√
dS

Πe
f
† Πr

s√
dS
⊗ M̃uv

−2
√
ρAM̃ †

rs
−2
√
ρA

 .
(3.52)

We know by the definition of the XOR-universal-function, Definition 13, that when

k = k′, then for all i we have that e‖f = 0. On the other hand, we know that, when

k 6= k, the probability that hi(k)⊕ hi(k′) = e‖f is exactly 1/d2
S. We can thus write,

after taking the partial trace on the S ′ system for both terms and remembering that∑
i Fi/dS′ = IS′/dS′ :

1

|K|
Tr

[( ∑
uvrs

Πu
v√
dS

Πr
s√
dS
⊗ M̃uv

−2
√
ρAM̃ †

rs
−2
√
ρA
)]

+

(
1− 1

|K|

)
Tr

 ∑
uvrsef

1

d2
S

Πe
f

Πu
v√
dS

Πe
f
† Πr

s√
dS
⊗ M̃uv

−2
√
ρAM̃ †

rs
−2
√
ρA

 .
(3.53)

Now the first term goes to

1

|K|
Tr

[(∑
uv

IS

dS
⊗ M̃uv

−2
√
ρAM̃ †

uv
−2
√
ρA
)]
, (3.54)

since Pauly operators are orthonormal according to the inner product Tr [Πu
vΠ

r
s] =

dSδurδvs. Now, just as in step (d) of equation (3.39) in the proof of Theorem 11,

we can remove the ∼ on the Muv and follow the proof of Theorem 11 from there to

conclude that the first term is in fact inferior to 2−t

|K| .

What about the second term of equation 3.53? We can rewrite the term like this

(
1− 1

|K|

)
Tr

( ∑
uvef

1

d2
S

Πe
f

Πu
v√
dS

Πe
f
† ⊗ M̃uv

)(∑
rs

Πr
s√
dS
⊗ −2

√
ρAM̃ †

rs
−2
√
ρA
) . (3.55)
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Now from equations (3.44) and (3.45) we can immediately see that the left term in the

trace of the last equation is really Ep( ˜ρSA) and we know that this term, by definition,

can only be zero. Hence the entire term (3.55) is zero.

From this we conclude that

Tr

[
E(ρ̃SA)( −2

√
ISS′

dS′
⊗ −2

√
ρA)E(ρ̃SA)( −2

√
ISS′

dS′
⊗ −2

√
ρA)

]
6

2−t

|K|
+ 0 (3.56)

and that ∥∥∥∥∥E(IS′ ⊗ ρSA)− IS′S

dS′S
⊗ ρA

∥∥∥∥∥
1

6

√
dS

2−t

|K|
. (3.57)

The Theorem assumes that lg |k| > n − t + 2 lg(1/ε) and taking exponentials |K| >
2n2−t/ε2. Which means that, using the same limiting process, as in Theorem 11, from

ρSAγ to ρSA we can say

∥∥∥∥∥E(IS′ ⊗ ρSA)− IS′S

dS′S
⊗ ρA

∥∥∥∥∥
1

6 ε, (3.58)

which is what we wanted. Hence E is (t, ε)-indistinguishable, therefore, using Theorem

9, it is (t+ 1, 2ε)-entropically secure. QED

We have the same problem here that we had at the end of chapter §2, that is, if

i = 0 in the XOR-universal function, not only is ρSA not encrypted, but we actually

told so to the adversary. We shall use a different trick than in §2. Let E ′ be the

XOR-universal encryption scheme where the function will never use i = 0 and let E
be the scheme from Theorem 12. Let us compute

∆ =
∥∥∥E(ρSA)− E ′(ρSA)

∥∥∥
1
. (3.59)

The only thing that changes between the two schemes is the probability with which

a given value i is chosen in the XOR-universal-function. Thus,

∆ =
1

22n
· 1 + 22n − 1

(
1

22n − 1
− 1

22n

)
, (3.60)
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where the first term of the right hand side is the probability difference for i = 0 and

the right most term is the probability difference for all other values. One can convince

himself using high school algebra that

22n − 1
(

1

22n − 1
− 1

22n

)
6 22n − 1

(
22n

22n(22n − 1)
− 22n − 1

22n(22n − 1)

)
=

1

22n
. (3.61)

Thus ∆ 6 1/22n + 1/22n 6 1/22n−1 for sufficiently large n.

Hence, using equation (3.58), the definition of ∆ and the triangle inequality we can

conclude that: ∥∥∥∥∥E ′(ρSA)− I
dS′S

ρA
∥∥∥∥∥

1

6 ∆ + ε, (3.62)

Since ∆ is exponentially small, we can forget it or just smudge ε. We can therefore have

a more reasonable scheme that always encrypts the message and most importantly

never tells the adversary that the message is not encrypted.

This completes our study of the model including any kind of correlation or entangle-

ment. We provided different proofs of security, mainly entropic-security and entropic-

indistinguishability, and we proved that they are in fact, up to small parameter ad-

justments, equivalent. Very importantly, we showed that these definitions are in-

deed achievable and do provide improvement on the state of the art cryptography by

presenting two different efficient ciphers which are indeed entropically-secure in the

general model. Furthermore, the formulae expressing key-length for both ciphers are

exactly the same





Chapter 4

Conclusion

4.1 Recapitulation

We proposed generalizations of the classical security definitions of entropic indistin-

guishability and entropic security. These definitions were proposed in a framework

that allows to model the most general situation possible. The adversary is allowed to

get more information on the message after the message was sent, even after he received

the encrypted message. We base security on a measure of how much uncertainty he

has before the sampling of the side-channel (sampling which could be coherent with

the encrypted system). That is, we fix what all situations could be and then quantify

from this the adversary’s uncertainty. Yes, the adversary will learn something more

about the message, but the definition of entropic security is reminiscent of classical

perfect security: what ever the adversary knows and will learn, the cipher-text will

not help him learn more (with high probability).

