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Claude Crépeau1?, Louis Salvail2, Jean-Raymond Simard1, and Alain Tapp3

1 School of Computer Science, McGill University,
Montréal, QC, Canada. {crepeau,jrsimard}@cs.mcgill.ca

2 BRICS, Dept. of Computer Science,
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Abstract. First we show that the assumption behind the Two-Prover Zero-knowledge Interactive proof
of BenOr, Goldwasser, Kilian and Wigderson [5] is too weak and need be made more precise to preserve
soundness of their construction. Secondly, we introduce a Two-Prover Zero-knowledge Interactive proof
similar to theirs and demonstrate that classically it is equally secure as the original but however, we later
show that if the provers are allowed to share quantum entanglement, they are able to successfully prove
false statements to the verifier with probability nearly one. Then we show that another variation of the
original scheme of BGKW is secure against quantum provers. Finally we investigate the possibility of
using this two-prover bit commitment scheme in order to achieve three applications : zero-knowledge
proofs, quantum Oblivious Transfer and mutual identification.

1 Introduction

The notion of Multi-Prover Interactive proofs was introduced by BenOr, Goldwasser, Kilian and
Wigderson [5] together with the Zero-knowledge property of such proofs. In the Two-prover scenario,
we have two provers, Peggy and Paula, that are allowed to share arbitrary information before the
proof, but they become physically separated and isolated during the execution of the proof in order
to prevent them from communicating.

The Two-prover Interactive proofs of BGKW rely on their construction of a bit commitment
scheme, information theoretically secure under the assumption that the provers cannot communi-
cate. We refer the reader to their paper [5] to understand the application of this bit commitment
scheme to construction of Two-prover Interactive proofs. We solely focus on their bit commitment
scheme.

Despite the impossibility theorems of Mayers [19] and of Lo and Chau [18] the possibility of
information theoretically secure bit commitment schemes in the two-prover model is not excluded
in the quantum model while the provers cannot communicate. Indeed, the computations required to
cheat the binding condition of a quantum bit commitment scheme cannot in general be performed
by the two provers without ability to communicate classically or exchange quantum systems.

In this paper we consider two important questions regarding two-prover bit commitment schemes.
The first is whether certain bit commitment schemes are secure classically but insecure if the provers
are allowed to share quantum entanglement. The second is whether bit commitment schemes may
be secure despite the fact that the provers can share quantum entanglement and perform arbitrary
local quantum computations.
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We answer both questions in the affirmative. We start by reviewing existing two-prover bit
commitment schemes in Section 2 and inspired from those, exhibit in Section 4 such a scheme
that is information theoretically secure classically, but totally insecure when the two-provers are
allowed to share quantum entanglement. Again, this does not mean that no such scheme is secure
in the quantum model, but only that we found one which is definitely insecure. Indeed we then
demonstrate in Section 5 that an existing bit commitment scheme remains secure under quantum
attacks of the provers.

Back to the classical model, the authors of BGKW asserted: “that there is no communication
between the two provers while interacting with the verifier”. We show is Section 3 that, although
this assumption must be made, it is however too weak, because the scheme we exhibit is binding
classically but it is not at all binding if the provers are allowed to share entanglement. It is a very
well known result that entanglement does not allow to communicate. Although it is true that they
can cheat if they can communicate, it is also true that they can cheat without communicating.
Therefore the assumption that the provers cannot communicate is too weak. This situation can be
turned into a purely classical situation by providing the two provers with a correlated source of
randomness that does not allow them to communicate but that allows them to cheat the binding
condition of the bit commitment scheme. This peculiar source of randomness may replace the
entanglement used by our attack.

Finally we investigate the possibility of using this two-prover bit commitment scheme in order
to achieve three applications : zero-knowledge proofs, quantum Oblivious Transfer and mutual
identification.

