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Abstract

Authentication is a well-studied area of classical cryptography: a seAderd a receiveBB sharing a

classical private key want to exchange a message with the guarantee that the message has not been modi-
fied (or replaced) by a dishonest party with control of the communication line. In this paper we study the
authentication ofjuantummessages. While classically, authentication and encryption are independent
tasks, we show that no scheme to authenticate quantum messages can be secure unless it also encrypts the
messages. Assuming andB have access to an insecure quantum channel and share a private, classical
random key, we provide a scheme that both enaldlés encrypt and authenticate (with unconditional
security) anm qubit message by encoding it inte + s qubits, where the error probability decreases
exponentially in the security parameterThe scheme requires a private key of size+ O(s), which is
asymptotically optimal. We also discuss the problem of digitally sighing quantum messages, and show
that it is impossible, even with only computational security.
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1 Introduction

For a long time, the expression “quantum cryptography” primarily referred to the quantum key distribution
protocols [4, 3, 12]. However, these words now refer to a larger set of problems involving both classical and
quantum data. Quantum key distribution and many other quantum protocols attempt to provide improved
security for tasks involving classical information. An emerging division of quantum cryptography instead
attempts to create secure protocols for tasks involgngntuminformation. One standard cryptographic

task is theauthenticationof messages:A transmits some information t8 over an insecure channel, and

they wish to be sure that it has not been tampered &nthoute When the message is classical, atdnd

B share a random private key, this problem can be solved by, for instance, the Wegman-Carter scheme [11].
In this paper, we discuss the analogous question for quantum messages.

If we assumeAd andB share a privatguanturmkey in the form ofm EPR pairs, as well as some private
classical key, there is a straightforward solution to this problghsimply uses quantum teleportation [5]
to send her message to Bob, authenticatingiheclassical bits transmitted in the teleportation protocol.

If A andZB initially share only a classical key, however, the task is more difficult. One approach is to first
distribute EPR pairs (which might get corrupted in transit), and then use entanglement purification [6] to
establish clean pairs for teleportation. This can be improved: we do not need a full-scale entanglement
purification protocol, which produces good EPR pairs even if the channel is noisy; instead we only need
something we call a “purity testing protocol,” which checks that EPR pairs are correct, but does not attempt
to repair them in case of error. The security of an authentication protocol involving purity testing followed
by teleportation can be proven with methods originally used by Lo and Chau [14] to show the security of
key distribution.

Unfortunately, any such protocol will have to be interactive, siFcenust first send some qubits to
B, and then wait for confirmation of receipt before completing the transmission. This is unsuitable for
situations in which a message is stored and must be checked for authenticity at a later time. Also, this
interactive protocol achieves something stronger than what is required of a quantum authentication scheme:
at the end of the purity testing based schebothAlice and Bob know that the transmission was successful,
whereas for authentication, we only require that Bob knows.

In this paper, we present a non-interactive protocol for quantum message authentication. Just as Shor
and Preskill [18] were able to take the Lo and Chau key distribution protocol, which required a quantum
computer, and modify it to prove the security of the BB84 key distribution protocol, which does not, we
modify the above interactive authentication protocol to produce a non-interactive one. We present a very
efficient purity testing protocol and prove that the interactive and therefore the non-interactive authentication
protocols are secure.

Why should we prefer a scheme with classical keys to a scheme with entangled quantum keys? The task
of authenticating quantum data is only useful in a scenario where quantum information can be reliably stored,
manipulated, and transmitted over communication lines, so it would not be unreasonable to assume quantum
keys. However, many manipulations are easier with classical keys. Certainly, the technology for storing and
manipulating them is already available, but there are additional advantages. Consider, for example, public
key cryptography; it is possible to sign and encrypt classical key bits with public key systems, but signing a
general quantum state is impossible (shown in section 6). Thus, quantum keys would be unsuitable for an
asymmetric quantum authentication scheme such as the one we describe in section 5.1.

One feature of our final authentication protocol is that it completely encrypts the quantum message
being sent. We show that this is a necessary featuaayduantum message authentication code, in striking
contrast to the situation for classical information, where common authentication schemes leave the message
completely intelligible. It therefore follows that any authentication protocol forragubit message must
use nearly2m bits of classical key, enough to encrypt the message. The protocol we present comes close



to this bound, requirin@m + O(s) bits of classical key, where the security of the scheme is exponential in
the parametes. Another surprising consequence is that it is impossible to create digital signature schemes
for quantum messages: any protocol which allows one recipient to read a message also allows him or her to
modify it without risk of detection, and therefore all potential recipients of an authenticated message must
be trustworthy. This conclusion holds true even if we require only computationally secure digital signatures.
Section 2 contains the necessary background material and previous work. In section 3 we formally
define quantum message authentication. In section 4 we define purity testing codes, and show how they
can be used to check EPR pairs. We also give an algebraic construction of a code with essentially optimal
size. Section 5 presents our main authentication scheme and a sketch of the proof of security (the full proof
is given in appendix D). In section 6 we show that any quantum authentication scheme must also be a
good encryption scheme, and hence requires at feadtey bits; section 7 discusses the extension to the
impossibility of quantum signatures.

2 Preliminaries

2.1 Classical Authentication

In the classical setting, an authentication scheme is defined by a pair of fundtions x M — C and
B : K xC — M x {valid,invalid} such that for any messagec M and keyk € K we havecompleteness

By (Ag(p)) = (. valid)

and that for any opponent algorithth we havesoundness
Prob{ B,.(O(Ax(1))) € {{u,valid)} U {(/,invalid)|s/ € M}} > 1 — 2790

wheret = 1g#C — lg#M is the security parameter creating the tradeoff between the expansion of the
messages and the security level. Note that we only consider information-theoretically secure schemes, not
schemes that are based on computational assumptions.

Wegman and Carter [11] introduced several constructions for such schemes; their most efficient uses
keys of size only(t + lglgm)lgm and achieves security — 2~/*2, This compares rather well to the
known lower bound of + lgm — 1gt for such a result [11]. The same work also introduced a technique
to re-use an authentication function several times by using one-time-pad encryption on the tag, so that an
opponent cannot leamnythingabout the particular key being used Hdyand 3. Thus, at a marginal cost
of only t secret key bits per authentication, the confidentiality of the authentication furicisoguaranteed
and thus may be re-used (a polynomial number of times).

2.2 Quantum Stabilizer Codes

For the remainder of this paper, we assume the reader is familiar with the basic notions and notation of
guantum computing. These can be found in textbooks such as [15].

