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Abstract. We consider a situation where two parties, Alice and Bob,
share a common secret string and would like to mutually check their
knowledge of that string. We describe a simple and efficient protocol
based on the exchange of quantum information to check mutual knowl
edge of a common string in such a way that honest parties will always
succeed in convincing each other, while a dishonest party interacting
with an honest party will have vanishingly small probability of convinc-
ing him. Moreover, a dishonest party gains only a very small amount of
information about the secret string from running the protocol: whoever
enters the protocol with no knowledge of the secret string would have
to enter this protocol an exponential number of times in order to gain
non-negligible information about the string.

Our scheme offers an efficient identification technique with a security
that depends on no computational assumption, only on the correctness
of quantum mechanics. We believe such a system should be used in smart-
cards to avoid frauds from typing PIN codes to dishonest teller machines.

1 Introduction

Weren't you worried the last time you typed your PIN (Personal Identification
Number) to an unknown teller machine that it could be a fake and that its sole
purpose could be to steal your PIN? According to a recent headline of the NY
Times [26] maybe you should worry:

“ONE LEss THING TO BELIEVE IN: FRAUD AT Fakg CasH MACHINE”

The problem with current identification systems is that the customer must trust
the equipment to which he types his PIN. It is completely trivial to modify a
teller machine to memorize the PIN numbers that people type to it. PINs are
meant to be checked, not given. (Consult [1] for an extensive study of frauds at
teller machines.)

Of course, it is always possible to completely solve the problem of identi-
fication and authentication of messages by classical methods [9] that require
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exchanging passwords which length are proportional to the number of uses. Un-
fortunately, this is completely impractical: we want to rely on the existence of a
short secret to check identity.

A similar approach has been suggested in a computational model through
the construction of pseudo-random generators {7] or pseudo-random families of
functions [17] which requires only short secrets seeds. These solutions make sense
only in a context where we put computational restrictions on the participants.
For powerful parties it is trivial to fake identities.

In the computational model, more sophisticated tools were developed for this
purpose: Zero-Knowledge Proofs of Identity [15] introduced in order to provide
means by which an honest party may convince another party of his identity in a
way that cannot be replayed successfully to another party. This is true even if the
verifying party tries his best to extract valuable information out of the proving
party. Moreover, a dishonest party attempting to prove an invalid identity will
be detected by the verifying party except with vanishingly small probability.

Non-Computational Protocols

The major drawback with these proofs and other computational techniques is
that deep down their security must rely on some computational assumption: the
proofl of knowledge can be checked if the identifying string is the solution to
some hard public problem. If one can solve this problem, he can fake identities.
This is the case even if we build the protocol from perfect cryptographic tools
such as ideal Bit Commitment or ideal Oblivious Transfer.

In the current paper, we consider a situation where two parties, Alice and
Bob, share a common secret string and would like to mutually check their knowl-
edge of that string without disclosing it. This problem has been extensively stud-
ied by Fagin, Naor and Winkler {14] who provide a large number of scenarios
where the problem may be considered. From the cryptographic point of view
only one of their solutions may be considered secure: a solution based on the
existence of a one-out-of-two Oblivious Transfer [13] which uses §2(n?) Transfers
to do the job for an n-bit secret string.

We describe a simple and efficient protocol based on the exchange of quantum
information to check mutual knowledge of a common string in such a way that
honest parties will always succeed in convincing each other (except with van-
ishingly small probability), while a dishonest party interacting with an honest
party will have only vanishingly small probability of convincing him. Moreover,
a dishonest party gains only a very small amount of information about the secret
string from running the protocol: whoever enters the protocol with no knowledge
of the secret string would have to enter this protocol an exponential number of
times in order to gain non-negligible information about the string.

Our scheme, based on coding theory, depends on no computational assump-
tion, has a total running time of O(n?37%) and a total of O(n?) photons are trans-
mitted (if implemented with a one-out-of-two Oblivious Transfer, only O(n) such
Transfers are necessary). We also present a scheme which uses only O(n) photons
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but that cannot tolerate the transmission errors of a real quantum channel. We
suggest the reader consults {8] for more details of quantum cryptography.

We believe such a system should be used in smartcards to avoid frauds from
typing PIN codes to dishonest teller machines. A PIN could still be used to
activate the functions of the card but it should be typed directly to the card (a
device you might as well trust since your bank gives it to you, and they have
your money anyway!). The card would identify itself with tellers only through
our mechanism: no PIN ever exchanged.

