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Abstract
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1 Introduction

Secure distributed protocols have been an important and fruitful area of research for modern
cryptography. In this setting, there is a group of participants who wish to perform some joint
task, despite the fact that some of the participants in the protocol may cheat in order to obtain
additional information or corrupt the outcome.

We investigate a quantum version of an extensively studied classical problem, secure multi-party
computation (or secure function evaluation), first introduced by [18]. For this paper, we consider an
extension of this task to quantum computers. A multi-party quantum computing (mpqc) protocol
allows n participants P1, P2, . . . , Pn to compute an n-input quantum circuit in such a way that each
party Pi is responsible for providing one (or more) of the input states. The output of the circuit
is broken into n components H1 ⊗ . . . ⊗ Hn, such that Pi receives the output Hi. Note that the
inputs to this protocol are arbitrary quantum states—the player providing an input need only have
it in his possession, he does not need to know a classical description of it. Moreover, unlike in the
classical case, we cannot assume without loss of generality that the result of the computation will
be broadcast. Instead, each player in the protocol receives some part of the output.

Informally, we require two security conditions:
- Soundness and Completeness: no coalition of t or fewer cheaters should be able to affect the
outcome of the protocol beyond what influence they have by choosing their inputs.
- Privacy: no coalition of t or fewer cheaters should learn anything beyond what they can deduce
from their initial knowledge of their input and from their part of the output.

Verifiable Quantum Secret Sharing. In order to construct mpqc protocols, we consider a
subtask which we call verifiable quantum secret sharing. In classical cryptography, a verifiable
secret sharing scheme [13] is a two phase protocol with one player designated as the “dealer”. After
the first phase (commitment), the dealer shares a secret amongst the players. In the second phase
(recovery), the players reconstruct the value publicly.

The natural quantum version of this allows a dealer to share a state ρ (possibly unknown to
him but nonetheless in his possession). Because quantum information is not clone-able, we cannot
require that the state be reconstructed publicly; instead, the recovery phase also has a designated
player, the reconstructor R. We require that, despite any malicious actions by up to t players:
- Soundness: As long as R is honest and the dealer passes the commitment phase successfully, then
there is a unique quantum state which can be recovered by R.
- Completeness: When D is honest, then he always passes the commitment phase. Moreover, when
R is also honest, then the value recovered by R is exactly D’s input ρ.
- Privacy: When D is honest, no other player learns info about D’s input until the recovery step.

Note that for quantum data, the privacy condition definition is redundant: any information
obtained about the shared state would imply some disturbance of that state, contradicting the
completeness requirement.

Contributions. We give a protocol for verifiable quantum secret sharing that tolerates any
number t < n/4 of cheaters. We show that this is optimal, by proving that vqss is impossible when
t ≥ n/4. Based on techniques from fault-tolerant quantum computing, we use our vqss protocol
to construct a multi-party quantum computation protocol tolerating any t < n/6 cheaters. (Mpqc
is similar to standard fault-tolerance but with a different error model, see Previous Work). Our
protocols run in time polynomial in both n, the number of players, and k, the security parameter.
The error of the protocols is exponentially small in k.

Beyond these specific results, there are a number of conceptual contributions of this paper
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to the theory of quantum cryptographic protocols. We provide a simple, general framework for
defining and proving the security of distributed quantum protocols in terms of equivalence to an
ideal protocol involving a third party. This follows the definitions for classical multi-party protocols,
which have been the subject of considerable recent work [19, 5, 23, 7, 16, 9, 25, 8, 28]. The analysis
of our protocols leads us to consider various notions of local “neighborhoods” of quantum states,
and more generally of quantum codes. We discuss three notions of a neighborhood. The notion
most often used for the analysis of quantum error-correction and fault-tolerance is insufficient for
our needs, but we show that a very natural generalization (specific to so-called “css” codes) is
adequate for our purposes. Along the way, we provide modified versions of the classical sharing
protocols of [12]. The new property our protocols have is that dealers do not need to remember the
randomness they use when constructing shares to distribute to other players. This allows them to
replace a random choice of coins with the superposition over all such choices.

1.1 Previous Work

Classical mpc. Multi-party computing was introduced by Goldreich, Micali and Wigderson [18],
who showed that under computational assumptions, secure multi-party evaluation of any function
was possible tolerating any minority of cheating players, i.e. if and only if t < n

2 . If one assumes
pairwise secure channels but no computational assumptions, then one can compute any function
securely if and only if t < n/3 [6, 12]). If one further assumes the availability of a secure broadcast
channel, then one can in fact tolerate t < n/2, and no more ([26, 4, 15]). All of these protocols rely
on verifiable secret sharing as a basic tool. Our solution draws most heavily on the techniques of
Chaum, Crépeau and Damg̊ard [12].

Beyond these basic protocols, much work has focused on finding proper definitions of security
[19, 5, 23, 7, 16, 9, 25, 8]. We adopt a simple definition based on the initial definitions of Canetti.

Quantum Secret Sharing. Relatively little work exists on multi-party cryptographic protocols
with quantum data. Secret sharing with a quantum secret was first studied by Cleve et al. [14],
who showed an equivalence with quantum error-correcting codes (QECC). Their scheme is the basis
of our protocols. Chau [11] deals with classical computations, but also mentions the problem of
verifiable quantum secret sharing as an open question.

Fault-tolerant Quantum Computing. The goal of ftqc is to tolerate non-malicious faults
occurring within a single computer. One assumes that at every stage in the computation, every
qubit in the circuit has some known probability p of suffering a random error, i.e. of becoming
completely scrambled. Moreover, errors are assumed to occur independently of each other and of
the data in the computation.

One can view multi-party computation as fault-tolerant computing with a different error model,
one that is suited to distributed computing. The mpqc model is weaker in some respects since we
assume that errors will always occur in the same, limited number of positions, i.e. errors will
only occur in the systems of the t corrupted players. In other respects, the error model of mpqc
is stronger: in our setting errors may be maliciously coordinated. In particular, they will not be
independently placed, and they may in fact depend on the data of the computation—the adversaries
will use any partial information known about the other players’ data, as well as information about
their own data, to attempt to corrupt the computation. For example, several ftqc algorithms rely
on the fact that at certain points in the computation, at most one error is likely to occur. Such
algorithms will fail when errors are placed adversarially. Techniques from ftqc are nonetheless
useful for multi-party computing. We will draw most heavily on techniques due to Aharonov and
Ben-Or [3].
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1.2 Definitions and Model

In this paper, we use a simple simulation-based framework for proving the security of quantum
framework, similar to early classical definitions [7]. We specify a task by giving a protocol for
implementing it in an ideal model where players have access to a trusted third party. We prove a
given protocol secure by showing a simulator which translates any attack in the real-world protocol
into an (almost) equally successful attack in the ideal model.

We assume that every pair of participants is connected by perfect (i.e. authenticated, secret)
quantum and classical channels, and that there is a classical authenticated broadcast channel to
which all players have access. Because we will always consider settings where t < n

2 , we can also
assume that players can perform classical multi-party computations securely [15]1. The adversary
is an arbitrary quantum algorithm (or family of circuits) A (not necessarily polynomial time), and
so the security of our protocols does not rely on computational assumptions.

The real and ideal models, as well as the notion of security, are specified more carefully in
Appendix A. For now, use the following informal definitions for the ideal protocols. The real
protocols are secure if they succeed in simulating the ideal ones.

Multi-party Quantum Computation. All players hand their inputs to the trusted party, who
runs the desired circuit and hands back the outputs. Note that the only kind of cheating which
is possible is that cheaters may choose their own input. In particular, cheaters cannot force the
protocol to abort.

Verifiable Quantum Secret Sharing. In the sharing phase, the dealer gives his secret system
to the trusted party. In the reconstruction phase, the T T P sends the secret system to the recon-
structor R. The only catch is that in the ideal model, honest players should not learn the identity
of R until after the first phase has finished (otherwise, D could simply send the secret state to R
in the first phase without violating the definition.

1.3 Preliminaries

We present the notation necessary for reading the protocols and proofs in this paper. For a more
detailed explanation of the relevant background, see Appendix B, or a textbook such as [24].

We will work with p-dimensional quantum systems, for some prime p > n. Such a system is
called a qupit, and the “computational” basis states are labelled by elements in Zp. We will also
be working in the Fourier basis, which is given by the unitary transformation F|a〉 7→

∑
b ω

ab|b〉
(ignoring normalizing constants). A basis for the operators on a qupit is given by the p2 Pauli
operators XaZb, where X|a〉 = |a + 1〉 , Z|a〉 = ωa|a〉, and ω = exp(2πi/p). Tensor products of
these operators yield the Pauli basis for the set of operators on a register of qupits. The weight of
a tensor product operator is the number of components in which it is not the identity I.

Quantum Codes. The quantum error-correcting codes used in this paper are CSS codes. These
are defined via two classical linear codes V,W ⊆ Znp such that V ⊥ ⊆ W . If we denote W (q) =
span{|w〉 : w ∈ W} for a classical code W , then we can write the CSS code as C = V (q) ∩
FW (q). Thus, C is the set of states of n qubits which yield a codeword of V when measured in the
computational basis and a codeword of W when measured in the Fourier basis.

Specifically, we will use quantum Reed-Solomon codes. We specify a quantum RS code by
a single parameter δ < (n − 1)/2. The classical Reed-Solomon code V δ is given by the vectors
q̂ = (q(1), q(2), . . . , q(n)) for all univariate polynomials q of degree at most δ. The related code V δ

0

1In fact, even the assumption of a broadcast channel is not strictly necessary, since t < n
3

in our setting.
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is the subset of V δ corresponding to polynomials which interpolate to 0 at the point 0. That is:
V δ = {q̂ : q ∈ F [x] : deg(q) ≤ δ} and V δ

0 = {q̂ : deg(q) ≤ δ and q(0) = 0} ⊆ V δ. The code V δ

has minimum distance d = n − δ, and an efficient error-correction procedure. Let δ′ = n − δ − 1.
There are constants d1, ..., dn ∈ Zp such that the dual of the code V δ is just the code V δ′

0 , rescaled
by di in the ith coordinate; similarly, the dual of V δ

0 is a rescaled version of V δ′ . Denote these duals
by W δ′

0 ,W
δ′ , respectively.

