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Abstract

Authentication is a well-studied area of classical cryptography: a senderA and a receiverB sharing a
classical private key want to exchange a message with the guarantee that the message has not been modi-
fied (or replaced) by a dishonest party with control of the communication line. In this paper we study the
authentication ofquantummessages. While classically, authentication and encryption are independent
tasks, we show that no scheme to authenticate quantum messages can be secure unless it also encrypts the
messages. AssumingA andB have access to an insecure quantum channel and share a private, classical
random key, we provide a scheme that both enablesA to encrypt and authenticate (with unconditional
security) anm qubit message by encoding it intom + s qubits, where the error probability decreases
exponentially in the security parameters. The scheme requires a private key of size2m+O(s), which is
asymptotically optimal. We also discuss the problem of digitally signing quantum messages, and show
that it is impossible, even with only computational security.
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1 Introduction

For a long time, the expression “quantum cryptography” primarily referred to the quantum key distribution
protocols [4, 3, 12]. However, these words now refer to a larger set of problems involving both classical and
quantum data. Quantum key distribution and many other quantum protocols attempt to provide improved
security for tasks involving classical information. An emerging division of quantum cryptography instead
attempts to create secure protocols for tasks involvingquantuminformation. One standard cryptographic
task is theauthenticationof messages:A transmits some information toB over an insecure channel, and
they wish to be sure that it has not been tampered withen route. When the message is classical, andA and
B share a random private key, this problem can be solved by, for instance, the Wegman-Carter scheme [11].
In this paper, we discuss the analogous question for quantum messages.

If we assumeA andB share a privatequantumkey in the form ofm EPR pairs, as well as some private
classical key, there is a straightforward solution to this problem:A simply uses quantum teleportation [5]
to send her message to Bob, authenticating the2m classical bits transmitted in the teleportation protocol.
If A andB initially share only a classical key, however, the task is more difficult. One approach is to first
distribute EPR pairs (which might get corrupted in transit), and then use entanglement purification [6] to
establish clean pairs for teleportation. This can be improved: we do not need a full-scale entanglement
purification protocol, which produces good EPR pairs even if the channel is noisy; instead we only need
something we call a “purity testing protocol,” which checks that EPR pairs are correct, but does not attempt
to repair them in case of error. The security of an authentication protocol involving purity testing followed
by teleportation can be proven with methods originally used by Lo and Chau [14] to show the security of
key distribution.

Unfortunately, any such protocol will have to be interactive, sinceA must first send some qubits to
B, and then wait for confirmation of receipt before completing the transmission. This is unsuitable for
situations in which a message is stored and must be checked for authenticity at a later time. Also, this
interactive protocol achieves something stronger than what is required of a quantum authentication scheme:
at the end of the purity testing based scheme,bothAlice and Bob know that the transmission was successful,
whereas for authentication, we only require that Bob knows.

In this paper, we present a non-interactive protocol for quantum message authentication. Just as Shor
and Preskill [18] were able to take the Lo and Chau key distribution protocol, which required a quantum
computer, and modify it to prove the security of the BB84 key distribution protocol, which does not, we
modify the above interactive authentication protocol to produce a non-interactive one. We present a very
efficient purity testing protocol and prove that the interactive and therefore the non-interactive authentication
protocols are secure.

Why should we prefer a scheme with classical keys to a scheme with entangled quantum keys? The task
of authenticating quantum data is only useful in a scenario where quantum information can be reliably stored,
manipulated, and transmitted over communication lines, so it would not be unreasonable to assume quantum
keys. However, many manipulations are easier with classical keys. Certainly, the technology for storing and
manipulating them is already available, but there are additional advantages. Consider, for example, public
key cryptography; it is possible to sign and encrypt classical key bits with public key systems, but signing a
general quantum state is impossible (shown in section 6). Thus, quantum keys would be unsuitable for an
asymmetric quantum authentication scheme such as the one we describe in section 5.1.

One feature of our final authentication protocol is that it completely encrypts the quantum message
being sent. We show that this is a necessary feature ofanyquantum message authentication code, in striking
contrast to the situation for classical information, where common authentication schemes leave the message
completely intelligible. It therefore follows that any authentication protocol for anm-qubit message must
use nearly2m bits of classical key, enough to encrypt the message. The protocol we present comes close
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to this bound, requiring2m+O(s) bits of classical key, where the security of the scheme is exponential in
the parameters. Another surprising consequence is that it is impossible to create digital signature schemes
for quantum messages: any protocol which allows one recipient to read a message also allows him or her to
modify it without risk of detection, and therefore all potential recipients of an authenticated message must
be trustworthy. This conclusion holds true even if we require only computationally secure digital signatures.

Section 2 contains the necessary background material and previous work. In section 3 we formally
define quantum message authentication. In section 4 we define purity testing codes, and show how they
can be used to check EPR pairs. We also give an algebraic construction of a code with essentially optimal
size. Section 5 presents our main authentication scheme and a sketch of the proof of security (the full proof
is given in appendix D). In section 6 we show that any quantum authentication scheme must also be a
good encryption scheme, and hence requires at least2m key bits; section 7 discusses the extension to the
impossibility of quantum signatures.

2 Preliminaries

2.1 Classical Authentication

In the classical setting, an authentication scheme is defined by a pair of functionsA : K ×M → C and
B : K×C →M ×{valid, invalid} such that for any messageµ ∈M and keyk ∈ K we havecompleteness

Bk(Ak(µ)) = 〈µ, valid〉

and that for any opponent algorithmO, we havesoundness

Prob
{
Bk(O(Ak(µ))) ∈ {〈µ, valid〉} ∪ {〈µ′, invalid〉|µ′ ∈M}

}
≥ 1− 2−Ω(t)

wheret = lg #C − lg #M is the security parameter creating the tradeoff between the expansion of the
messages and the security level. Note that we only consider information-theoretically secure schemes, not
schemes that are based on computational assumptions.

Wegman and Carter [11] introduced several constructions for such schemes; their most efficient uses
keys of size only4(t + lg lgm) lgm and achieves security1 − 2−t+2. This compares rather well to the
known lower bound oft + lgm − lg t for such a result [11]. The same work also introduced a technique
to re-use an authentication function several times by using one-time-pad encryption on the tag, so that an
opponent cannot learnanythingabout the particular key being used byA andB. Thus, at a marginal cost
of only t secret key bits per authentication, the confidentiality of the authentication functionh is guaranteed
and thus may be re-used (a polynomial number of times).

2.2 Quantum Stabilizer Codes

For the remainder of this paper, we assume the reader is familiar with the basic notions and notation of
quantum computing. These can be found in textbooks such as [15].

A quantum error-correcting code (QECC) is a way of encoding quantum data (saym qubits) inton
qubits (m < n) such that the encoded data is protected from errors of small weight: the code is said to
correctt errors if any operator which affects less thant qubits of the encoding can be corrected without
disturbing the encoded state. Usually the goal in the construction of codes is to maximize this minimum
distance for particularm,n. However, in this paper, we use the theory developed for those purposes to
construct families of codes with a different type of property. For now, we review the necessary theory on a
very general class of codes known asstabilizer codes.
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Our construction is based on a class of QECCs forq-dimensional registers, withq = pn a prime power
(later we will specialize to the case wherep = 2, so each register consists ofn qubits). A basis for the set
of all operators on thep-dimensional Hilbert space is the “shift/phase” error basis onp-dimensional Hilbert
space, defined viaEab = XaZb, where〈i|X|j〉 = δi,j+1, 〈i|Z|j〉 = ξiδi,j , for ξ = exp(2πi/p) a primitive
pth root of unity, are the standard-basis matrix elements of the “shift by one” and “ramp the phase by one”
operators. (Here, indices are inZp.) This basis has a simple multiplication rule:

EabEa′b′ = ξa
′bEa+a′,b+b′ . (1)

Thus,{ξcEab} is a group containing a basis for the whole operator space for one register. If we haven reg-
isters, we can simply use the tensor productE of n copies of this operator group; each element corresponds
to a 2n-dimensional vector, and the vectorsx = (a|b), y = (a′|b′) come from commuting operators iff
their symplectic inner product is 0 inZp:

ExEy = EyEx ⇐⇒ B(x, y) = a′ · b− a · b′ = 0. (2)

A stabilizer codeis a QECC given by an Abelian subgroupS of E, which does not contain any multiples of
the identity other thanI itself. S can be described by the set of2n-dimensional vectorsx such thatEx ∈ S.
This will be a subspace ofZ2n

p . Moreover, it will betotally isotropic, i.e. B(x, y) = 0 for all x, y in the
subspace.