The practical difficulty of our scheme is to embed the necessary technology
for the Quantum Oblivious Transfer on a card. Since none of the technology is
very fancy we believe such cards could be mass produced (see Section 4.6).

2 Preliminaries

2.1 Notations and Tools

For b € {0,1} we define the selection function (z,y)p) = {Z ii :? where
x and y are scalars. In general, if z and y are vectors with n components and
b € {0,1}" then (z, y)pp) is the concatenation of (z;, yi)p,) foralli € {1,2,..., n}.
If we use a single z instead of a pair then ()] is the concatenation of the z;’s
for b; = 1. For instance (1001)[1910) = 10. We denote by A(s,§) the Hamming
distance between s and §.

Now let us define what we mean by a secure identification protocol in our
context. Suppose ¢(,,) €r {0,1}" is the secret information shared by .Alice and
Bob. In the following we write Bob™ (resp. Alice™) to designate somebody trying
to impersonate Bob (resp. Alice).

Definition1. Bob* (or Alice™) has almost no information about ¢ indexed
by a security parameter n, ¢ = {¢(n) €r {0,1}*}ns0, if Bob™’s (or Alice™’s)
information about ¢ can be modeled by a set @ = {@(,) C {0,1}"}n>0 such that
for some « > 0 and all sufficiently large n we have:

#P(n) _
—_ > — on —an
#{0,1}* = 1-2 and P ($(n) € P(n)) < 2
and for each ¢’ € @,y we have:
1
P (8(n) = ¢'l¢(n) € P(n)) = .
=10 € 20) = 3o

The Shannon information given by @ about ¢ 1s such that

I(¢(n)l¢(n)) < 27" a > 0.
Without loss of generality, we use ¢ for an instance ¢(,) whenever the context

permits. We denote by @; the ith bit of ¢.

An identification scheme hides the secret information ¢ if when a cheating
party runs the protocol with no information about ¢ he ends up with almost no
information about ¢.
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Definition 2. An identification scheme hides the secret information ¢ shared
by Alice and Bob, if for some a’ > 0, when Bob* (or Alice™), who starts with
no information about ¢, cheats the protocol poly(n) times, he has probability
greater than 1 —~ 2= to end up with almost no information about ¢.

The random variable ¢* denotes the choice made by Alice* or Bob® to run
the protocol given that she (or he) has almost no information about ¢.

If a malicious party P* has almost no information about ¢ then he cannot
guess any bit ¢; with non-negligible bias.

Property 1 If P* has almost no information about ¢ = {¢(n) €r {0,1}"}n>0
there extsts 3 > 0 such that for all ¢* € {0,1}"™ and each position i independently,
|P(¢7 = ¢:i) — 5 <2707,

If P* has almost no information about ¢ and executes a protocol leaking almost
no information about ¢ then P* has still almost no information.

Property 2 If &g, $y are two sels that give almost no information about ¢ then
¢ = Oo NPy gives almost no informalion about ¢.

These two properties are straightforward applications of the above definitions.

2.2 Simple Quantum Transmission

In this paper we consider the most simple idealization of a quantum transmis-
sion. There is only four different ways to transmit photons corresponding to
the four polarization angles 0°,45°,90°,135° that we denote |—),|.”),[1),I\)
respectively. If Alice wants to send b € {0, 1}, she used the following encoding
rules:

1. & = 0 is randomly encoded by |«} or | /).
2. b =1 is randomly encoded by |] ) or [~)-

At the receiving end Bob chooses how he measures the incoming photon either
by reading it in rectilinear basis (J—),|]}), denoted <, or in the diagonal basis
(17}, 1’\¢}), denoted X . We suppose this is the only choice he can make. If the
photon 7 encodes a bit b in the rectilinear (resp. diagonal) basis and the receiver
measures it in the rectilinear (resp. diagonal) basis then he gets the bit b (except
if an error occurred during transmission). If 7 is measured in the diagonal (resp.
in the rectilinear) basis then a random bit is received. For a basis ¢ € {4, X}
and a bit b we write ¢p for the transmission of the encoded bit b in a photon
polarized in the basis ¢. For more details about how quantum transmission works
in general consult [8].
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3 A basic quantum identification