The quantum code Cδ for parameter δ is the css code obtained from codes V = V δ and
W = W δ′ . It encodes a single qupit, and has minimum distance δ + 1 (thus, it corrects t = bδ/2c
errors). Moreover, errors can be corrected efficiently, given the syndrome of a corrupted codeword,
i.e. the V -syndrome measured in the computational basis and the W -syndrome measured in the
Fourier basis.

Transversal Operations. Certain logical operations on data encoded via CSS codes can be
performed transversally (i.e. using only local operations, which affect the same component of two
codewords). For example, applying a linear gate |a〉|b〉 7→ |a〉|a + cb〉 (for a constant c) to each
component of a pair of codewords applies that gate to the encoded data. Applying the Fourier
transform transversally to a codeword yields a somewhat different effect: data encoded with the
codes V,W is mapped to the Fourier transform of that data, encoded with the dual code C̃ defined
via the codes W,V . For quantum RS codes, rescaling each component of the dual code of Cδ
produces the code Cδ′ , enabling us to perform the map ECδ |ψ〉 7→ ECδ′ (F|ψ〉), where EC is the
encoding map for a code C.

A nice result of fault-tolerant computing [3, 20] is that when δ < n/3 (i.e. t < n/6), one can in
fact perform any operation on data encoded by a quantum RS code using only local operations and
classical information transmitted between the components. So long as the classical communication
is reliable, then these procedures can tolerate arbitrary corruption of n/6 of the positions. These
procedures are described in Appendix B.3.

2 Neighborhoods of Quantum Codes

One of the ideas behind classical multi-party computing protocols is to ensure that data is encoded
in a state that remains “close” to a codeword, differing only on those positions held by cheaters
(call that set B). For classical codes, “close” means that the real word v should differ from a
codeword only on B, so that any errors introduced by cheaters are correctable. For a code W , let
the B-neighborhood WB be the set of vectors differing from a codeword of W by positions in B,
i.e., WB = {v : ∃w ∈W s.t. supp(v −w) ∈ B}. Equivalently, one can define WB as the set of
words obtained by distributing a (correct) codeword to all players, and then having all players send
their shares to some (honest) reconstructor R.

For quantum codes, there is more than one natural definition of the neighborhood corresponding
to a set B of positions. Let {1, ..., n} be partitioned according to two sets A,B. We say a mixed
state ρ′ is “in” C if all states in the mixture lie in C, i.e. Tr(PCρ′) = 1 where PC is the projector
onto C. We consider three definitions of a “B-neighborhood” of a css code C. Let ρ be an arbitrary
state of the coding space.

1. ρ differs from a state in C only by some super-operator local to B:
NB(C) = {ρ : ∃ρ′ in C,∃O super-operator, acting only on B s.t. ρ = O(ρ′)}.

2. ρ cannot be distinguished from a state in C by looking only at positions in A.
STB(C) = {ρ : ∃ρ′ in C s.t. TrB(ρ) = TrB(ρ′)}.
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3. Specifically for css codes, one can require that the state ρ pass checks on A in both bases, i.e.
that measuring either the VB-syndrome in the computational basis, or the WB-syndrome in the
Fourier basis, yields 0. The set of states which pass this test is: CB = V

(q)
B ∩ F⊗nW

(q)
B .

In general, these notions form a strict hierarchy: NB(C) ( STB(C) ( CB. Only one of them—
notion (3)—is always a subspace (see Appendix C for details).

In the analysis of quantum error-correction and fault-tolerance schemes, it is sufficient to con-
sider notion (1), for two reasons. On one hand, one starts from a correctly encoded state. On the
other hand, the errors introduced by the environment will be independent of the encoded data (and
in fact they must be for error-correction to be possible at all in that context).

In our setting, however, we cannot make such assumptions, since the cheaters might possess
states which are entangled with the data in the computation, and so the errors they introduce will
not be independent of that data. Instead, we show that our verifiable sharing protocol guarantees a
condition similar to notion (3) (see Lemma 3.1). In order to provide some intuition, we characterize
notion (3) below. Proofs can be found in Appendix C.1.

Well-Definedness of Decoding for CB. The set CB is a subspace, since it is defined in terms
of measurement outcomes. More particularly, it is the space spanned by the states of NB(C):

Lemma 2.1. If ρ is in CB = V
(q)
B ∩ F⊗nW

(q)
B , then we can write ρ =

∑
i pi|ψi〉〈ψi|, where |ψi〉 =∑

j cijEj |φij〉, the Ej are Pauli operators on B and |φij〉 ∈ C.

This has a useful corollary, namely that decoding is well-defined for states in CB. Formally,
there are two natural “reconstruction operators” for extracting the secret out of a state which has
been shared among several players. Suppose that C has distance d > 2t+ 1 and |B| ≤ t. First, D
is the decoding operator for the error-correcting code C. For any operator Ej of weight less than t
and for any state |φ̄〉 in C, we have DEj |φ〉 = |φ〉 ⊗ |j〉 (i.e. the error is not only corrected but also
identified). It will then discard the system containing the syndrome information |j〉. Second, RI is
the “ideal recovery operator”, defined by identifying the set B of cheaters and applying the simple
interpolation circuit to any set of n− 2t good players’ positions.

Proposition 2.2. For any state ρ in CB, the state RI(ρ) is well-defined and is equal to D(ρ).

Our protocols guarantee conditions similar to CB, and the well-definedness is essential for prov-
ing simulatability.

3 Vqss Protocol: Two-Level Quantum Sharing

In this section we define a two-tiered protocol for vqss. It is based on the vqss protocols of [12]
as well as on the literature on quantum fault-tolerance and error-correction, most notably on [3].
Detailed proofs for the claims of this section are in Appendix D.

3.1 Sharing Shares: 2-good Trees

In the vss protocol of [12], the dealer D takes his secret, splits it into n shares and gives the ith

component to player i. Player i then shares this secret by splitting it into n shares and giving the
jth share to player j. Thus, there are n2 total shares, which can be thought of as the leaves of
a tree with depth 2 and fan-out n: each leaf is a share; the ith branch corresponds to the shares
created by player i, and the root corresponds to the initial shares created by the dealer. Player j
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holds the jth leaf in each branch of this tree. We will run a cut-and-choose protocol in order to
guarantee some kind of consistency of the distributed shares.

During the protocol we accumulate n + 1 sets of apparent cheaters: one set B for the dealer
(this corresponds to a set of branches emanating from the root), and one set Bi for each player i
(this corresponds to a subset of the leaves in branch i). These sets all have size at most t. At the
end of the protocol, we want to guarantee certain invariants. Say V has minimum distance > 2t,
and each codeword corresponds to a single value a ∈ Zp.

Definition 1 (2-good trees). We say a tree of n2 field elements is 2-good with respect to the
code V and the sets B,B1, ..., Bn if:

1. For each i 6∈ C (i.e., corresponding to an honest player), we have Bi ⊆ C, i.e. all apparent
cheaters are real cheaters.

2. For each branch i 6∈ B, the shares held by the honest players not in Bi should all be consistent
with some codeword in V . That is, the vector of all shares should be in VBi∪C , where C is the
set of cheating players.

N.B.: Because there are at most t players in Bi and at most t cheaters, there are at least
d+ 1 ≤ n− 2t honest players remaining, and so the polynomial above is uniquely defined. This
guarantees that for each branch i 6∈ B, there is a unique value ai ∈ F which is obtained by
interpolating the shares of the honest players not in Bi.

3. For i 6∈ B, the values ai defined by the previous property are all consistent with a codeword of
V (i.e. the vector (a1, ..., an) is in VB).

We will abbreviate this as 2-goodV , when the sets B,B1, ..., Bn are clear from the context.

3.2 Vqss Protocol

The Vqss protocol is described in Protocols 3.1 and 3.2. Intuitively, it guarantees that a tree of
quantum shares would yield a 2-good tree of classical values if measured in either the computational
basis or the Fourier basis. We use the codes V = V δ = V δ′ andW = W δ = W δ′ , with n = 4t+1, δ =
δ′ = 2t, although there is in fact no need to do this: the protocol will work for any css code with
distance at least 2t+ 1, so long as the codes V,W are efficiently decodable.

The protocol can be tweaked for efficiency. The final protocol takes three rounds. Each player
sends and receives O(n + log 1

ε ) qubits, and the broadcast channel is used O
(
n(n+ log 1

ε )
)

times
overall, where ε is the soundness error of the protocol (this requires setting k = n+ log(1

ε )).
Why is this a secure vqss protocol? We want to show that the protocol is equivalent to the

“ideal model”, where at sharing time the dealer sends his secret system S to a trusted outside
party, and at reveal time the trusted party sends S to the designated receiver. To do that, we will
use two main technical claims (one for soundness, one for completeness).
Soundness. We must show that at the end of the protocol, if the dealer passes all tests then there
is an well-defined “shared state” which will be recovered by the dealer. To do so, we guarantee a
property similar to CC (notion (3) of Section 2).
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Protocol 3.1 (vqss—Sharing Phase). Dealer D gets as input a quantum system S to share.

• Sharing:

1. The dealer D prepares (k+1)2 systems of n qupits each, called S`,m (for ` = 0, ..., k and m = 0, ..., k):

(a) Encodes S using C in S0,0.
(b) Prepares k systems S0,1, ..., S0,k in the state

∑
a∈F EC |a〉 =

∑
v∈V |v〉.

(c) Prepares k(k+1) systems S`,m, for ` = 1, ..., k and m = 0, ..., k, each in the state |0̄〉 =
∑

v∈V0
|v〉.

(d) For each of the (k + 1)2 systems S`,m, D sends the ith component (denoted S(i)
`,m) to player i.

2. Each player i, for each `,m = 0, ...k:

(a) Encodes the received system S
(i)
`,m using C into an n qupit system S`,m,i.

(b) Sends the jth component S(j)
`,m,i to player j.

• Verification:

1. Get public random values b1, ..., bk ∈R F . For each ` = 0, ..., k, m = 1, ..., k, each player j:

(a) Applies the controlled-addition gate (c-Xbm) to his shares of the systems S`,0,i and S`,m,i.
(b) Measures his share of S`,m,i and broadcasts the result

(i.e. each player broadcasts k(k + 1)n values).
(c) For each i ∈ {1, ..., n}, players update the set Bi based on the broadcast values: there are

(k+ 1)kn broadcast words w`,m,i. Applying classical decoding to each of these yields min-weight
error vectors e`,m,i with support set B`,m,i. Set Bi = ∪`,mB`,m,i. If there are too many errors,
instead add i to the global set B.