Note that one can also viewB(·, ·) as a symplectic form overGF (p2n), by choosing a set of generators
forGF (p2n) as a vector space overZp. By judicious choice of the generators, one can actually makeB(·, ·)
correspond to any symplectic form overGF (p2n), so we might as well choose a convenient one. We use

B(x, y) = Tr
[
xyp

n − yxp
n]
, (3)

where Tr(z) =
∑2n−1

i=0 zp
i

is the standard trace function, which mapsGF (p2n) ontoGF (p). Thus, we will
construct subsetsQ of GF (p2n) such thatB(x, y) = 0 for all x, y ∈ Q.

Undetectable errors We can classify errors which lie inE into three categories: The errors given by
elements ofQ are not truly errors—they leave the codewords unchanged. Errors which fail to commute
with some element ofQ move codewords into a subspace orthogonal to the code, so can be detected by the
QECC. The remaining errors, those which commute with all elements inS but are not themselves inS, are
the undetectable errors of the code. Thus, ifQ⊥ is the space of vectorsy for whichB(x, y) = 0 for all
x ∈ Q, the set of undetectable errors is justQ⊥ −Q.

Syndromes Note that specifying the subgroupS by a setQ of elements ofGF (p2n) isn’t quite enough:
operators differing by a phaseξc correspond to the same field element, but yield different QECC’s in the
Hilbert space. Given ans-dimensional totally isotropic subspace ofZ2n

p , therefore, there are many possible
choices of phases for the groupS (ps to be precise), which produceps different QECCs. However, all these
possible choices of phase give codes with identical error correction properties. Additionally, the subspaces
are all orthogonal and of the same dimensionpn−s; in fact, they span the Hilbert space. These codes are
known ascosetsof the codeS, defined as the standard choice with all phases equal to1.1 The choice
of phases is known as thesyndrome(because errors outsideS⊥ map the code into a different coset, and
the syndrome therefore gives information about which error occurred). Measuring the syndrome projects a
quantum state into one of these codes.

1Actually, the “standard” coset also depends on the selection of a basis of generators forS.
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2.3 Purification and purity testing

QECC’s may be used for a task known asentanglement purification(first defined in [6]). In this setting,A
andB share some Bell states (say|Φ+〉 = |00〉+ |11〉) which have been corrupted by transmission through
a noisy quantum channel. They want a protocol which processes these imperfect EPR pairs and produces
a smaller number of higher-quality pairs. We assume thatA andB have access to an authenticated, public
classical channel. At the end of the protocol, they either accept or reject based on any inconsistencies
they have observed. As long asA andB have a noticeable probability of accepting, then conditioned on
accepting, the state they share should have fidelity almost 1 to the pure state|Φ+〉⊗m. Moreover, small
amounts of noise in their initial shared state should not cause failure of the protocol.

Stabilizer codes can be particularly useful for purification because of the following observation: for any
stabilizer codeQ, if we measure the syndrome of one half of a set of Bell states|Φ+〉⊗n and obtain the
resulty, then the result is the state|Φ+〉⊗m, with each of its two halves encoded in the coset with syndrome
y. (Moreover, in this case the distribution ony is uniform.) If the original state is erroneous,A andB will
likely find different syndromes, which will differ by the syndrome associated with the actual error.

Most purification protocols based on stabilizer codes require efficient error correction; that is, we must
be able to efficiently deduce the identity of the error from the syndrome. However, one can imagine a weaker
task in which Alice and Bob only want totest their EPR pairs for purity, i.e. they want a guarantee that if
their test passes with noticeable probability, then their shared state will be close to|Φ+〉⊗m. In that case, we
can use the code for error detection, not correction, and it is only necessary to be able to encode and decode
efficiently from the spaceQ.

2.4 Encryption of Quantum Messages

A useful ingredient for much recent work in quantum cryptography is the concept of quantum teleportation,
put forward by Bennett et al [5]. AfterA andB have shared a singlet state,A can later secretly send a single
qubit in an arbitrary quantum stateρ toB by measuring her half of the singlet state together with her stateρ
in the Bell basis to get two classical bitsb0, b1. As a result,B’s half of the singlet state will become one of
four possibilitiesρ′ := σb0z σ

b1
x ρσ

b1
x σ

b0
z . If A sendsb0, b1, thenB can easily recoverρ.

Now without the bitsb0, b1, the stateρ′ reveals no information aboutρ. Thus, one can turn this into an
encryption scheme which uses only a classical key: afterA andB have secretly shared two classical bits
b0, b1, A can later secretly send a single qubit in an arbitrary quantum stateρ to B by sending him a qubit
in stateρ′ as above. This is called a quantum one-time pad (QOTP). This scheme is optimal [1, 8]: any
quantum encryption (with a classical key) must use 2 bits of key for every transmitted qubit.

3 Quantum Authentication

At an intuitive level, a quantum authentication scheme is a keyed system which allowsA to send a stateρ
to B with a guarantee: ifB accepts the received state as “good”, the fidelity of that state toρ is almost 1.
Moreover, if the adversary makes no changes,B should always accept, and the fidelity should be exactly 1.

Of course, this informal definition is impossible to attain. The adversary might always replaceA’s
transmitted message with a completely mixed state. There would nonetheless be a small probability thatB
would accept, but even when he did accept the fidelity of the received state toA’s initial state would be very
low.

The problem here is that we are conditioning onB’s acceptance of the received state; this causes trouble
if the adversary’s a priori chances of cheating are high. A more reasonable definition would require a tradeoff
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betweenB’s chances of accepting, and the expected fidelity of the received system toA’s initial state given
his acceptance: asB’s chance of accepting increases, so should the expected fidelity.

It turns out that there is no reason to use both the language of probability and that of fidelity here:
for classical tests, fidelity and probability of acceptance coincide. With this in mind we first define what
constitutes a quantum authentication scheme, and then give a definition of security:

Definition 1 A quantum authentication scheme(QAS) is a pair of polynomial time quantum algorithmsA
andB together with a set ofclassicalkeysK such that:

• A takes as input anm-qubit message systemM and a keyk ∈ K and outputs a transmitted systemT
ofm+ t qubits.

• B takes as input the (possibly altered) transmitted systemT ′ and a classical keyk ∈ K and out-
puts two systems: am-qubit message stateM , and a single qubitV which indicates acceptance or
rejection. The classical basis states ofV are called|ACC〉, |REJ〉 by convention.

For any fixed keyk, we denote the corresponding super-operators byAk andBk.

Note thatB may well have measured the qubitV to see whether or not the transmission was accepted or
rejected. Nonetheless, we think ofV as a qubit rather than a classical bit since it will allow us to describe
the joint state of the two systemsM,V with a density matrix.

There are two conditions which should be met by a quantum authentication protocol. On the one hand,
in the absence of intervention, the received state should be the same as the initial state andB should accept.

On the other hand, we want that when the adversary does intervene,B’s output systems have high fidelity
to the statement “eitherB rejects or his received state is the same as that sent byA”. One difficulty with this
is that it is not clear what is meant by “the same state” whenA’s input is a mixed state. It turns out that it is
sufficient to define security in terms of pure states; one can deduce an appropriate statement about fidelity
of mixed states (see Appendix A).