A quantum error-correcting code (QECC) is a way of encoding quantum datar(spybits) inton
qubits n < n) such that the encoded data is protected from errors of small weight: the code is said to
correctt errors if any operator which affects less thiagubits of the encoding can be corrected without
disturbing the encoded state. Usually the goal in the construction of codes is to maximize this minimum
distance for particulam,n. However, in this paper, we use the theory developed for those purposes to
construct families of codes with a different type of property. For now, we review the necessary theory on a
very general class of codes knownstabilizer codes



Our construction is based on a class of QECCgjfdimensional registers, witlhh = p™ a prime power
(later we will specialize to the case where= 2, so each register consistsoiqubits). A basis for the set
of all operators on thg-dimensional Hilbert space is the “shift/phase” error basig-oimensional Hilbert
space, defined vi&l,, = X*Z°, where(i| X|j) = &; j+1, (i| Z|j) = £'6;; , for € = exp(2mi/p) a primitive
pth root of unity, are the standard-basis matrix elements of the “shift by one” and “ramp the phase by one”
operators. (Here, indices areZiy.) This basis has a simple multiplication rule:

EgyEay = " Eqyarpiy- (1)

Thus,{{°E,p} is a group containing a basis for the whole operator space for one register. If we heye
isters, we can simply use the tensor prodhiaif n copies of this operator group; each element corresponds
to a2n-dimensional vector, and the vectars= (a|b), y = (a’|b’) come from commuting operators iff
their symplectic inner product is O i,

E,E,=E/E, <= B(z,y)=a'-b—a-b' =0. )

A stabilizer codas a QECC given by an Abelian subgro§mf £, which does not contain any multiples of
the identity other that itself. S can be described by the setbi-dimensional vectors such thatt,, € S.
This will be a subspace (ﬂgn. Moreover, it will betotally isotropig i.e. B(z,y) = 0 for all z,y in the
subspace.

Note that one can also vieR®(-, -) as a symplectic form ove F'(p*"), by choosing a set of generators
for GF(p*") as a vector space ov&y,. By judicious choice of the generators, one can actually niake)
correspond to any symplectic form ov@#' (p>"), so we might as well choose a convenient one. We use

B(z,y) = Tr [zy?" —ya*"], ©)

where Tfz) = 322", »#" is the standard trace function, which ma@g'(p>") onto GF (p). Thus, we will
construct subset§ of GF (p?") such thatB(x,y) = 0 for all z,y € Q.

Undetectable errors We can classify errors which lie i into three categories: The errors given by
elements ofQ are not truly errors—they leave the codewords unchanged. Errors which fail to commute
with some element af) move codewords into a subspace orthogonal to the code, so can be detected by the
QECC. The remaining errors, those which commute with all elemerfisout are not themselves i\, are

the undetectable errors of the code. Thugif is the space of vectorg for which B(z,y) = 0 for all

x € @, the set of undetectable errors is jast — Q.

Syndromes Note that specifying the subgroupby a setQ of elements ofaF (p?") isn’t quite enough:
operators differing by a phagé correspond to the same field element, but yield different QECC's in the
Hilbert space. Given agrdimensional totally isotropic subspaceZ)ﬁ", therefore, there are many possible
choices of phases for the grogp(p® to be precise), which produgé different QECCs. However, all these
possible choices of phase give codes with identical error correction properties. Additionally, the subspaces
are all orthogonal and of the same dimensin®; in fact, they span the Hilbert space. These codes are
known ascosetsof the codeS, defined as the standard choice with all phases equalttarhe choice

of phases is known as treyndrome(because errors outside- map the code into a different coset, and

the syndrome therefore gives information about which error occurred). Measuring the syndrome projects a
guantum state into one of these codes.

Actually, the “standard” coset also depends on the selection of a basis of generafars for



2.3 Purification and purity testing

QECC's may be used for a task knowneaganglement purificatioffirst defined in [6]). In this settingd

andB share some Bell states (sgy") = |00) + |11)) which have been corrupted by transmission through

a noisy quantum channel. They want a protocol which processes these imperfect EPR pairs and produces
a smaller number of higher-quality pairs. We assume thand 3 have access to an authenticated, public
classical channel. At the end of the protocol, they either accept or reject based on any inconsistencies
they have observed. As long asandB have a noticeable probability of accepting, then conditioned on
accepting, the state they share should have fidelity almost 1 to the puredstaté™. Moreover, small
amounts of noise in their initial shared state should not cause failure of the protocol.

Stabilizer codes can be particularly useful for purification because of the following observation: for any
stabilizer codeR, if we measure the syndrome of one half of a set of Bell stgb¢s®” and obtain the
resulty, then the result is the stat@™)®™, with each of its two halves encoded in the coset with syndrome
y. (Moreover, in this case the distribution gnris uniform.) If the original state is erroneoud,and3 will
likely find different syndromes, which will differ by the syndrome associated with the actual error.

Most purification protocols based on stabilizer codes require efficient error correction; that is, we must
be able to efficiently deduce the identity of the error from the syndrome. However, one can imagine a weaker
task in which Alice and Bob only want tiesttheir EPR pairs for purity, i.e. they want a guarantee that if
their test passes with noticeable probability, then their shared state will be cldse)tg™. In that case, we
can use the code for error detection, not correction, and it is only necessary to be able to encode and decode
efficiently from the space).

2.4 Encryption of Quantum Messages

A useful ingredient for much recent work in quantum cryptography is the concept of quantum teleportation,
put forward by Bennett et al [5]. Afted andB have shared a singlet staté can later secretly send a single
qubit in an arbitrary quantum stateo B by measuring her half of the singlet state together with her gtate
in the Bell basis to get two classical bitg, b;. As a result3’s half of the singlet state will become one of
four possibilitiesy’ := o%0% poliobo. If A sendshy, by, thenBB can easily recoves.

Now without the bitsh, b1, the state’ reveals no information abowt Thus, one can turn this into an
encryption scheme which uses only a classical key: aft@nd B have secretly shared two classical bits
b, b1, A can later secretly send a single qubit in an arbitrary quantum statés by sending him a qubit
in statep’ as above. This is called a quantum one-time pad (QOTP). This scheme is optimal [1, 8]: any
guantum encryption (with a classical key) must use 2 bits of key for every transmitted qubit.

3 Quantum Authentication

At an intuitive level, a quantum authentication scheme is a keyed system which alltwvsend a statg
to B with a guarantee: i3 accepts the received state as “good”, the fidelity of that stageisgalmost 1.
Moreover, if the adversary makes no chandeshould always accept, and the fidelity should be exactly 1.

Of course, this informal definition is impossible to attain. The adversary might always reglace
transmitted message with a completely mixed state. There would nonetheless be a small probal#lity that
would accept, but even when he did accept the fidelity of the received stdte ituitial state would be very
low.

The problem here is that we are conditioningl®ia acceptance of the received state; this causes trouble
if the adversary’s a priori chances of cheating are high. A more reasonable definition would require a tradeoff



betweens’s chances of accepting, and the expected fidelity of the received systdim itatial state given
his acceptance: d8's chance of accepting increases, so should the expected fidelity.

It turns out that there is no reason to use both the language of probability and that of fidelity here:
for classical tests, fidelity and probability of acceptance coincide. With this in mind we first define what
constitutes a quantum authentication scheme, and then give a definition of security:

Definition 1 A quantum authentication scherf@as) is a pair of polynomial time quantum algorithms
and B together with a set o€lassicakeyskC such that:

e A takes as input am-qubit message systeid and a keyk € K and outputs a transmitted systdm
of m + t qubits.

e B takes as input the (possibly altered) transmitted systérand a classical keyr € K and out-
puts two systems: a-qubit message staté/, and a single qubil” which indicates acceptance or
rejection. The classical basis statesiofare called|Acc), |REJ) by convention.