(d) Furthermore, players do the same at the root level: for all i 6∈ B, there is an interpolated value
ai which corresponds to the decoded codeword from the previous step. Players also decode the
codeword (a1, ..., an) and update B accordingly (i.e. by adding any positions where errors occur
to B).

2. All players apply the Fourier transform F to their shares.
3. Get public random values b′1, ..., b

′
k ∈R F . For ` = 1, ..., k, each player j:

(a) Applies the controlled-addition gate (c-Xb′
`) to his shares of the systems S0,0,i and S`,0,i.

(b) Measures his share of S`,0,i and broadcasts the result
(i.e. each player broadcasts kn values).

(c) For each i ∈ {1, ..., n}, players update Bi and B based on the broadcast values (as in Step 1c).
[Note: the sets B and B1, ..., Bn are cumulative throughout the protocol.]

4. All players apply the inverse transform F−1 to their shares of S0,0.

• The remaining shares (i.e. the components of the n systems S0,0,i) form the sharing of the state ρ.

Protocol 3.2 (vqss—Reconstruction Phase). Player j sends his share of each of the systems S0,0,i to
the receiver R, who runs the following decoding algorithm:

1. For each branch i: Determine if there is a set B̃i such that Bi ⊆ B̃i,
∣∣∣B̃i

∣∣∣ ≤ t and the shares of S0,0,i lie
in CB̃i

.
If not, add i to B.
Otherwise, correct errors on B̃i and decode to obtain a system S′i.

2. Apply interpolation to any set of n− 2t points not in B. Output the result S′.
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Lemma 3.1. The system has high fidelity to the following statement: “Either the dealer is caught
(|B| > t) or measuring all shares in the computational (resp. Fourier) basis would yield a 2-good
tree with respect to the code V (resp. W ).”

Proof of this is via a “quantum-to-classical” reduction, similar to that of [22]. First, checks in
the computational and Fourier bases don’t interfere with each other, since they commute for CSS
codes. Second, in a given basis, we can assume w.l.o.g. that all ancillae are first measured in that
basis, reducing to a classical analysis similar to [12].

Ideal Reconstruction. In order to prove soundness carefully, we define an ideal interpolation
circuit RI for 2-good trees: pick the first n− 2t honest players not in B, say i1, ..., in−2t. For each
ij , pick n − 2t honest players not in Bij and apply the normal interpolation circuit (i.e. erasure-
recovery circuit) for the code to their shares to get some qupit Rij . Applying the interpolation
circuit again, we extract some system S which we take to be the output of the ideal interpolation.
The following lemma then applies, following essentially from Proposition 2.2.

Lemma 3.2. Given a tree of qupits which is 2-good in both bases, the output of the ideal inter-
polation and the real recovery operators are the same. In particular, this means that no changes
made by cheaters to their shares of a 2-good tree can affect the outcome of the recovery operation.

Lemmas 3.1 and 3.2 together imply that there is essentially a unique state which will be recov-
ered in the reconstruction phase when the receiver R is honest. Thus, Protocol 3.1 is sound.

Completeness. As discussed earlier, the protocol is considered complete if when the dealer is
honest, the state that is recovered by an honest reconstructor is exactly the dealer’s input state.
The key property is that when the dealer D is honest, the effect of the verification phase on the
shares which never pass through cheaters’ hands is the identity.

Consider the case where the dealer’s input is a pure state |ψ〉. On one hand, we can see by
inspection that an honest dealer will always pass the protocol. Moreover, since the shares that only
go through honest players’ hands remain unchanged, it must be that if some state is reconstructed,
then that state is indeed |ψ〉, since the ideal reconstruction operator uses only those shares. Finally,
we know that since the dealer passed the protocol the overall tree must be 2-good in both bases,
and so some value will be reconstructed. Thus, on input a pure state |ψ〉, an honest reconstructor
will reconstruct |ψ〉. We have proved:

Lemma 3.3. If D and R are honest, and the dealer’s input is a pure state |ψ〉, then R will
reconstruct a state ρ with fidelity 1− 2−Ω(k) to the state |ψ〉.

Not surprisingly, this lemma also guarantees the privacy of the dealer’s input. By a strong form
of the no cloning theorem, any information the cheaters could obtain would cause some disturbance,
at least for a subset of the inputs. Thus, the protocol is in fact also private.

Simulatability. The claims above show that the protocol satisfies an intuitive notion of security.
We can prove security more formally by giving a simulator which converts any real-model adversary
into an ideal-model one. The idea is that the simulator will simulate the regular vqss protocol
either on input provided by a cheating dealer or on bogus data |0〉, and then extract and/or change
the shared state as needed.

Theorem 3.4. Protocol 3.1 is a statistically secure implementation of vqss (Protocol A.2).

The simulation is given in Section D.3.3. The key is showing that any entanglement between
data and errors can be produced by the cheaters “on their own”, i.e. in the ideal model with a
T T P.
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3.3 Additional Properties of Two-Level Sharing

Two-level sharings produced by the same dealer (using the protocol above) have some additional
properties, which will be useful for multi-party computation. First of all, notice that there is no
problem in tracking the sets B,B1, ..., Bn incrementally across various invocations of the protocol
for the same dealer, and so we assume below that these sets are the same for different sharings
from the same dealer.

1. Some operations can be applied transversally to a valid sharings. Applying the linear operation
(x, y) 7→ (x, y + bx) (denoted c-Xb) to all shares of two sharings effectively applies c-Xb to the
shared states. Similarly, applying the Fourier rotation transversally changes the sharing to the
dual code and applies a logical Fourier rotation. Finally, measuring all shares of a valid sharing
in the computational basis and applying classical decoding yields the same result as measuring
the shared state. Thus, players can measure without exchanging quantum information.

2. The dealer can use the protocol to additionally prove to all players that the system he is sharing
is the exactly the state |0〉: the ancillas he uses in this case will all be sharings of |0〉 (instead
of

∑
|a〉). The verification step is the same as before, except now players verify that the

reconstructed codeword at the top level interpolates to 0. Similarly, the dealer can prove that
he is sharing a state

∑
a |a〉. This will be useful for sharing ancillas in the mpqc protocol.

4 Impossibility of vqss when t ≥ n
4

Lemma 4.1. No vqss scheme exists for 4 players which tolerates one cheater.

Proof : Suppose such a scheme exists. Consider a run of the protocol in which all players behave
perfectly honestly until the end of the sharing phase, at which one (unknown) player introduces
an arbitrary error. However, an honest “receiver” Ruth, given access to the state of all players,
must still be able to recover the shared state. Thus, the joint state of all players constitutes a
four-component qecc correcting one error. However, no such code exists, not even a mixed-state
one, by the quantum Singleton bound (Appendix B.2). 2

The optimality of our vqss scheme is an immediate corollary, since any protocol tolerating n/4
cheaters could be used to construct a four-person protocol tolerating one cheater by having each
participant simulate n/4 players in the original protocol:

Theorem 4.2. No vqss scheme for n players exists which tolerates all coalitions of dn/4e cheaters.

Note that we have only proved the impossibility of perfect vqss protocols. However, both the
no cloning theorem and the equivalence of t-error-correction and 2t-erasure-correction hold when
exact equality is replaced by approximate correctness, and so in fact even statistical vqss schemes
are impossible when t ≥ n/4.

5 Secure Multi-party Quantum Computation

In this section we show how to use the vqss protocol of the previous section to construct a multi-
party quantum computing scheme. First, we give a modified vqss protocol. At the end of the
protocol, all players hold a single qupit. With high fidelity, either the dealer will be caught cheating
or the shares of all honest players will be consistent in both the computational and Fourier bases,
i.e. there is no set B of “apparent cheaters”. We then apply fault-tolerant techniques to achieve
secure distributed computation.
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5.1 Level 3 Sharing Protocol

Until now, we have used protocols for tolerating t < n/4 cheaters. However, we are now interested
in tolerating t < n/6 cheaters. Thus, we take n = 6t+ 1 for simplicity, and as before we set δ = 2t
(thus δ′ = 4t). We will work with the css code C given by V = V δ and W = W δ′ . Recall that this
is the css code for which there exist nearly-transversal fault-tolerant procedures (Section 1.3). Our
goal is to share a state so that at the end all shares of honest players lie in CC = V

(q)
C ∩ F⊗nW

(q)
C .

The new scheme is given in Protocol 5.1. The idea is that the previous vqss scheme allows
distributed computation of linear gates and Fourier transforms on states shared by the same dealer.
It also allows verifying that a given shared state is either |0〉 or

∑
|a〉. The players will use this

to perform a distributed computation of the encoding gate for the code C. Thus, the dealer will
share the secret system S, as well as δ states

∑
|a〉 and n − δ − 1 states |0〉. Players then apply

the (linear) encoding gate, and each player gets sent all shares of his component of the output. As
before, the main lemmas are soundness and completeness of the protocol:

Lemma 5.1 (Soundness). At the end of the sharing phase, the system has high fidelity to “either
the dealer is caught or the players’ shares S1, ..., Sn lie in CC”.

Lemma 5.2 (Completeness). When D is honest, on pure state input |ψ〉, the shared state will
have high fidelity to span {E|ψ〉}C (i.e. will differ from E|ψ〉 only on the cheaters’ shares).

Note the dealer can also prove that he has shared a |0〉 state (by showing that his input is |0〉).

5.2 Distributed Computation

Given the protocol of the previous section, and known fault-tolerant techniques, there is a natural
protocol for secure multi-party computation of a circuit: have all players distribute their inputs
via the top-level sharing (Protocol 5.1); apply the gates of U one-by-one, using the (essentially)
transversal implementation of the gates described in Section B.3; then have all players send their
share of each output to the appropriate receiver. See Protocol 5.2.

The only sticking point in the analysis is that the fault-tolerant procedures require some in-
teraction, namely measuring a shared state. All players measure their share and broadcast the
result, applying classical decoding to the resulting word. If the errors occurring in the measured
ancilla were somehow correlated or entangled with errors in the real data, one could imagine that
measuring and broadcasting them might introduce further entanglement. However, this will not be
a problem: on one hand, any errors will occur only in the cheaters shares, and so provide nothing
beyond what the cheaters could learn themselves; on the other hand, the honest players will discard
all the information from the broadcast except the decoded measurement result (each honest player
performs the decoding locally based on the broadcast values, so all honest players obtain the same
result). Again, the cheaters can do this themselves.

