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Abstract. To simplify proofs in information-theoretic security, the stan-
dard security definition of two-party secure function evaluation based
on the real/ideal model paradigm is often replaced by an information-
theoretic security definition. At EUROCRYPT 2006, we showed that
most of these definitions had some weaknesses, and presented new infor-
mation-theoretic conditions that were equivalent to a simulation-based
definition in the real/ideal model. However, there we only considered the
perfect case, where the protocol is not allowed to make any error, which
has only limited applications.

We generalize these results to the statistical case, where the protocol
is allowed to make errors with a small probability. Our results are based
on a new measure of information that we call the statistical information,
which may be of independent interest.

Keywords: Secure function evaluation, information-theoretic security,
security definition, oblivious transfer.

1 Introduction

Secure function evaluation [1] allows two (or more) parties to jointly compute
a function in a secure way, which means that no player may get additional
information about the other players’ inputs or outputs, other than what may be
deduced from their own input and output. A computationally secure solution
to this problem has been given in [2]. Schemes ensuring unconditional security
were subsequently provided in [3] and independently in [4].

Oblivious transfer [5,6,7] is a simple primitive of central interest in secure
function evaluation. It allows a sender to send one of n binary strings of length
k to a receiver. The primitive allows the receiver to receive the string of his
choice while concealing this choice from a (possibly dishonest) sender. On the
other hand, a dishonest receiver cannot obtain information about more than one
of the strings, including partial joint information on two or more strings. It has
since been proved that oblivious transfer is in fact sufficient by itself to securely
compute any function [8,9]. More completeness results followed in [10,11,12,13].
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1.1 Security Definitions

Formal security definitions for secure function evaluation have been proposed in
[14] and [15]. Both definitions were inspired by the simulation paradigm used in
[16] to define zero-knowledge proofs of knowledge. These definitions require that
for any adversary, there exists a simulated adversary in an ideal setting (which is
secure by definition) that achieves the same. That protocols which satisfy these
definitions are sequentially composable has been proved in [17]. See also [18].

Later, a stronger notion of security, called universal composability, has been
defined in [19] and independently in [20]. It guarantees that protocols are securely
composable in any way.

Even though simulation-based security definitions are widely accepted as be-
ing the right definition of security today, ad-hoc definitions are still widely used
due to their simplicity. Unfortunately, as we showed in [21], many of these def-
initions proposed for various specific scenarios have turned out to be deficient.
We proposed in [21] simple information-theoretic conditions for the security of
function evaluation, and proved that they are equivalent to the standard defi-
nition in the real/ideal model. However, these conditions could only be applied
in the perfect case, when the protocol does not have any failure probability and
does not leak any information, and therefore had only a very limited range of
applications. For the special case of randomized oblivious transfer, these condi-
tions have been generalized in [22] to the statistical case, where the protocol is
allowed to make errors with a small probability.

1.2 Information Measures

The Shannon mutual information has been introduced in [23], and is one of the
most important tools in information theory, as a measure of how many bits of
information one random variable has over the other. The mutual information
tells us for example how many bits can be transmitted over a noisy channel.

In information-theoretic cryptography, the mutual information has also been
used in security definitions, to express that an adversary obtains almost no
information about some secret, i.e., that two random variables are almost inde-
pendent. But since in cryptography we are not interested in how many bits the
adversary gets, but in the probability that he gets any information at all, the
mutual information is not a good measure for that task.

1.3 Contribution

First, we propose a new measure of information that we call the statistical in-
formation, which is better suited to express security conditions than the mutual
information. The difference between the statistical and the mutual information is
the distance measure they are based on: while the mutual information is based
on the relative entropy, the statistical information is based on the statistical
distance.

Then we will generalize the results from [21] and [22]. We present necessary
and sufficient information theoretic conditions for any two-party secure function
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evaluation in the statistical case, and apply them to oblivious transfer. The
statistical information plays a very important role to state these conditions.

1.4 Related Work

Recently, Fehr and Schaffner showed in [24] that similar results also hold in
the quantum setting. They presented security conditions for quantum protocols
where the honest players have classical input and output, and showed that any
quantum protocol that satisfies these conditions can be used as a sub-protocol
in a classical protocol.

1.5 Preliminaries

For a random variable X , we denote its distribution by PX and its domain by X .
PY |X = PXY /PX denotes a conditional probability distribution, which models a
probabilistic function that takes x as input and outputs y, distributed according
to PY |X=x.