For any fixed key:, we denote the corresponding super-operatorsipyand By.

Note that3 may well have measured the qubitto see whether or not the transmission was accepted or
rejected. Nonetheless, we think Bfas a qubit rather than a classical bit since it will allow us to describe
the joint state of the two systenid, I with a density matrix.

There are two conditions which should be met by a quantum authentication protocol. On the one hand,
in the absence of intervention, the received state should be the same as the initial stathauldl accept.

On the other hand, we want that when the adversary does intef¥'srmjtput systems have high fidelity
to the statement “eithd$ rejects or his received state is the same as that sedt b@ne difficulty with this
is that it is not clear what is meant by “the same state” wHéninput is a mixed state. It turns out that it is
sufficient to define security in terms of pure states; one can deduce an appropriate statement about fidelity
of mixed states (see Appendix A).

Given a pure stat@)) € H,s, consider the following test on the joint systévh V': output a 1 if the
first m qubits are in stat¢y)) or if the last qubit is in statérReJ) (otherwise, output a 0). The projectors
corresponding to this measurement are

P = || @Iy + Iy @ |REH(REY — [1) (] ® |REJ(RE
P = (Im — [¥)(w]) ® (|Acc)(acc))

We want that for all possible input states and for all possible interventions by the adversary, the expected

fidelity of B’s output to the space defined hRW is high. This is captured in the following definition of
security.

Definition 2 A QAs is secure with errok for a state|v) if it satisfies:
Completenessror all keysk € K: By (Ar(|v){(¥])) = [¢) (| @ |Acc)(AcC]

SoundnessFor all super-operator®), let p,;, be the state output ki§ when the adversary’s interventidn
is characterized by, that is:

pren = Bk [BlOUA (1)) = 157 2 BuO(A(4) ()
k

2\We make no assumptions on the running time of the adversary.



where “ E;” means the expectation whénis chosen uniformly at random frofd. TheQAs has
soundness errof for |¢) if:

Tr (P ppon) = 1
A QAs is secure with errok if it is secure with errore for all states|v)).

Note that our definition of completeness assumes that the channel connddiing is noiseless in
the absence of the adversary’s intervention. This is in fact not a significant problem, as we can simulate a
noiseless channel using standard quantum error correction.

Interactive protocols In the previous section, we dealt only with non-interactive quantum authentication
schemes, since that is both the most natural notion, and the one we achieve in this paper. However, there is
no reason to rule out interactive protocols in whi¢landB at the end believe they have reliably exhanged a
guantum message. The definitions of completeness and soundness extend naturally to this setting: as before,
B’s final output is a pair of system&/, V', where the state space ©fis spanned byacc), |REJ. In that

casepp, is B’s density matrix at the end of the protocol, averaged over all possible choices of shared private

key and executions of the protocol. The soundness eregmibere TF(P1|¢>pBOb> >1-—c

4 Purity Testing Codes

An important tool in our proof is the notion ofgurity testing codgwhich is a way for4 and5 to ensure
that they share (almost) perfect EPR pairs. We shall concentrate on purity testing codes based on stabilizer
QECCs.

Definition 3 A stabilizer purity testing code with erraris a set of stabilizer code); }, for k € K, such
thatV B, € Ewitha # 0, #{klz € Q — Qr} < e(#K).

That is, for any errog: in the error group, ik is chosen later at random, the probability that the a@gde
detectsr is at leastl — e.

Definition 4 A purity testing protocol with errok is a superoperatofZ which can be implemented with
local operations and classical communicaiton, and which n#apgubits (half held by4 and half held by
B) to 2m + 1 qubits and satisfies the following two conditions:

Completeness7 (|@)®") = |&T)®™ @ |acC)

SoundnessLet P be the projection on the subspace spannediiby)®™ @ |acc) and|y) ® |REJ) for all
|). Then7 satisfies the soundness condition if for all

Tr(PT(p) >1—c¢.

The obvious way of constructing a purity testing proto€ais to start with a purity testing codgl }
When Alice and Bob are given the stateAlice chooses a randot € I and tells it to Bob. They both
measure the syndrome &f;, and compare. If the syndromes are the same, they accept and perform the
decoding procedure fapy; otherwise they reject.

Proposition 1 If the purity testing codéQy } has errore, then7 is a purity testing protocol with erroe.

The proof appears in Appendix B.



4.1 An Efficient Purity Testing Code

Now we will give an example of a particularly efficient purity testing code. We will use the stabilizer
techniques of section 2.2, restricting to the case rs. We will construct a set of cod&g;,, each encoding
m = (r — 1)s qubits inn qubits, and show that th@;, form a purity testing code. Note that the construction
works just as well if instead of qubits, we use registers with dimension equal to any prime power.

We consider anormal rational curvein PG(2r — 1, 2%) (the projective geometry whose points are the
1-d subspaces of thz-dimensional vector space overF'(29)). (See, e.g., the excellent introductory text
[7].) Such a curve is given by:

T = {[1:y:y2 : ~~:y2T71],[O:0:O:~- : 1]}y€GF(2s). 4)

Herey ranges overF,s and the colon is used to separate the coordinates of a projective point, to indicate
that all that matters is their ratio. Thus, there @re- 1 points on the normal rational curve.

Since each “point” of this curve is actually a one-dimensional subspaceG¥¢€2*), it can also be
considered as astdimensional binary subspacg, in a vector space of dimensi@ns = 2n. We will show
that Q. is totally isotropic with respect to the symplectic inner prodBantroduced in section 2.2, which
means it corresponds to a quantum code encouirg n — s qubits inn qubits.

Theorem 2 The set of code§,, form a stabilizer purity testing code with error

2r
€= .
25 +1

®)
Each cod&);, encodesn = (r — 1)s qubits inn = rs qubits.

Proof of this is in Appendix C.

5 Protocols

In this section we describe a secure non-interactive quantum authentication scheme (Protocol 5.2) which
satisfies the definition of section 3.

In order to prove our scheme secure, we begin with a purity testing protocol as per Section 4 (sum-
marized as Protocol 5.1). The security of this protocol follows from Prop. 1. We then perform several
transformations to the protocol that strictly preserve its security and goals but which remove the interaction,
replacing it with a shared private key. We thus obtain two less interactive intermediate protocols (Protocols
D.1 and D.2) and a final protocol (Protocol 5.2), which is completely non-interactive. The transformations
are similar in flavor to those of Shor and Preskill [18], who use the technique to obtain a simple proof of the
security of a completely different task, namely the BB84 [4] quantum key exchange scheme.