1.1 Related work

The security of a two-prover bit commitment scheme against quantum adversaries has been con-
sidered in the past in the work of Brassard, Crépeau, Mayers and Salvail [7]. They showed that if
such a bit commitment scheme is used in combination to the Quantum Oblivious Transfer protocol
of [7] it is not sufficient to guarantee the security of the resulting QOT if the two provers can get
back together at the end of the protocol.

Another related line of research by Cleve, Høyer, Toner and Watrous [8] is the main inspiration
of the current paper. They have established some relations between so called “non-locality games”
and Two-prover Interactive Proofs but did not consider the Zero-Knowledge aspect.

A very different set of results [26] relate non-locality boxes and two party protocols such as bit
commitment and oblivious transfer. These are only marginally connected to the current research.

2 Preliminaries

2.1 Two-prover bit commitment schemes

In the BGKW bit commitment scheme, Peggy and Paula have pre-agreed on an n-trit string w.
After they are physically isolated, Peggy commits a bit b to Vic as follows:

BGKW–commit to b:
– Vic sends a random n-bit strings r to Peggy,
– Peggy replies with x such that xi = σri(wi) + b mod 3 for each position i,
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where σz(t) = (−1)zt mod 3 or simply
σ 0 1 2
0 0 1 2
1 0 2 1

where z is a bit and t is a trit.

BGKW–unveil b:
– Paula announced b and an n-bit string ŵ,
– Vic accepts iff b = σri(ŵi)− xi mod 3 for each position i.

The authors of the above protocol prove that in each position i, the probability of successfully
unveiling b̄ instead of b using a ŵi instead of wi is no more than 1/2. They also prove that each xi

carries no information about b. Combination of these two results yields that their bit-commitment
scheme perfectly conceals the bit b, while statistically binding Peggy-Paula to a unique bit except
with probability no greater than 2−n.

Our first observation is that the BGKW bit-commitment scheme is unnecessarily complicated
and can be replaced with no loss in security by a much simpler protocol we call “Simplified-BGKW”
(or sBGKW as a short hand). This commitment scheme may be seen as Naor’s bit-commitment
scheme [21] (from a pseudo-random bit generator) in an information theoretical setting.

In the sBGKW bit commitment scheme, Peggy and Paula have pre-agreed on an n-bit string w.
After they are physically separated, Peggy commits a bit b to Vic as follows:

sBGKW–commit to b:
– Vic sends a random n-bit strings r to Peggy,
– Peggy replies with x = (b · r)⊕ w.

sBGKW–unveil b:
– Paula announced b and an n-bit string ŵ,
– Vic accepts iff ŵ = (b · r)⊕ x.

Now imagine that Peggy and Paula would like to be able to unveil a certain instance of b both
as 0 and as 1. Our only assumption is that Paula knows nothing about r.

Peggy announces b to Vic and Paula would like to announce ŵ such that ŵ = (b · r)⊕x. Indeed
to successfully cheat she would need to know two strings ŵ0, ŵ1 such that ŵ0 = x and ŵ1 = r ⊕ x.
However, ŵ0⊕ ŵ1 = r is completely unknown to Paula. Therefore, her probability of issuing a valid
pair ŵ0, ŵ1 is at most 1/2n.

2.2 Non-locality boxes: the CHSH game

The CHSH game has been one on the first studied two players cooperative game for which it
was proven that a quantum strategy outperforms any classical strategy. The game involves two
physically separated players, P1 and P2, and one verifier V , and goes as follows : V selects at
random two bits, a and b, and sends them to P1 and P2, respectively. Upon reception of their
input, P1 and P2 each output a bit, s and t, and send them to the V who computes the following
predicate

s⊕ t = a ∧ b.

P1 and P2 win the game if the predicate holds, and lose otherwise.