Definition 1. The statistical distance between two distributions PX and PX′

over X is defined as δ(PX , PX′) = 1
2

∑
x∈X |PX(x) − PX′(x)|.

If δ(PX , PX′) ≤ ε, we may also write PX ≡ε PX′ or X ≡ε X ′. We will need the
following basic properties of δ.

Lemma 1 (Triangle Inequality). For any distributions PX , PX′ and PX′′ ,
we have

δ(PX , PX′′) ≤ δ(PX , PX′) + δ(PX′ , PX′′) .

Lemma 2 (Data Processing). For any distributions PXY and PX′Y ′ , we have

δ(PX , PX′) ≤ δ(PXY , PX′Y ′) .

Lemma 3. For any distributions PX and PX′ , and any conditional distribution
PY |X , we have

δ(PX , PX′) = δ(PXPY |X , PX′PY |X) .

Lemma 4. For any distributions PX and PX′ we have δ(PX , PY ) ≤ ε, if and
only if there exist events EX and EY with Pr[EX ] = Pr[EY ] = 1− ε and PX|EX

=
PY |EY

.

2 Statistical Information

In this section, we introduce the statistical information IS. While the mutual
information uses relative entropy as the underlying distance measure, we will
use the statistical distance. Its value tells us how close the distribution of three
random variables X , Y and Z is to a Markov-chain.

Definition 2. The statistical information of X and Y given Z is defined as
IS(X ; Y | Z) := δ(PXY Z , PZPX|ZPY |Z) .
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Obviously, this measure is non-negative and symmetric in X and Y . We will now
show more properties of IS, which are related to similar properties of the mutual
information.

Lemma 5 (Chain rule). For all PWXY Z , we have

IS(WX ; Y | Z) ≤ IS(W ; Y | Z) + IS(X ; Y | WZ)

Proof. We have

IS(X ; Y | WZ) = δ(PWXY Z , PWY ZPX|WZ) .

From Lemma 3 follows that

δ(PWY ZPX|WZ , PZPW |ZPY |ZPX|WZ) = δ(PWY Z , PZPW |ZPY |Z)
= IS(W ; Y | Z) .

Using Lemma 1 and PWX|Z = PW |ZPX|WZ , we get

δ(PWXY Z , PZPWX|ZPY |Z) ≤ IS(W ; Y | Z) + IS(X ; Y | WZ) . ��

Lemma 6 (Monotonicity). For all PWXY Z , we have

IS(W ; Y | Z) ≤ IS(WX ; Y | Z) .

Proof. Using Lemma 2, we get

IS(WX ; Y | Z) = δ(PWXY Z , PZPW |ZPX|WZPY |Z)
≥ δ(PWY Z , PZPW |ZPY |Z)
= IS(W ; Y | Z) . ��

Note that there exist PXY Z and QZXQY |Z , where

δ(PXY Z , QZXQY |Z) < δ(PXY Z , PZPX|ZPY |Z),

so PZPX|ZPY |Z is not always the closest Markov-chain to PXY Z . Luckily, as the
following two lemmas show, PZPX|ZPY |Z is only by a factor of 4 away from the
optimal Markov-chain, which is sufficient for our applications1.

Lemma 7. For all probability distributions PXY Z , we have

IS(X ; Y | Z) ≤ 2 · min
QY |Z

δ(PXY Z , PXZQY |Z) .

1 An alternative definition for IS would be to take the distance to the closest Markov-
chain. However, we think that this would make the definition much more compli-
cated, at almost no benefit.
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Proof. Let QY |Z be the conditional probability distribution that minimizes the
expression, and let ε := δ(PXY Z , PXZQY |Z). We have

PXZQY |Z = PZQY |ZPX|Z .

Let Q′
Y Z := PZQY |Z . From Lemma 2 follows that δ(PY Z , Q′

Y Z) ≤ ε and from
Lemma 3 that δ(PY ZPX|Z , Q′

Y ZPX|Z) ≤ ε. From Lemma 1 follows then that

δ(PXY Z , PXZPY |Z) ≤ 2ε . ��

Lemma 8. For all probability distributions PXY Z , we have

IS(X ; Y | Z) ≤ 4 · min
QXZ ,QY |Z

δ(PXY Z , QXZQY |Z) .