This bound allows us to devise security definitions that are achievable and that guar-

antee security in an information theoretic way. Of course, in any given situation,

calculating this bound is a problem in itself. It is more akin to computer security
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than cryptography. How much min-entropy is there in mp3 or jpg files? How much

radiation does a computer screen emit? How much does one’s wife know about some-

thing and then tell her lover? But in highly secure environments, it is hopefully

feasible to estimate such side-channels and ensure that leakage of information does

no get out of control.

In our new model, messages are now quantum states, which if restricted to classical

messages, could be generalized to distribution on bit-strings. One interesting effect

of this model, is that security does not depend solely on the probability of a given

message, but really on the eigen-values of the mixture of all messages. For example,

one might want to protect the provenance of data collected from a few sites, this data

could be classical data from the environment of the apparatuses. That data could

have different distributions depending from which site it came. Now, even though

there might be just a few sites, hence low entropy on the origin of the data, the

mixture could have high min-entropy. Hence entropic-encryption would lower the key

requirement in order hide the provenance (and any other function on the data).

We also generalized existing cipher schemes to our framework and showed that they

could reduce the key length compared with the same schemes used in previous security

models. For schemes that previously used roughly n bits of classical key to encrypt n

qubits, we showed that they can, if used with the quantum conditional min-entropy

assumption, use roughly n− t bits of key. This model also allows more latitude when

one wants to choose a security definition (it is actually, in many cases the best security

definition to use). It allows to go from n − t bits of key to 2n bits of key for non-

entangled n-qubit states having t bits of min-entropy or maximally entangled n-qubit

state respectively, with all kinds of possibilities between the two. This possibility of

encrypting quantum states which are entangled with the adversary with less than 2n

bits of key (if entanglement is not too large) is new to this model.
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4.2 Future directions

Authentication is another cryptographic primitive that lets a receiving party verify

the provenance of a given message. That is, the sender and the receiver share a

secret key which lets the sender tag messages in a way that ensures that with high

probability, any tempering of the message will be detected by the receiver [20].

Authentication of Quantum Messages was introduced in 2002 in [5]. In that work, a

protocol to authenticate quantum messages is given. The protocol works essentially

as follows: the sender and receiver agree on a purity testing code {Qk}k, and private

keys k, x and y. To authenticate a specific ρ, S encrypts ρ (in a perfect fashion) using

the key x. Then E(ρ) is encoded using the code Qk and the syndrome y is added to

the resulting codeword. The result is sent to the receiver.

The receiver R measures the syndrome according to {Qk}k and verifies that it is equal

to y. If so, R simply decodes according {Qk}k and then decrypts using key x. Simple

enough. We must emphasize that the encryption scheme is a perfect one.

Could we apply the technique developed in this thesis and replace the encryption

scheme with an entropic one? Let us develop that idea.

Borrowing their definition and notation, let us define the following projectors for any

given pure |ψ〉 that one wishes to authenticate:

P
|ψ〉
1 = |ψ〉〈ψ| ⊗ IV + IM ⊗ |REJ〉〈REJ | − |ψ〉〈ψ| ⊗ |REJ〉〈REJ |

P
|ψ〉
0 = (IM − |ψ〉〈ψ|)⊗ (|ACC〉〈ACC|),

where M and V stand for message and verdict respectively, and the V register takes

two values: REJect and ACCept.

The following defines security for quantum authentication, where Sk and Rk are the

behavior of the sender and receiver when they are using global key k.
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Definition 19 A QAS is secure with error ε for a state |ψ〉 if it satisfies

Completeness: For all keys k ∈ K: Rk(Sk(|ψ〉〈ψ|)) = |ψ〉〈ψ| ⊗ |ACC〉〈ACC|.

Soundness: For all super-operators O, let ρR be the state output by the receiver when

the adversary’s intervention is characterized by O, that is

ρR =
1

|K|
∑
k

Rk(O(Sk(|ψ〉〈ψ|))).

The QAS has soundness error ε for |ψ〉 if

Tr
[
P
|ψ〉
1 ρR

]
> 1− ε.

A QAS is secure with error ε if it is secure with error ε for all states |ψ〉.

The most different property of quantum authentication, compared to classical au-

thentication, is that it must also be an encryption scheme. Classically, these task

are orthogonal. You do not have to encrypt to authenticate. It is our belief that if

one replaces the encryption scheme used by an approximate encryption scheme or an

entropic encryption scheme, one still obtains a secure quantum authentication pro-

tocol (maybe will we get a non-malleable encryption scheme), albeit with a security

parameter ε that depends on the security parameter of the encryption scheme used.

This notion of authentication was reused by one of the authors, Daniel Gottesman

in [25], to devise what he called an uncloneable encryption. If one restricts the input

states in the QAS to be classical, one in fact can prove that the QAS becomes a quan-

tum encryption of a classical state and that if the authentication succeeds, then with

overwhelming probability, the adversary knows nothing on the message, even if given

the encryption key which was used (hence the non-cloneable label); note that this

is an impossible task classically: the adversary can always copy the authentication

packet, wait for the key and compute what he wants with the key and the authen-

ticated message. If we succeed in proving that QAS is still, in some fashion, secure

with an entropic encryption schemes, of course the natural resolution is to prove that

entropic non-cloneable encryptions are also feasible.
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