The maximum success probability of a classical strategy for the CHSH game is 3/4. One simple
way to determine this bound is by considering exhaustively all deterministic strategies : P1 and P2
can return four different output sets to V , that is (s, t) ∈ {(0, 0), (1, 1), (0, 1), (1, 0)}. For the two
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first sets, they can win as long as (a, b) 6= (1, 1), and for the two last sets, they can win only when
(a, b) = (1, 1). Therefore on each output set they cannot win for more than 3/4 of the input sets,
and their best strategy is to set s = y so they can achieve this probability of winning.

In the quantum setting, it turns out the maximum success probability of a quantum strategy for
the CHSH game can be increased to cos2(π/8) ≈ 0.85. Here’s a nice quantum strategy presented
in [8] that achieves this bound. First, let P1, P2 share the entanglement |Φ−〉 = 1√

2

(
|00〉 − |11〉

)
.

Define

|φ0(θ)〉 = cos(θ)|0〉+ sin(θ)|1〉
|φ1(θ)〉 = −sin(θ)|0〉+ cos(θ)|1〉

and let P1 and P2’s measurement be given as

Xa
0 = |φa(0)〉〈φa(0)|

Xa
1 = |φa(π/4)〉〈φa(π/4)|
Y b

0 = |φb(π/8)〉〈φb(π/8)|
Y b

1 = |φb(−π/8)〉〈φb(−π/8)|

for a, b ∈ {0, 1}. Each of these matrix are projective measurement and are thus positive semidefinite.
Given our particular choice of entanglement, we have

〈Φ−|X ⊗ Y |Φ−〉 =
1
2
Tr(XTY )

for arbitrary X and Y . Because each of the matrices Xa
s and Y b

t is real and symmetric, the prob-
ability that P1 and P2 answer (s, t) on input (a, b) is 1

2Tr(Xa
s Y

b
t ). It is then easily verified by an

exhaustive check that, in every case, the correct answer is given with probability cos2(π/8) and the
incorrect answer is given with probability sin2(π/8).

The fact that this probability of success is optimal follows from Tsirelson’s Inequality [16][24].

3 Cheating sBGKW with a NL-box

Consider the following NL-box with input bits a and b. The box’s outputs are two bits x and y such
that x is uniformly distributed and y := x⊕ b ∧ a. First notice that y is also uniformly distributed
and x := y⊕b∧a. Therefore, the NL-box does not allow Peggy and Paula to communicate. However
this NL-box allows them to unveil the bits committed through sBGKW in either way.

a //
NL

boo

x //oo y := x⊕ (a · b)

Fig. 1. the cheating NL-box

For each position i, Peggy inputs bit ri received from Vic and obtains xi from the NL-box. To
unveil bit b Paula discloses this value to Vic and x̂i is obtained from the NL-box with input b. If
b = 0 then b ∧ ri = 0 and thus x̂i = xi which is the right value she must disclose. If b = 1 then
b ∧ ri = ri and thus x̂i ⊕ xi = ri or x̂i = xi ⊕ ri which is again the right value she must disclose.
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The existence of such a correlated random variable, which does not allow communication but
allows cheating of the sBGKW two-prover bit commitment scheme sheds some light on the original
assumption of Ben-Or, Goldwasser, Kilian and Wigderson: “Our construction does not assume
that the verifier is polynomial time bounded. The assumption that there is no communication
between the two provers while interacting with the verifier, must be made in order for the verifier
to believe the validity of the proofs. It need not be made to show that the interaction is perfect
zero-knowledge.” Indeed this assumption is necessary but not sufficient to guarantee the binding
property of the bit-commitment scheme. To achieve the binding condition a stronger assumption
must be made: “there exists no mechanism by which the provers may sample a joint random
variable which is dependent on inputs they provide.” Notice that, among other things, this new
condition excludes communication between the provers. However, it excludes a lot more, such as
shared entanglement.

4 Cheating wBGKW using entanglement

Let the distance d(x, y) of a pair of binary words x, y be the number of bit-positions where x
and y differ. Consider a modified version of sBGKW, called wBGKW, where the acceptance criteria
of the verifier Vic is to accept b and ŵ if d(ŵ, x ⊕ (b · r)) < n/5. In sBGKW the criteria was
d(ŵ, x⊕ (b · r)) = 0.

