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Claude Crépeau1 ??, George Savvides1 ?,
Christian Schaffner2 ? ? ?, and Jürg Wullschleger3 †
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Abstract Definitions of unconditionally secure function evaluation based
on the simulation paradigm for the real/ideal model have the disadvan-
tage of being overly complicated to work with in practice. On the other
hand, the simpler information-theoretic definitions proposed for various
specific scenarios have often turned out to be deficient. Motivated by
this unsatisfactory situation, we present a simple information-theoretic
definition of two-party secure function evaluation for the general case
and prove its equivalence to the standard, simulation-based definition in
the real/ideal model.

1 Introduction

1.1 Secure Function Evaluation

Secure function evaluation is a cryptographic task originally introduced by Yao
in [31]. In essence, this task enables a set of mutually distrustful parties without
access to a trusted intermediary to jointly compute the output of a function f
without any party revealing any information about its input or output to the
other parties beyond what these parties can infer from their own inputs and
outputs. Goldreich, Micali and Wigderson [22] showed how to achieve this for
any function f in a computationally secure way. Schemes ensuring unconditional
security were subsequently provided by Ben-Or, Goldwasser and Wigderson [3]
and independently by Chaum, Crépeau and Damg̊ard [12].

Micali and Rogaway [26] and Beaver [2] proposed formal security definitions
for secure function evaluation. Both definitions were inspired by the simulation
paradigm used by Goldwasser, Micali and Rackoff [23] to define zero-knowledge
proofs of knowledge. In a nutshell, to each real protocol computing f we asso-
ciate a two-step procedure in an ideal model, where each party simply forwards
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its input to a trusted party which in turn computes f and distributes the corre-
sponding outputs to the parties. The real protocol is deemed secure if any adver-
sary attacking the protocol has a counterpart in the ideal model that achieves a
similar result simply by processing the input prior to forwarding it to the trusted
party, and then by processing the output it receives from it. In other words, a
protocol is secure if any attack can be simulated in the much more restrictive
ideal model. Such protocols secure in the real/ideal model paradigm were later
shown to be sequentially composable, in the sense that the composition of two or
more secure protocols is itself a secure protocol. The sequential composability of
secure protocols was further explored by Canetti [9,10] and Goldreich [21].

Canetti [11] also defined universal composability, an even stronger security re-
quirement that guarantees that protocols satisfying it can be securely composed
concurrently in any environment. A similar security definition was provided in-
dependently by Backes, Pfitzmann and Waidner [1]. Unfortunately, however ap-
pealing the properties of these security definitions may be, they are too strong
to allow even basic tasks such as bit commitment to be realized without further
assumptions. For this reason, we will limit ourselves to the simpler definition
based on the real/ideal model, as given by Goldreich [21].

1.2 Oblivious Transfer

1-out-of-n string oblivious transfer, denoted
(
n
1

)
-OTk, is a primitive that allows

a sender Alice to send one of n binary strings of length k to a receiver Bob.
The primitive allows Bob to receive the string of his choice while concealing
this choice from (possibly dishonest) Alice. On the other hand, the primitive
guarantees that (any dishonest) Bob cannot obtain information about more than
one of the strings, including partial joint information on two or more strings.

The first variant of oblivious transfer was introduced by Wiesner [29]. Inde-
pendently, Rabin re-introduced oblivious transfer in [28] and demonstrated its
potential as a cryptographic tool. Its applicability to multi-party computation
was shown by Even, Goldreich and Lempel in [20]. It has since been proved that
oblivious transfer is in fact sufficient by itself to securely compute any function
[24]. More completeness results followed in [14], [15] and [25].

1.3 Contributions

The motivation behind our work was to come up with a general, information-
theoretic security definition to replace the various ad-hoc definitions proposed
in the past that are only applicable to specific cryptographic primitives and in
restricted contexts. We start by reviewing some of these definitions and point
out their shortcomings, as well as subtle flaws that some of them contain. As
our starting point for deriving our general definition we use the real/ideal model
paradigm of Micali and Rogaway [26] and Beaver [2] and the associated secu-
rity definition for the case of computationally-bounded parties as it appears in
Goldreich [21]. We then adapt the model and the definition so as to allow both
parties to be arbitrary channels in a non-computational setting. We distill the
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relevant security properties of the ideal model into a set of information-theoretic
conditions, which become the basis of our new definition. We prove that despite
its apparent simplicity, our definition is in fact equivalent to the definition based
on the real/ideal model paradigm. We subsequently turn our attention to the
important special case of oblivious transfer. We show that in this case, the result-
ing security requirements can be significantly simplified. Moreover, our analysis
allows us to easily demonstrate that in the case of a dishonest sender, privacy
alone implies security. To further illustrate the usefulness of our definition, we
conclude by providing a simple information-theoretic proof of security for the
protocol presented in [30] that optimally inverts

(
2
1

)
-OT.

1.4 Shortcomings of Previously Proposed Security Definitions for
Oblivious Transfer

We revisit some information-theoretic definitions for oblivious transfer that ap-
pear in the literature and list some of their shortcomings. These examples demon-
strate that coming up with the ‘right’ information-theoretic security definition
is a delicate task. This is in fact the main reason why have aimed for a definition
which is provably equivalent to the standard simulation-based definition using
the real/ideal model paradigm.

Random Inputs In [19], only oblivious transfer with random inputs is con-
sidered, thereby restricting the scope of the proposed definitions to only a few
special cases.

Problems with the Security for the Receiver In [5,27], the definition
of security for requires that the sender’s view be independent of the receiver’s
input. This is overly restrictive: in the most general case we assume that there is
a known dependency between the inputs. In this case, the sender’s view (which
includes his own input) will inevitably be correlated with the receiver’s input
and so no protocol will satisfy the definition above. In general, one can only
expect the two variables to be independent given the sender’s input.