Following the notation of Section 4, Ié? be the projector onto the subspace described by “etther
has aborted or the joint state held dyand B is |®+)®™ ", Let pap be the joint density matrix aft and
B’s systems. Then Prop. 1 states that at the end of step Bpliz) is exponentially close to 1 in. The
soundness of our first authentication protocol follows immediately:

Corollary 3 If A andB are connected by an authenticated classical channel, then Protocol 5.1 is a secure
interactivequantum authentication protocol, with soundness error exponentially small in

The proof is straightforward; we give it explicitly in Appendix D.



Protocol 5.1 ( Purity Testing Based Protocol )
1: A andB agree on some stabilizer purity testing codgy.
2: A generate2n qubits in statg®™)®". A sends the first half of eadib™) state to5.
3: B announces that he has received thequbits.
4: A picks a randonk € C, and announces it t8.
5

: A and B measure the syndrome of the stabilizer cgle .4 announces her results 8 who compares
them to his own results. If any error is detect&daborts.

6: A and B decode thein-qubit words according t@). Each is left withm qubits, which together should lbe
nearly in statd d+)®™,

7. Auses her half of®*)®™ to teleport an arbitrarym-qubit statep to B.

Protocol 5.2 ( Non-interactive authentication )

1: Preprocessing:A and 5 agree on some stabilizer purity testing cod@; } and some private and random
binary stringsk, x, andy.

2. Ag-encrypts asT using keyr. A encodes according toQ,, for the codeR,, with syndromey to produce
o. A sends the result t5.

3: Breceives then qubits. Denote the received stateddy B measures the syndrongéof the code)), on his
qubits. B comparesy to 3/, and aborts if any error is detected® decodes his-qubit word according to
Qk, obtainingr’. B g-decryptsr’ usingz and obtaing’.

Theorem 4 When the purity testing codg);. } has errore, the protocol 5.2 is a secure quantum authenti-
cation scheme with key length(n + log, (#K)) and soundness errat In particular, for the purity testing
code described in Section 4.1, the authentication scheme has key2ength+1log,(2°+1) < 2n+1 and
soundness errd2n/[s(2° 4+ 1)], wherem is the length of the message in qubitss the security parameter,
and.4 sends a total of = m + s qubits.

Proof. From Corollary 3 we have that Protocol 5.1 is a secure interactive authentication protocol. We show
that Protocol 5.2 is equivalent to Protocol 5.1, in the sense that any attack on Protocol 5.2 implies an equally
succesful attack on Protocol 5.1. To do so, we proceed by a series of reductions; the details appear in
Appendix D.

5.1 Public Key Quantum Authentication

Unlike its classical counterpart, quantum information can be authenticated in a public key setting but not in
a way that can be demonstrated to a judge. In section 6, we show the impossibility of a digital signature
scheme for quantum information; here, we instead introduce the notion of public key quantum authentica-
tion.

Let E4, Dy, beB’s public and private keyed algorithms to a PKC resistant to quantum computers’ attacks.
Let S,, V, be A’s private and public keyed algorithms to a digital signature scheme resistant to quantum



computers’ attacks. These may be either be protocols which are secure with respect to a computational
assumption [16] or with unconditional security [13]. To perform authenticatibpicks secret and random

binary stringsk, x, andy, and uses them as keys to g-authentigags p’. A encrypts and signs the key

aso = S,(Ey(k|z|y)). A sends(p’, o) to B. To verify a state3 verifies A’'s signature onr usingV,

and then discovers the key = andy using his private decryption functiab,,. B checks thap’ is a valid
g-authenticated message according tokey, y, and recoverp.

6 Good Authentication Implies Good Encryption

One notable feature of any protocol derived using Theorem 4 is that the information being authenticated
is also completely encrypted. For classical information, authentication and encryption can be considered
completely separately, butin this section we will show that quantum information is different. While quantum
states can be encrypted without any form of authentication, the converse is not true: any scheme which
guarantees authenticity must also encrypt the quantum state almost perfectly.

To show this, let us consider any fixed authentication scheme. Dengig,ihe density matrix trans-

mitted in this scheme when Alice’s input|ig). Letpffzg denote the density matrix for key

Definition 5 An encryption scheme with errerfor quantum states hides information so thapjfand p;
are any two distinct encrypted states, then the trace dist@hge, p1) = 3T |po — p1| < €.

We claim that any goo@As must necessarily also be a good encryption scheme. That is:
Theorem 5 (Main Lower Bound) A QAS with error ¢ is an encryption scheme with error at mdst/®.
Corollary 6 A QAs with error e requires at leasem(1 — poly(e)) classical key bits.

We prove this corollary in Appendix E. For now, we concentrate on the Theorem 5.

The intuition behind the proof of this main theorem is that measurement disturbs quantum states, so if
the adversary can learn information about the state, she can change the state. More precisely, if the adversary
can distinguish between two staté$ and|1), she can change the stafe + |1) to |0) — |1). An extreme
version of this situation is contained in the following proposition:

Proposition 7 Suppose that there are two stat@g |1) whose corresponding density matriges, p|;y are
perfectly distinguishable. Then the scheme is not-aacureQAs for anye < 1.

Proof: Sincepg), p1y can be distinguished, they must have orthogonal support, say on subgpacesSo

consider an adversary who applies a phaseshift btonditioned on being i;. Then for allk, pl(é?Hl)

becomesafé“))_m. Thus, Bob will decode the (orthogonal) stéie — |1). O
However, in general, the adversary cannot exactly distinguish two states, so we must allow some proba-
bility of failure. Note that it is sufficient in general to consider two encoded pure states, since any two mixed
states can be written as ensembles of pure states, and the mixed states are distinguishable only if some
pair of pure states are. Furthermore, we might as well let the two pure states be orthogonal, since if two
nonorthogonal statggy,) and|y,) are distinguishable, two basis stat@sand|1) for the space spanned by
|1o) and|w;) are at least as distinguishable.
Given the space limitations of this abtract, we outline the proof with a sequence of lemmas, whose proofs
are contained in Appendix E.



We first consider the case whém) and |1) canalmostperfectly be distinguished. In that case, the
adversary can change) + |1) to |0) — |1) with high (but not perfect) fidelity (stated formally in Lemma
16). When0) and|1) are more similar, we first magnify the difference between them by repeatedly encoding
the same state in multiple copies of the authentication scheme, then apply the above argument.

Lemma 8 Suppose that there are two stafeg [1) such thatD(pgy, pj1y) > 1 —n. Then the scheme is not
e-secure forly)) = |0) 4 |1) for anye < 1 — 2n.

When two states can be distinguished, but only just barely, the above lemma is not sufficient. Instead,
we must magnify the distinguishability of the stat@sand|1) by repeating them by considering the tensor
product of many copies of the same state. The probability of distinguishing then goes to 1 exponentially fast
in the number of copies:

Lemma 9 Let p, p1 be density matrices with(pg, p1) = 6. ThenD(p§", pi*) > 1 — 2 exp(—t52/2).

We create these repeated states by encoding them in an iteredednsisting ot copies of the original
QASs (with independent values of the key for each copy).

Lemma 10 Suppose we iterate the schetrtenes. Lety) = %(\000...@ +(111...1)). If (4, B,K) isan
e-SecureQAs, then the iterated schemeli6t®e-secure for the statg)).