Given a pure state|ψ〉 ∈ HM , consider the following test on the joint systemM,V : output a 1 if the
first m qubits are in state|ψ〉 or if the last qubit is in state|REJ〉 (otherwise, output a 0). The projectors
corresponding to this measurement are

P
|ψ〉
1 = |ψ〉〈ψ| ⊗ IV + IM ⊗ |REJ〉〈REJ| − |ψ〉〈ψ| ⊗ |REJ〉〈REJ|

P
|ψ〉
0 = (IM − |ψ〉〈ψ|)⊗ (|ACC〉〈ACC|)

We want that for all possible input states|ψ〉 and for all possible interventions by the adversary, the expected

fidelity of B’s output to the space defined byP |ψ〉
1 is high. This is captured in the following definition of

security.

Definition 2 A QAS is secure with errorε for a state|ψ〉 if it satisfies:

Completeness:For all keysk ∈ K: Bk(Ak(|ψ〉〈ψ|)) = |ψ〉〈ψ| ⊗ |ACC〉〈ACC|

Soundness:For all super-operatorsO, letρBob be the state output byB when the adversary’s intervention2

is characterized byO, that is:

ρBob = Ek
[
Bk(O(Ak(|ψ〉〈ψ|)))

]
=

1
|K|

∑
k

Bk(O(Ak(|ψ〉〈ψ|)))

2We make no assumptions on the running time of the adversary.

5



where “ Ek” means the expectation whenk is chosen uniformly at random fromK. TheQAS has
soundness errorε for |ψ〉 if:

Tr
(
P
|ψ〉
1 ρBob

)
≥ 1− ε

A QAS is secure with errorε if it is secure with errorε for all states|ψ〉.

Note that our definition of completeness assumes that the channel connectingA to B is noiseless in
the absence of the adversary’s intervention. This is in fact not a significant problem, as we can simulate a
noiseless channel using standard quantum error correction.

Interactive protocols In the previous section, we dealt only with non-interactive quantum authentication
schemes, since that is both the most natural notion, and the one we achieve in this paper. However, there is
no reason to rule out interactive protocols in whichA andB at the end believe they have reliably exhanged a
quantum message. The definitions of completeness and soundness extend naturally to this setting: as before,
B’s final output is a pair of systemsM,V , where the state space ofV is spanned by|ACC〉, |REJ〉. In that
caseρBob isB’s density matrix at the end of the protocol, averaged over all possible choices of shared private

key and executions of the protocol. The soundness error isε, where Tr
(
P
|ψ〉
1 ρBob

)
≥ 1− ε.

4 Purity Testing Codes

An important tool in our proof is the notion of apurity testing code, which is a way forA andB to ensure
that they share (almost) perfect EPR pairs. We shall concentrate on purity testing codes based on stabilizer
QECCs.

Definition 3 A stabilizer purity testing code with errorε is a set of stabilizer codes{Qk}, for k ∈ K, such
that∀Ex ∈ E with x 6= 0, #{k|x ∈ Q⊥

k −Qk} ≤ ε(#K).

That is, for any errorx in the error group, ifk is chosen later at random, the probability that the codeQk
detectsx is at least1− ε.

Definition 4 A purity testing protocol with errorε is a superoperatorT which can be implemented with
local operations and classical communicaiton, and which maps2n qubits (half held byA and half held by
B) to 2m+ 1 qubits and satisfies the following two conditions:

Completeness:T (|Φ+〉⊗n) = |Φ+〉⊗m ⊗ |ACC〉

Soundness:LetP be the projection on the subspace spanned by|Φ+〉⊗m ⊗ |ACC〉 and |ψ〉 ⊗ |REJ〉 for all
|ψ〉. ThenT satisfies the soundness condition if for allρ,

Tr (PT (ρ)) ≥ 1− ε.

The obvious way of constructing a purity testing protocolT is to start with a purity testing code{Qk}.
When Alice and Bob are given the stateρ, Alice chooses a randomk ∈ K and tells it to Bob. They both
measure the syndrome ofQk and compare. If the syndromes are the same, they accept and perform the
decoding procedure forQk; otherwise they reject.

Proposition 1 If the purity testing code{Qk} has errorε, thenT is a purity testing protocol with errorε.

The proof appears in Appendix B.
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4.1 An Efficient Purity Testing Code

Now we will give an example of a particularly efficient purity testing code. We will use the stabilizer
techniques of section 2.2, restricting to the casen = rs. We will construct a set of codesQk each encoding
m = (r−1)s qubits inn qubits, and show that theQk form a purity testing code. Note that the construction
works just as well if instead of qubits, we use registers with dimension equal to any prime power.

We consider anormal rational curvein PG(2r − 1, 2s) (the projective geometry whose points are the
1-d subspaces of the2r-dimensional vector space overGF (2s)). (See, e.g., the excellent introductory text
[7].) Such a curve is given by:

Υ = {[1 : y : y2 : · · · : y2r−1], [0 : 0 : 0 : · · · : 1]}y∈GF (2s). (4)

Herey ranges overFps and the colon is used to separate the coordinates of a projective point, to indicate
that all that matters is their ratio. Thus, there areqs + 1 points on the normal rational curve.

Since each “point” of this curve is actually a one-dimensional subspace overGF (2s), it can also be
considered as ans-dimensional binary subspaceQk in a vector space of dimension2rs = 2n. We will show
thatQk is totally isotropic with respect to the symplectic inner productB introduced in section 2.2, which
means it corresponds to a quantum code encodingm = n− s qubits inn qubits.

Theorem 2 The set of codesQk form a stabilizer purity testing code with error

ε =
2r

2s + 1
. (5)

Each codeQk encodesm = (r − 1)s qubits inn = rs qubits.

Proof of this is in Appendix C.

5 Protocols

In this section we describe a secure non-interactive quantum authentication scheme (Protocol 5.2) which
satisfies the definition of section 3.

In order to prove our scheme secure, we begin with a purity testing protocol as per Section 4 (sum-
marized as Protocol 5.1). The security of this protocol follows from Prop. 1. We then perform several
transformations to the protocol that strictly preserve its security and goals but which remove the interaction,
replacing it with a shared private key. We thus obtain two less interactive intermediate protocols (Protocols
D.1 and D.2) and a final protocol (Protocol 5.2), which is completely non-interactive. The transformations
are similar in flavor to those of Shor and Preskill [18], who use the technique to obtain a simple proof of the
security of a completely different task, namely the BB84 [4] quantum key exchange scheme.

Following the notation of Section 4, letP be the projector onto the subspace described by “eitherB
has aborted or the joint state held byA andB is |Φ+〉⊗m ”. Let ρAB be the joint density matrix ofA and
B’s systems. Then Prop. 1 states that at the end of step 6, Tr(PρAB) is exponentially close to 1 inn. The
soundness of our first authentication protocol follows immediately:

Corollary 3 If A andB are connected by an authenticated classical channel, then Protocol 5.1 is a secure
interactivequantum authentication protocol, with soundness error exponentially small inn.

The proof is straightforward; we give it explicitly in Appendix D.
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Protocol 5.1 ( Purity Testing Based Protocol )

1: A andB agree on some stabilizer purity testing code{Qk}

2: A generates2n qubits in state|Φ+〉⊗n. A sends the first half of each|Φ+〉 state toB.

3: B announces that he has received the2n qubits.

4: A picks a randomk ∈ K, and announces it toB.

5: A andB measure the syndrome of the stabilizer codeQk. A announces her results toB who compares
them to his own results. If any error is detected,B aborts.

6: A andB decode theirn-qubit words according toQk. Each is left withm qubits, which together should be
nearly in state|Φ+〉⊗m.

7: A uses her half of|Φ+〉⊗m to teleport an arbitrarym-qubit stateρ toB.

Protocol 5.2 ( Non-interactive authentication )

1: Preprocessing:A andB agree on some stabilizer purity testing code{Qk} and some private and random
binary stringsk, x, andy.

2: A q-encryptsρ asτ using keyx. A encodesτ according toQk for the codeQk with syndromey to produce
σ. A sends the result toB.

3: B receives then qubits. Denote the received state byσ′. B measures the syndromey′ of the codeQk on his
qubits.B comparesy to y′, and aborts if any error is detected.B decodes hisn-qubit word according to
Qk, obtainingτ ′. B q-decryptsτ ′ usingx and obtainsρ′.