Suppose Alice and Bob who have the secret string ¢* and ¢? respectively want
to test whether ¢4 = ¢P without revealing their values. In order to achieve
this, they are willing to use quantum and public channels. The transmission of
¢ €r {0,1} polarized in basis ¢ €r {, X} hides all information about ¢ to
anybody who has almost no a priori information on the values of ¢ and ¢. This
suggests the use of the secret ¢4 to encode securely the transmission basis.
Suppose Alice and Bob share ¢ = ¢4 = ¢® €r {$, X}"*. In order for
Alice to prove to Bob that she knows ¢, she could transmit a random string c
taken from a sparse but large subset of {0, 1}" polarized in basis ¢. Therefore, it
suffices for Alice to choose a random codeword ¢ from a code C,, which she sends
to Bob. He then measures it in ¢ to obtain the decoded string ¢. If the quantum
channel is noiseless then ¢ = ¢. (In the more realistic case, the quantum channel
would be modeled as a binary symmetric channel with parameter ¢.) If there is
a large number of codewords in C, it could be the case that measuring ¢ in basis
¢* hides almost all information about ¢. Conversely if Alice does not know ¢
it could be very unlikely that she succeeds to send ¢ close to a codeword ¢, as
long as codewords are not too close to each other. Protocol ident(¢#, $2), shown
below, implements this idea given € the error rates of the quantum channel.

Protocol 3.1 ( ident(¢?,4%))

1: Alice and Bob agree on a binary linear (n, £y, dn)-code C,, € C by specifying
a generating matriz G for C,.
2: Alice chooses a random word z € g {0,1}*" and takes ¢ = zG.
3: DO
=1

- Alice sends to Bob a photon polarized in ¢f‘[c|].

- Bob measures the incoming photon in the basis ¢F and obtains ¢;.
4: Bob accepts if when decoding ¢, he obtains ¢’ € C,, such that A(c',¢) <
(e + €o)n for eg > 0.

Suppose Alice and Bob share the same private sequence ¢ = ¢4 = ¢&. This
implies that, for any €5 > 0 and except with vanishingly small probability, Bob
will decode € as ¢ which is at Hamming distance less than (e + ¢g)n from ¢ given
n sufficiently large.

Now consider a malicious .Alice (denoted by Alice™) is trying to impersonate
the real Alice. We assume that 4lice* knows almost nothing about ¢2 at the
beginning. Therefore she will have roughly half the positions different from Bob
and thus sends random bits in half the positions. It is easy to show that if the
minimum distance d, of C, is such that d, > 2n(e+¢g), Alice® will be detected
with probability greater than 1 — 2=°" for a > 0. By this attempt, she will not
learn more than a vanishingly small amount of Shannon information about ¢Z.
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3.1 tident(¢, ¢*) with a dishonest Bob

Let ¢ €r {F, X}" be Alice’s secret and let ¢ be the transmitted random
codeword taken from C,. Bob® chooses a set of bases ¢* and measures each
photon i in the basis ¢ in order to obtain ¢. Roughly speaking, one half of the
bases of ¢* will match with the bases of ¢. Thus approximatively half of the
bits he will receive are the bits of the codeword sent by Alice. The other bits
(the positions i for which ¢; # ¢7) are not correlated with the bits transmitted.
For Bob™ to be unable to determine a substantial amount of information about
¢, the code must be chosen so that any half of the bits of the codewords are
purely random. Hence, if the proportion of the bits Bob* sees about a codeword
is random and the rest of the bits he received are not correlated (thus random)
the thing he gets is a purely random string. Given that the same would happend
for all but a few ¢* almost no further information about ¢ can be determined.

A similar concept in a different setting was studied by [4],[24] ((n,J, k)-
functions) and [10] (t-resilient functions). The next definition is taken from [4].

Definition 3 [4]. For any integers n,j,ksuch that n > j+ 4,7 >0 and k > 0,
a function f : GF(Q)* — GF(Q) is (n, j, k) if, no matter how one fixes any k of
its inputs, each of the @/ outputs can be produced in exactly Q*~7~* different
ways by varying the remaining n — k& symbols.

If each symbol of f(x) is obtained by computing a weighted sum on a subset of
the digits in = then f(z) is said to be xor-(n, j, k). In [4] the function f is from
n—bit strings to j-bit strings, here we consider an arbitrary field. The following
theorem showing how to construct (n, j, k)-functions, was originally proved for
functions over binary strings. It is straightforward to generalize it to functions
over arbitrary fields.

Theorem 4 [4]. For a set of values (n, j, k), there ezists an zor-(n, j, k)-funclion
from GF(Q)"* to GF(QY if and only if there exists an [n,j, k + 1] linear codes
Cn over GF(Q).