Lemma 5.3. Suppose that all inputs and ancillas are shared at the beginning via states in CC .
Then the result of applying the protocol for a given circuit U , and then sending all states to an
honest decoder R is the same as sending all states to R and having R apply U to the reconstructed
states.
Theorem 5.4. For any circuit U , Protocol 5.2 is a statistically secure real-world implementation
of multi-party quantum computation (Protocol A.1) as long as t < n/6.

Proof of this is by simulation, as before. The simulator runs the sharing protocol, extracts the
shared states and sends them to the T T P. The results returned by the T T P are subsequently
“swapped” back in, and the resulting share sent to the appropriate cheater. See Section D.4.
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6 Open Questions

Given our results, the most obvious question is whether or not mpqc is possible when n/6 ≤ t < n/4.
One approach to this problem is to find a fault-tolerant Toffoli procedure for the code Cδ for
n = 2δ+1, which tolerates t errors at any point in the computation (known procedures [27, 3] have
one point at which at most one error can be tolerated). Another natural direction of research is to
find a vqss protocol with zero error. For example, the techniques of [6] for the classical case do not
seem to apply to the quantum setting. Finally, one can ask what tasks are achievable when we allow
cheating players to force the abortion of the protocol (usually called an “optimistic protocol”). In
that setting vqss becomes largely irrelevant since there is no guarantee that the honest players can
reconstruct the secret without the cheaters help. Thus, the bound of n/4 no longer seems hard; in
fact, we conjecture that some improvement is possible, possibly even up to tolerating any minority
of cheating players.
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1. Each player i sends his share Si to R.
2. R outputs D(S1, ..., Sn) and discards any ancillas.

Protocol 5.2 (Multi-party Quantum Computation).

1. Input Phase:
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(b) If i is caught cheating, then some player who has not been caught cheating yet runs Top-Level Sharing
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A Definitions

This section describes a simple framework for proving the security of distributed quantum crypto-
graphic protocols. The defintions are based on the initial framework of Canetti [7], as well as on
discussions in the dissertation of van de Graaf [28]. We describe two models for protocols. The
first one–the “real” model—describes the environment we ultimately expect our protocols to run
in. The second model is an idealized model in which players can interact with an incorruptable
outside party. We will prove our “real-model” protocols secure by showing that they are equivalent
to a simple protocol for the ideal model which captures our notion of what security means for a
given task.

We provide no general composition theorems in this work. Instead, we simply prove the security
of our composed protocols directly.

A.1 “Real” Model for Protocols

For the protocols in this paper, we assume that every pair of players is connected by perfect (i.e.
authenticated, secret) quantum and classical channels. Moreover, we assume that there is a classical
authenticated broadcast channel to which all players have access. Because we will consider settings
where t < n

4 <
n
3 , we can also assume that players can perform classical multi-party computations

[6, 12]2.
The adversary is an arbitrary quantum algorithm (or family of circuits) A. We make no as-

sumptions about the computational power of the adversary; he is limited only by the number of
players t that he can corrupt.

The initial configuration for the protocol is the joint state ρ of n + 2 quantum systems: an
input system Ii for each player in the protocol (i = 1, ..., n), as well as the adversary’s auxiliary
input system Iaux and an outside reference system Iref (which will remain untouched throughout
the protocol). Note that the input can be an arbitrary quantum state, possibly entangling all these
systems.

A run of a “real model” protocol begins with all players receiving their input system Ii and
the adversary receiving the state Iaux. The adversary then chooses a subset C of size at most
t of players to corrupt. From then on, the adversary has access to the state of the players in C
and controls what they send over the channels. The adversary may cause the cheaters’ systems to
interact arbitrarily. His only restriction is that he has no access to the state of the honest players,

2In fact, even the assumption of a broadcast channel is unnecessary but (since t < n
3
) but is made for simplicity.
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and cannot intercept their communication. The reference system Iref is untouched during this
process.

At the end of the protocol, all players produce an output (for honest players, this is the output
specified by the protocol). The system output by player i is denoted Oi. Moreover, the adversary
outputs an additional system Oaux. The output configuration for the run of the protocol is the joint
state of O1, ...,On, the adversary’s state Oaux and the reference system Iref . This state depends
on the adversary A and the initial configuration ρ, and is denoted Real(A, ρ). Note that this
configuration does not include any ancillary states or workspace used by honest players, only the
output specified by the protocol (i.e. all other parts of the honest players’ systems are “traced
out”).

A.2 “Ideal” Model For Protocols

The main difference of the ideal model from the real model is that there is a trusted third party
(denoted T T P) who helps the players in the execution of some protocol. The communications
model is the same as before, except that every player is connected to T T P via a perfect (i.e.
authentic, secret) quantum channel. There is no need to assume a broadcast channel since players
can simply give a classical value to T T P and ask that it be re-sent to all players.

As before, the initial configuration consists of n systems Ii containing the players’ inputs as
well as the two systems Iaux and Iref . The T T P gets no input. The protocol proceeds as in the
real model, except that players may interact with the T T P, who may not be corrupted by the
adversary. Finally, the output configuration is the same as before. The final state of the T T P
is not included in the output configuration. The output configuration for adversary A and initial
configuration ρ is denoted Ideal(A, ρ).

A.3 Protocol Equivalence

Suppose we have a protocol π which is supposed to implement some ideal functionality f , that is
f is an ideal model protocol and π is an attempt to implement it in the real model.

Informally, we say π implements f if the input/output behavior of π cannot be distinguished
from that of f . Formally:

Definition 2 (Perfect security). A protocol π is considered perfectly secure if for all adversaries
A1, there exists an adversary A2, running in time polynomial in that of A1, such that for all input
configurations ρ (possibly mixed or entangled), we have:

Real(A1, ρ) = Ideal(A2, ρ)

The protocols we design do not in fact achieve this strong notion of security. Instead, they take
a security parameter k as input. All players receive the classical string 1k as part of their input
(in the ideal model, so does the T T P). Moreover, the inputs may additionally depend on k (in
particular, we allow the adversary’s auxiliary input to depend on k). Since honest players should
be polynomial-time quantum circuits, the protocol will run in time polynomial in k, although the
adversary need not.

Definition 3 (Statistical security). A protocol π is considered statistically secure if for all
adversaries A1, there exists an adversary A2, running in time polynomial in that of A1, such that
for all sequences of input configurations {ρk} (possibly mixed or entangled), we have:

F
(
Real(1k,A1, ρk), Ideal(1k,A2, ρk)

)
≥ 1− 2−k,
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where F denotes the fidelity of two quantum density matrices.

Simulators. Our definition asks us to construct a new adversary A2 for every real adversary A1.
To do so, we will follow the standard cryptographic paradigm of constructing a simulator S who
uses A1 as a black box. Thus we can write A2 = SA1 . We can view S as an “interface” between the
real-world adversary and the ideal-model protocol [28]: S exchanges messages with A1, but must
also control the corrupted parties in the ideal-model protocol.

When A2 is constructed in this way, then the definition above can be restated: Suppose that
at the end of the protocol the adversary gains access to the outputs of the honest players. There
should not exist a real-world adversary A1 that can tell the difference between (a) a run of the
real protocol and (b) a run of the ideal-model protocol with S as an interface. We will construct
simulators for our protocols in Section D.3.3 and Section 5.2.

A.4 Static versus Adaptive Adversaries

In this paper, we consider only static adversaries, who choose the parties they will corrupt before the
beginning of the protocol and remain with that choice. On the other hand, an adaptive adversary
chooses which players to corrupt as the protocol is progressing. The set of corrupted parties is still
monotone—we do not allow a player to become honest again once he has been corrupted3—but
the adversary can base his decision on the message he is seeing in the protocol. For example, if the
players were to elect a small group of participants to make some decision amongst themselves, an
adaptive adversary could wait until the selection had been made and then corrupt the members of
that small group. Proving protocols secure against adaptive adversaries has been problematic even
in the classical setting [10, 15].

Choosing to handle only static adversaries simplifies the definitions and proofs considerably,
and offers no real loss of intuition. Nonetheless, we believe that the protocols we describe here are
secure against adaptive adversaries, assuming that the environment in which the protocol is running
somehow records which parties were corrupted and in what order (it is unclear what adaptivity
even means without such an assumption). In Section D.1, we discuss briefly how some of the proofs
could be extended to handle adaptivity.

A.5 Multi-party Quantum Computation

We define multi-party quantum computation by giving an ideal-model protocol for that task. Simply
put, all players hand their inputs to the trusted party, who runs the desired circuit and hands back
the outputs. Note that the only kind of cheating which is possible is that cheaters may choose
their own input. In particular, cheaters cannot force the abortion of the protocol. One possible
extension of this work is to consider protocols where cheaters may not compromise the correctness
of the computation but might force the protocol to stop before completion.

A.6 Verifiable Quantum Secret Sharing

Providing a definition verifiable quantum secret sharing is trickier than it is for multi-party com-
puting. The idea of the ideal protocol is simple. In the sharing phase, the dealer gives his secret
system to the trusted party. In the reconstruction phase, the T T P sends the secret system to the
reconstructor R.

3An adversary who corrupts players dynamically is called a mobile adversary, and protocols for handling such
adversaries are called pro-active.
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However, a problem arises because vqss is a two phase task, and the formalism we established
in the preceding sections only describes one-phase protocols, which have a simpler input/output
behaviour. For example, if all we required of vqss is that the reconstructor’s output be the same
as the dealer’s input, we could simply have D send his secret system to R without violating the
definition—a clear indication that such a definition would be insufficient. For the purposes of this
paper, we adopt a simple modification of the definition of the preceding sections which allows us to
describe vqss: instead of giving all inputs to the parties at the beginning of the run of the protocol,
some inputs are not given to the parties until the beginning of the reconstruction phase.

Specifically, two of the inputs are delayed. First, players learn the identity of the reconstructor
R only at the beginning of the reconstruction phase (note that this doesn’t stop the adversary from
knowing R since the definition requires security for all adversaries and input sequences). Second,
the adversary also receives a second auxiliary input I(2)

aux at the beginning of the reconstruction.
This allows us to capture any side information gained by the adversary during interactions which
occur between the end of the sharing phase and the beginning of the reconstruction phase.