Note that the proof of this lemma goes through the following crucial claim, which follows from a simple
hybrid argument.

Claim 11 (Product states) The iterated scheme is-secure for any product state.

Putting the various lemmas together, we find that, given two sf@tesd|1) which are slightly distin-
guishable by the adversary, $%(pg, p1) > 4, then in the iterated schem@po0...0) and|111...1) are more
distinguishable:D(pjoo0...0y; 2111..1y) = 1 — 1, wheren < 2exp(—t62/2). Since the iterated scheme is
10t3e-secure for the state)) = %(]000...0) 4 |111...1)), then by the first lemma,

10t% > 1 — 21 > 1 — dexp(—t52/2)

Choosingt = 1/+/20¢, we gets < 4¢!/9.

7 Quantum Signatures

One consequence of the previous theorem is that digitally signing quantum messages is impossible. One
can imagine more than one way of defining this task, but any reasonable definition must allow a recipient—
who should not be able to alter signed messages—to learn something about the contents of the message.
However, this is precisely what is forbidden by the previous theorem: in an information-theoretic setting,
any adversary who can gain a non-trivial amount of information must be able to modify the authenticated
state with non-negligible success.

If we consider computationally secure schemes, a somewhat narrower definition of digitally signing
guantum states remains impossible to realize. If we assume a quantum digital signature protocol should
allow any recipient to efficiently extract the original message, then a simple argument shows that he can also
efficiently change it without being detected, contradicting the security of the scheme. Namely: Assume that
there is transformatioty with a small circuit which extracts the original messagéeaving auxiliary state
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l¢) (which may not all be held by Bob). In order to preserve any entanglement beprseha reference
system, the auxiliary stateo) must be independent of Therefore, Bob can replagewith any other state
¢’ and then perfornd/T on p’ and his portion ofy), producing a valid signature fgr. This is an efficient
procedure: the circuit fob/ T is just the circuit forl/ executed backwards.

Note that we have actually shown a somewhat stronger result: it is not possible, even when the sender
is known to be honest, to authenticate a quantum message to a group of receivers (some of whom may be
dishonest). This presentation also makes some limitations of our proof clear. For instance, the proof does
not apply if the sender knows the identity of the quantum state he is signing.

8 Discussion and Conclusion

An interesting feature of our scheme: if the transmission quantum channel is not error free, we can modify
our scheme to take advantage of the error-correction capability of the quantum code. More predssely, if
rejects only when the number of observed errors is too large then error correction will fix natural noise or
tampering of small amplitude.

Moreover,QAS can be combined nicely with teleportation so that the original state may never be de-
stroyed by an opponent: Il succesfully authenticates half of an EPR paiasing the scheme with
classical keys, she may now teleport any siate him in such a way that the opponent must jatis
broadcast of classical information to preverfrom reachings. If at any time in the futured can reliably
complete the teleportation with, then he indeed received

We have examined various aspects of the problem of authenticating quantum messages. We have shown
the security of a large class of private-key quantum authentication schemes, and presented a particular highly
efficient scheme from that class. One feature of the scheme is that it completely encrypts the message, and
we show that this is a necessary feature of any quantum message authentication code: if any observer can
learn a substantial amount of information about the authenticated state, that observer also has a good chance
of successfully changing the state without being detected. We have also studied authentication of quantum
states in a public key context, and shown that while authentication is possible with public keys, digitally
signing quantum states is never possible, even when only computational security is required.
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A Alternative Security Definition

The definition of security of an authentication scheme given in Section 3 appears at first sight to have a major
shortcoming: it does not tell what happens wh&s input is a mixed state. Intuitively, this should not be

a problem, since one expects security to extend from pure states to mixed states more or less by linearity.
Indeed, this is the case, but it is not entirely clear whatéantby security when4'’s input is a mixed state

p. One straightforward approach is to add a reference sy&teamd to assume the joint system.dfand

R is always pure; then the requirement is that the final stai® ahd R should high fidelity to the initial

state. We could also use the following informal definition, which we will show is implied by Definition 2:

as long a$3’s probability of acceptance is significant, then when he accepts, the fidelity of the message state
he outputs tod’s original state should be almost 1.
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Proposition 12 Suppose thatA, B, K) is a e-secureQAs. Let p be the density matrix ofl’'s input state
and letp’ be the density matrix output i conditioned on accepting the transmission as valtien if3’s
probability of accepting i9qcc, the fidelity ofp to p’ is bounded below. For anyand any adversary action
O, we have: F(p,p) > ,/1— .

In particular, ife is negligible ang,.. is non-negligible, then the fidelity d#’s state toA’s input state
will be essentially 1.

To prove this, we first restate Proposition 12 more formally. pgl, be the state of4’s two output
systemsM, V when A’s input is p. Denote the projector onto the space of accepting statds, biyat is
II=Iy® |1><1‘

Using this notation/3’s probability of accepting is... = Tr(Ilpp.), and the density matrix of the joint

system)M, V conditioned on acceptances.. = Trrl(plf:bn) = Hezarll,
Bob ace

Now sincep,.. has been restricted to the cases whgeecepts, we can writg,.. = p’ ® [1)(1|, where
P’ is the density matrix of3’s message system conditioned on his acceptance of the transmission as valid.
From the definition of fidelity, we can see that

F(ﬁ? pl) = F(p® ‘1><1’, pacc)

We can now restate the theorem:

Claim (Proposition 12):  F(p ® |[1)(1|, pacc) = 1€

pacc

Proof (of Theorem 12)Write p = ), pi|1;) (¢;| for some orthonormal basigi;) }. For eachi, let p; be
B's output whenA uses inputy;). We haveppo, = Y, pip;.

For eachi, let P, = |v;) (v;] @ |1)(1]| and letQ; = (Inr — |¥i) (¥i]) @ |1)(1] so thatP; + Q; = T1.

Now we can writep @ [1)(1] = 3=, pi P, @ndpace = >, pit,22. By the concavity of fidelity (theorem
9.7 of [15]), we get ‘

F(p® [1){1], pucc) = F (Zpipi, e ) > ( “’”H) ©)

pacc pacc

The formula for fidelity for one-dimensional projectors is simple: for a projeta@nd any density matrix
o, we haveF' (P, o) = /Tr(Po). Thus expression (6) simplifies to

S piy[Tr (RHMH>

i pacc

Using the fact thaf’, P, P, = P;, we can further simplify this:

Z 1pz

pacc

Since/- is concave, we can apply Jensen’s inequality:

Zi piTr(BPi)
paCC

F(P & [V7 pacc) > (7)

Now the acceptance probability,.. = Tr(Ilpp.,) can be written ad . p; Tr(Ilp;). Using the fact that
IT =P, + Q; we get thaIUacc = (Zz piTr( zpl)) (Z pi T (szz))

13



But by the definition ofe-security, we know that for each we have T(Q;p;) < ¢, and SOpgc <
(> piTr (Pip;)) + €, and so we getd ~, p;Tr (Pipi)) > pace — €. Applying this observations to expression

(7), we get :
— € €
F(p®IV7pacc) > \/pacc = \/1—
pacc pacc

B Proof of Proposition 1

Proposition 1 states that a stabilizer purity testing code can always be used to produce a purity testing
protocol with the same errer

Proof: If A andB are givenn EPR pairs, this procedure will always accept, and the output will always be
|®T)®™ Thus,7 satisfies the completeness condition.