It is clear (but formally proved below) that the classical optimal strategy yields E {d(ŵ, x⊕ (b · r))} =
n/4 > n/5 (the choice of b is part of the expectation) and therefore the probability that d(ŵ, x ⊕
(b · r)) < n/5 for both values of b is exponentially small in n.

Conversely, the independent quantum strategy yields E {d(ŵ, x⊕ (b · r))} < 0.15n < n/5 for
both values of b. In other words, the probability that d(ŵ, x⊕(b ·r)) ≥ n/5 is exponentially small in
n when the provers use the strategy discussed above with the NL-box and the NL-box is simulated
through entanglement. Thus a pair of quantum provers defeat the binding condition of the scheme
with probabilities nearly 1.

4.1 Analysis of the classical case

We prove the following,

Theorem 1. For any classical strategy the probability that it outputs a string ŵ0 when b = 0 and
ŵ1 when b = 1 such that d(ŵb, x ⊕ (b · r)) < n/5 for both values of b is exponentially small in n.
Thus unveiling must fail for one of the two possibilities except with exponentially small probability.

Proof. The result follows from first observing that any classical strategy that may produce such a ŵ0

when b = 0 and ŵ1 when b = 1 may output BOTH ŵ0 and ŵ1. In other words, classical strategies
may always be parallelized (however, quantum strategies cannot!). Then we conclude that the
assumption implies existence of a classical strategy that outputs ŵ0 and ŵ1 such that d(ŵb, x ⊕
(b · r)) < n/5. However, this is very unlikely because we easily obtain that d(ŵ0 ⊕ ŵ1, r) < 2n/5
by the triangular inequality. But r is absolutely unknown to Paula and therefore her probability of
outputting a string z = ŵ0 ⊕ ŵ1 such that d(z, r) < (1/2− ε)n is exponentially small in n for any
ε > 0 (and 2/5 < 1/2 of course).

2

5



5 A quantumly secure variation

In the mBGKW bit commitment scheme, Peggy and Paula have pre-agreed on an n-bit string w.
After they are physically separated, Peggy commits a bit b to Vic as follows:

mBGKW–commit to b:
– Vic sends two random n-bit strings r0, r1 to Peggy,
– Peggy replies with x = rb ⊕ w.

mBGKW–unveil b:
– Paula announces ŵ to Vic,
– Vic accepts b iff rb = ŵ ⊕ x.

We want to show that the mBGKW scheme is secure against a quantum adversary. Clearly the
commitment is concealing for Vic does not know w. The binding property holds for the following
reason.

Let p0 be the probability of successfully unveiling 0 and p1 be the probability of successfully
unveiling 1. Imagine Peggy and Paula are able to open b = 0 or b = 1 with good probability of
success. This means that Paula can announce ŵ0 such that r0 = ŵ0⊕x or ŵ1 such that r1 = ŵ1⊕x
depending upon wether b = 0 or b = 1 is unveiled. If she could simultaneously compute (ŵ0, ŵ1)
then she would learn r0⊕ r1 = ŵ0⊕ ŵ1. Clearly, this should not be possible with probability better
than 2−n since Paula does not have any information about (r0, r1) and therefore r0 ⊕ r1 remains
uniformly distributed over {0, 1}n during the execution of the protocol. The next lemma shows that
whenever p0 + p1 > 1 + ε, Paula can guess r0 ⊕ r1 with success probability about ε2.

Lemma 1. Assume Peggy and Paula have probability pb to open b with success such that p0 +p1 ≥
1 + ε for ε > 0. Then, Paula can guess r0 ⊕ r1 with probability p⊕ ≥ ε2/4.