Proof. Let QXZ and QY |Z be the conditional probability distributions that min-
imize the expression, and let ε := δ(PXY Z , QXZQY |Z). From Lemma 2 follows
that δ(PXZ , QXZ) ≤ ε and from Lemma 3 that δ(PXZQY |Z , QXZQY |Z) ≤ ε.
From Lemma 1 follows that δ(PXY Z , PXZQY |Z) ≤ 2ε. The statement follows by
applying Lemma 7. ��

Lemma 9. For all PWXY Z , we have

IS(X ; Y | WZ) ≤ 2 · IS(WX ; Y | Z) .

Proof. From Lemma 7 follows that

IS(X ; Y | WZ) ≤ 2 · min
QY |WZ

δ(PWXY Z , PWXZQY |WZ)

≤ 2 · δ(PWXY Z , PWXZPY |Z)
= 2 · IS(WX ; Y | Z) . ��

2.1 Relation between I and IS

Since we would like to use IS in situations where previously the Shannon mutual
information I has been used, it is important to know how these two measures
relate to each other. Using Pinsker’s inequality (see, for example, Lemma 16.3.1
in [25]) and Jensen’s inequality, it is easy to show that

IS(X ; Y | Z) ≤
√

I(X ; Y | Z) .

The other direction can be shown using Lemma 12.6.1 from [25]. We get that
for IS(X ; Y | Z) ≤ 1

4 ,

I(X ; Y | Z) ≤ −2 · IS(X ; Y | Z) log
2 · IS(X ; Y | Z)
|X | · |Y| · |Z| .



Statistical Security Conditions for Two-Party Secure Function Evaluation 91

3 Two-Party Secure Function Evaluation

3.1 Definition of Security in the Real/Ideal Paradigm

We will now give a definition of secure function evaluation based on the real/ideal
model paradigm. We use the same definitions as [21], which are based on Defi-
nition 7.2.10 of [18] (see also [17]).

Let x ∈ X denote the input of the first party, y ∈ Y the input of the second
party and z ∈ {0, 1}∗ an additional auxiliary input available to both parties, that
is ignored by all honest parties. A g-hybrid protocol is a pair of (randomized)
algorithms Π = (A1, A2) which can interact by exchanging messages and which
additionally have access to the functionality g. A pair of algorithms A = (A1, A2)
is called admissible for protocol Π if either A1 = A1 or A2 = A2, i.e., if at least
one of the parties is honest and uses the algorithm defined by the protocol Π .
The joint execution of Π under A on input pair (x, y) ∈ X × Y and auxiliary
input z ∈ {0, 1}∗ in the real model, denoted by

realg

Π,A(z)
(x, y) ,

is defined as the output pair resulting from the interaction between A1(x, z) and
A2(y, z) using the functionality g.

The ideal model defines the optimal setting where the players have access to
an ideal functionality f they wish to compute. The trivial f -hybrid protocol
B = (B1, B2) is defined as the protocol where both parties send their inputs x
and y unchanged to the functionality f and output the values u and v received
from f unchanged. Let B = (B1, B2) be an admissible pair of algorithms for B.
The joint execution of f under B in the ideal model on input pair (x, y) ∈ X ×Y
and auxiliary input z ∈ {0, 1}∗, denoted by

idealf,B(z)(x, y) ,

is defined as the output pair resulting from the interaction between B1(x, z) and
B2(y, z) using the functionality f .

We say that a protocol securely computes a functionality, if anything an ad-
versary can do in the real model can be simulated in the ideal model.

Definition 3 (Statistical Security). A g-hybrid protocol Π securely com-
putes f with an error of at most ε if for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π, there exists a pair of
algorithms B = (B1, B2) that is admissible in the ideal model for protocol B
(and where the same players are honest), such that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) .

A very important property of the above definition is that it implies sequential
composition, see [17]. Note that in contrast to [17] or [18], we do not require the
simulation to be efficiently computable.
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The following lemma formalizes the idea already mentioned in [21], namely
that if a protocol is secure against adversaries without auxiliary input, then it
is also secure against adversaries with auxiliary input. To avoid that the ideal
adversary with auxiliary input gets infinitely big, we have to additionally require
that there exists an explicit construction of the ideal adversary without auxiliary
input.