Problems with the Security for the Sender The security for the sender is
more difficult to correctly formalize. In addition to problems analogous to the
ones presented above for the definition of security for the receiver ([5,27]), there
are several commonly encountered difficulties:

– In [6,17] a dishonest receiver is only allowed to change his input in a deter-
ministic way. Specifically, the random variable C ′ indicating the receiver’s
effective input (i.e., the bit he eventually obtains) must be a deterministic
function of the input C, in contrast to the ideal model where C ′ can be
chosen probabilistically by the dishonest receiver.
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– In [7] the random variable C ′ may depend on the honest sender’s input,
which is impossible in the ideal model. Furthermore, the view V of the dis-
honest receiver is required to be independent of the honest sender’s input X
conditioned on the original input C and the receiver’s output XC′ , but not
on C ′. This definition can thus also be overly restrictive in some scenarios.
Consider for example the case where the sender’s input X is uniformly dis-
tributed in {00, 01, 10} while the receiver simply replaces his input C with
C ′ chosen uniformly at random from {0, 1} and then acts honestly. Let V
be the view of the receiver. This clearly permissible behavior is disallowed
as I(X;V | C,XC′) > 0.

Abort In [6,17,7], the honest player is allowed to abort the protocol. However,
it is possible that the dishonest player gets some information before the honest
player aborts, or that the fact of aborting itself provides information about the
honest player’s inputs.

Setup stage An alternative definition is given in [18] in the context of the
bounded-storage model. However, this definition is overly complicated and re-
quires a special setup stage, which is in general not present in OT protocols.

1.5 Preliminaries

Let X, Y , and Z be three random variables. We will often use expressions of the
form

I(X;Y | Z) = 0 ,

where I is the conditional mutual Shannon information. This means that X and
Y are independent, given Z. The same condition can also be expressed by saying
that X, Y and Z form a Markov-chain,

X ↔ Z ↔ Y ,

or by
PY |ZX = PY |Z .

By the chain rule for mutual information we have

I(X;Y W | Z) = I(X;W | Z) + I(X;Y | WZ) .

The information processing inequality says that local computation cannot in-
crease mutual information. In other words, for any probabilistic f we have

I(X;Y | Z) ≥ I(f(X);Y | Z) .

The statistical distance or variational distance between the distributions of two
random variables X and Y over the same domain V is defined as

δ(X, Y ) =
1
2

∑
v∈V

∣∣ Pr[X = v]− Pr[Y = v]
∣∣.
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We also use the notation X ≡ε Y for δ(X, Y ) ≤ ε. If X and Y have the same
distribution, i.e., δ(X, Y ) = 0, we write X ≡ Y . The statistical distance can
alternatively be expressed as:

δ(X, Y ) = max
S

(Pr[X ∈ S]− Pr[Y ∈ S]) .

From this expression it is easy to see that the optimal algorithm distinguishing
the two distributions can succeed with probability exactly 1

2 + δ(X, Y ). Another
important property of the statistical distance is that for any random variables
X and Y , there exists a random variable X̃ with the same distribution as Y
satisfying Pr[X̃ 6= X] = δ(X, Y ).

2 Defining Secure Function Evaluation using the
Real/Ideal Model Paradigm

In this section we provide a simulation-based definition of secure function eval-
uation for the real/ideal model paradigm. Our definition is based on Definition
7.2.10 of Goldreich [21] (see also [10]).

2.1 The information-theoretic context

Goldreich’s definition assumes a computational model where all participants
are polynomial-time algorithms. In order to bring this model in line with our
information-theoretic context we allow the parties in both the real and the
ideal model to be arbitrary channels. Indeed, as one would naturally expect,
our information-theoretic definitions establish certain constraints and relations
between several variables such as the two parties’ inputs and outputs. These re-
lations imply the existence of channels that can sample one variable given others
as inputs. However, as is typically the case with information theory, there is no
guarantee that there exists a circuit or algorithm (much less an efficient one) that
can simulate such channels. Consequently, as it is not possible to demonstrate
that our definitions imply that any algorithmic adversary in the real model can
be converted to an algorithmic adversary in the ideal model, we assume the
parties in both models are arbitrary channels.

While we will not be concerned with issues of computational efficiency in this
paper, we would like to point out that efficiency is not necessarily irrelevant in an
information-theoretic context, unless of course every participant has unlimited
computational power. Indeed, from the study of zero-knowledge interactive proof
systems [23] we learned that “perfect zero-knowledge” is a more powerful and
more restrictive notion than “zero-information” because it imposes additional
computational conditions, including the existence of an efficient simulator. This
is important when the participants are computationally bounded, as it might
well be the case that an attack in the ideal model is prohibitively more expensive
than an attack in the real model. Consequently, even though such attacks in the
ideal model may always be possible in theory (in which case the protocol would
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satisfy the information-theoretic security requirements), they might not always
be feasible in practice and thus the computational security requirements would
not be met.

We remark that by introducing additional constraints regarding computabil-
ity and efficiency to our definitions, one could guarantee that algorithmic real ad-
versaries have algorithmic ideal counterparts (of comparable complexity, even).
However, as such constraints are alien to the information-theoretic setting, they
would make our definitions unwieldy and would detract from their essence. We
thus refrain from further consideration of such constraints in the present paper.

The updated model The model we will be using differs from that of Definition
7.2.10 of Goldreich [21] in the following ways:

(i) We allow the parties in both the real and ideal model to be arbitrary channels
(as opposed to being polynomially-bounded algorithms).

(ii) We require that the output distributions of the ideal and the real model be
either perfectly indistinguishable or statistically indistinguishable (as opposed
to computationally indistinguishable).

(iii) We allow both honest players to have an output.

The motivation behind Modification (i) was explained above. Modification
(ii) is just a consequence of (i) while (iii) simplifies the model by making it
symmetric and generalizes it to allow functions such as coin flipping by telephone
[4] where both players have an output, but which can be implemented without
allowing either party to abort the protocol. In Section 7 we also discuss the model
of Definition 7.2.6 of [21], i.e., the model where the first party is allowed to abort
the protocol after receiving its result but before the second party receives its own.

2.2 The definition

We use the following notation: x ∈ X denotes the input of the first party, y ∈ Y
the input of the second party and z ∈ {0, 1}∗ represents an additional auxiliary
input available to both parties but assumed to be ignored by all honest parties.
A g-hybrid protocol is a pair of (randomized) algorithms Π = (A1, A2) which
can interact by exchanging messages and which additionally have access to the
functionality g4. More precisely, for a (randomized) function g : X × Y → U ×
V the two parties can send x and y to a trusted party and receive u and v,
respectively, where (u, v) = g(x, y). Note that a default value is used if a player
refuses to send a value. A pair of algorithms A = (A1, A2) is called admissible
for protocol Π if either A1 = A1 or A2 = A2, i.e., if at least one of the parties
is honest and uses the algorithm defined by the protocol Π.