Theorem 4 When the purity testing code{Qk} has errorε, the protocol 5.2 is a secure quantum authenti-
cation scheme with key lengthO(n+ log2(#K)) and soundness errorε. In particular, for the purity testing
code described in Section 4.1, the authentication scheme has key length2m+s+log2(2s+1) ≤ 2n+1 and
soundness error2n/[s(2s + 1)], wherem is the length of the message in qubits,s is the security parameter,
andA sends a total ofn = m+ s qubits.

Proof: From Corollary 3 we have that Protocol 5.1 is a secure interactive authentication protocol. We show
that Protocol 5.2 is equivalent to Protocol 5.1, in the sense that any attack on Protocol 5.2 implies an equally
succesful attack on Protocol 5.1. To do so, we proceed by a series of reductions; the details appear in
Appendix D.

5.1 Public Key Quantum Authentication

Unlike its classical counterpart, quantum information can be authenticated in a public key setting but not in
a way that can be demonstrated to a judge. In section 6, we show the impossibility of a digital signature
scheme for quantum information; here, we instead introduce the notion of public key quantum authentica-
tion.

LetEb,Db beB’s public and private keyed algorithms to a PKC resistant to quantum computers’ attacks.
Let Sa, Va beA’s private and public keyed algorithms to a digital signature scheme resistant to quantum
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computers’ attacks. These may be either be protocols which are secure with respect to a computational
assumption [16] or with unconditional security [13]. To perform authentication,A picks secret and random
binary stringsk, x, andy, and uses them as keys to q-authenticateρ asρ′. A encrypts and signs the key
asσ := Sa(Eb(k|x|y)). A sends〈ρ′, σ〉 to B. To verify a state,B verifiesA’s signature onσ usingVa
and then discovers the keyk, x andy using his private decryption functionDb. B checks thatρ′ is a valid
q-authenticated message according to keyk, x, y, and recoversρ.

6 Good Authentication Implies Good Encryption

One notable feature of any protocol derived using Theorem 4 is that the information being authenticated
is also completely encrypted. For classical information, authentication and encryption can be considered
completely separately, but in this section we will show that quantum information is different. While quantum
states can be encrypted without any form of authentication, the converse is not true: any scheme which
guarantees authenticity must also encrypt the quantum state almost perfectly.

To show this, let us consider any fixed authentication scheme. Denote byρ|ψ〉 the density matrix trans-

mitted in this scheme when Alice’s input is|ψ〉. Let ρ(k)
|ψ〉 denote the density matrix for keyk.

Definition 5 An encryption scheme with errorε for quantum states hides information so that ifρ0 andρ1

are any two distinct encrypted states, then the trace distanceD(ρ0, ρ1) = 1
2Tr |ρ0 − ρ1| ≤ ε.

We claim that any goodQAS must necessarily also be a good encryption scheme. That is:

Theorem 5 (Main Lower Bound) A QAS with error ε is an encryption scheme with error at most4ε1/6.

Corollary 6 A QAS with error ε requires at least2m(1− poly(ε)) classical key bits.

We prove this corollary in Appendix E. For now, we concentrate on the Theorem 5.
The intuition behind the proof of this main theorem is that measurement disturbs quantum states, so if

the adversary can learn information about the state, she can change the state. More precisely, if the adversary
can distinguish between two states|0〉 and|1〉, she can change the state|0〉 + |1〉 to |0〉 − |1〉. An extreme
version of this situation is contained in the following proposition:

Proposition 7 Suppose that there are two states|0〉, |1〉 whose corresponding density matricesρ|0〉, ρ|1〉 are
perfectly distinguishable. Then the scheme is not anε-secureQAS for anyε < 1.

Proof: Sinceρ|0〉, ρ|1〉 can be distinguished, they must have orthogonal support, say on subspacesV0, V1. So

consider an adversary who applies a phaseshift of−1 conditioned on being inV1. Then for allk, ρ(k)
|0〉+|1〉

becomesρ(k)
|0〉−|1〉. Thus, Bob will decode the (orthogonal) state|0〉 − |1〉. 2

However, in general, the adversary cannot exactly distinguish two states, so we must allow some proba-
bility of failure. Note that it is sufficient in general to consider two encoded pure states, since any two mixed
states can be written as ensembles of pure states, and the mixed states are distinguishable only if some
pair of pure states are. Furthermore, we might as well let the two pure states be orthogonal, since if two
nonorthogonal states|ψ0〉 and|ψ1〉 are distinguishable, two basis states|0〉 and|1〉 for the space spanned by
|ψ0〉 and|ψ1〉 are at least as distinguishable.

Given the space limitations of this abtract, we outline the proof with a sequence of lemmas, whose proofs
are contained in Appendix E.
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We first consider the case when|0〉 and |1〉 can almostperfectly be distinguished. In that case, the
adversary can change|0〉 + |1〉 to |0〉 − |1〉 with high (but not perfect) fidelity (stated formally in Lemma
16). When|0〉 and|1〉 are more similar, we first magnify the difference between them by repeatedly encoding
the same state in multiple copies of the authentication scheme, then apply the above argument.

Lemma 8 Suppose that there are two states|0〉, |1〉 such thatD(ρ|0〉, ρ|1〉) ≥ 1− η. Then the scheme is not
ε-secure for|ψ〉 = |0〉+ |1〉 for anyε < 1− 2η.

When two states can be distinguished, but only just barely, the above lemma is not sufficient. Instead,
we must magnify the distinguishability of the states|0〉 and|1〉 by repeating them by considering the tensor
product of many copies of the same state. The probability of distinguishing then goes to 1 exponentially fast
in the number of copies:

Lemma 9 Letρ0, ρ1 be density matrices withD(ρ0, ρ1) = δ. ThenD(ρ⊗t0 , ρ⊗t1 ) ≥ 1− 2 exp(−tδ2/2).

We create these repeated states by encoding them in an iteratedQAS consisting oft copies of the original
QAS (with independent values of the key for each copy).

Lemma 10 Suppose we iterate the schemet times. Let|ψ〉 = 1√
2
(|000...0〉+ |111...1〉). If (A,B,K) is an

ε-secureQAS, then the iterated scheme is10t3ε-secure for the state|ψ〉.

Note that the proof of this lemma goes through the following crucial claim, which follows from a simple
hybrid argument.

Claim 11 (Product states) The iterated scheme istε-secure for any product state.

Putting the various lemmas together, we find that, given two states|0〉 and|1〉 which are slightly distin-
guishable by the adversary, soD(ρ0, ρ1) ≥ δ, then in the iterated scheme,|000...0〉 and|111...1〉 are more
distinguishable:D(ρ|000...0〉, ρ|111...1〉) ≥ 1 − η, whereη ≤ 2 exp(−tδ2/2). Since the iterated scheme is
10t3ε-secure for the state|ψ〉 = 1√

2
(|000...0〉+ |111...1〉), then by the first lemma,

10t3ε > 1− 2η ≥ 1− 4 exp(−tδ2/2)

Choosingt = 1/ 3
√

20ε, we getδ ≤ 4ε1/6.

7 Quantum Signatures

One consequence of the previous theorem is that digitally signing quantum messages is impossible. One
can imagine more than one way of defining this task, but any reasonable definition must allow a recipient—
who should not be able to alter signed messages—to learn something about the contents of the message.
However, this is precisely what is forbidden by the previous theorem: in an information-theoretic setting,
any adversary who can gain a non-trivial amount of information must be able to modify the authenticated
state with non-negligible success.

If we consider computationally secure schemes, a somewhat narrower definition of digitally signing
quantum states remains impossible to realize. If we assume a quantum digital signature protocol should
allow any recipient to efficiently extract the original message, then a simple argument shows that he can also
efficiently change it without being detected, contradicting the security of the scheme. Namely: Assume that
there is transformationU with a small circuit which extracts the original messageρ, leaving auxiliary state
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|ϕ〉 (which may not all be held by Bob). In order to preserve any entanglement betweenρ and a reference
system, the auxiliary state|ϕ〉 must be independent ofρ. Therefore, Bob can replaceρ with any other state
ρ′ and then performU † on ρ′ and his portion of|ϕ〉, producing a valid signature forρ′. This is an efficient
procedure: the circuit forU † is just the circuit forU executed backwards.