Suppose for the moment that the input statéAs © I)|®1)®", for £, € E, z # 0. Then wherk is
chosen at random, there is only probabilitthatx € Q% — Q. fx ¢ Qk{ then.A and’5 will find different
error syndromes, and therefore reject the state.dfQ;", then.4 andB will accept the state, but if € Qy,
then the output state will bg™)®™ anyway. Thus, the probability that and B will accept an incorrect
state is at most.

To prove the soundness condition, we can use this fact and a technique of Lo and Chau [14]. The states
(E, ® I)|®1)®" form the Bell basis for the Hilbert space dfand3. Suppose a nonlocal third party first
measured the input statein the Bell basis; call this measuremest Then the argument of the previous
paragraph would apply to show the soundness condition. In fact, it would be sufficient if Alice and Bob used
the nonlocal measureme®t ® Q) which compares th@-syndromes ford and5 without measuring them
precisely. This is a submeasurement of the Bell measurementthat is, it gives no additional information
about the state. Therefore it commutes wigh so the sequencB followed by Q; ® Qy is the same as
Qi ® Qy, followed by B, which therefore gives probability at ledst e of success for general input stages
But if the state afte€;, ® Q. gives, from a Bell measuremen®™)®"™ or |REJ) with probability1 — ¢, then
the state itself must have fidelity— ¢ to the projectionP. Therefore, the measuremept ® Qy, without B
satisfies the soundness condition. Moreoyeand3’s actual procedur@ is a refinement of), ® Q—that
is, it gathers strictly more information. Therefore, it also satisfies the soundness conditidnjsaagurity
testing protocol with errot.

O
C Analysis of Purity-Testing Code Construction
In Section 4.1, we present a family of stabilizer codes and claim they form a purity testing code:
Theorem 13 The set of code®Q);, form a stabilizer purity testing code with error
2r
=5 )

Each code);, encodesn = (r — 1)s qubits inn = rs qubits.

We must show (a) thad, is totally isotropic, and (b) that the error probability is at mast
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(a) Recall the definition of the symplectic form
B(z,y):=Tr [my?s — y:lc27"s] ) 9)
Now, leta, 8 € GF(2°). Then

B(ax, By) = Tr [ax(By)*" — By(ax)"]
= afTr [nym - yxys] = af(z,y) . (10)

(We have used the fact that = « for any fieldGF(q). In particular,a®” = o and3?” = 3.) Fix an
x € Qr — {0}. Everyy € Qr may be written asvwx, for somea € GF(q¢®). Now B(z,z) = 0. So,
B(ax, fz) = 0,i.e.,Qy is totally isotropic under the symplectic form (9).

(b) We must find, for an arbitrary errdt,. (which can be described aa-dimensional binary vector
x), an upper bound on the number@;‘CL — Qi it can belong to. It will be sufficient to bound the number of
Q; the error can belong to, sin¢@y| is small compared t@;-| in our context.

GivenE,, x € Q% meansB(z,y) = 0 for all y € Q. Fors y's each in a different one-dimensional
subspace of);, these linear equations will be independent. So, eglior which z € @Q;- knocks out
dim(Qy) = s subspaces of the overall space as possible basis vectors of a subspace contafng
a good bound, we want a construction such that as we add more valégb@fequationd3(z,y;) = 0
for y; € Qy are linearly independent from the equations for earlier valugs (@intil we reach the total
dimension’s worth of equations and this is no longer possible). Then it will quickly become inconsistent to
assumer € Qi for too many values of, because we will quickly impose more than the overall dimension’s
worth of linearly independent equations enin other words, we want the-d subspaces ipJ,, PG(Q},) to
bein general position A set of points in a projective geometry of dimensibn 1 are said to be in general
position if anyd (= dimension of the underlying vector space, when, as in our case, such exists) of them are
linearly independent. The points on the normal rational cOhare in general position. (To verify this one
shows that for angr points on the curve, the determinant of the matrix of their coordinates is nonzero; these
are easily evaluated Vandermonde determinants. More abstractly, the proposition follows from the fact that
the curve is a quasi-projective variety of degeethough the calculation establishing this is essentially the
same.) The normal rational curve is a particularly good source of such points for our purposes, because it
gives us a very large — probably as large as possible — set of points in general position, which means that
the ratio of the maximal number of codes in which an error can be undetectable to the total number of codes
is low.

The upshot is that angr points onT are linearly independent. Each poinbn YT corresponds to an
s-dimensional codé€);, consisting oR2rs-dimensional vectors. Let be any nonzero element ¢f,.. As «
ranges ove(=F'(¢®), az ranges over all vectors i;. Thus, if any vector fron®);, is a linear combination
of vectors from other code§?;}, than all ofQ;, is also a linear combination of vectors frofy;}, and
k is linearly dependent on the poinfg} of Y. So if we take anyr codesQy, and takes independent
vectors from each, the resulting setfs vectors is linearly independent. Hence a given efrgrcan
satisfyx € Qi for at most2r values ofk, when(@ are chosen among tt2 + 1 availables-dimensional
spaces corresponding to points nThus, the{Q} form a purity testing code with error

2r
e <

: 11
=254 1 (11)

D Proof of secure authentication

Corollary 3 states that the interactive authentication protocol 5.1 is secure.
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Proof (of Corollary 3):

The completeness of the protocol can be seen by inspection: in the absence of intervéatiwh3
will share the Bell stategb™)®™ at the end of step 6 and so after the teleportation in stgjs dutput will
be exactly the input o#.

To prove soundness, suppose tHat input is a pure statg)). Intuitively, at the end of step 64 and3
share something very close[tb")®™, and so after the teleportation in step 7 eitB&r output will be very
close toA’s input, or he will reject because of interference from the adversary.

More formally, after step 6, the joint statq 5 satisfies T(Pp4p) > 1 — e. At this point, by assumption
the only thing that the adversary can do is attempt to jam the communication beteee/3. Thus the
effect of step 7 will be to map the subspace giventbinto the subspace given blyl‘w. Consequently, at
the end of the protocols’s output density matrix will indeed lie almost completely in the subspace defined
by le’).

a

Theorem 4 states that the non-interactive Protocol 5.2 is secure. To prove this, we show that Protocol 5.1
is equivalent to 5.2, by moving through two intermediate protocols D.1 and D.2. We reduce the security of
each protocol to the previous one; since Protocol 5.1 is secure by Corollary 3, the theorem follows.