4 Note that g is in general different from f . It should generally be thought of as some
trusted cryptographic primitive which the protocol uses as a black box.
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Definition 1 (Real Model). Let Π = (A1, A2) be a g-hybrid protocol and
let A = (A1, A2) be an admissible pair of algorithms for the protocol Π. The
joint execution of Π under A on input pair (x, y) ∈ X × Y and auxiliary input
z ∈ {0, 1}∗ in the real model, denoted by

realg

Π,A(z)
(x, y) ,

is defined as the output pair resulting from the interaction between A1(x, z) and
A2(y, z) using the functionality g.

The ideal model defines the optimal scenario where the players have access
to an ideal functionality f corresponding to the function they wish to compute.
A malicious player may therefore only change (1) his input to the functionality
and (2) the output he obtains from the functionality.

Definition 2 (Ideal Model). The trivial f-hybrid protocol B = (B1, B2) is
defined as the protocol where both parties send their inputs x and y unchanged
to the functionality f and output the values u and v received from f unchanged.
Let B = (B1, B2) be an admissible pair of algorithms for B. The joint execution
of f under B in the ideal model on input pair (x, y) ∈ X ×Y and auxiliary input
z ∈ {0, 1}∗, denoted by

idealf,B(z)(x, y) ,

is defined as the output pair resulting from the interaction between B1(x, z) and
B2(y, z) using the functionality f .

Any admissible pair of algorithms B in the ideal model can be expressed in the
following way: the first party receives input (x, z) and the second party receives
input (y, z). The two parties produce (x′, z1) = Bin

1 (x, z) and (y′, z2) = Bin
2 (y, z),

from which x′ and y′ are inputs to a trusted third party, and z1 and z2 are some
auxiliary output. The trusted party computes (u′, v′) = f(x′, y′) and sends u′

to the first party and v′ to the second party. The two parties are now given the
outputs v′ and u′ and the auxiliary inputs z1 and z2, respectively. The first party
outputs u = Bout

1 (u′, z1) while the second party outputs v = Bout
2 (v′, z2). Note

that if the first party is honest, we have Bin
1 (x, z) = (x,⊥) and Bout

1 (u′, z1) = u′

and similarly for the second party.
Now, to show that a g-hybrid protocol Π securely computes a functionality

f , we have to show that anything an adversary can do in the real model can also
be done in the ideal model.

Definition 3 (Perfect Security). A g-hybrid protocol Π securely computes f
perfectly if for every pair of algorithms A = (A1, A2) that is admissible in the
real model for the protocol Π, there exists a pair of algorithms B = (B1, B2)
that is admissible in the ideal model for protocol B (and where the same players
are honest), such that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) .
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It is sometimes not possible to achieve perfect security. The following defini-
tion captures the situation where the simulation has a (small) error ε, defined
as the maximal statistical distance between the output distributions in the real
and ideal model.

Definition 4 (Statistical Security). A g-hybrid protocol Π securely com-
putes f with an error of at most ε if for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π, there exists a pair of
algorithms B = (B1, B2) that is admissible in the ideal model for protocol B
(and where the same players are honest), such that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) .

The statistical distance is used because it has nice properties and intuitively
measures the error of a computation: a protocol Π which securely computes f
with an error of at most ε, computes f perfectly with probability at least 1− ε.

A very important property of the above definitions is that they imply se-
quential composition. The following theorem has been proven in [10].

Theorem 1. If an h-hybrid protocol Γ securely computes g with an error of at
most γ and a g-hybrid protocol Π securely computes f with an error of at most
π, then the composed protocol ΠΓ , namely the protocol Π where every call to g
is replaced by Γ , is an h-hybrid protocol that securely computes f with an error
of at most π + tγ, where t is the number of calls of Π to g.

The following lemma shows that any protocol that is secure without auxiliary
input, is also secure with auxiliary input.

Lemma 1. If a g-hybrid protocol Π securely computes f with an error ε with
constant auxiliary input, then it securely computes f with an error of at most ε.

Proof. If both players are honest the auxiliary input is ignored and the lemma
holds. Let player i be malicious, and let him use the algorithm Ai. Let A

z

i be
equal to Ai, but with the auxiliary input z hard-wired into it. Since Π securely
computes f with an error ε with constant auxiliary input, there exists an algo-
rithm B

z

i , such that for all x ∈ X , y ∈ Y, we have

idealf,B
z (x, y) ≡ε realg

Π,A
z (x, y) .

Now, we let Bi be the concatenation of all B
z

i , i.e. the the adversary that behaves
as B

z

i on auxiliary input z. (Note that our computation model allows us to do
that.) Obviously, we have for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) .

Hence, Π securely computes f with an error of at most ε. 2

Therefore, to show the security of a protocol in our model, the auxiliary input
can be omitted, which will will do for the rest of this paper.
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3 Secure Function Evaluation from an Information-
Theoretic Point of View

In this section, we adopt an information-theoretic view of the security definition.
We change our notation slightly to make it more suitable to the information-
theoretic domain. We let X, Y and Z be random variables denoting the inputs,
distributed according to an unknown distribution. Likewise, we let U and V be
random variables denoting the outputs of the two parties. Hence, for specific
inputs x, y, z we have

(U, V ) = realg

Π,A(z)
(x, y)

and
(U, V ) = idealf,B(z)(x, y) .

Note that the condition of Definition 3, namely that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

can equivalently be expressed as

PUV |XY Z = PUV |XY Z .

We now state our main theorem. It gives an information-theoretic condition for
the security of a real protocol, without the use of an ideal model. Intuitively, the
security condition for player 1 (and its counterpart for player 2) expresses what a
malicious player could do in the ideal model, namely, producing a value Y ′ (only
based on Y and Z), send it to the ideal functionality, receive V ′, and then calcu-
late a value V (only based on Z, Y , Y ′ and V ′). The condition I(X;Y ′ | ZY ) = 0
ensures that Y ′ is only based on Z and Y , and not on X. The condition

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)]

ensures that the distributions of U and V ′ are the same as those of the outputs
of f on input X and Y ′. Finally, I(UX;V | ZY Y ′V ′) = 0 ensures that V is only
based on Z, Y , Y ′ and V ′, and not on X and U .