The ideal-model protocol we obtain is given in Protocol A.2. The definition of security we
will use for this two-phase model is essentially the same as for the one-phase model. An input
configuration ρ consists of player identities D and R, a secret system S and the two auxiliary
inputs Iaux and I(2)

aux. We require that for all adversaries A1, there exists an adversary A2 such
that for all sequences of input configurations {ρk}k∈N, the fidelity of the output of the real protocol
to the output of the ideal protocol is exponentially close to 1.

B Further Preliminaries

B.1 Sharing Quantum Secrets and (No) Cloning

One of the fundamental theorems of quantum information theory is that an arbitrary quantum
state cannot be cloned. In fact, one can say more: if there is a process with one input and two
outputs, then if one of the outputs is a copy of the input, the other output must be independent of
the input. We’re not sure to whom this result is attributable but it has certainly become folklore.

Protocol A.1 (Multi-party Quantum Computation—Ideal Model).

Pre: All players agree on a quantum circuit U with n inputs and n outputs(for simplicity, assume that the
ith input and output correspond to player i).

Input: Each player gets an input system Si (of known dimension, say p).

1. (Input Sharing) For each i, player i sends Si to T T P. If T T P does not receive anything, then he
broadcasts “Player i is cheating” to all players. Otherwise, T T P broadcasts “Player i is OK.”

2. (Computation) T T P evaluates the circuit U on the inputs Si. For all i who cheated, T T P creates Si

in a known state (say |0〉).
3. (Output)

(a) T T P sends ith output to player i.
(b) Player i outputs the system he receives from T T P.
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Protocol A.2 (Verifiable Quantum Secret Sharing—Ideal Model).

• Sharing Phase:

1. Inputs: All players get D’s identity. Dealer D gets a qupit S (i.e. a p-dimensional system, where p
is a publicly agreed-upon integer).
(Adversary also gets his auxiliary input Iaux.)

2. D sends the p-dimensional system S to T T P. If D fails to send S, then T T P broadcasts “D is
cheating” to all players. Otherwise, T T P broadcasts “OK”.

• Reconstruction Phase:

1. Inputs: All players get R’s identity.
(Adversary also gets his second auxiliary input I(2)

aux.)
2. If D did not cheat in the sharing phase, T T P sends S to the receiver R.

Fact B.1 (No cloning, folklore). Let U : Hm⊗HW −→ HA⊗HB (4) be a unitary transformation
such that for all |ψ〉 ∈ Hm:

U(|ψ〉 ⊗ |W 〉) = |ψ〉 ⊗ |ϕ|ψ〉〉

where |W 〉 is some fixed auxiliary state (work bits). Then |ϕ|ψ〉〉 does not depend on |ψ〉.

An important consequence of this was first pointed out by Cleve, Gottesman and Lo [14]: any
quantum code is a scheme for sharing quantum secrets: A distance d code can correct d−1 erasures,
and so access to any n− d+ 1 (uncorrupted) positions suffice to recover the encoded state; on the
other hand, that means that any set of d− 1 positions must reveal no information at all about the
encoded state. That is, the density matrix of any d− 1 positions is completely independent of the
data.

Note that this phenomenon has no simple classical analogue: any position of a classical error-
correcting code will leak information about the data unless the encoding process is randomized.
This additional step is not necessary in the quantum setting since the randomness is “built in.”

B.2 The Quantum Singleton Bound

As in classical coding theory, there is an easy relation btween erasure- and error-correction for
quantum codes:

Fact B.2 (t-error correction and 2t-erasure correction). Suppose that a quantum code with
n components, and dimension at least 2 can correct errors on any t positions. Then in fact C can
correct erasures on any 2t positions.

Note that this holds regardless of the dimensions of the individual components of the code. It
also holds when the code in question is a “mixed state” code, i.e. some pure states are nonetheless
encoded as mixed states by the encoding procedure.

Now a corollary of the no cloning theorem of the previous section is that no quantum code
with n components can withstand the erasure of dn/2e components. If it could, then one could

4Note that in fact the mW system and the AB system are one and the same. The two labelings simply reflect a
different partitioning of the system.
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always separate the codeword into two halves and reconstruct a copy of the encoded data with
each half, yielding a clone of the encoded data. By the equivalence of t-error-correction and 2t-
erasure-correction, this means that there is no quantum code that can correct errors on any dn/4e
positions. This is a special case of the quantum Singleton bound, also called the Knill-Laflamme
bound.

B.3 Tools from Fault-Tolerant Quantum Computing

In our proposed solution, we also use techniques developed for fault-tolerant quantum computing
(ftqc). The challenge of ftqc is to tolerate non-malicious faults occurring within a single com-
puter. One assumes that at every stage in the computation, every qubit has some probability p of
suffering a random error, i.e. of becoming completely scrambled (this corresponds to the classical
notion of random bit flips occurring during a computation). Moreover, errors are assumed to occur
independently of each other and of the data in the computation. See Section 1.1 for a discussion of
the difference between ftqc and mpqc. In this section, we review a number of useful results from
ftqc. These come from [27, 3, 21].

Universal Sets of Gates The usual technique behind fault-tolerant computing (both classical
and quantum) is to design procedures for applying one of a small number of gates to logical (i.e.
encoded) values, without having to actually decode the values and then re-encode them. That is,
given the encoding state |ψ〉, we want a simple procedure which returns the encoding of state U |ψ〉.

Thus, it is useful to find a small set of gates which is universal, i.e which suffices to implement
any desired function5. One can then simply design fault-tolerant procedures for implementing these
gates, and compose them to obtain a fault-tolerant procedure for any particular function.

For qupits of prime dimension p, [3] showed that the following set of gates is universal:

1. Generalized NOT (a.k.a. X): ∀ c ∈ F , |a〉 7−→ |a+ c〉,

2. Generalized CNOT (Controlled Addition): |a, b〉 7−→ |a, a+ b〉,

3. Swap |a〉|b〉 7−→ |b〉|a〉,

4. Multiplication gate: 0 6= c ∈ F : |a〉 7−→ |ac〉,

5. Phase Shift (a.k.a. Z): ∀c ∈ F |a〉 7−→ wca|a〉,

6. Generalized Hadamard (Fourier Transform): |a〉 7−→ 1√
p

∑
b∈F w

rab|b〉,∀0 < r < p.

7. Generalized Toffoli: |a〉|b〉|c〉 7−→ |a〉|b〉|c+ ab〉,

Beyond these, in order to simulate arbitrary quantum circuits one should also be able to in-
troduce qupits in some known state (say |0〉), as well as to discard qupits. Note that these are
sufficient for simulating measurements, since one can simply apply a controlled-not with a state |0〉
as the target and then discard that target.

Transversal Operations Fortunately, several of these gates can be applied transversally, that
is using only “qupit-wise” operations. These are important since they correspond to operations
performed locally by the players in a multi-party protocol, if each player shares has one component
of an encoded state.

5In fact, it is impossible to find a finite set which can implement any unitary operation perfectly. However, one
can approximate any unitary operation on a constant number of qubits to accuracy ε using O(poly log 1

ε
) gates from

a “universal” set, i.e. one which generates a group which is dense in the space of all unitary operators.

19



For example: in any css code, the linear gate |a, b〉 7−→ |a, a+cb〉 can be applied to two encoded
qupits by applying the same gate “qupit-wise” to the two codewords. For any css code, the gates
1 through 5 from the set above can be implemented transversally [27, 3].

Remark 1. Another operation which can almost be performed transversally is measurement in the
computational basis. The encoding of a classical state |s〉 in a css code is the equal superposition
of all the words in some particular coset of V0 = W⊥ within V . Thus, measuring all the qupits of
the encoding of |s〉 will always yield a codeword from that coset. Similarly, measuring all the qupits
of the encoding of

∑
s αs|s〉 will yield a word from the coset corresponding to s with probability

|αs|2. This operation is not quite transversal since after the qupit-wise measurement, the classical
information must be gathered together in order to extract the measurement result. Nonetheless,
the quantum part of the processing is transversal, and this will be good enough for our purposes.

Transversal Fourier Transforms and the Dual Code In general, applying the Fourier trans-
form transversally to a codeword from a css code C does not yield a word from that code. Instead,
one obtains a word from the “dual code” C̃. If C is defined by the classical codes V and W , then C̃
is the css code obtained using the codes W and V . A natural choice of encoding for the dual code
yields the following relation:

F⊗nEC |ψ〉 = ECδ′ (F|ψ〉)

where EC and ECδ′ are the encoding operators for C and Cδ′ respectively.
For polynomial codes of degree δ, recall that there is related degree δ′ = n− δ − 1. As one can

observe from the dual codes W δ′ ,W δ′
0 , the dual code C̃δ is a “mangled” version of the code Cδ′ . In

fact, by scaling each Fourier transform with the (non-zero) factor di, one obtains:

FdECδ |ψ〉 = ECδ′ (F|ψ〉)

Note that when n is exactly 2δ + 1, the codes Cδ and Cδ′ are the same, and so the Fourier
transform on encoded data can in fact be applied transversally: FdECδ |ψ〉 = ECδ (F|ψ〉).

Transversal Reductions to Degree Reduction for δ < n/3 As mentioned above, the only
operations that cannot, in general, be performed transversally on Reed-Solomon codes are the
Fourier transform and Toffoli gate. However, when δ is less than n/3, [3] reduces both of them to
the problem of degree reduction, which involves mapping the encoding of |ψ〉 under the dual code
Cδ′ to the encoding of |ψ〉 under the original code Cδ.

For the Fourier transform, the reduction is obvious: we showed above that by performing
(scaled) Fourier transforms transversally to ECδ

|ψ〉, one obtains ECδ′ (F|ψ〉). Thus, performing
degree reduction would produce ECδ

(F|ψ〉), which is the desired result.
For the Toffoli gate, note that δ < n/3 implies that δ′ = n− δ−1 is at least 2δ. The underlying

idea is simple: suppose we have three polynomials p, q, r of degree such that p(0) = a, q(0) = b and
r(0) = c. Take the polynomial r′ given by r′(i) = r(i) + p(i)q(i) for all i = 1, ..., n. First, note that
if p, q have degree at most δ and r has degree at most δ′ ≥ 2δ, then deg(r′) < δ′. Moreover, if p, q, r
are random polynomials subject to the above constraints, then p, q, r′ will also form a random triple
of polynomials, which interpolate to the values a, b, c+ ab.