Note that we have actually shown a somewhat stronger result: it is not possible, even when the sender
is known to be honest, to authenticate a quantum message to a group of receivers (some of whom may be
dishonest). This presentation also makes some limitations of our proof clear. For instance, the proof does
not apply if the sender knows the identity of the quantum state he is signing.

8 Discussion and Conclusion

An interesting feature of our scheme: if the transmission quantum channel is not error free, we can modify
our scheme to take advantage of the error-correction capability of the quantum code. More precisely, ifB
rejects only when the number of observed errors is too large then error correction will fix natural noise or
tampering of small amplitude.

Moreover,QAS can be combined nicely with teleportation so that the original state may never be de-
stroyed by an opponent: IfA succesfully authenticates half of an EPR pair toB using the scheme with
classical keys, she may now teleport any stateρ to him in such a way that the opponent must jamA’s
broadcast of classical information to preventρ from reachingB. If at any time in the futureA can reliably
complete the teleportation withB, then he indeed receivedρ.

We have examined various aspects of the problem of authenticating quantum messages. We have shown
the security of a large class of private-key quantum authentication schemes, and presented a particular highly
efficient scheme from that class. One feature of the scheme is that it completely encrypts the message, and
we show that this is a necessary feature of any quantum message authentication code: if any observer can
learn a substantial amount of information about the authenticated state, that observer also has a good chance
of successfully changing the state without being detected. We have also studied authentication of quantum
states in a public key context, and shown that while authentication is possible with public keys, digitally
signing quantum states is never possible, even when only computational security is required.

Acknowledgments

We would like to thank Michael Ben-Or, Herbert Bernstein, Aart Blokhuis, Hoi Fung Chau, David DiVin-
cenzo, William Kantor, Manny Knill, Debbie Leung, Michele Mosca, Eric Rains, Louis Salvail, Rüdiger
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A Alternative Security Definition

The definition of security of an authentication scheme given in Section 3 appears at first sight to have a major
shortcoming: it does not tell what happens whenA’s input is a mixed state. Intuitively, this should not be
a problem, since one expects security to extend from pure states to mixed states more or less by linearity.
Indeed, this is the case, but it is not entirely clear what ismeantby security whenA’s input is a mixed state
ρ. One straightforward approach is to add a reference systemR, and to assume the joint system ofA and
R is always pure; then the requirement is that the final state ofB andR should high fidelity to the initial
state. We could also use the following informal definition, which we will show is implied by Definition 2:
as long asB’s probability of acceptance is significant, then when he accepts, the fidelity of the message state
he outputs toA’s original state should be almost 1.
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Proposition 12 Suppose that(A,B,K) is a ε-secureQAS. Let ρ be the density matrix ofA’s input state
and letρ′ be the density matrix output byB conditioned on accepting the transmission as valid. Then ifB’s
probability of accepting ispacc, the fidelity ofρ to ρ′ is bounded below. For anyρ and any adversary action

O, we have: F (ρ, ρ′) ≥
√

1− ε
pacc

.

In particular, ifε is negligible andpacc is non-negligible, then the fidelity ofB’s state toA’s input state
will be essentially 1.

To prove this, we first restate Proposition 12 more formally. LetρBob be the state ofA’s two output
systemsM,V whenA’s input isρ. Denote the projector onto the space of accepting states byΠ, that is
Π = IM ⊗ |1〉〈1|.

Using this notation,B’s probability of accepting ispacc = Tr(ΠρBob), and the density matrix of the joint
systemM,V conditioned on acceptance isρacc = ΠρBobΠ

Tr(ΠρBob)
= ΠρBobΠ

pacc
.

Now sinceρacc has been restricted to the cases whereB accepts, we can writeρacc = ρ′⊗ |1〉〈1|, where
ρ′ is the density matrix ofB’s message system conditioned on his acceptance of the transmission as valid.
From the definition of fidelity, we can see that

F (ρ, ρ′) = F (ρ⊗ |1〉〈1|, ρacc)

We can now restate the theorem:

Claim (Proposition 12): F (ρ⊗ |1〉〈1|, ρacc) ≥
√

1− ε

pacc
Proof (of Theorem 12):Write ρ =

∑
i pi|ψi〉〈ψi| for some orthonormal basis{|ψi〉}. For eachi, let ρi be

B’s output whenA uses input|ψi〉. We haveρBob =
∑

i piρi.
For eachi, letPi = |ψi〉〈ψi| ⊗ |1〉〈1| and letQi = (IM − |ψi〉〈ψi|)⊗ |1〉〈1| so thatPi +Qi = Π.
Now we can writeρ⊗ |1〉〈1| =

∑
i piPi, andρacc =

∑
i pi

ΠρiΠ
pacc

. By the concavity of fidelity (theorem
9.7 of [15]), we get

F (ρ⊗ |1〉〈1|, ρacc) = F

(∑
i

piPi,
∑
i

ΠρiΠ
pacc

)
≥
∑
i

piF

(
Pi,

ΠρiΠ
pacc

)
(6)

The formula for fidelity for one-dimensional projectors is simple: for a projectorP and any density matrix
σ, we haveF (P, σ) =

√
Tr(Pσ). Thus expression (6) simplifies to

∑
i

pi

√
Tr

(
Pi

ΠρiΠ
pacc

)
Using the fact thatPaPiPa = Pi, we can further simplify this:

∑
pi

√
Tr(Piρi)
pacc

Since
√
· is concave, we can apply Jensen’s inequality:

F (ρ⊗ IV , ρacc) ≥

√∑
i piTr(Piρi)
pacc

(7)

Now the acceptance probabilitypacc = Tr(ΠρBob) can be written as
∑

i piTr(Πρi). Using the fact that
Π = Pi +Qi we get thatpacc = (

∑
i piTr (Piρi)) + (

∑
i piTr (Qiρi)).
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But by the definition ofε-security, we know that for eachi, we have Tr(Qiρi) ≤ ε, and sopacc ≤
(
∑

i piTr (Piρi)) + ε, and so we get(
∑

i piTr (Piρi)) ≥ pacc − ε. Applying this observations to expression
(7), we get :

F (ρ⊗ IV , ρacc) ≥
√
pacc − ε

pacc
=
√

1− ε

pacc

2

B Proof of Proposition 1

Proposition 1 states that a stabilizer purity testing code can always be used to produce a purity testing
protocol with the same errorε.
Proof: If A andB are givenn EPR pairs, this procedure will always accept, and the output will always be
|Φ+〉⊗m. Thus,T satisfies the completeness condition.

Suppose for the moment that the input state is(Ex ⊗ I)|Φ+〉⊗n, for Ex ∈ E, x 6= 0. Then whenk is
chosen at random, there is only probabilityε thatx ∈ Q⊥

k −Qk. If x /∈ Q⊥
k , thenA andB will find different

error syndromes, and therefore reject the state. Ifx ∈ Q⊥
k , thenA andB will accept the state, but ifx ∈ Qk,

then the output state will be|Φ+〉⊗m anyway. Thus, the probability thatA andB will accept an incorrect
state is at mostε.

To prove the soundness condition, we can use this fact and a technique of Lo and Chau [14]. The states
(Ex ⊗ I)|Φ+〉⊗n form the Bell basis for the Hilbert space ofA andB. Suppose a nonlocal third party first
measured the input stateρ in the Bell basis; call this measurementB. Then the argument of the previous
paragraph would apply to show the soundness condition. In fact, it would be sufficient if Alice and Bob used
the nonlocal measurementQk⊗Qk which compares theQk-syndromes forA andB without measuring them
precisely. This is a submeasurement of the Bell measurementB — that is, it gives no additional information
about the state. Therefore it commutes withB, so the sequenceB followed byQk ⊗ Qk is the same as
Qk⊗Qk followed byB, which therefore gives probability at least1−ε of success for general input statesρ.
But if the state afterQk⊗Qk gives, from a Bell measurement,|Φ+〉⊗m or |REJ〉 with probability1− ε, then
the state itself must have fidelity1− ε to the projectionP . Therefore, the measurementQk ⊗Qk withoutB
satisfies the soundness condition. Moreover,A andB’s actual procedureT is a refinement ofQk⊗Qk—that
is, it gathers strictly more information. Therefore, it also satisfies the soundness condition, andT is a purity
testing protocol with errorε.