Proof. Assume without loss of generality that when the unveiling phase of mBGKW starts, Paula
holds pure state |ψ〉 ∈ HN of dimension N ≥ 2n. She has two possible strategies depending upon
the bit b she wants to unveil. When b = 0, she applies a unitary transform U0 to |ψ〉 in order to get
the state |ψ0〉 = U0|ψ〉 that she measures in the computational basis {|w〉〈w|}w∈{0,1}n applied to
the first n qubits of |ψ0〉. When b = 1, she proceeds similarly with unitary transform U1 allowing
to prepare the state |ψ1〉 = U1|ψ〉. She then measures |ψ1〉 using the same measurement than for
b = 0. It is easy to verify that this corresponds to the most general strategy for Paula. From
r0, r1, x ∈ {0, 1}n announced by Vic and Peggy during the committing phase, we define ŵb = rb⊕x
as the string Paula has to announce in order to open b with success. We have,

pb = 〈ψb|ŵb〉〈ŵb|ψb〉, (1)

which by assumption satisfies
p0 + p1 ≥ 1 + ε, ε > 0. (2)

Notice that 〈ψb|ŵb〉 is a generalized inner product since |ŵb〉 lives in a subspace of dimension 2n in
HN

4. Using (1), we can write |ψb〉 as,

|ψb〉 =
√
pb|ŵb〉|v̂b〉+

√
1− pb|ŵ⊥

b 〉, (3)

where ‖〈ŵb|ŵ⊥
b 〉‖2 = 0.

4 If |w〉 ∈ HM and |ψ〉 ∈ HN then for |ψ〉N =
P

i αi|ai〉M ⊗ |bi〉N/M we define 〈w|ψ〉 =
P

i αi〈w|ai〉|bi〉.
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We want to determine a lower bound for the probability p⊕ for Paula to obtain (ŵ0, ŵ1) using the
following strategy:

1. Paula applies the strategy allowing to open b = 0 from |ψ0〉 = U0|ψ〉 resulting in the state |ψ̃0〉
after the measurement in the canonical basis has been performed, and

2. Paula prepares |ψ̃1〉 = U1U
†
0 |ψ̃0〉 before applying the measurement in the canonical basis.

Instead of computing directly p⊕, we first find a lower bound on the probability pŵ1|ŵ0
to produce

ŵ1 given that ŵ0 has already been produced after Step 1. Since ŵ0 was obtained, the state |ψ̃0〉 =
|ŵ0〉|v̂0〉. We have,

|ψ̃1〉 = U1U
†
0 |ψ̃0〉

= U1U
†
0 |ŵ0〉|v̂0〉

= U1

(
U †

0

|ψ0〉√
p0
− U †

0

√
1− p0

p0
|ŵ⊥

0 〉
)

(4)

= U1
|ψ〉
√
p0
− U1U

†
0

√
1− p0

p0
|ŵ⊥

0 〉 (5)

=
|ψ1〉√
p0
− U1U

†
0

√
1− p0

p0
|ŵ⊥

0 〉 (6)

=
1
√
p0

(√
p1|ŵ1〉|v̂1〉+

√
1− p1|ŵ⊥

1 〉 − U1U
†
0

√
1− p0|ŵ⊥

0 〉
)
, (7)

where (4) follows from (3), (5) and (6) are obtained by definition of U0 and U1 respectively, and
(7) also follows from (3). At this point, Paula applies the measurement in the canonical basis in
order to obtain ŵ1. The probability to obtain ŵ1 is minimized when U1U

†
0 |ŵ⊥

0 〉 = |ŵ1〉|v̂1〉. It easily
follows that,

pŵ1|ŵ0
= 〈ψ̃1|ŵ1〉〈ŵ1|ψ̃1〉

= 〈v̂0|〈ŵ0|U0U
†
1 |w1〉〈w1|U1U

†
0 |ŵ0〉|v̂0〉

≥ 1
p0

(√
p1 −

√
1− p0

)2
(8)

≥ 1
p0

(√
p1 −

√
p1 − ε

)2 (9)

≥ ε2

4p0
, (10)

where (8) follows from (7), (9) is obtained from (2), and (10) follows from a Taylor expansion.
Finally, (10) gives the desired result since

p⊕ = p0 · pŵ1|ŵ0
≥ ε2

4
.

ut

Corollary 1. If there exists an algorithm A that can cheat the bit commitment scheme with prob-
abilities p0 + p1 ≥ 1 + 1/poly then there exists an algorithm A′ that can predict an unknown n-bit
string (r0 ⊕ r1) with probabilities 1/poly′ = 1/4poly2, which is impossible.