Theorem 2. A g-hybrid protocol Π securely computes f with an error of at
most ε if and only if for every pair of algorithms A = (A1, A2) that is admissible
in the real model for the protocol Π and for all inputs (X, Y ) and auxiliary input
Z, A produces outputs (U, V ), such that the following conditions are satisfied:
There exists an event E with Pr[E ] ≥ 1− ε, such that

– (Correctness) If both players are honest, we have

PUV |XY Z,E(u, v | x, y, z) = Pr[(u, v) = f(x, y)] .
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– (Security for Player 1) If player 1 is honest, then there exist random variables
Y ′ and V ′ such that we have

I(X;Y ′ | ZY, E) = 0 ,

PUV ′|XY ′Y Z,E(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX;V | ZY Y ′V ′, E) = 0 .

– (Security for Player 2) If player 2 is honest, then there exist random variables
X ′ and U ′, such that we have

I(Y ;X ′ | ZX, E) = 0 ,

PU ′V |X′Y XZ,E(u′, v | x′, y, x, z) = Pr[(u′, v) = f(x′, y)] ,

and
I(V Y ;U | ZXX ′U ′, E) = 0 .

Proof. Let us first assume that the protocol Π securely computes f with an error
of at most ε. Then there exists an admissible pair of algorithms B = (B1, B2)
for the ideal model such that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) ,

or equivalently, for all x, y, z, we have δ((U, V ), (U, V )) ≤ ε, from which follows
that there exists an event E with Pr[E ] = ε, such that

PUV |X=x,Y =y,Z=z,E = PUV |X=x,Y =y,Z=z,E .

If both players are honest we have B = B. B1 and B2 forward their inputs
(X, Y ) unchanged to the trusted third party, get back (U ′, V ′) := f(X, Y ) and
output (U, V ) = (U ′, V ′). Therefore, we have

PUV |XY Z(u, v | x, y, z) = Pr[(u, v) = f(x, y)] ,

from which follows that

PUV |XY Z,E(u, v | x, y, z) = Pr[(u, v) = f(x, y)] .

Without loss of generality, let player 1 be honest and player 2 be malicious.
Let us look at the execution of B = (B1, B2). The malicious B2 can be modeled
by the two conditional probability distributions PY ′S|Y Z computing the input
to the ideal functionality and some internal data S, and PV |V ′S computing the
output. Note that we can write PY ′S|Y Z = PY ′|Y ZPS|Y ZY ′ , i.e., we can say that
Y ′ is computed from Y and Z, and that S is computed from Y , Z, and Y ′.
Clearly, we have

I(X;Y ′ | ZY ) = 0 .
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The honest B1 always sends X to the trusted party, which computes (U ′, V ′) =
f(X, Y ′) and sends the results to B1 and B2. Since B1 always outputs U = U ′,
we have

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] .

B2’s output V only depends on V ′ and S, which only depends on Y , Z and Y ′.
It follows that

I(UX;V | ZY Y ′V ′) = 0 .

Since
PUV |X=x,Y =y,Z=z,E = PUV |X=x,Y =y,Z=z,E ,

there must exist random variables satisfying the same properties, for the output
of protocol Π in the real model, if the event E occurs. Consequently, there must
exist random variables Y ′ and V ′, such that

I(X;Y ′ | ZY, E) = 0 ,

PUV ′|XY ′Y Z,E(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX;V | ZY Y ′V ′, E) = 0 .

Now assume that the conditions of Theorem 2 hold. If both players are honest,
the correctness condition implies PUV |XY Z,E = PUV |XY Z,E . If both players are
malicious nothing needs to be shown. Without loss of generality, let player 1 be
honest and player 2 be malicious. We will define an admissible protocol B =
(B1, B2) in the ideal model that produces the same distribution as the protocol
Π in the real model. Let B2 choose his input Y ′ according to PY ′|Y Z := PY ′|Y Z ,
set S := Y ZY ′ and let him choose his output V according to PV |Y ZY ′V ′ :=
PV |Y ZY ′V ′ . The conditional distribution of the output in the ideal model is
given by

PUV |XY Z =
∑
y′,v′

PY ′|Y ZPUV ′|XY ′PV |Y ZY ′V ′ ,

where
PUV ′|XY ′(u, v′ | x, y′) = Pr[(u, v′) = f(x, y′)] .

From I(X;Y ′ | ZY, E) = 0 and I(UX;V | ZY Y ′V ′, E) = 0 it follows that
PY ′|XY Z,E = PY ′|Y Z,E and PV |XY ZY ′UV ′,E = PV |Y ZY ′V ′,E . Furthermore, we
have PUV ′|XY ′Y Z,E = PUV ′|XY ′,E . As for the conditional distribution of the out-
put in the real model, we have:

PUV |XY Z,E =
∑
y′,v′

PY ′UV ′|XY Z,EPV |XY ZY ′UV ′,E

=
∑
y′,v′

PY ′|XY Z,EPUV ′|XY ZY ′,EPV |Y ZY ′V ′,E

=
∑
y′,v′

PY ′|Y Z,EPUV ′|XY ′,EPV |Y ZY ′V ′,E

= PUV |XY Z,E .
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Therefore, for any admissible A in the real model there exists an admissible B
in the ideal model such that

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) ,

implying that the protocol is secure with an error of at most ε. 2

Note that the expression

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)]

can be replaced by (U, V ′) = f(X, Y ′) if f is deterministic. This yields the
following corollary for deterministic functionalities.

Corollary 1. A protocol Π securely computes the deterministic functionality
f with an error of at most ε, if and only if for every pair of algorithms A =
(A1, A2) that is admissible in the real model for the protocol Π and for all inputs
(X, Y ) and auxiliary input Z, A produces outputs (U, V ), such that the following
conditions are satisfied: There exists an event E with Pr[E ] ≥ 1− ε, such that

– (Correctness) If both players are honest, we have

Pr[(U, V ) = f(X, Y ) | E ] = 1 .

– (Security for Player 1) If player 1 is honest then there exists a random vari-
able Y ′ such that for V ′ defined by (U, V ′) = f(X, Y ′), it holds that

I(X;Y ′ | ZY, E) = 0 , and I(UX;V | ZY Y ′V ′, E) = 0 .