2

C Analysis of Purity-Testing Code Construction

In Section 4.1, we present a family of stabilizer codes and claim they form a purity testing code:

Theorem 13 The set of codesQk form a stabilizer purity testing code with error

ε =
2r

2s + 1
. (8)

Each codeQk encodesm = (r − 1)s qubits inn = rs qubits.

We must show (a) thatQk is totally isotropic, and (b) that the error probability is at mostε.
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(a) Recall the definition of the symplectic form

B(x, y) := Tr
[
xy2rs − yx2rs]

. (9)

Now, letα, β ∈ GF (2s). Then

B(αx, βy) = Tr
[
αx(βy)2

rs − βy(αx)2
rs]

= αβTr
[
xy2rs − yx2rs]

= αβ(x, y) . (10)

(We have used the fact thatαq = α for any fieldGF (q). In particular,α2rs
= α andβ2rs

= β.) Fix an
x ∈ Qk − {0}. Everyy ∈ Qk may be written asαx, for someα ∈ GF (qs). Now B(x, x) = 0. So,
B(αx, βx) = 0, i.e.,Qk is totally isotropic under the symplectic form (9).

(b) We must find, for an arbitrary errorEx (which can be described as a2n-dimensional binary vector
x), an upper bound on the number ofQ⊥

k −Qk it can belong to. It will be sufficient to bound the number of
Q⊥
k the error can belong to, since|Qk| is small compared to|Q⊥

k | in our context.
GivenEx, x ∈ Q⊥

k meansB(x, y) = 0 for all y ∈ Qk. For s y’s each in a different one-dimensional
subspace ofQk, these linear equations will be independent. So, eachQk for which x ∈ Q⊥

k knocks out
dim(Qk) ≡ s subspaces of the overall space as possible basis vectors of a subspace containingx. For
a good bound, we want a construction such that as we add more values ofk the equationsB(x, yi) = 0
for yi ∈ Qk are linearly independent from the equations for earlier values ofk (until we reach the total
dimension’s worth of equations and this is no longer possible). Then it will quickly become inconsistent to
assumex ∈ Q⊥

k for too many values ofk, because we will quickly impose more than the overall dimension’s
worth of linearly independent equations onx. In other words, we want the1-d subspaces in

⋃
k PG(Qk) to

be in general position. A set of points in a projective geometry of dimensiond− 1 are said to be in general
position if anyd (= dimension of the underlying vector space, when, as in our case, such exists) of them are
linearly independent. The points on the normal rational curveΥ are in general position. (To verify this one
shows that for any2r points on the curve, the determinant of the matrix of their coordinates is nonzero; these
are easily evaluated Vandermonde determinants. More abstractly, the proposition follows from the fact that
the curve is a quasi-projective variety of degree2r, though the calculation establishing this is essentially the
same.) The normal rational curve is a particularly good source of such points for our purposes, because it
gives us a very large — probably as large as possible — set of points in general position, which means that
the ratio of the maximal number of codes in which an error can be undetectable to the total number of codes
is low.

The upshot is that any2r points onΥ are linearly independent. Each pointk on Υ corresponds to an
s-dimensional codeQk, consisting of2rs-dimensional vectors. Letz be any nonzero element ofQk. Asα
ranges overGF (qs), αz ranges over all vectors inQk. Thus, if any vector fromQk is a linear combination
of vectors from other codes{Qj}, than all ofQk is also a linear combination of vectors from{Qj}, and
k is linearly dependent on the points{j} of Υ. So if we take any2r codesQk, and takes independent
vectors from each, the resulting set of2rs vectors is linearly independent. Hence a given errorEx can
satisfyx ∈ Q⊥

k for at most2r values ofk, whenQk are chosen among the2s + 1 availables-dimensional
spaces corresponding to points onΥ. Thus, the{Qk} form a purity testing code with error

ε ≤ 2r
2s + 1

. (11)

D Proof of secure authentication

Corollary 3 states that the interactive authentication protocol 5.1 is secure.
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Proof (of Corollary 3):
The completeness of the protocol can be seen by inspection: in the absence of intervention,A andB

will share the Bell states|Φ+〉⊗m at the end of step 6 and so after the teleportation in step 7B’s output will
be exactly the input ofA.

To prove soundness, suppose thatA’s input is a pure state|ψ〉. Intuitively, at the end of step 6,A andB
share something very close to|Φ+〉⊗m, and so after the teleportation in step 7 eitherB’s output will be very
close toA’s input, or he will reject because of interference from the adversary.

More formally, after step 6, the joint stateρAB satisfies Tr(PρAB) ≥ 1− ε. At this point, by assumption
the only thing that the adversary can do is attempt to jam the communication betweenA andB. Thus the
effect of step 7 will be to map the subspace given byP into the subspace given byP |ψ〉

1 . Consequently, at
the end of the protocol,B’s output density matrix will indeed lie almost completely in the subspace defined
by P |ψ〉

1 .
2

Theorem 4 states that the non-interactive Protocol 5.2 is secure. To prove this, we show that Protocol 5.1
is equivalent to 5.2, by moving through two intermediate protocols D.1 and D.2. We reduce the security of
each protocol to the previous one; since Protocol 5.1 is secure by Corollary 3, the theorem follows.

Protocol D.1 ( Intermediate Protocol I )

1: A andB agree on some stabilizer purity testing code{Qk}

2: A generates2n qubits in state|Φ+〉⊗n. A picks at randomk ∈ K, and measures the syndromey of the
stabilizer codeQk on the first half of the EPR pairs.A decodes hern-qubit word according toQk. A
performs the Bell measurement to start teleportation with her stateρ, using the decoded state as if it were
half of |Φ+〉 pairs, but does not yet reveal the measurement resultsx of the teleportation.A sends the
second half of each EPR pair toB.

3: B announces that he has received then qubits. Denote the received state byσ′.

4: A announcesk and the syndromey ofQk toB.

5: B measures the syndromey′ ofQk on hisn qubits.B compares the syndromey′ to y. If they are different,
B aborts.B decodes hisn-qubit word according toQk.

6: A concludes the teleportation by sending the teleportation measurement resultsx from step 2.B does his
part of the teleportation and obtainsρ′.

PROTOCOL 5.1→ PROTOCOL D.1: We obtain protocol D.1 by observing that in protocol 5.1,A can
perform all of her operations (except for the transmissions)beforeshe actually sends anything toB, since
these actions do not depend onB’s feedback. This will not change any of the states transmitted in the
protocol or computed by Bob, and so both completeness and soundness will remain the same.

PROTOCOL D.1 → PROTOCOL D.2: There are two changes between Protocols D.1 and D.2. First,
note that measuring the first qubit of a state|Φ+〉 and obtaining a random bitci is equivalent to choosing
ci at random and preparing the pure state|ci〉 ⊗ |ci〉. Therefore, instead of preparing the state|Φ+〉⊗n and
measuring the syndrome of half of it,A may as well choose the syndromess at random and encode both
halves of the state|Φ+〉⊗m using the codeQk and the syndromes.

Second, rather than teleporting her stateρ to B using the EPR halves which were encoded inQs1,s2 , A
can encryptρ using a quantum one-time pad (QOTP) and send it toB directly, further encoded inQk. These
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Protocol D.2 ( Intermediate Protocol II )

1: A andB agree on some stabilizer purity testing code{Qk}

2: A choses a random2n bit keyx and q-encryptsρ asτ usingx. A picks a randomk ∈ K and syndromes
for the codeQk and encodesτ according toQk. A sends the result toB.

3: B announces that he has received then qubits. Denote the received state byσ′.

4: A announcesk, x, andy toB.