7



Indeed the following stronger statement is also true:

Corollary 2. If there exists an algorithm A that can cheat the bit commitment scheme with prob-
abilities p0 + p1 > 1 + 4/2n/2 then there exists an algorithm A′ that can predict an unknown n-bit
string (r0 ⊕ r1) with probabilities better than 1/2n, which is impossible.

Note finally that sBGKW is the same as mBGKW where r0 = 000...0 is the all-zero string all
the time. The statement and proof of Lemma 1 is equally valid for any fixed choice of either (but
not both) r0 or r1 because r0 ⊕ r1 remains unlikely to predict.

6 Applications of a quantumly secure sBGKW

In this section we discuss three applications of a quantumly secure sBGKW bit commitment scheme.
These are, two-prover zero-knowledge proofs, two-prover Oblivious Transfer and two-prover mutual
identification.

6.1 Quantum Zero-Knowledge Proofs

The most obvious application of a two-prover bit commitment scheme secure against quantum
adversaries is the elaboration of Zero-Knowledge proof, secure against quantum provers and verifier.
Having a secure bit commitment scheme yields immediately zero-knowledge proofs for any language
in NP using the classical constructions of either [13] or [6]. The zero-knowledge property immediate
follows from the construction of the commitments because a simulator is able to unveil any bit
commitment either way, because he issues fake messages from both provers. Thus simulation is
straight forward, requires no rewinding, even if the verifier uses a quantum auxiliary input [15].

Moreover, using simple classical techniques put forward by [4] and [14] it is rather straightfor-
ward also for the two-provers to prove in zero-knowledge any statement in IP=PSPACE ([23]). It
is sufficient in this case to demonstrate that a classical verifier would accept wen speaking with the
prover. This is summarized as follows.

Theorem 2. Using the sBGKW bit commitment scheme, there exists a statistical zero-knowledge
proof for every statement in IP=PSPACE, even against a polytime quantum verifier.

However, classically the two-prover scenario allows for much larger complexity classes: Babai,
Fortnow and Lund [1] showed that any language in NEXP can be proven in zero-knowledge to a
polytime verifier. Nevertheless, in the quantum case it is not even known what complexity class
may be achieved in a two-quantum-provers vs quantum-verifier situation (consult [25, 17]). The
complexity class that may be reached in zero-knowledge is even less known ! This is an intriguing
open question.

6.2 Quantum Oblivious Transfer

The goal of an Oblivious Transfer (OT) [22] is as follows. Vic has a secret bit β drawn from a certain
distribution. At the end of the protocol, either Peggy learns the value β (and knows it) or Peggy
gains no further information about the value of β, with each event occurring with probability 1/2.
Vic learns nothing about which event takes place. It is a folklore result that in the classical setting
OT cannot be achieved securely (without extra assumptions). Moreover, it is not known whether
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classically the two-prover model allows for a secure OT between Peggy-Paula and Vic while Peggy
and Paula are separated.

It is well known from previous work [3][20][27] that in the quantum world, a protocol to achieve
OT can be obtained from a bit commitment scheme. However, in the one prover model, Mayers [19]
and independently Lo and Chau [18] showed that quantum-secure bit commitment was impossible.
Since OT can be used to construct a bit commitment [9], their result forces any OT protocol to
be insecure against a quantum adversary. Interestingly, it turns out that in the two-prover model,
the quantum-secure scheme presented in section 5 can be used to build an OT secure against a
quantum adversary. This is what we show here. For our purpose, we consider the same canonical
oblivious transfer protocol as the one presented in [3][27].