To map this to a procedure for implementing the Toffoli gate, suppose that we have the encodings
of |a〉 and |b〉 using the code Cδ. Suppose that we also have the encoding of |c〉 using the related
code Cδ′ . By applying the Toffoli gate qupit-wise, we obtain the encoding of c+ab under the related
code:

ECδ |a〉ECδ |b〉ECδ′ |c〉 7−→ ECδ |a〉ECδ |b〉ECδ′ |c+ ab〉
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Thus, to implement the Toffoli gate fault-tolerantly it is sufficient to have an implementation
of the two maps ECδ |ψ〉 7−→ ECδ′ |ψ〉 and ECδ′ |ψ〉 7−→ ECδ |ψ〉. Note that this is equivalent to having
a procedure for just one map ECδ′ |φ〉 7−→ ECδ |φ〉, since one can simply apply the Fourier transform
first and its inverse afterwards to reverse the direction.

Implementing Degree Reduction The circuit we use for degree reduction is due to Gottesman
and Bennett [20] (and is related to [21]), and is much more efficient than the original one proposed
in [3]. Begin with the state to be transformed (call this system H1) and an ancilla in state ECδ |0〉
(called H2).

1. Apply controlled addition from H1 to H2.

2. Apply the scaled Fourier transform transversally to H1.

3. Measure H1 in the computational basis, obtaining b.

4. Apply a conditional phase shift with scaling factor −b to H2.

The effect of this on the basis state EC |a〉 (for a ∈ Zp) is:

EC |a〉EC̃ |0〉 7→ EC |a〉EC̃ |a〉 7→
∑
b

ωabEC |b〉EC̃ |a〉

7→ ωabEC̃ |a〉(with b known) 7→ EC̃ |a〉

This procedure in fact works for arbitrary linear combinations (intuitively, this is because the
measurement result b yields no information about a).

Note that this entire procedure can be performed transversally except for the measurement step.
However, as noted above (Remark 1), measurement requires only classical communication between
the components (namely, each component is measured and the classical decoding algorithm for the
code V δ′ is applied to the result).

C More on Neighborhoods of Quantum Codes

Note that the notions NB(C) and STB(C) make sense for any subspace C of H. On the one hand,
we always have NB(C) ⊆ STB(C) since local operations do not affect the density matrix of other
components. If we restrict our attention to pure states, thenNB(C) and STB(C) are in fact identical.
Specifically, define:

Npure
B (C) =

{
|ψ〉 ∈ H : ∃|φ〉 ∈ C,∃U unitary, acting only on HB

such that |ψ〉 = (IA ⊗ U)|φ〉
}

ST pureB (C) =
{
|ψ〉 ∈ H : ∃|φ〉 ∈ C,TrB(|ψ〉〈ψ|) = TrB(|φ〉〈φ|)

}
Proposition C.1. For any subspace C: Npure

B (C) = ST pureB (C)

Proof : We must only prove Npure
B (C) ⊇ ST pureB (C), since the other inclusion is trivial. Take

any state |ψ〉 ∈ ST pureB (C). Let |φ〉 be the corresponding state in C and let ρ = TrB(|ψ〉〈ψ|) =
TrB(|φ〉〈φ|). We can write ρ =

∑
i pi|ai〉〈ai| with pi > 0,

∑
i pi = 1, and the vectors |ai〉 orthonor-

mal.
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By the Schmidt decomposition, we know that we can write

|ψ〉 =
∑
i

√
pi|ai〉 ⊗ |bi〉

with the vectors |bi〉 orthonormal. Similarly, there is some other set of orthonormal vectors |b′i〉
such that we can write

|φ〉 =
∑
i

√
pi|ai〉 ⊗ |b′i〉

Now consider any unitary matrix U on HB which maps |b′i〉 to |bi〉. Such a matrix always exists
since the sets of vectors are orthonormal. Then we have |ψ〉 = (IA ⊗ UB)|φ〉 as desired. 2

This equality does not hold once we relax our definition and consider mixed states. Namely:

Proposition C.2. There exist subspaces C for which NB(C)  STB(C).

Proof : Many quantum codes have this property, for an appropriate partition of the code word into
parts A and B. Take C to be a quantum RS code with n = 2δ + 1. Encode 1/2 of an EPR pair.
Now get ρ by appending the other half of the EPR pair to the end of the codeword (say there is
space left over in position n, for example). On one hand, ρ is clearly in STB as long as B includes
position n. However, it is not in NB(C) since the only state “in” C which has the same trace as ρ
on A is a mixed state. 2

For the case of css codes, we can additionally define CB = V
(q)
B ∩ F⊗nW

(q)
B . Again, there is a

trivial inclusion: STB(C) ⊆ CB. This inclusion also holds when we restrict our attention to pure
states. However, the inclusion is strict, even for pure states:

Proposition C.3. There exist subspaces C for which STB(C)  CB.

Proof : Again, consider the quantum RS code with n = 2δ + 1. Take A = {1, ..., δ + 1} and
B = {n− δ + 1, ..., n}. Both VB and WB cover the entire space Znp , so in fact CB is the entire
Hilbert space. However, any state ρ in STB(C) must yield ρ′ ⊗ I{2,...,δ+1} when the interpolation
operator is applied to the positions of ρ in A. Thus, not all states, pure or mixed, are in STB(C).
2

It should be noted that neither NB(C) nor STB(C) are subspaces. Moreover, for css codes, CB
is the subspace generated by the vectors in NB(C).

C.1 Proofs from Section 2

Recall that given a state ρ, testing if ρ is in V
(q)
B is easily described: For each element of (a basis

of) the dual space V ⊥
B , we measure the corresponding linear combination of the qupits of ρ in the

computational basis, and check that it is 0. Recall that the vectors of the dual space V (q)
B have

support only on A (since arbitrary changes to positions in B should not affect whether or not a
word is in VB), and so one need not have access to the components in A in order to perform the
measurement. Similarly, to check if ρ is in F⊗nW

(q)
B , we rotate into the Fourier basis and measure

the linear combinations corresponding to a basis of W⊥
B .

Note that since V ⊥
B ⊆ V ⊥ and W⊥

B ⊆W⊥, and since measuring the V -syndrome in the compu-
tational basis commutes with measuring the W -syndrome in the Fourier basis, we know that the
following four measurements commute:
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1. VB-syndrome in the computational basis

2. V -syndrome in the computational basis

3. WB-syndrome in the Fourier basis

4. W -syndrome in the Fourier basis

Proof (of Lemma 2.1): As was just mentioned, to check if ρ is in CB, we measure the VB-syndrome
in the computational basis and the WB-syndrome in the Fourier basis. But by the remarks above,
the distribution on this outcome measurement will not change if we first measure the V and W
syndromes, i.e. if we first make a measurement which projects ρ into one of the subspaces EjC (i.e.
ρ maps to ρ′ = PjρPj with probability Tr (Pjρ), where Pj is the projector for the space EjC).

The new state ρ′ lies completely in one of the spaces Ej . However, EjC is either contained in
CB (if there is an operator equivalent to Ej which acts only on B) or orthogonal to CB (if no such
operator exists).

Thus, for ρ to have fidelity 1 with CB, it must be that Tr (Pjρ) = 0 for all Ej which act on more
than B. Hence ρ is a mixture of states |ψi〉 each of which is a linear combination of elements of the
spaces {EjC}, where Ej acts only on B. 2

Proof (of Proposition 2.2): Consider a particular basis state EjE|a〉. The decoding operator D
will produce the state |a〉|j〉, since errors of weight at most t can be identified uniquely. The
ideal operator RI will extract the encoded state |a〉. Without loss of generality, the ideal recovery
operator will replace |a〉 with |0〉, the final output |a〉 ⊗ EjE|0〉.

In both cases, the output can be written as |a〉 tensored with some ancilla whose state depends
only on the syndrome j (and which identifies j uniquely). Once that state is traced out, the outputs
of both operators will be identical. Another way to see this is that the ideal operator can simulate
the real operator: one can go from the output of the ideal operator to that of the real operator by
applying a transformation which only affects the ancilla. For a state ρ expressed as in Lemma 2.1,
the final outcome will be ρ′ =

∑
ij pi|cij |2|φij〉〈φij |. 2

D Proofs of Security (from Sections 3 and 5)

D.1 Subspace Projection

Before proving the secuiry of the vqss protocol, we consider a protocol for a simpler task that
we call subspace projection, which illustrates the key ideas in the vqss protocol. Namely, we first
modify a classical protocol of [12] so that the dealer does not have to remember the random bits he
used in sharing his secret. Second, we apply this protocol both in the computational and Fourier
bases. We use a “quantum-to-classical” argument to show that this garantees that the joint state
shared by the players satisfies condition (3) from the discussion on neighborhoods, i.e. that the
joint state passes certain local checks in both bases. For concreteness, let W be the RS code V δ,
where n = 4t+ 1 and δ = 2t.

Let H0, . . . ,Hk be separate quantum systems consisting of n qupits each, and let H = H0 ⊗
· · · ⊗Hk. Say the dealer prepares H in some state and gives the ith qupit of each subsystem Hj to
player i. He wants to prove to the group that in fact the fidelity of H0 to the space W (q) is close to
1 6, without revealing any information beyond that to the other players. What we achieve in this

6It would be desirable to be able to prove that the fidelity is in fact exactly 1. This remains an interesting open
question. This corresponds to the classical difference between zero-error and small-error protocols.
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first step is not quite that strong: at the end of the protocol, there will be a publicly known set B
of “apparent cheaters” such that the shares of the honest players not in B will all agree with W in
the computational basis, i.e. will have high fidelity to the space W (q)

B∪C .

Protocol D.1 (Subspace projection).

1. Sharing The dealer D prepares H0 as any state (pure or mixed) in W (q) and distributes it to the
players. He then prepares H1, . . . ,Hk in the equal superposition of

∑
w∈W |w〉, and distributes those to

the players also.

2. Verification Using classical vss, every player commits to k field elements picked uniformly at random.
These commitments are then opened and their sum is taken to obtain k field elements b1, . . . , bk (these
are completely unpredictable to the dealer, even if he is cheating).

3. For ` = 1, . . . , k, players apply the linear operation (x, y) 7→ (x, y + b`x) to the subsystems H0 and H`.
All players then measure their shares of H1, . . . ,Hk in the computational basis and broadcast the result.