5: B measures the syndromey′ of the codeQk. B comparesy to y′, and aborts if they are different.B decodes
hisn-qubit word according toQk, obtainingτ ′. B q-decryptsτ ′ usingx and obtainsρ′.

behaviours are equivalent since either way, the encoded state isσ~t1x σ
~t2
z ρσ

~t2
z σ

~t1
x , where~t1 and~t2 are random

n-bit vectors.
PROTOCOL D.2→ PROTOCOL 5.2: In Protocol 5.2, all the random choices ofA are replaced with the

bits taken from a secret random key shared only by her andB. This eliminates the need for an authenticated
classical channel, and for any interaction in the protocol. This transformation can only increase the security
of the protocol as it simply removes the adversary’s ability to jam the classical communication. 2

E Proofs from Section 6

Theorem 14 (Main Lower Bound) A QAS with error ε is an encryption scheme with error at most4ε1/6.

To get a sense of the proof, consider the following proposition:

Proposition 15 Suppose that there are two states|0〉, |1〉 whose corresponding density matricesρ|0〉, ρ|1〉
are perfectly distinguishable. Then the scheme is not anε-secureQAS for anyε < 1.

Proof: Sinceρ|0〉, ρ|1〉 can be distinguished, they must have orthogonal support, say on subspacesV0, V1. So

consider an adversary who applies a phaseshift of−1 conditioned on being inV1. Then for allk, ρ(k)
|0〉+|1〉

becomesρ(k)
|0〉−|1〉. Thus, Bob will decode the (orthogonal) state|0〉 − |1〉. 2

However, in general, the adversary cannot exactly distinguish two states, so we must allow some proba-
bility of failure. Note that it is sufficient in general to consider two encoded pure states, since any two mixed
states can be written as ensembles of pure states, and the mixed states are distinguishable only if some
pair of pure states are. Furthermore, we might as well let the two pure states be orthogonal, since if two
nonorthogonal states|ψ0〉 and|ψ1〉 are distinguishable, two basis states|0〉 and|1〉 for the space spanned by
|ψ0〉 and|ψ1〉 are at least as distinguishable.

We first consider the case when|0〉 and |1〉 can almostperfectly be distinguished. In that case, the
adversary can change|0〉 + |1〉 to |0〉 − |1〉 with high (but not perfect) fidelity (stated formally in Lemma
16). When|0〉 and|1〉 are more similar, we first magnify the difference between them by repeatedly encoding
the same state in multiple copies of the authentication scheme, then apply the above argument.

Lemma 16 Suppose that there are two states|0〉, |1〉 such thatD(ρ|0〉, ρ|1〉) ≥ 1 − η. Then the scheme is
not ε-secure for|ψ〉 = |0〉+ |1〉 for anyε < 1− 2η.
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Proof (of Lemma 16):Let ρ0 = ρ|0〉 andρ1 = ρ|1〉. Consider the Hermitian matrixσ = ρ0 − ρ1. We can
diagonalizeσ. LetV0 be the space spanned by eigenvectors with non-negative eigenvalues and letV1 be the
orthogonal complement.

Since1/2 Tr|σ| ≥ 1− η, but Trσ = 0, we know that Tr(V0σ) = −Tr(V1σ) ≥ 1− η. Thus, Tr(V0ρ0) ≥
Tr(V0σ) ≥ 1− η. Similarly, Tr(V1ρ1) ≥ −Tr(V1σ) ≥ 1− η.

Consider an adversary who applies a phaseshift of−1 conditioned on being inV1. Fix a particular key

k. Let p0 = Tr
(
V0ρ

(k)
0

)
andp1 = Tr

(
V1ρ

(k)
1

)
. We know that the expected values ofp0 andp1 are both at

least1− η.

Claim 17 When the input state is1√
2
(|0〉+ |1〉), the fidelity of Bob’s output to the state1√

2
(|0〉− |1〉)|ACC〉

is at leastp0 + p1 − 1.

Proof: Consider some reference systemR which allows us to purify the statesρ(k)
0 , ρ

(k)
1 to the states|0̃〉, |1̃〉.

Let |ψ̃〉 be the image of1√
2
(|0̃〉+ |1̃〉) under the adversary’s conditional phaseshift.

We want to show that|ψ̃〉 is close to a correct encoding of1√
2
(|0〉 − |1〉), i.e. close to

1√
2
(|0̃〉 − |1̃〉) =

1√
2
(V0|0̃〉+ V1|0̃〉 − V0|1̃〉 − V1|1̃〉).

After the transformation, we obtain

|ψ̃〉 =
1√
2
(V0|0̃〉 − V1|0̃〉+ V0|1̃〉 − V1|1̃〉).

Thus,

〈ψ̃| 1√
2
(|0̃〉 − |1̃〉) =

1
2
(
〈0̃|V0|0̃〉 − 〈0̃|V1|0̃〉 − 〈1̃|V0|1̃〉+ 〈1̃|V1|1̃〉

−〈0̃|V0|1̃〉+ 〈1̃|V0|0̃〉+ 〈0̃|V1|1̃〉 − 〈1̃|V1|0̃〉
)

=
1
2

(
Tr(V0ρ

(k)
0 )− Tr(V1ρ

(k)
0 )− Tr(V0ρ

(k)
1 ) + Tr(V1ρ

(k)
1 )

−
[
〈0̃|V0|1̃〉 − 〈1̃|V0|0̃〉

]
+
[
〈0̃|V1|1̃〉 − 〈1̃|V1|0̃〉

])
.

We can substitute for the first line in terms ofp0 andp1, which are real. The second line is purely imaginary.
Thus, ∣∣∣∣〈ψ̃| 1√

2
(|0̃〉 − |1̃〉)

∣∣∣∣ ≥ 1
2

[p0 − (1− p0)− (1− p1) + p1] = p0 + p1 − 1.

Bob’s decoding can only increase the fidelity of the two states, as can discarding the reference system, prov-
ing the claim. 2

Thus, for a specific valuek of the key,F (ρ(k), 1√
2
(|0〉 − |1〉)|ACC〉) ≥ p0 + p1 − 1, whereρ(k) is

the output after the adversary’s transformation when the input is1√
2
(|0〉 + |1〉). Fidelity is concave, so by

Jensen’s inequality the fidelity of the average density matrixρ = 1
|K|
∑

k ρ
(k) is at least the average of the

fidelities for eachk. That is,

F (ρ,
1√
2
(|0〉 − |1〉)|ACC〉) ≥ 1

|K|
∑
k

(p0 + p1 − 1) ≥ 1− 2η.
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In other words, the adversary can change the state1√
2
(|0〉+ |1〉) with probability at least1− 2η. 2

When two states can be distinguished, but only just barely, the above lemma is not sufficient. Instead,
we must magnify the distinguishability of the states|0〉 and|1〉 by repeating them by considering the tensor
product of many copies of the same state. The probability of distinguishing then goes to 1 exponentially fast
in the number of copies:

Lemma 18 Letρ0, ρ1 be density matrices withD(ρ0, ρ1) = δ. ThenD(ρ⊗t0 , ρ⊗t1 ) ≥ 1− 2 exp(−tδ2/2).

Proof (of Lemma 18):We can boundD(ρ⊗t0 , ρ⊗t1 ) by giving a test which distinguishes them very well. We
know there exists a measurement given by spacesV0, V1 such that Tr(V0ρ0) − Tr(V0ρ1) = δ. Consider the
test which performs this measurement ont independent copies ofρ0 or ρ1. The test outputs 0 if more than
(Tr(V0ρ0) + Tr(V0ρ1))/2 of the measurements produce 0.

By the Chernoff bound, the probability that this test will make the wrong guess is at mostexp(−tδ2/2).
Thus,D(ρ⊗t0 , ρ⊗t1 ) ≥ 1− 2 exp(−tδ2/2). 2

We create these repeated states by encoding them in an iteratedQAS consisting oft copies of the original
QAS (with independent values of the key for each copy).

Lemma 19 Suppose we iterate the schemet times. Let|ψ〉 = 1√
2
(|000...0〉+ |111...1〉). If (A,B,K) is an

ε-secureQAS, then the iterated scheme is10t3ε-secure for the state|ψ〉.