OT protocol:
Let U = {+,×}n × {0, 1}n, where +,× stand for the rectilinear and diagonal bases respectively.

Step 1: Vic pics a random uniformly chosen u = (a, g) ∈ U , and sends to Peggy photons i,
1 ≤ i ≤ n, with polarizations given by bases a[i] and bits g[i], that is the qubits sent are random
bits encoded using the BB84 coding scheme [2].

Step 2: Peggy picks a random uniformly chosen b ∈ {+,×}n, measures photons i in bases b[i]
and records the results as h[i] ∈ {0, 1}. Peggy then makes a commitment of all n pairs (b[i], h[i]) to
Vic.

Step 3: Vic picks a random uniformly chosen subset R ⊆ {1, 2, . . . , n}, and tests the commit-
ment made by Peggy at positions in R. If any i ∈ R reveals a[i] = b[i] and g[i] 6= h[i], then Vic
stops the protocol; otherwise the protocol continues.

Step 4: Vic announces the basis a to Peggy. Let T0 be the set of all 1 ≤ i ≤ n with a[i] = b[i],
and let T1 be the set of all 1 ≤ i ≤ n with a[i] 6= b[i]. Peggy chooses I0, I1 ⊆ T0 − R, T1 − R with
| I0 |=| I1 |= 0.24n, and sends {I0, I1} in random order to Vic.

Step 5: Vic picks a random s ∈ {0, 1}, and sends s, βs = β ⊕i∈Is g[i] to Bob. Bob computes
β = βs ⊕i∈Is h[i], if Is ⊆ T0; otherwise does nothing.

Let the bit commitment of Step 2 be the sBGKW scheme. Therefore Peggy is split in two
physically separated provers, Peggy and Paula, that cannot communicate with each other, and
share some information w[i] for each i. At Step 3, Vic ask Paula to unveil the positions in R.

As shown in [27], if each qubit i received by Peggy is measured, then the construction is se-
cure against coherent measurement, and because the sBGKW scheme is secure against a quantum
adversary, the OT protocol will be secure against a quantum adversary.

Based on the proof of Yao we claim the following without further proof

Theorem 3. Using the sBGKW bit commitment scheme, there exists a statistically secure imple-
mentation of OT in the scenario where two parties Peggy-Paula are physically separated.

However, Peggy might not measure the qubits she receives. It raises the question of whether or
not it is possible for her to fake the measurement of her qubits, succeed Vic’s test and then recover
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the qubits for each position where the commitment was not opened. If it is the case then when the
basis a will be disclosed, all she needs to do to obtain β is measure each qubit i according to a[i]
to get the correct g[i].

Brassard, Crépeau, Mayers and Salvail [7] have shown a quantum attack, named “BCMS’ at-
tack”, in the context where a two-prover bit commitment is used to force the other party to perform
a measurement on a quantum system, which is exactly the task Peggy and Paula want to achieve.
The attack is to make the bit commitment at quantum level, in a superposition entangled to the
qubit to be measured. However, to take advantage of this attack, Peggy and Paula must get back
together to recover the original qubit. Thus we must keep in mind that while the OT protocol is
secure while Peggy and Paula are physically separated, it is completely insecure as soon as they
get back together. This seriously limits the set of applications where such a protocol is relevant.

Another detail must be dealt with: since Peggy does not participate in the unveiling stage, how
can Paula and Peggy agree on which bits Vic asked them to unveil ? This information is necessary
for Peggy to know the set R in order to compute T0 and T1.