Lemma 10. If a g-hybrid protocol Π securely computes f with an error ε against
adversaries with constant auxiliary input and the construction of the ideal adver-
sary is explicit, then it securely computes f with an error of at most ε.

Proof. If both players are honest the auxiliary input is ignored and the lemma
holds. Let player i be malicious and denote by Ai the algorithm used. For a fixed
z ∈ {0, 1}∗, let A

z

i be equal to Ai, but with the auxiliary input z hard-wired
into it. Since Π securely computes f with an error ε against adversaries with
constant auxiliary input, there exists an algorithm B

z

i , such that for all x ∈ X
and y ∈ Y, we have

idealf,B
z(x, y) ≡ε realg

Π,A
z(x, y) .

Now, we let Bi be the concatenation of all B
z

i , i.e., on auxiliary input z the
adversary Bi behaves as B

z

i . Note that since we have an explicit construction
of B

z

i , Bi has a finite description. Obviously, we have for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗ that

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) .

Hence, Π securely computes f with an error of at most ε. ��
Therefore, to show the security of a protocol in our model, the auxiliary input
can be omitted, which we will do for the rest of this paper.

3.2 Information-Theoretic Conditions for Security

We will now state our main results, which are information-theoretic conditions
for the statistical security of a protocol without the use of an ideal model.

First of all, we will slightly change our notation. Let X and Y be random
variables denoting the player’s inputs, distributed according to a distribution
PXY unknown to the players, and let U and V be random variables denoting
the outputs of the two parties, i.e., for specific inputs (x, y) we have

(U, V ) = realg

Π,A
(x, y) , (U, V ) = idealf,B(x, y) .

The security condition of Definition 3 can be expressed as

PUV |X=x,Y =y ≡ε PUV |X=x,Y =y .

To simplify the statement of the following theorem, we will assume that the
ideal functionality f is deterministic. It can be generalized to probabilistic func-
tionalities without any problems.
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The conditions for the security for player 1 must ensure that there exists an
ideal adversary that achieves almost the same as the real adversary. We achieve
this by requiring that there exists a virtual input value Y ′ that the adversary
could have created (this is ensured by IS(X ; Y ′ | Y ) ≈ 0), and a virtual output
value V ′ that, together with U , could be the output of the ideal functionality,
given X and Y ′ as input (this is ensured by Pr[(U, V ′) = f(X, Y ′)] ≈ 1). The
protocol is secure if the adversary’s output V could have been calculated by him
from Y , Y ′ and V ′, which is ensured by IS(UX; V | Y Y ′V ′) ≈ 0.

Theorem 1. A protocol Π securely computes the deterministic functionality
f with an error of at most 3ε, if for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π and for any input (X, Y )
distributed according to PXY over X ×Y, A produces outputs (U, V ) distributed
according to PUV |XY , such that the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr[(U, V ) = f(X, Y )] ≥ 1 − ε .

– (Security for Player 1) If player 1 is honest then there exist random variables
Y ′ and V ′ distributed according to PY ′V ′|XY UV such that

Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε ,

IS(X ; Y ′ | Y ) ≤ ε

and
IS(UX ; V | Y Y ′V ′) ≤ ε .

– (Security for Player 2) If player 2 is honest then there exist random variables
X ′ and U ′ distributed according to PX′U ′|XY UV such that

Pr[(U ′, V ) = f(X ′, Y )] ≥ 1 − ε ,

IS(Y ; X ′ | X) ≤ ε

and
IS(V Y ; U | XX ′U ′) ≤ ε .

Both PY ′V ′|XY UV and PX′U ′|XY UV should have explicit constructions.

Proof. If both players are honest, the correctness condition implies

PUV |X=x,Y =y ≡ε PUV |X=x,Y =y ,

for all x and y. If both players are malicious nothing needs to be shown.
Without loss of generality, let player 1 be honest and player 2 be malicious.