4. Each of the broadcasted words w1, . . . ,wk is decoded using classical error-correction of the code W : for
each w`, we obtain either that it was at distance more than t from a word in W or we obtain an error
vector with support B` ∈ {1, ..., n} of size less than t on which w` differs from a word in W .

The dealer is rejected if any of the broadcasted words was at distance more than t or if B =
⋃k

`=1B` has
size greater than t. Otherwise, the dealer is accepted.

Lemma D.1. Let B̃ = B ∪ C. At the end of the protocol above, the fidelity of the system to the
statement “either H0 is in (WB̃)(q) or the dealer has been rejected” is exponentially close to 1 in k.

To prove this, we give a “quantum to classical” reduction, as in [22].

Lemma D.2. Consider the subspace projection protocol above. Then the behavior of the protocol
is the same in each of the two following experiments:

Experiment 1 at the end of the whole protocol, all honest players measure their shares of H0 in
the computational basis, or

Experiment 2 at the end of the sharing phase, all honest players measure their shares of H0 and
H1 in the computational basis, and then run the verification phase.

Moreover, the distribution on the results of the measurement of H0 is the same in both cases.

Proof : The actions of the honest players on their shares in the original protocol can be seen as
the composition of k super-operators, each of which is comprised of two operations: a controlled-
addition gate from H0 to H` followed by measurement of H`. Denote the controlled-addition gate
by (c-Xb)`, where b is the scaling factor for the controlled-addition. Second, denote measurement
of H` in the computational basis by M`.

Consider what happens in the `th verification step in Experiment 1. Because the controlled-
addition gate is a permutation of the basis states of the computational basis, measuring the systems
in that basis before the gate is applied will not change the outcome of measurements made after the
gate is applied. Thus we can write M`M0(c-Xb`)` = M`M0(c-Xb`)`M`M0, and the distribution
of the measurements made after the gate is applied will not change.

But now notice that measuring the system M0 afterwards is completely redundant. Because
the controlled-addition gate does not change the first component of any basis vectors, measuring
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M0 after the application of the gate will yield the same result as measuring it before. Hence, we can
write M`M0(c-Xb`)` = M`(c-Xb`)`M`M0. However, this is exactly the sequence of operations
performed by honest players in Experiment 2: first they measure both systems, then apply the
addition gate and measure the target.

Thus, the measurement outcomes will be the same in both experiments will be the same.
Moreover, the cheaters can see no difference between the two experiments, and so their behavior
will not change. 2

In other words, we can imagine two situations. In the first one, just after the sharing phase
of the protocol, an outsider comes in and secretly measures honest players’ shares of H0, . . . ,Hk

in the computational basis. In the second, the outsider performs this secret measurement after
the protocol is completed. The statement is that exactly when he makes his measurement will not
change the behavior of the protocol.

But recall that our original statement of the correctness of the protocol is that, at the end of
the protocol, either the dealer has been caught or the shares of players are in W

(q)

B̃
. Since fidelity

to W (q)

B̃
is the same as the probability that measuring in the computational basis gives a word in

WB̃ (i.e. agrees with W when truncated to positions neither in B nor C), Lemma D.2 allows us to
restrict ourselves to thinking about situations in which the shares of the systems H0, . . . ,Hk sent
to honest players were in fact classical states.

Now consider the classical protocol corresponding to the subspace projection protocol: the
dealer distributes k + 1 codewords w0, . . . ,wk. At each step, a random multiple of w0 is added to
one of the other codewords and the result is broadcast. At the end, players compute B as above
and decide whether or not to reject the dealer. (This is the blob protocol of [12], modified so as
not to require the involvement of the dealer beyond the sharing stage).

Fact D.3 (Soundness of Modified Blobs from [12]). At the end of classical protocol, let A be
the set of honest players not in B. The event “either the players in A have consistent shares or the
dealer was caught” occurs with probability at least 1− 2n−k, even when the adversary is adaptive.

D.2 Dual Subspace Projection

Consider a “dual” version of the subspace projection protocol above. It is the same as the original
protocol, with three changes:

1. Before proceeding to the verification phase all players apply the Fourier transform to all their
shares.

2. At the end all players apply the inverse Fourier transform to their shares of H0.

3. (When D is honest) D prepares the ancillas H1, ...,Hk as a superposition over all words from
the dual code W⊥ (i.e.

∑
w∈W⊥ |w〉).

Now the state
∑

w∈W⊥ |w〉 is the image of
∑

w∈W |w〉 under transversal Fourier transforms.
Thus, we can use the same analysis as in the previous section. At the end of this “dual” protocol,
the fidelity of the system to the statement “either the dealer is caught or H0 is in the space
F⊗nW

(q)

B̃
” is high. But recall that conjugating by Fourier rotations maps linear gates to linear

gates (see Section 1.3). In particular, controlled addition gates simply have their direction reversed,
i.e. source and target are swapped. Thus, the modifications to the original subspace projection
protocol can be restated as follows:
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1. the controlled addition gates are performed from H` to H0;

2. the measurements are made in the rotated (Fourier) basis;

3. (When D is honest) D prepares the ancillas H1, ...,Hk as a superposition over all words from
the dual code W⊥ (i.e.

∑
w∈W⊥ |w〉).

D.3 Proofs for vqss

To prove the secuirty of the vqss protocol, first note that classically, 2-good trees guarantee a
unique shared secret, and that secret can be reconstructed efficiently using decoding.

Fact D.4. Suppose that a sharing is 2-good. If all players broadcast their shares, then the same
value a will always be reconstructed for the root of the tree, regardless of the cheaters’ values.

Note that the protocols (and proofs) of [12] used this fact implicitly, but did not use the
recovery algorithm as stated here. Instead, they required players to remember what shares they
had distributed to other players.

D.3.1 Classical Vss

We give a modified version of the vss protocol of [12]. The main difference is that the original
protocol required a dealer to remember the values of the shares sent in the first phase, and cooperate
later on during the verification phase. However, this does not generalize well to the quantum world,
and so we compensate by exploiting the efficient decodability of Reed-Solomon codes. The protocol
is given in Protocol D.2. Note that as before, the error-correcting code we use is V δ, where n = 4t+1
and δ = 2t.

Remark 2. In the description of the protocol (and subsequent protocols), we assume for simplicity
that there is a source of public randomness. This is not a problem in our setting as good random
bits can be generated using classical vss protocols, and it simplifies the analysis of the protocols.
However, it is not necessary (one can have players take turns broadcasting challenges, as in [12, 26]).

The correctness and soundness of this protocol are stated here. They follow from the properties
of 2-good trees and from cut-and-choose analysis.

Fact D.5. If D is honest, he will pass the protocol with probability 1, and the shares v0,i(j) will
form a 2-good tree which interpolates to the original input a.

Fact D.6. With probability 1− 2Ω(k), either the shares v0,i(j) form a 2-good tree or the dealer is
caught during the protocol.

D.3.2 Proof of Soundness

Proof (of Lemma 3.1): The proof of this lemma follows the ideas outlined in the proof of soundness
for the subspace projection protocol. First, a quantum-to-classical reduction allows us to use the
soundness of the modified classical protocol from Section D.3.1: this gives us that at the end of
Step 1, either D would get caught or all the systems S`,0 would yield 2-goodV trees if measured
in the computational basis. After applying the Fourier transformations in Step 2, all the systems
will be 2-goodV in the Fourier basis. Subsequent application of linear gates will not change that,
since they correspond to linear gates in the Fourier basis. Finally, applying a second quantum-
to-classical reduction shows that at the end of Step 3, the system S0,0 will be 2-goodW in the
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Protocol D.2 (Modified Classical vss from [12]). The dealer D has input a ∈ F .

• Sharing:

1. D picks a random codeword v0 ∈ V such that v0 interpolates to a. D also picks k random codewords
v1, ...,vk ∈ V (i.e. k sharings of random values).

2. D gives player i the ith component of each of these vectors: v`(i) for ` = 0, ..., k.
3. Player i shares each of these values with random vectors v0,i, ...,vk,i which interpolate to

v0(i), ...,vk(i), respectively. He sends the values v`,i(j) to player j (for ` = 0, ..., k).

• Verification: Get k previously unknown public random values b1, ..., bk. For ` = 1, ..., k:

1. For all i, player j broadcasts v`,i(j) + b`v0,i(j).
(i.e. player j broadcasts his share of v`,i + b`v0,i).

2. For each i ∈ {1, ..., n}, players update the set Bi based on the broadcast values, as in the subspace
projection protocol. If there are too many errors, then they add i to the global set B.

3. Furthermore, players do the same at the branch level: for all i 6∈ B, there is an interpolated value ai

which corresponds to the decoded codeword from the previous step. Players also decode the codeword
(a1, ..., an) and update B accordingly (i.e. by adding any positions where errors occur to B).

• The dealer is disqualified if B is ever larger than t.

• If the dealer passes, the values v0,i(j) are taken to be the shares of the dealer’s secret.

• Reconstruction:

1. Player j broadcasts his shares v0,i(j) for all i.
2. Let T be the tree defined by these values. All players output the value given by

Recover(T, V,B,B1, ..., Bn).

computational basis. Since it is also 2-goodV in the Fourier basis, the final rotation in Step 4 will
leave it 2-goodV in the computational basis and 2-goodW in the Fourier basis. 2

Now, let E denote the operator used to encode a state using C. Let J be a set of indices j
such that the error operators {Ej}j∈J run over all the syndromes of the code C (i.e. J contains
one representative from each equivalence class of error operators, and the spaces {EjC}j∈J are
orthogonal and span Cpn

). Note that |J | = pn−1 since the code is 1-dimensional.

Proposition D.7 (Characterizing 2-good trees). The space of trees of qupits which are
2-goodV in the computational basis and 2-goodW in the Fourier basis is spanned by the states{
E

(1)
j1
· · ·E(n)

jn
E⊗nEj0E|a〉

}
where (i) Ej0 (or something in its equivalence class) acts only on B and

(ii) for each i 6∈ B, Eji (or something in its equivalence class) acts only on Bi ∪C. (Recall that for
i corresponding to honest players not in B, we have Bi ⊆ C and so in those cases the condition is
that Eji act only on C.)