Note that the proof of this lemma goes through the following crucial claim, which follows from a simple
hybrid argument.

Claim 20 (Product states) The iterated scheme istε-secure for any product state.

Proof (of Claim 20):For simplicity we prove the claim for the state|000...0〉. The same proof works for
any product pure state (and in fact for separable states in general).

Intuitively, an adversary who modifies the state|000...0〉 must change some component of the state. We

can formalize this by rewriting the projectorP |000...0〉
0 in terms of the individual projectorsP |0〉i

0 .
For the caset = 2, Bob accepts only if he finds the verification qubits for both schemes in the accept

state.

P
|00〉
0 = (Im1m2 − |00〉〈00|)⊗ |ACC1〉〈ACC1| ⊗ |ACC2〉〈ACC2|

=
(
(Im1 − |0〉〈0|)⊗ Im2 + Im1 ⊗ (Im2 − |0〉〈0|)− (Im1 − |0〉〈0|)⊗ (Im2 − |0〉〈0|)

)
⊗|ACC1〉〈ACC1| ⊗ |ACC2〉〈ACC2|

= P
|0〉1
0 ⊗ |ACC2〉〈ACC2|+ P

|0〉2
0 ⊗ |ACC1〉〈ACC1| − P

|0〉1
0 ⊗ P

|0〉2
0

SinceP |0〉1
0 ⊗ P

|0〉2
0 is positive, for allρ, we have

Tr(P |00〉
0 ρ) ≤ Tr(P |0〉1

0 ρ) + Tr(P |0〉2
0 ρ) ≤ 2ε

Similarly, for larger values oft we have

Tr(P |000...0〉
0 ρ) ≤

t∑
i=1

Tr(P |0〉i
0 ρ) ≤ tε
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Thus the iterated scheme istε-secure for|000...0〉 (and in fact for all product states). 2

Proof (of Lemma 19):Consider the net superoperator due to encoding, decoding, and the adversary’s inter-
vention, i.e.Onet = 1

|K|
∑

k BkOadvAk. By introducing an ancilla systemR, we can extend this superop-
erator to a linear transformation on the joint systemM ⊗R⊗ V (whereM is the message system andV is
Bob’s verifcation qubit). For a pure state|ψ〉, write its image as

|ψ〉|γ|ψ〉〉|ACC〉+ |β|ψ〉〉|REJ〉+ |δ|ψ〉〉|ACC〉

where|δ|ψ〉〉 is a joint state ofMR which is orthogonal to the subspace|ψ〉 ⊗R.
Now consider the family of states|ψi〉 = | 000...0︸ ︷︷ ︸

i

111...1︸ ︷︷ ︸
t−i

〉, and let|γi〉 = |γ|ψi〉〉 and|δi〉 = |δ|ψi〉〉.

Claim 21 For all i = 0, ..., t− 1, we have‖1
2(|γi+1〉 − |γi〉)‖ ≤ (1 +

√
2)
√
tε

Proof: Fix i. Note that|ψ+〉 = 1√
2
(|ψi+1〉 + |ψi〉) is a product state (withH|0〉 in one position), as is

|ψ−〉 = 1√
2
(|ψi+1〉 − |ψi〉). The image of|ψ+〉 can be written

1√
2

(
(|ψi+1〉|γi+1〉+ |ψi〉|γi〉)|ACC〉+ (|δi+1〉+ |δi〉)|ACC〉+ (|βi+1〉+ |βi〉)|REJ〉

)
=

(
|ψ+〉

1
2
(|γi+1〉+ |γi〉) + |ψ−〉

1
2
(|γi+1〉 − |γi〉) +

1√
2
(|δi+1〉+ |δi〉)

)
|ACC〉

+
1√
2
(|βi+1〉+ |βi〉)|REJ〉

Now we know that‖|δi〉‖2 ≤ tε for all i (since|γi〉 is a product state). Thus,‖ 1√
2
((|δi+1〉+ |δi〉)‖ ≤

√
2tε.

Moreover,|ψ+〉 is a product state and so we have

‖|ψ−〉
1
2
(|γi+1〉 − |γi〉) +

1√
2
(|δi+1〉+ |δi〉)‖ ≤

√
tε

Thus,‖|ψ−〉1
2(|γi+1〉 − |γi〉)‖ = ‖1

2(|γi+1〉 − |γi〉)‖ ≤ (1 +
√

2)
√
tε. 2

Then by the triangle inequality,‖1
2(|γt〉 − |γ0〉)‖ ≤ (1 +

√
2)t
√
tε. Let |Ψ±〉 = 1√

2
(|ψt〉 ± |ψ0〉). The

image of|Ψ+〉 = 1√
2
(|000...0〉+ |111...1〉) is:

(
|Ψ+〉

1
2
(|γt〉+ |γ0〉) + |Ψ−〉

1
2
(|γt〉 − |γ0〉) +

1√
2
(|δt〉+ |δ0〉)

)
|ACC〉

+
1√
2
(|βt〉+ |β0〉)|REJ〉

Now the trace of this state withP |Ψ+〉
0 is the square of

‖|Ψ−〉
1
2
(|γt〉 − |γ0〉) +

1√
2
(|δt〉+ |δ0〉)‖ ≤ ‖|Ψ−〉

1
2
(|γt〉 − |γ0〉)‖+ ‖ 1√

2
(|δt〉+ |δ0〉)‖

≤ (1 +
√

2)t
√
tε+

√
2tε

≤
√

10t3ε,
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where in the last line, we have assumedt ≥ 2. That is, the iterated scheme is10t3ε-secure for|Ψ+〉. 2

Putting the various lemmas together, we find that, given two states|0〉 and|1〉 which are slightly distin-
guishable by the adversary, soD(ρ0, ρ1) ≥ δ, then in the iterated scheme,|000...0〉 and|111...1〉 are more
distinguishable:D(ρ|000...0〉, ρ|111...1〉) ≥ 1 − η, whereη ≤ 2 exp(−tδ2/2). Since the iterated scheme is
10t3ε-secure for the state|ψ〉 = 1√

2
(|000...0〉+ |111...1〉), then by the first lemma,

10t3ε > 1− 2η ≥ 1− 4 exp(−tδ2/2)

Choosingt = 1/ 3
√

20ε, we getδ ≤ 4ε1/6.

Corollary 22 A QAS with error ε requires at least2m(1− poly(ε)) classical key bits.

Proof (of Corollary 6):The argument is similar to the argument that2m bits of key are required for perfect
encryption. We show that transmitting the key through a channel allows the transmission of almost2m bits
of information.

We can consider four subsystems, two held by Alice and two held by Bob. Bob holds both halves ofm
Bell states (the subsystemsB1 andB2), except thatB1 has been encrypted by a keyk (subsystemK) held
by Alice. Alice also holdsR, a purification of the other three systems.

Using superdense coding, Bob’s two systemsB1 andB2 can encode2m classical bits of information.
In order to recover that information, Bob needs Alice’s key (systemK). Since the encryption is not perfect,
however, Bob may have a small amount of information about the encoded state.

Let us imagine that Bob’s systems initially encode the classical message000...0. Suppose Alice wishes
to send Bob the messageM . Since the encryption is almost perfect, Bob’s two density matricesρB(000...0)
andρB(M) are almost indistinguishable. Therefore, by the argument proving bit commitment is impossible,
Alice can change the pure state corresponding to encrypted000...0 to something very close to the pure state
corresponding to encryptedM .

If Alice now sendsK to Bob, he is able to (almost always) decode the messageM . His failure proba-
bility is a polynomial inε, so he has received2m(1 − poly(ε)) bits of information, and thereforeK must
consist of at least2m(1− poly(ε)) classical bits or half as many qubits.

In fact,K might as well be classical: Bob’s decoding method will be to immediately measureK, since
he is expecting a classical key, and therefore Alice might as well have measuredK before sending it; natu-
rally, this actually means she includes entangled qubits in the purificationR. We thus restrictK to classical
bits and prove the corollary. 2
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