– (Security for Player 2) If player 2 is honest then there exists a random vari-
able X ′ such that for U ′ defined by (U ′, V ) = f(X ′, Y ), it holds that

I(Y ;X ′ | ZX, E) = 0 , and I(V Y ;U | ZXX ′U ′, E) = 0 .

Note that we require the conditions of Theorem 2 and Corollary 1 to hold
for all distributions of the inputs (X, Y ). In particular, they have to hold for
any input distribution PXY |Z=z, i.e., given the event that the auxiliary input
Z equals z. Since all the requirements are conditioned on Z, it is sufficient to
show that the conditions are met for all distributions PXY , ignoring Z in all the
expressions.

In information theory, the distance between distributions is sometimes ex-
pressed using bounds on entropy and mutual information instead of statistical
distance. The following inequalities translate such bounds into bounds on sta-
tistical distance. Let U be uniformly distributed over the set X .

δ(PXY Z , PZPX|ZPY |Z) ≤ 1
2

√
2 ln 2 I(X;Y | Z)

δ(PX , PU ) ≤ 1
2

√
2 ln 2(log |X | −H(X))

The first inequality can easily be proved from [13], Lemma 16.3.1 while the
second inequality was proved in [8], Lemma 3.4.
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4 Oblivious Transfer

We now apply our security definition to 1-out-of-n string oblivious transfer, or(
n
1

)
-OTk for short. The ideal functionality fOT is defined as

fOT(X, C) := (⊥, XC) ,

where ⊥ denotes a constant random variable, X = (X0, . . . , Xn−1), Xi ∈ {0, 1}k

for i ∈ {0, . . . , n− 1}, and C ∈ {0, . . . , n− 1}.

Theorem 3. A protocol Π securely computes
(
n
1

)
-OTk perfectly if and only if

for every pair of algorithms A = (A1, A2) that is admissible for protocol Π and
for all inputs (X, C) and auxiliary input Z, A produces outputs (U, V ) such that
the following conditions are satisfied:

– (Correctness) If both players are honest, then (U, V ) = (⊥, XC).
– (Security for Player 1) If player 1 is honest, then we have U = ⊥ and there

exists a random variable C ′, such that

I(X;C ′ | ZC) = 0 , and I(X;V | ZCC ′XC′) = 0 .

– (Security for Player 2) If player 2 is honest, then we have

I(C;U | ZX) = 0 .

Proof. We only need to show that the security condition for player 2 is equivalent
to the one in Corollary 1:

I(C;X ′ | ZX) + I(X ′
CC;U | ZXX ′) = 0

Since X ′
C is a function of C and X ′,

I(X ′
CC;U | ZXX ′) = 0 is equivalent to I(C;U | ZXX ′) = 0 .

From the chain rule it follows that

I(C;X ′ | ZX) + I(C;U | ZXX ′) = I(C;X ′U | ZX)
= I(C;U | ZX) + I(C;X ′ | ZXU) .

Now choose X ′ = (X ′
0, . . . , X

′
n−1) as follows: for all values i, let X ′

i be chosen
according to the distribution PV |ZXU,C=i except for X ′

C . We set X ′
C = V . Note

that all X ′
i, 0 ≤ i ≤ n − 1, have distribution PV |ZXU,C=i. Thus X ′ does not

depend on C given ZXU , we have V = X ′
C and I(C;X ′ | ZXU) = 0. So there

always exists a suitable X ′ 5, and the condition simplifies to I(C;U | ZX) = 0. 2

5 Note that these values X ′ are not necessarily known to a malicious player 1.
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Proof. We only need to show that the security condition for player 2, i.e, where
player 1 is honest and player 2 may be malicious, is equivalent to the one in
Corollary 1.

Let us first assume that the protocol Π securely computes f . Then there
exists an admissible pair of algorithms B = (B1, B2) for the ideal model such
that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

or equivalently,
PUV |XY Z = PUV |XY Z .

The malicious B2 can be modeled by the conditional probability distributions
PUX′|XZ = PU |XZPX′|XZU computing the input to the ideal functionality X ′

and the output U . Clearly, we have

I(C;U | ZX) = 0 .

Since the probability distributions PUV |XCZ and PUV |XCZ are identical, we also
have

I(C;U | ZX) = 0 .

Now assume that the conditions of Theorem 2 hold. We will define an admis-
sible protocol B = (B1, B2) in the ideal model that produces the same dis-
tribution as the protocol Π in the real model. Let B2 choose his input out-
put U according to PU |XZ := PU |XZ , and he chooses input X ′

i according to
PX′

i|XZU := PV |XZU,C=i. Note that since we have V = X ′
C , this implies that∑

x′

PX′|XZUPV |X′C = PV |XZUC .

From I(C;U | ZX) = 0 follows that PU |XZC = PU |XZ . Hence, we have

PUV |XCZ =
∑
x′

PU |XZPX′|XZUPV |X′C

= PU |XZ

∑
x′

PX|XZUPV |X′C

= PU |XZCPV |XZUC

= PUV |XCZ .

Therefore, for any admissible A in the real model there exists an admissible B
in the ideal model such that

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

implying that the protocol is perfectly secure. 2
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The interpretation of these properties of oblivious transfer is quite intuitive:
If player 1 is honest, then she can be confident that anything player 2 can do is
basically equivalent to choosing a choice bit C ′ which is possibly different from
C. On the other hand, if player 2 is honest, he can be certain that player 1 does
not get to know his input C. Theorem 3 shows that in the case of a dishonest
sender in

(
n
1

)
-OTk, privacy alone implies security. There always exists an input

X ′ that a dishonest sender can use in the ideal model to obtain the same results.

5 Rabin OT

The ideal functionality f is defined as

f(X) := (⊥, V ) ,

where ⊥ denotes a constant random variable, X ∈ {0, 1}k, and V = (W,C) ∈
{0, 1}k ×{0, 1}, where H(C | X) = 1 and W = X if C = 1 and W = ⊥ if C = 0.