Note that in the case of the basis vectors of the previous proposition, there is no entanglement
between the data and the errors, since the data is a pure state (in fact, we can also think of the
errors as being described by a pure state |j0, ..., jn〉). However, one can get arbitrary superpositions
of these basis vectors and so in general there will be not only correlation, but indeed entanglement
between the data and the errors.
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To prove Proposition D.7, we will need:

Fact D.8. The following set is an orthonormal basis of pn
2
-dimensional Hilbert space Cpn2

(where
p is the size of F ): {

E
(1)
j1
· · ·E(n)

jn
E⊗nEj0E|a〉 : j0, ..., jn ∈ J, a ∈ F

}
where the superscript (i) on Eji indicates that it acts on the ith block of n qupits.

Proof : This is just writing the space in terms of cosets of a concatenated code.2

Proof (of Proposition D.7): Given any state of n2 qupits, we can write it as a mixture of linear
combinations of basis vectors from the basis in the previous discussion (Fact D.8). Now for any
one of these basis states given by j0, ..., jn and a, it will pass a test of 2-good-ness in both bases
if and only if the conditions of the proposition are satisfied: j0 should be the syndrome of some
error which acts only on B and each ji should be equivalent to an error on Bi ∩C. Thus, any state
which passes the test with probability 1 can in fact be written only in terms of those basis vectors
which pass the test. 2

Proof (of Lemma 3.2): Both the decoding and recovery operators produce an output qubit as
well as an ancilla. We show that there is a unitary map which can be applied to the ancilla of the
interpolation operator so that the joint state of the output and the ancilla are the same as when
the decoding operator is applied. For simplicity, we assume that the interpolation circuit extracts
the encoded state and replaces it with an encoding of |0〉, i.e. it maps E|a〉 7−→ |a〉 ⊗ E|0〉.

It is sufficient to prove this for some basis of the space of 2-good trees; the rest follows by linear-
ity. The natural basis is given by Proposition D.7. Consider a basis vector E(1)

j1
· · ·E(n)

jn
E⊗nEj0E|a〉

which satisfies the conditions of Proposition D.7.

Effect of ideal recovery Let I be the set of n− 2t indices not in either B or C, and suppose for
simplicity that I = {1, ..., n− 2t} (the same argument works regardless of the particular values
in I). Applying the ideal recovery operator to the branches in I, we obtain n− 2t encodings of
|0〉 with errors j1, ..., jn−2t, and an encoding of |a〉 whose first n − 2t positions are untouched
and whose last 2t positions are themselves encoded and possibly arbitrarily corrupted. This can
be written:

(Ej1E|0〉)⊗ · · · ⊗
(
Ejn−2tE|0〉

)
⊗ E

(n−2t+1)
jn−2t+1

· · ·E(n)
jn

(
I⊗(n−2t)E⊗2t

)
Ej0E|a〉

where I is the identity. Applying ideal recovery again to the first n−2t positions of the encoding
of |a〉, we extract |a〉 and leave a corrupted encoding of |0〉:

|a〉 ⊗
(

(Ej1E|0〉)⊗ · · · ⊗
(
Ejn−2tE|0〉

)
⊗ E

(n−2t+1)
jn−2t+1

· · ·E(n)
jn

(
I⊗(n−2t)E⊗2t

)
Ej0E|0〉

)
Effect of real reconstruction Now consider the effect of the decoding operator, which must be

applied without knowledge of the positions which are corrupted. The first operation to be
performed is to attempt to decode each branch i 6∈ B. This means copying the syndrome ji for
each branch into an ancilla state |ji〉. Whenever Eji acts on a set B̃i such that |B̃i ∪ Bi| ≤ t,
then Eji can be identified and corrected. When Eji acts on too many positions, then it cannot
be identified uniquely and the decoding procedure will simply leave that branch untouched.
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Let I be the set of indices not in B which had few enough errors to correct. At the end of this
first phase the input basis state will become:( ∏

i6∈I
E

(i)
ji

)
E⊗nEj0E|a〉

 ⊗
⊗
i∈I

|ji〉

We know that all the honest players not in B are in I (by assumption of 2-good-ness) and so I
contains at least n−2t positions. Decoding each of these circuits and applying the interpolation
operator to the resulting qupits, we can extract the state |a〉 and replace it with |0〉 in the
top-level sharing. This yields

|a〉 ⊗

( ∏
i6∈I

E
(i)
ji

)
E⊗nEj0E|0〉

 ⊗
⊗
i∈I

|ji〉

In both cases, the output can be written as |a〉 tensored with some ancilla whose state depends
only on the syndromes j0, j1, ..., jn. Once that state is traced out, the outputs of both operators will
be identical. Another way to see this is that the ideal operator can simulate the real operator: one
can go from the output of the ideal operator to that of the real operator by applying a transformation
only to the ancilla. 2

D.3.3 Simulatability

The previous two sections prove that the protocol satisfies an intuitive definition of security, namely
that it is complete, sound and private. In this section, we sketch a proof that the protocol satisfies a
more formal notion: it is equivalent to a simple ideal model protocol. The equivalence is statistical
(Definition 3), that is the outputs of the real and ideal protocols may not be identical, but have
very high fidelity to one another.

An Ideal Model Protocol Now, it is fairly simple to give an ideal protocol for vqss: in the
sharing phase, the dealer D sends his system S to T T P. If D does not cooperate or sends an invalid
message, T T P broadcasts “D is a cheater” to all players. In the reconstruction phase, T T P sends
the system S to the designated receiver R. This protocol is in fact given in Protocol A.2 (p. 18).

Intuitively, this is the most we could ask from a secret sharing protocol: that it faithfully
simulates a lock box into which the dealer drops the system he wishes to share.

In order to show equivalence of our protocol to the ideal protocol, we will give a transformation
that takes an adversary A1 for our protocol and turns it into an adversary A2 for the ideal protocol.
To give the transformation, we exhibit a simulator S which acts as an intermediary between A1

and the ideal protocol, making A1 believe that it is in fact interacting with the real protocol.
We give a sketch of the simulation procedure in Algorithm 1. Why does this simulation work?

• When D is cheating:

– When R is cheating, the simulation is trivially faithful, since there is no difference between
the simulation and the real protocol: S runs the normal sharing protocol, then runs the
interpolation circuit, sending the result to TTP. In the reconstruction phase, S gets the same
state back from TTP, and runs the interpolation circuit backwards. Thus, the two executions
of the interpolation circuit cancel out.
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Algorithm 1. Simulation for vqss (Protocol 3.1)

Sharing/Verification phase

• If D is a cheater, S must extract some system to send to T T P:

1. Run Sharing and Verification phases of Protocol 3.1, simulating honest players. If D is caught
cheating, send “I am cheating” from D to T T P.

2. Choose n−2t honest players not in B and apply ideal interpolation circuit to extract a system S.
3. Send S to T T P.

• If D is honest, S does not need to send anything to T T P, but must still simulate the sharing protocol.

1. Simulate an execution of the Sharing and Verification phases of Protocol 3.1, using |0〉 as the
input for the simulated dealer D′.

2. Choose n − 2t honest players (they will automatically not be in B since they are honest) and
apply the ideal interpolation circuit to extract the state |0〉.

3. The honest D will send a system S to T T P.

Note: Regardless of whether D is honest or not, at the end of the sharing phase of the simulation, the
joint state of the players’ shares is a tree that is (essentially) 2-good in both bases, and to which the
ideal interpolation operator has been applied. Let I be the set of n− 2t honest players (not in B or C)
who were used for interpolation.

Reconstruction phase

• If R is a cheater, S receives the system S from T T P. He runs the interpolation circuit backwards on
the positions in I, with S in the position of the secret. He sends the resulting shares to R.

• If R is honest, the cheaters send their corrupted shares to S. These are discarded by S.

In both cases, S outputs the final state of A1 as the adversary’s final state.

– When R is honest, the faithfulness of the simulation comes from Lemma 3.2: in the real
protocol, R outputs the result of the regular decoding operator. In the simulation, R gets the
output of the ideal interpolation. Since the shared state has high fidelity to a 2-good tree
(by Lemma 3.1), the outputs will be essentially identical in both settings (i.e. they will have
high fidelity).

• When D is honest:

– To see that the simulation works when D is honest, we must show that two versions of the
protocol are equivalent: in the first version, S gets S after having simulated the sharing phase
with A1, and so he “swaps” it in by first running the ideal interpolation circuit, exchanging
the system S for the shared state |0〉, and then running the interpolation circuit backwards.
In the second version, he gets the system S from T T P before running the simulated sharing
phase, and so he simply runs it with S as the input for the simulated dealer D′.
To see that the two versions are equivalent, view the “swap” as an atomic operation, i.e.
view the application of the interpolation, switching out the |0〉 state and replacing it with S,
and reapplying the interpolation backwards, as a single step. Now consider moving the swap
backwards through the steps of the protocol. Because each of the verification steps acts as
the identity on the shares of the honest players, we can move the swap backwards through
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all verifications (Note: the verification acts as the identity only when the dealer is honest,
but that is indeed the case here). Finally, one can see by inspection that sharing a |0〉 and
then swapping is the same as sharing the system S. Thus the two versions of the protocol
are equivalent, and so the simulation is faithful when D is honest.

We have essentially proved:

Theorem D.9. Protocol 3.1 is a statistically secure implementation of verifiable quantum secret
sharing (Protocol A.2).

D.4 Simulation for mpqc

Proof (of Theorem 5.4): The proof of this is by simulation, as before. The key observation is
that when the simulator S is controlling the honest players, the adversary cannot tell the difference
between the regular protocol and the following ideal-model simulation:

1. S runs the input phase as in the protocol, using |0〉 as the inputs for honest players. In this
phase, if any dealer is caught cheating, S sends “I am cheating” to the T T P on behalf of that
player.

2. S “swaps” the cheaters’ inputs with bogus data |0〉, and sends the data to the T T P. That is,
he applies the interpolation circuit to honest players’ shares to get the various input systems Si
(for i ∈ C), and then runs the interpolation circuit backwards, with the state |0〉 replacing the
original data.

3. S now runs the computation protocol with the adversary on the bogus data. (Because no
information is revealed on the data, the adversary cannot tell this from the real protocol.)

4. S receives the true computation results destined to cheating players from T T P.

5. S “swaps” these back into the appropriate sharings, and sends all shares of the ith wire to player
i (again, he does this only for i ∈ C).

The proof that this simulation succeeds follows straightforwardly from the security of the top-level
sharing protocol and the previous discussion on fault-tolerant procedures. 2
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