Let us for the moment assume that the input distribution PXY is fixed and
known to the adversary, so the joint distribution in the real model is

PXY UV = PXY PUV |XY .
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We will define an admissible protocol B = (B1, B2) in the ideal model that
produces almost the same output distribution as the protocol Π in the real
model. On input y, let B2 choose his input y′ according to PY ′|Y =y, which we
model by the channel PY ′|Y . After receiving v′ from the ideal functionality f ,
let B2 choose his output v according to PV |Y =y,Y ′=y′,V ′=v′ , which we model by
the channel PV |Y Y ′V ′ . The distribution of the input/output in the ideal model
is given by

PXY UV = PXY

∑

y′,v′
PY ′|Y PUV ′|XY ′PV |Y Y ′V ′ ,

where (U, V ′) = f(X, Y ′).
In the real model, it follows from IS(X ; Y ′ | Y ) ≤ ε that

PXY PY ′|XY ≡ε PXY PY ′|Y ,

from IS(UX; V | Y Y ′V ′) ≤ ε that

PXY PUY ′V ′|XY PV |XY UY ′V ′ ≡ε PXY PUY ′V ′|XY PV |Y Y ′V ′ ,

and from Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε and Lemma 4 that

PXY PY ′|XY PUV ′|XY ′ ≡ε PXY PY ′|XY PUV ′|XY Y ′ .

We have

PXY UV = PXY

∑

y′,v′
PY ′|Y PUV ′|XY ′PV |Y Y ′V ′

≡ε PXY

∑

y′,v′
PY ′|XY PUV ′|XY ′PV |Y Y ′V ′

≡ε PXY

∑

y′,v′
PY ′|XY PUV ′|XY Y ′PV |Y Y ′V ′

≡ε PXY

∑

y′,v′
PY ′|XY PUV ′|XY Y ′PV |XY UY ′V ′

= PXY UV .

Therefore, given PXY , we are able to construct an adversary in the ideal
model that simulates the output of the real protocol with an error of at most
3ε. However, we have to show that a fixed adversary in the ideal model works
for every input (x, y) ∈ X × Y.2

Given PXY , let e be the average error of the simulation, and let exy be the
error if the input is (x, y). We have e =

∑
x,y PXY (x, y)·exy. Let h(PXY ) → P ′

XY

a function that maps from the space of all distribution over X ×Y to itself, where

P ′
XY (x, y) := PXY (x, y) · exy + 1

e + 1
.

2 This part is missing in [21], but there the problem can be solved easily by fixing
PXY to the uniform distribution. But in our case, this would give us an error bound
that would depend on the dimension of the input, which would be quite weak.
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h is a continuous3 function from a non-empty, compact, convex set S ⊂ R
|X×Y|

into itself, so by Brouwer’s Fixed Point Theorem h must have a fixed point
distribution QXY . (A constructive proof of Brower’s Fixed Point Theorem can
be found in [26].) So we have for all (x, y) that

QXY (x, y) = QXY (x, y) · exy + 1
e + 1

and QXY (x, y) > 0, and hence exy = e. Therefore, by taking the adversary in
the ideal model for the input distribution QXY , the output will have the same
error e for all inputs. Since e ≤ 3ε, we get for all x and y

PUV |X=x,Y =y ≡3ε PUV |X=x,Y =y ,

which implies that the protocol is secure with an error of at most 3ε. ��
Theorem 2 now shows that our conditions are not only sufficient but also
necessary.

Theorem 2. If a protocol Π securely computes the deterministic functionality
f with an error of at most ε, then for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π and for any input (X, Y )
distributed according to PXY over X ×Y, A produces outputs (U, V ) distributed
according to PUV |XY , such that the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr[(U, V ) = f(X, Y )] ≥ 1 − ε .

– (Security for Player 1) If player 1 is honest then there exist random variables
Y ′ and V ′ distributed according to PY ′V ′|UV XY such that

Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε ,

IS(X ; Y ′ | Y ) = 0

and
IS(UX; V | Y Y ′V ′) ≤ 4ε .

– (Security for Player 2) If player 2 is honest then there exist random variables
X ′ and U ′ distributed according to PX′U ′|UV XY such that

Pr[(U ′, V ) = f(X ′, Y )] ≥ 1 − ε ,

IS(Y ; X ′ | X) = 0

and
IS(V Y ; U | XX ′U ′) ≤ 4ε .

3 We can assume that PY ′V ′|XY UV is a continuous function of PXY .
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Proof. There exists an admissible pair of algorithms B = (B1, B2) for the ideal
model such that for all x ∈ X and y ∈ Y, we have

PUV |X=x,Y =y =ε PUV |X=x,Y =y .