Theorem 4. A protocol Π securely computes Rabin-OT perfectly if and only if
for every pair of algorithms A = (A1, A2) that is admissible for protocol Π and
for all inputs X and auxiliary input Z, A produces outputs (U, V ) such that the
following conditions are satisfied:

– (Correctness) If both players are honest, then (U, V ) = f(X).
– (Security for Player 1) If player 1 is honest, then we have U = ⊥ and there

exists a random variable C ′, such that

H(C ′ | XZ) = 1 , and I(X;V | Z,C ′ = 0) = 0 .

– (Security for Player 2) If player 2 is honest, then we have

H(C | XUZ) = 1 .

Proof. Security for Player 1: The condition of Theorem 2 tells us that U = ⊥
and there must exist V ′ = (W ′, C ′), such that H(C ′ | XZ) = 1, and W ′ = X if
C ′ = 1 and W ′ = ⊥ if C ′ = 0, and

I(X;V | ZW ′C ′) = 0 .

Now, if C ′ = 1, that condition always holds, since W ′ = X. For C ′ = 0, W ′ is a
constant and we get

I(X;V | Z,C ′ = 0) = 0 .

Security for Player 2: Player 1 does not have any output and player 2 does
not have any input. The conditions of Theorem 2 tell us that there must exist
a X ′, such that H(C | XX ′Z) = 1, and W = X if C = 1 and W = ⊥ if C = 0,
and

I(WC;U | ZXX ′) = 0 . (1)
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We choose X ′ := W , if C = 1, and sample X ′ according to the distribution
PW |XUZ,C=1, if C = 0. We have PX′|XUZC = PX′|XUZ , from which follows that

I(X ′;C | XUZ) = 0 ,

and therefore
H(C | XX ′UZ) = H(C | XUZ) .

It follows that

H(C | XX ′Z) ≥ H(C | XX ′UZ) = H(C | XUZ) = 1.

Condition (1) is equivalent to

I(C;U | ZXX ′) = 0 and I(W ;U | ZXX ′C) = 0 .

Since I(C;U | ZXX ′) = H(C | XX ′Z) − H(C | XX ′UZ) = H(C | XX ′Z) −
H(C | XUZ) ≥ 0, the first condition is implied by H(C | XUZ) = 1. The second
condition always holds for our choice of X ′, because in the case C = 1, we have
set X ′ = W and for C = 0, W is constant. 2

6 An Example

In this section we show how the result from Section 4 can be used to prove the
security of a protocol. Our example will be the protocol from [30], where one
instance of

(
2
1

)
-OT is implemented using one instance of

(
2
1

)
-TO, which is an

instance of
(
2
1

)
-OT in the opposite direction.

Protocol 1 ([30]) Let player 1 have input X = (X0, X1) ∈ {0, 1}× {0, 1}, and
player 2 have input C ∈ {0, 1}.

1. Player 2 chooses R ∈ {0, 1} at random.
2. The two players execute

(
2
1

)
-TO, where player 1 inputs C = X0 ⊕ X1, and

player 2 inputs X0 = R and X1 = R⊕ C.
3. Player 1 receives A = XC and sends M = X0 ⊕A to the player 2.
4. Player 1 outputs V := R⊕M .

Theorem 5. Protocol 1 perfectly securely reduces
(
2
1

)
-OT to one realization of(

2
1

)
-TO.

Proof. If both parties are honest, the protocol is correct because we have

R⊕M = R⊕X0 ⊕ (X0 ⊕X1)C ⊕R = XC .

Let player 1 be honest, and let C ′ := X0 ⊕ X1. Using the data processing
inequality,

I(X0X1;C ′ | ZC) ≤ I(X0X1;X0X1 | ZC) ≤ I(X0X1;ZC | ZC) = 0 .
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Since M = X0 ⊕ (X0 ⊕X1)(X0 ⊕X1)⊕X0 = XC′ ⊕X0, the values X0X1M ,
X0C

′M , and X0C
′XC′ contain the same information. Thus, using the data

processing inequality,

I(X0X1;V | ZCC ′XC′) ≤ I(X0X1;CZX0X1M | ZCC ′XC′)
= I(X0X1;CZX0C

′XC′ | ZCC ′XC′) = 0 .

Now let player 2 be honest. Since A = R⊕ CC and R is uniform, we have

I(C;U | ZX0X1) ≤ I(C;X0X1ZA | ZX0X1) = I(C;A | ZX0X1) = 0 .

Thus, the protocol is secure. 2

7 Secure Two-Party Computation with Abort

In this section we will briefly discuss the model of Definition 7.2.6 of [21] where
the first party is allowed to abort the protocol right after receiving its output
but before the second party has received its own. The ideal model with abort for
player 1 is similar to the ideal model from Definition 2, the only difference being
that player 1 is given the option of aborting the computation by sending a bit
C to the trusted party after having received his output. The trusted party sends
to player 2 the corresponding output if C = 1, and ⊥ if C = 0. An honest player
always sends C = 1. The real model and the definition of security are identical
to the definition without abort. We call a protocol that satisfies this definition
secure with abort for player 1.

Theorem 6. A g-hybrid protocol Π securely computes f perfectly with abort
for player 1, if and only if for every pair of algorithms A = (A1, A2) that is
admissible in the real model for the protocol Π, and for all inputs (X, Y ) and
auxiliary input Z, A produces outputs (U, V ), such that the following conditions
are satisfied:

– (Correctness) If both players are honest, we have

PUV |XY Z(u, v | x, y, z) = Pr[(u, v) = f(x, y)] .

– (Security for Player 1) If player 1 is honest, then there exist random variables
Y ′ and V ′, such that we have

I(X;Y ′ | ZY ) = 0 ,

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX;V | ZY Y ′V ′) = 0 .
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– (Security for Player 2) If player 2 is honest, then there exist random variables
X ′, C and U ′, V ′, such that we have

I(Y ;X ′ | ZX) = 0 ,

PU ′V ′|X′Y XZ(u′, v′ | x′, y, x, z) = Pr[(u′, v′) = f(x′, y)] ,

I(V ′Y ;UC | ZXX ′U ′) = 0 ,

and V = V ′ if C = 1 and V = ⊥ if C = 0.

Proof. The proof is identical to that of Theorem 2 for the case where player 1 is
honest. We therefore only examine the case where player 2 is honest and player
1 is malicious.