Protocol D.1 ( Intermediate Protocol |)
1: AandB agree on some stabilizer purity testing codegy. }

2. A generate2n qubits in statg®™)®". A picks at randonmk € K, and measures the syndromef the
stabilizer code);, on the first half of the EPR pairsA decodes her-qubit word according taQ. A
performs the Bell measurement to start teleportation with her gtabsing the decoded state as if it were
half of |®*) pairs, but does not yet reveal the measurement resuti the teleportation..A sends the
second half of each EPR pair &

3: B announces that he has received thqubits. Denote the received statedly
4: A announceg and the syndrome of Q. to BB.

5. B measures the syndroméof Q. on hisn qubits. B compares the syndromg to y. If they are different
BB aborts. B decodes his-qubit word according ta)y.

6: A concludes the teleportation by sending the teleportation measurement res$ulte step 2.3 does his
part of the teleportation and obtains.

ProToCOL5.1 — PrRoOTOCOLD.1: We obtain protocol D.1 by observing that in protocol 54l¢an
perform all of her operations (except for the transmissidregdreshe actually sends anything B since
these actions do not depend 8fs feedback. This will not change any of the states transmitted in the
protocol or computed by Bob, and so both completeness and soundness will remain the same.

PrRoTOCOL D.1 — PROTOCOL D.2: There are two changes between Protocols D.1 and D.2. First,
note that measuring the first qubit of a stibe") and obtaining a random bit is equivalent to choosing
c; at random and preparing the pure stiat¢ ® |c;). Therefore, instead of preparing the stgbe )" and
measuring the syndrome of half of if may as well choose the syndromeat random and encode both
halves of the statgb*)®™ using the cod€), and the syndrome.

Second, rather than teleporting her state 53 using the EPR halves which were encode@)iy ,, A
can encrypp using a quantum one-time pad (QOTP) and send/ tlirectly, further encoded i);.. These
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Protocol D.2 ( Intermediate Protocol 1)
1: A andB agree on some stabilizer purity testing codgy.

2. A choses a randor@n bit keyx and g-encryptg ast usingz. A picks a randonk € K and syndrome
for the codel);, and encodes according toQy. A sends the result t5.

3: B announces that he has received thqubits. Denote the received stateddy
4: Aannounceg, z, andy to B.

5. B measures the syndroméof the code) .. B compareg, to 4, and aborts if they are differents decodes
his n-qubit word according ta), obtainingr’. B g-decryptsr’ usingz and obtaing’.

behaviours are equivalent since either way, the encoded staﬁjef@paf?agl, wheret; andt, are random
n-bit vectors.

ProTOCOLD.2 — PROTOCOLS.2: In Protocol 5.2, all the random choicesAfare replaced with the
bits taken from a secret random key shared only by herAarihis eliminates the need for an authenticated
classical channel, and for any interaction in the protocol. This transformation can only increase the security
of the protocol as it simply removes the adversary’s ability to jam the classical communication. O

E Proofs from Section 6
Theorem 14 (Main Lower Bound) A QAs with error ¢ is an encryption scheme with error at mast/S.
To get a sense of the proof, consider the following proposition:

Proposition 15 Suppose that there are two states, |1) whose corresponding density matrigesg,, |1
are perfectly distinguishable. Then the scheme is natsecureQAs for anye < 1.

Proof: Sincepg), p)1y can be distinguished, they must have orthogonal support, say on subgpakesSo

consider an adversary who applies a phaseshift btonditioned on being i;. Then for allk, pl(é?Hl)

becomes;f(';))_m. Thus, Bob will decode the (orthogonal) stéie — |1). O
However, in general, the adversary cannot exactly distinguish two states, so we must allow some proba-
bility of failure. Note that it is sufficient in general to consider two encoded pure states, since any two mixed
states can be written as ensembles of pure states, and the mixed states are distinguishable only if some
pair of pure states are. Furthermore, we might as well let the two pure states be orthogonal, since if two
nonorthogonal statggy,) and|y,) are distinguishable, two basis stat@sand|1) for the space spanned by
|1o) and|w;) are at least as distinguishable.
We first consider the case whéb) and|1) canalmostperfectly be distinguished. In that case, the
adversary can change) + |1) to |0) — |1) with high (but not perfect) fidelity (stated formally in Lemma
16). When0) and|1) are more similar, we first magnify the difference between them by repeatedly encoding
the same state in multiple copies of the authentication scheme, then apply the above argument.

Lemma 16 Suppose that there are two statés, |1) such thatD(pgy, pj1y) > 1 — 1. Then the scheme is
note-secure forjy)) = |0) + |1) for anye < 1 — 2n.
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Proof (of Lemma 16)Let pg = p|p) andp; = pj1y. Consider the Hermitian matrix = pp — p1. We can
diagonalizes. Let | be the space spanned by eigenvectors with non-negative eigenvaluesigniodehe
orthogonal complement.

Sincel/2Tr|o| > 1 —n, but Tro = 0, we know that T(Vyo) = —Tr(Vio) > 1 —n. Thus, T(Vypo) >
Tr(Voo) > 1 —n. Similarly, Tn(Vipy) > —=Tr(Vio) > 1 —n.

Consider an adversary who applies a phaseshiftio€onditioned on being if¥;. Fix a particular key
k. Letpy =Tr (Vop(()k)> andp; = Tr (legk)) We know that the expected valuespgfandp, are both at

leastl — 7.

Claim 17 When the input state %(m) + (1)), the fidelity of Bob’s output to the sta%(|0> —|1))|acc)
is at leastpy + p1 — 1.

Proof: Consider some reference syst@&mvhich allows us to purify the state%k), Py ) to the statedd), |1).
Let |¢)) be the image OPQ(IO) + |1)) under the adversary’s conditional phaseshift.

We want to show thdt)) is close to a correct encoding %(\O) —|1)), i.e. close to

;5<|> i) = 7<vo|o>+vlro> Vol) — Vili)).

After the transformation, we obtain
) = 7(Vo!0> Vi|0) + Vol1) — Wi|1)).
V2
Thus,

[Vo[0) — (0[v1|0) — (1| Vo[T) + (1|VA|1)

N

(0
—(0[Vo|T) + (1|V6]0) + (0|2 [1) — (1|v1]0))
( (Vopy") = Tr(Vipy”) = Tr(vopl) + Tr(vip?)

~[{O1VAIT) — (TVal0)] + |01V [T) — (i|vi[0)] )

N | —

We can substitute for the first line in termsgfandp;, which are real. The second line is purely imaginary.
Thus,

00 = 10)] = 30— (1=m) = (1 =) +1] =+ 11— 1.

Bob’s decoding can only increase the fidelity of the two states, as can discarding the reference system, prov-
ing the claim. O

Thus, for a specific valug of the key, F(p*), 75 (10) = [1))lacc)) > po +p1 — 1, wherep(¥) is
the output after the adversary’s transformation when the inp%' + |1)). Fidelity is concave, so by

Jensen’s inequality the fidelity of the average density maitrix S >k p¥) is at least the average of the
fidelities for eachk. That is,

Fp, ;§<ro> — 1)lacc)) > Ulc Sntpi-121-2
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In other words, the adversary can change the s%(qx)) + |1)) with probability at least — 2. O

When two states can be distinguished, but only just barely, the above lemma is not sufficient. Instead,
we must magnify the distinguishability of the statesand|1) by repeating them by considering the tensor
product of many copies of the same state. The probability of distinguishing then goes to 1 exponentially fast
in the number of copies:

Lemma 18 Let py, p1 be density matrices with(pg, p1) = 6. ThenD(p5", p*) > 1 — 2 exp(—t52/2).