If both players are honest we have B = B. B1 and B2 forward their inputs (X, Y )
unchanged to the trusted third party, get back (U ′, V ′) := f(X, Y ) and output
(U, V ) = (U ′, V ′) = f(X, Y ). It follows that Pr[(U, V ) = f(X, Y )] ≥ 1 − ε.

Without loss of generality, let player 1 be honest and player 2 be malicious.
Let us look at the execution of B = (B1, B2), and let PXY be an arbitrary
input distribution. The malicious B2 can be modeled by the two conditional
probability distributions PY ′S|Y computing the input to the ideal functionality
f and some internal data S, and PV |V ′S computing the output. We get

PXY UV Y ′V ′ =
∑

s

PXY PY ′S|Y PUV ′|XY ′PV |V ′S (1)

= PXY PY ′|Y PUV ′|XY ′
∑

s

PS|Y Y ′PV |V ′S (2)

= PXY PY ′|Y PUV ′|XY ′PV |Y V ′Y ′ , (3)

where (U, V ′) = f(X, Y ′).
Let PY ′V ′|UV XY := PY ′V ′|UV XY . From PY ′V ′|UV XY = PY ′|Y PV ′|UV XY Y ′ fol-

lows that
IS(X ; Y ′ | Y ) = 0 .

From PUV XY ≡ε PUV XY and Lemma 3 follows that

PXY UV Y ′V ′ ≡ε PXY UV Y ′V ′ .

Since PXY UV Y ′V ′ = PXY UV ′Y ′PV |Y V ′Y ′ , it follows from Lemma 8 that

IS(UX; V | Y Y ′V ′) ≤ 4ε ,

and from Lemma 2 follows PXY ′UV ′ ≡ε PXY ′UV ′ , and therefore

Pr[(U, V ′) = f(X, Y ′)] ≥ 1 − ε . ��

3.3 Oblivious Transfer

We now apply Theorem 1 to 1-out-of-n string oblivious transfer, or
(
n
1

)
-OTk for

short. The ideal functionality fOT is defined as fOT(X, C) := (⊥, XC), where
⊥ denotes a constant random variable, X = (X0, . . . , Xn−1), Xi ∈ {0, 1}k for
i ∈ {0, . . . , n − 1}, and C ∈ {0, . . . , n − 1}.
Theorem 3. A protocol Π securely computes

(
n
1

)
-OTk with an error of at most

6ε if for every pair of algorithms A = (A1, A2) that is admissible for protocol
Π and for any input (X, C), A produces outputs (U, V ) such that the following
conditions are satisfied:
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– (Correctness) If both players are honest, then U = ⊥ and

Pr[V = XC ] ≥ 1 − ε .

– (Security for Player 1) If player 1 is honest, then we have U = ⊥ and there
exists a random variable C′ distributed according to PC′|XCV , such that

IS(X ; C′ | C) ≤ ε , and IS(X ; V | CC′XC′) ≤ ε .

– (Security for Player 2) If player 2 is honest, we have V ∈ {0, 1}k and

IS(C; U | X) ≤ ε .

Proof. We need to show that these conditions imply the conditions of Theorem 1
for ε′ := 2ε. For correctness and the security for player 1 this is trivial.

For the security for player 2, we choose X ′ = (X ′
0, . . . , X

′
n−1) as follows: for all

values i, let X ′
i be chosen according to the distribution PV |XU,C=i except for X ′

C .
We set X ′

C = V . Note that all X ′
i, 0 ≤ i ≤ n − 1, have distribution PV |XU,C=i.

Thus X ′ does not depend on C given XU , and we have IS(C; X ′ | XU) = 0.
From Lemma 5 follows that

IS(C; X ′U | X) ≤ IS(C; U | X) + IS(C; X ′ | XU) ≤ ε .

Lemmas 6 implies that IS(C; X ′ | X) ≤ ε and, since V is a function of X ′ and
C, it follows from Lemma 9 that

IS(V C; U | XX ′) = IS(C; U | XX ′) ≤ 2 · IS(C; X ′U | X) ≤ 2ε .

The statements follows by applying Theorem 1. ��
Furthermore, note that using Lemmas 5 and 6, we get

IS(C; U | X) ≤ IS(C; X ′U | X)
≤ IS(C; X ′ | X) + IS(C; U | XX ′)
≤ IS(C; X ′ | X) + IS(V C; U | XX ′) ,

from which it is easy to show that the conditions of Theorem 1 also imply the
conditions in Theorem 3.
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