If G is the genelating matrix of a [n,j, k + 1]-code C, then the function
f(z) = Ga7 (.1, is = transposed) is zor — (n,j, k). Saying that f is (n,j, k)
implies that f~!(2) is a set which have uniform projection on any k coordinates

(10]:

Definition5 [10]. A set S C GF(Q)" has a uniform projection on any j
components if for all w € {0,1}" of weight j and all a € GF(Q), the set
Swa={z €85 :(L ) = a} is such that #5, 4 = %;

If f(z) = G2T is (n,j, k) then f~!(z) = HaT, where H is the parity check
matrix for C,, The matrix H is also the generating matrix for the dual Ct of
C,.. The next theorem makes the connection between uniform projections and
some conditions on the dual of the codes C,,.
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Theorem 6. If there exists a family of codes C = {Cnln>o such that for n
sufficiently large the dual C;- of Cy has minimum distance d!, with in:l >(> 3,
protocol ident(¢?,¢*) hides almost all information about é* to Bob* except
with probability ezponenitally small in n. This holds given an idealized guanium
transmission.

proof sketch: By property 1, except with vanishingly small probability A(¢*, ¢4) >
(1 — ¢{)n. Thus, the number of positions for which Bob" sees the bits of ¢ is less
than ¢n. Let H be the generating matrix for C;* of minimum distance {n. The
function HzT has uniform projection on any ¢n components. Thus, any {n bits
of a codeword ¢ (those for which HeT = 0) are random when ¢ €g C,. Since the
other {1 — {)n positions are random, the string ¢ he received is purely random.
Therefore, the set & = {#|A(d, ¢*) > (1 — ()n} models the knowledge leaked
to Bob™ by the actual execution of the protocol. It is easy to show that @, gives
almost no information about ¢. Let &, be the model for Bob*’s knowledge about
¢ before the actual execution. The set @ = Py N P; models Bob™’s knowledge
after the current execution given he had almost no information when entering
the protocol. By property 2 the set ¢ gives almost no information about ¢*. For
Bob™ executing poly(n) times the protocol, the set

poly(n)

o= () &
i=1

where ¢; models the information leaked about ¢ for the ith execution gives
almost no information about ¢*. We conclude that ident(¢#, ¢*) hides almost
all information about ¢ to Bob”. 0

3.2 Code Properties

Over the last few sections we have suggested some conditions on our codes. Let us
now summarize the properties that families of codes € must satisfy to guarantee
the security of protocol ident(¢#, ¢2) while preserving efficiency of the scheme.

1. Given our mode of transmission via the quantum channel, we want C to be
a family of binary codes.

2. Each C, € C must be efficiently constructible and efficiently decodable.

3. Each C,, € C must have minimal distance d,, such that %L > 2(e 4 ¢g) for
€ > 0. ,

4. The dual C} of C,, € € must have minimal distance d’, such that inn ><C
for ¢ > L.

The set of conditions above is bad news. First of all, these conditions cannot
be satisfied because of Plotkin’s bound on codes [20] when ¢ > -;— Fortunately,
modifications to the protocol (for instance by using more than two transmission
bases) open the possibility of relaxing this condition to { > 0. But even then, no
known family of codes satisfies these four conditions at once. It is nevertheless
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easy to find codes meeting any three of them. For instance, concatenated codes
{16]) achieve conditions 1, 2 and 3, random binary linear codes meet conditions
1,3 and 4, while Reed-Solomon codes meet 2,3 and 4.

It is common in coding theory to take care of arbitrary long messages via
block codes. These codes are of no help in our setting because their duals have
small minimum distance. This is easy to see since it is sufficient to observe a
constant number of bits to tell if a word is a candidate codeword or not.

On top of these problems due to coding theory, more fundamental problems
arise from our protocol: we have made a very strong assumption that Alice® and
Bob™ send and receive photons in only two possible bases. In reality we would
have to deal with the fact that they can use very different quantum states and
quantum measurements. It is indeed completely unknown to us if this protocol
is safe under these general conditions.

The main problem in quantum cryptography is to provide proofs for the se-
curity of eryptographic primitives assuming the most general quantum measure-
ments an opponent could make. Nevertheless, the full security of the quantum
bit commitment primitive has been obtained in [5] and quantum oblivious trans-
fer has been shown secure against a large set of measurements[21]. Basing our
identification scheme on such primitives gives more freedom on the codes while,
at the same price, providing security against any quantum measurements. Obliv-
ious transfer has already been used by [14] to solve the problem of identification.
In the next section, we present a different solution based on quantum oblivious
transfer and theorem 6.