Let us assume that the protocol Π securely computes f . Consequently, there
exists an admissible pair of algorithms B = (B1, B2) such that for all x ∈ X ,
y ∈ Y, and z ∈ {0, 1}∗ we have PUV |XY Z = PUV |XY Z .

The malicious B1 can be modeled by the two conditional probability distribu-
tions PX′S|XZ computing the input to the ideal functionality and some internal
data S, and PUC|U ′S computing the output U and the bit C. Note that we can
write PX′S|XZ = PX′|XZPS|XZX′ . Clearly, we have

I(Y ;X ′ | ZX) = 0 .

The ideal functionality computes U ′, V ′ such that

PU ′V ′|X′Y XZ(u′, v′ | x′, y, x, z) = Pr[(u′, v′) = f(x′, y)] .

B1 gets back U ′ from the ideal functionality. Based on X, Z, X ′, U ′ he decides
to send C to the functionality and outputs U . Hence, we have

I(V ′Y ;UC | XZX ′U ′) = 0 .

If C = 1, the functionality sends V = V ′ to B2, if C = 0 it sends V = ⊥. B2

outputs V unchanged. As PUV |XY Z = PUV |XY Z it must be the case that the
same conditions hold in the real model, which implies the security condition for
player 2.

Now let the conditions of Theorem 6 hold. We define an admissible protocol
B = (B1, B2) in the ideal model that produces the same distribution as the
protocol Π in the real model. Let B1 choose input X ′ according to PX′|XZ :=
PX′|XZ , and (U,C) according to PUC|XZX′U ′ := PUC|XZX′U ′ . The conditional
distribution of the output in the ideal model is given by

PUV |XY Z =
∑

x′,c,u′,v′

PX′|XZPU ′V ′|X′Y PUC|XZX′U ′PV |V ′C ,

where
PU ′V ′|X′Y (u′, v′ | x′, y) = Pr[(u′, v′) = f(x′, y)] .
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From I(Y ;X ′ | ZX) = 0 and I(V ′Y ;UC | XZX ′U ′) = 0 it follows that
PX′|XY Z = PX′|XZ and PUC|XZX′U ′V ′Y = PUC|XZX′U ′ . Furthermore, we have
PU ′V ′|X′Y XZ = PU ′V ′|X′Y and PV |V ′C = PV |V ′C . We get for the conditional
distribution of the output in the real model

PUV |XY Z =
∑

x′,c,u′,v′

PX′|XY ZPU ′V ′|XY ZX′PUCV |XY ZX′U ′V ′

=
∑

x′,c,u′,v′

PX′|XZPU ′V ′|X′Y PUC|XY ZX′U ′V ′PV |XY ZX′U ′V ′CU

=
∑

x′,c,u′,v′

PX′|XZPU ′V ′|X′Y PUC|XZX′U ′PV |V ′C

=
∑

x′,c,u′,v′

PX′|XZPU ′V ′|X′Y PUC|XZX′U ′PV |V ′C

= PUV |XY Z .

Therefore for any admissible A in the real model there exists an admissible B in
the ideal model such that

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

which means that the protocol is perfectly secure with abort for player 1. 2

8 Randomized Variants of Oblivious Transfer

Many information-theoretic constructions for
(
n
1

)
-OTk implicitly build on ran-

domized variants of
(
n
1

)
-OTk, such as sender-randomized 1-out-of-n string OT,(

n
1

)
-ROTk, or 1-out-of-n string oblivious key,

(
n
1

)
-ROTRk. In

(
n
1

)
-ROTk, instead

of X being given to player 1 as input, it is randomly generated in the course of
the protocol and becomes part of player 1’s output. In

(
n
1

)
-ROTRk, the players

have no input and both X and C are randomized outputs.
The reductions of

(
n
1

)
-OTk to

(
n
1

)
-ROTk and

(
n
1

)
-ROTk to

(
n
1

)
-ROTRk are well

known. We will state formal security requirements for
(
n
1

)
-ROTk and

(
n
1

)
-ROTRk

and proof that they are sufficient to implement secure
(
n
1

)
-OTk. Note that unlike

in the previous sections, these requirements are not linked to any ideal function-
alities.

8.1 Reducing OT to Sender-Randomized OT

In a protocol Π for
(
n
1

)
-ROTk, honest player 1 has no input and outputs U =

(U0, . . . , Un−1) where Ui ∈ {0, 1}k for i ∈ {0, . . . , n− 1}, whereas honest player
2 has input C ∈ {0, . . . , n− 1} and output V = UC .
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Definition 5. A protocol Π securely computes
(
n
1

)
-ROTk, if and only if for

every pair of algorithms A = (A1, A2) that is admissible for protocol Π and for
all inputs C for player 2 and auxiliary input Z, A produces outputs (U, V ) such
that the following conditions are satisfied:

– (Correctness) If both players are honest, then U = (U0, . . . , Un−1) and V =
UC .

– (Security for Player 1) If player 1 is honest, then there exists a random
variable C ′ ∈ {0, . . . , n− 1}, such that U = (U0, . . . , Un−1) and

PU0···UC′−1,UC′+1···Un−1|ZCC′UC′V

is uniformly distributed.
– (Security for Player 2) If player 2 is honest, then we have I(C;U | Z) = 0.

A protocol implementing
(
n
1

)
-ROTk can be used to build secure

(
n
1

)
-OTk using

the following reduction:

Protocol 2 (Reduction of
(
n
1

)
-OTk to

(
n
1

)
-ROTk) Let player 1 have input X =

(X0, . . . Xn−1), and player 2 have input C ∈ {0, . . . , n− 1}.

1. The two players execute
(
n
1

)
-ROTk, where player 2 inputs C. Player 1 gets

U∗ = (U∗
0 , . . . U∗

n−1), player 2 gets U∗
C .

2. For all i ∈ {0, . . . n− 1}, player 1 sends to player 2 Si := Xi ⊕ U∗
i .

3. Player 1 outputs ⊥ and player 2 outputs V := SC ⊕ U∗
C .

Theorem 7. Protocol 2 securely reduces
(
n
1

)
-OTk to

(
n
1

)
-ROTk.

Proof. We superscript the random variables used in
(
n
1

)
-ROTk with ∗, e.g. Z∗ is

the auxiliary input to
(
n
1

)
-ROTk, whereas Z is the auxiliary input to

(
n
1

)
-OTk.