Proof (of Lemma 18)We can boun(D(p[j@t, P by giving a test which distinguishes them very well. We
know there exists a measurement given by sp&gel; such that T¢Vppp) — Tr(Vop1) = 6. Consider the
test which performs this measurementtdndependent copies @f or p;. The test outputs 0 if more than
(Tr(Vopo) + Tr(Vop1))/2 of the measurements produce 0.

By the Chernoff bound, the probability that this test will make the wrong guess is absgstté?/2).
Thus,D(pS", pP') > 1 — 2exp(—t52/2). O

We create these repeated states by encoding them in an iteredensisting ot copies of the original
QAS (with independent values of the key for each copy).

Lemma 19 Suppose we iterate the schetrtenes. Letfvy) = %(\000.”@ +[111...1)). If (4, B,K) isan
e-SecureQAs, then the iterated schemeli6t®e-secure for the statg)).

Note that the proof of this lemma goes through the following crucial claim, which follows from a simple
hybrid argument.

Claim 20 (Product states) The iterated scheme is-secure for any product state.

Proof (of Claim 20): For simplicity we prove the claim for the sta@00...0). The same proof works for
any product pure state (and in fact for separable states in general).
Intuitively, an adversary who modifies the st#i@0...0) must change some component of the state. We

can formalize this by rewriting the project(E’éOOO“'0> in terms of the individual projectorB(LO”.
For the case¢ = 2, Bob accepts only if he finds the verification qubits for both schemes in the accept
state.

P = (Tyms — 100)(00]) @ |ACCi){ACC)| ® |ACC,)(ACCy]
= (T = 10)(01) © Iy + Ty @ (Img = 10)0]) = (Tmy = 10){0]) & (Im — 001 )

®|Accy)(ACC| ® |ACC2)(ACC,|
= Péoh ® |ACCo)(ACCy| + P(‘]0>2 ® |ACC)(ACCy| — P(‘)0>1 ® PAOM

SinceP(L0>1 ® PA% is positive, for allp, we have
Tr(PY p) < Te(PY p) + TH(P) 2 p) < 2¢

Similarly, for larger values of we have



Thus the iterated schemetissecure for000...0) (and in fact for all product states). O

Proof (of Lemma 19)Consider the net superoperator due to encoding, decoding, and the adversary’s inter-

vention, i.e.Ope = ﬁ > & BrOaav Ak By introducing an ancilla syster}, we can extend this superop-

erator to a linear transformation on the joint systéfmz R ® V (whereM is the message system avids
Bob’s verifcation qubit). For a pure state), write its image as

[ [V [ACC) + |Gy ) [RED +[0)y))[ACC)

where|d,) is a joint state of\/ R which is orthogonal to the subspajeg © R.
Now consider the family of stateg;) = \OOQ...O 111'f’1>’ and let|y;) = [vy,)) and|d;) = [0y,))-

7 t—1
Claim 21 Forall i = 0,....t — 1, we have|| 2 (|yir1) — )| < (1 + v2)V/te

Proof: Fix i. Note that|yy) = %(le) + [¢;)) is a product state (witti|0) in one position), as is
|_) = %(WHQ — [1;)). The image ofv ;) can be written

¢1§ (i) + [ ad)IAace) + (1) + 6)ACC) + (1Bi11) + 8))|RES)
1

= (gl + i) + g heen) = i) + =

(18i41) + 15:))) Iace)

1
+—=(8i+1) + 16i))|REJ
ﬂ(\ﬁm |6i))IREY)
Now we know that||§;)||? < te for all i (since|;) is a product state). Thuﬁ,\%((wiﬂ) +[6)|| < V2te.
Moreover,|¢, ) is a product state and so we have

=g () = i) + s () + 18] < Ve
Thus, )3 (ise) — i)l = 13 (is) = Dl < (1 + V) Ve o

Then by the triangle inequality}; (|7:) — [0))ll < (1 + v2)tVie. Let|T) = 5 () % [vo)). The
image of( ¥ ) = %(\000...0) +]111...1)) is:

1

(19450 + b)) + 192051 = hod) + —=

(161) + 10)) ) Iacc)

=13 + 160 IReEY

7

Now the trace of this state witﬁ’(‘)q’+> is the square of

1905030 = o)) + =60+ 180D < 119-)5(30) = oD+ | 7=(16) + 6]
< (1+V2)tVte+ V2te
< V10t3e,



where in the last line, we have assunted 2. That is, the iterated schemeligt>c-secure forlw ). O

Putting the various lemmas together, we find that, given two sfatesd|1) which are slightly distin-
guishable by the adversary, 0 py, p1) > 4, then in the iterated schem@(0...0) and|111...1) are more
distinguishable:D(pjooo...0), £|111..1y) = 1 — n, wheren < 2exp(—t62/2). Since the iterated scheme is
10t3e-secure for the state)) = %(!000...0) +]111...1)), then by the first lemma,

10t% > 1 — 21 > 1 — dexp(—t5?/2)
Choosingt = 1/+/20¢, we gets < 4¢/9,
Corollary 22 A QAs with error e requires at leas2m(1 — poly(e)) classical key bits.

Proof (of Corollary 6): The argument is similar to the argument tBat bits of key are required for perfect
encryption. We show that transmitting the key through a channel allows the transmission of ahrimt
of information.

We can consider four subsystems, two held by Alice and two held by Bob. Bob holds both halves of
Bell states (the subsysteniy and B5), except thatB; has been encrypted by a kkysubsysteni() held
by Alice. Alice also holdsR, a purification of the other three systems.

Using superdense coding, Bob’s two systelysand B, can encod@m classical bits of information.
In order to recover that information, Bob needs Alice’s key (sysi€ynSince the encryption is not perfect,
however, Bob may have a small amount of information about the encoded state.

Let us imagine that Bob’s systems initially encode the classical megfage). Suppose Alice wishes
to send Bob the messagé. Since the encryption is almost perfect, Bob’s two density matyigg800...0)
andpp (M) are almost indistinguishable. Therefore, by the argument proving bit commitment is impossible,
Alice can change the pure state corresponding to encryjpied0 to something very close to the pure state
corresponding to encrypted .

If Alice now sendsK to Bob, he is able to (almost always) decode the messagelis failure proba-
bility is a polynomial ine, so he has receivetin(1 — poly(¢)) bits of information, and therefor& must
consist of at leastm (1 — poly(e)) classical bits or half as many qubits.

In fact, K might as well be classical: Bob’s decoding method will be to immediately medsusance
he is expecting a classical key, and therefore Alice might as well have medsusetbre sending it; natu-
rally, this actually means she includes entangled qubits in the purificBtidMe thus restricf to classical
bits and prove the corollary. O
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