Of course, we cannot trust Vic to send R to Peggy because he may be dishonest. The only
solution possible is to use Vic as an intermediary between Peggy and Paula. Paula may send
the indexes of the bits unveiled in an authenticated message to Peggy through Vic. A concern is
that Peggy-Paula may have shared entanglement before being separated, allowing them to use the
bits of the authentication tag and the channel through Vic to teleport some quantum states. These
quantum states may allow them to successfully carry the attack of BCMS. Thus, we need to restrict
the size of this tag to prevent them from cheating. Note that the message sent is not encrypted,
so the bits representing R cannot be used to send cheating information because Vic can check the
validity of the information. If the set R is wrong, then Vic aborts the protocol.

We can therefore conclude that in order to make the OT protocol quantum-secure against the
BCMS attack using the sBGKW bit commitment scheme, the following modifications need to be
made

– Once separated, Peggy and Paula must never be put together again.
– At the end of Step 3, Paula will communicate the bits unveiled to Peggy through Vic, using

an authenticated message with an authentication tag significantly smaller than the security
parameter n used for the OT protocol.

We do not claim to have a complete proof of security of this application. Our purpose is to
exhibit an application of the sBGKW commitment scheme with convincing arguments that it is
secure. Work in progress is to complete this proof.

6.3 Quantum Mutual Identification

An alternative application of quantum cryptography was explored by Crépeau and Salvail [10]:
mutual identification. In this cryptographic situation, two players Peggy and Vic share a common
secret string w and would like to check that they mutually know this string in such a way that

– if both parties are honest, they always succeed
– a dishonest party who does not know w will only gain exponentially small amount of information

each time he/she runs the protocol with an honest party.

Although the above paper suggests some quantum solutions to this problem, to this day, no proof
of security has been discovered for their protocol. On the other hand, it is obvious that such a
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solution may be obtained from a secure Oblivious Transfer protocol since the latter is universal for
two-party computations. Nevertheless, more direct solutions have been developed by Fagin, Naor
and Winkler [12] and Crépeau-Salvail [11].

As a consequence, a rather efficient solution may be obtained from the OT constructed in the
previous sub-section. If one party, say Peggy, is split into two provers Peggy-Paula instead of a
single party, it becomes possible to obtain sBGKW bit commitments, QOT, and finally an efficient
mutual identification protocol.

In the honest case, when both Peggy and Vic know w they will succeed and all is fine.
In the dishonest case however, if Peggy (and Paula) did not know the secret string w, when

they get back together after the identification protocol, they would be able to cheat all the QOTs
(à la BCMS [7]) and actually obtain the string w completely ! This may seem like a rather serious
problem, but in fact, it is not.

If Vic finds out that Peggy-Paula fail the identification protocol, he is safe as long as Peggy and
Paula cannot get back together ever again! For instance, Vic may be an ATM while Peggy-Paula
are a pair of smartcards. Only Peggy needs to know w, but not Paula. If Peggy-Paula succeed the
identification then the user gets both cards back at the end of the interaction. If the identification
fails, only the main card (Peggy) is given back to the user. The secondary card (Paula) is kept (or
destroyed) by Vic. Since Paula’s part in all these protocol is rather minor, it is a trivial business to
make sure it forgets all its memory as the protocol evolves. If a dishonest Vic keeps the Paula-card
dishonestly, the user knows that there is no useful data that may be recovered from it and so
security is preserved. If an ATM keeps the card of an honest user, then the user knows the ATM
is dishonest but need not contact his bank. Only if both cards are stolen must the user contact his
bank, which is more or less unavoidable.

7 Conclusion

We have shown that the question as whether two-prover bit commitment schemes that are secure
classically are also secure quantumly is non-trivial. We have presented a two-prover bit commit-
ment scheme that classically secure, but insecure if the provers share entanglement. We have also
presented a two-prover bit commitment scheme that is both classically secure, and secure if the
provers share entanglement. We have discussed several applications of such a scheme.
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6. G. Brassard, D. Chaum and C. Crépeau. Minimum disclosure proofs of knowledge. In Journal of Computer and
System Sciences, Vol. 37, no. 2, 1988, pp. 156-189.
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