If both players are honest, then we have U = ⊥ and V = SC ⊕ U∗
C =

XC ⊕ U∗
C ⊕ U∗

C = XC , from which correctness follows.
If player 1 is honest, there exists a random variable C ′∗ such that player 1

gets U∗ = (U∗
0 , . . . , U∗

n−1) and

PU∗
0 ···U∗

C′∗−1
,U∗

C′∗+1
···U∗

n−1|Z∗C′∗V ∗U∗
C′∗

is uniformly distributed for Z∗ := (Z,C). We set C ′ := C ′∗ and have

I(X;V ∗C ′U∗ | ZC) = 0, (2)

since honest player 1 is not using his knowledge of X in
(
n
1

)
-ROTk. This implies

I(X;C ′ | ZC) = 0, (3)

and
I(X;V ∗U∗

C′ | ZCC ′XC′) = 0. (4)
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Dishonest player 2’s output V is computed based on Z,C, V ∗ and

S = (S0, . . . , Sn−1) = (X0 ⊕ U∗
0 , . . . , Xn−1 ⊕ U∗

n−1).

Because of (2),
PU∗

0 ···U∗
C′−1

,U∗
C′+1

···U∗
n−1|ZCC′XC′V ∗U∗

C′

is uniformly distributed. So, all Si except SC′ are independent of Xi given
ZCC ′XC′V ∗U∗

C′ , and it holds that SC′ = XC′ ⊕ U∗
C′ . Therefore, we have

I(X;S0, . . . , Sn−1 | ZCC ′XC′V ∗U∗
C′) = 0.

Combining this with (4) using the chain rule yields I(X;V ∗S | ZCC ′XC′) = 0
and hence

I(X;V | ZCC ′XC′) = 0.

The security for player 1 follows together with (3).
If player 2 is honest, we have I(C;U∗ | Z∗) = 0 for Z∗ = (X, Z). Dishonest

player 1’s output U is computed based on U∗, Z and X, from which it follows
that I(C;U | ZX) = 0. 2

8.2 Reducing Sender-Randomized OT to (Fully) Randomized OT

In a protocol Π for
(
n
1

)
-ROTRk, honest player 1 has no input and outputs U =

(U0, . . . , Un−1) where Ui ∈ {0, 1}k for i ∈ {0, . . . , n−1}, and honest player 2 has
no input and outputs V = (C,UC), where C ∈ {0, . . . , n− 1}.

Definition 6. A protocol Π securely computes
(
n
1

)
-ROTRk, if for every pair

of algorithms A = (A1, A2) that is admissible for protocol Π and for all auxil-
iary input Z, A produces outputs (U, V ) such that the following conditions are
satisfied:

– (Correctness) If both players are honest, then U = (U0, . . . , Un−1) and V =
(UC , C).

– (Security for Player 1) If player 1 is honest, then there exists a random
variable C ′ ∈ {0, . . . , n− 1}, such that U = (U0, . . . , Un−1) and

PU0···UC′−1,UC′+1···Un−1|ZC′UC′V

is uniformly distributed.
– (Security for Player 2) If player 2 is honest, then PC|ZU is uniformly dis-

tributed.

We want to show that the requirements for
(
n
1

)
-ROTRk are sufficient to imple-

ment
(
n
1

)
-OTk. However, since we have already shown how to implement

(
n
1

)
-OTk

from
(
n
1

)
-ROTk, we only need to show that a protocol implementing

(
n
1

)
-ROTRk

can be used to build secure
(
n
1

)
-ROTk. This is achieved by the following reduc-

tion:
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Protocol 3 (Reduction of
(
n
1

)
-ROTk to

(
n
1

)
-ROTRk) Let player 2 have in-

put C ∈ {0, . . . , n− 1}. Player 1 has no input.

1. The two players execute
(
n
1

)
-ROTRk. Player 1 gets U∗ = (U∗

0 , . . . U∗
n−1),

player 2 gets (U∗
C∗ , C∗).

2. Player 2 sends to player 1 M := (C∗ − C) mod n.
3. Player 1 outputs U = (U∗

M , . . . U∗
(M+n) mod n) and player 2 outputs V :=

U∗
C∗ .

Theorem 8. Protocol 3 securely reduces
(
n
1

)
-ROTk to

(
n
1

)
-ROTRk.

Proof. We superscript the random variables used in
(
n
1

)
-ROTRk with ∗, e.g. Z∗ is

the auxiliary input to
(
n
1

)
-ROTRk, whereas Z is the auxiliary input to

(
n
1

)
-ROTk.

If both players are honest, then we have U = (U∗
M , . . . U∗

(M+n) mod n) and
V = U∗

C∗ = U(C∗−M) mod n = UC , from which correctness follows.
If player 1 is honest, there exists a random variable C ′∗ such that player 1

gets U∗ = (U∗
0 , . . . , U∗

n−1) and

PU∗
0 ···U∗

C′∗−1
,U∗

C′∗+1
···U∗

n−1|Z∗C′∗V ∗U∗
C′∗

is uniformly distributed for Z∗ := (Z,C). We set C ′ := (C ′∗−M) mod n. Since
Ui = U∗

(i+M) mod n, and hence UC′ = U∗
C′∗ , we have

PU0···UC′−1,UC′+1···Un−1|ZCC′V UC′ .

is uniformly distributed as well. If player 2 is honest, PC∗|Z∗U∗ is uniformly dis-
tributed. Since M = (C∗ − C) mod n, M is independent of C, given Z∗ and
U∗. We can choose Z∗ := Z and get that I(C;U | Z) = 0. 2

9 Conclusion and Open Problems

We have shown that various information-theoretic security definitions for oblivi-
ous transfer used in the past contain subtle flaws. We propose a new information-
theoretic security definition which is provably equivalent to the security defini-
tion based on the real/ideal model paradigm. This not only provides a solid
security foundation for most protocols in the literature, which turn out to meet
our requirements, but also shows that they are in fact sequentially composable.

An interesting open problem is to generalize our model to various quantum
settings, for example to the scenario where two players connected by a quantum
channel wish to securely implement a classical functionality.
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6. G. Brassard, C. Crépeau, and M. Santha. Oblivious transfers and intersecting
codes. IEEETIT: IEEE Transactions on Information Theory, 42, 1996.
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