4 The Final Protocol

No existing family of codes meets the four conditions above. One way around this
problem is to drop condition 1. To do so we need a means of transferring elements
of alarger field G'F(Q) at once. This is exactly the purpose of a (f)—OST, a One-
Qut-of- Two Oblivious String Transfer [11]. We can thus modify our protocol to
use this primitive instead of the quantum transmission of section 3. A nice side
effect of this modification is that transmission errors also go away.

Doing this modification is not very costly since a (;)-OST can be imple-

mented using a constant number of (;“)) -OT, [11], which in turn can be obtained
from the quantum transmission [6]. The solution we describe next works over
GF(4) (and thus we use a (;)-OT,).

The Appendix provides a modified protocol (from [6]) for Quantum Oblivious
Transfer ((7)-OT,) sufficient for this application. That protocol also relies on
the existence of a bit commitment. To avoid computational assumptions again
at that level we recommend using the Quantum Bit Commitment Scheme of [5).
The protocol of the next subsection combined with the one from the Appendix
constitute the complete Quantum Oblivious Mutual Identification.
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4.1 Protocol

Suppose Alice and Bob share ¢ = ¢* = ¢? € {0,1}". In order for Alice to
prove to Bob that she knows ¢, she transmits a random string ¢ taken from a
sparse but large set C, in such a way that if they agree on the same ¢ he receives
¢ and verifies that it belongs to C, but otherwise receives a rather random string
which is unlikely to be in C.

More precisely, let M be a random n x & matrix over GF(4). (In banking
applications, M is chosen by the bank and may be made public.) Let C,, be the
[n, kn, da] linear code over GF(4) generated by M. Let Cit be the [n,n —k,,d}]
linear code over GF(4) dual to C,,.

Protocol 4.1 ( identOT(¢4)(¢%) )

Alice picks r,s € g {00,01,10,11}". ‘
DO Alice runs (f)—OT,(r',s.)(qu) with Bob who receives v;.

=1

: Bob picks z,y € g {00,01,10,11}" and announces it to Alice.
: Alice picks c € Cn, computes and sendsu — cB (r Pz, sP y)[¢,q].
: Bob accepts only if u@® v ® (x,y)(45) € Cn.

e

In the above protocol, in contrast to protocol 3.1, the randomization of step
3 is necessary because the (f)—OT4 no longer provides the fact that a random
element is obtained when ¢} # ¢£, and we do not want Alice to take advantage
of that fact. From the previous sections it is now easy to see why the protocol

1s correct and secure.

4.2 1dentOT(¢,¢) with honest parties
If Alice and Bob share the same private sequence ¢ = ¢4 = ¢ then
u@vD (2,9 = cO(rd2z, 5D Y D (r, g @ (2, )] = €

Therefore Bob accepts.

4.3 identOT(¢*, $7) with a dishonest Alice

Suppose a malicious Alice (denoted by Alice®) tries to impersonate the real
Alice. We assume that .Alice® knows almost nothing about ¢? at the begin-
ning. This section specifies code parameters that allow Bob to reject Alice® with
probability exponentially close to one.

Now we show how to choose the parameter £ of code in order to eliminate
the chances that Alice” identify as Alice successfully.

Theorem 7. If d,, € £2(n) Bob will reject Alice* ezcept with probability exzpo-
nentially small in n.
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proof sketch: Bob’s final calculation is u @ v & (x, y)gs) which by definition of
vis u® (rdz,sdy)ye). Alice”, who knows r,s,z,y may try to choose a u
cleverly to make this a codeword for as many ¢2 as possible. We show this is
not possible.

First notice that for any fixed r, s, when z, y are uniformly chosen at random
A(r@z,s&y) = 3n/4. By the assumption that Alice” has almost no information
about ¢? we know that the number of equally likely candidates for ¢2 is roughly
27. Fix a u and a ¢® and assume the corresponding word has syndrome 5. We
know that all the ¢/ that are different from ¢2 in the positions where » @ z
and s @ y are the same will not change the result of the calculation. Therefore
roughly 2"/ values of $& will yield the same result with syndrome S.

On the other hand, any ¢’ that differ from ¢% in positions where r@z and sy
are different will yield a different result. As long as the number of differences is
no more than d,,/2 the resulting words cannot have the same syndrome because
this would imply that the code contains a word of weight less than d,, and no
other word of syndrome S can be closer than the onc we started from. Therefore
on/4 Zf;{g (3"{/4’) possibilities for ¢ will yield results of another syndrome and
each of these is associated to a single word of syndrome S.

In conclusion, for any fixed u and 5, there is always at least Zf:"{z (3"/4)
times more possibilities for ¢® that do not yield a word of syndrome S than
those that yield a word of syndrome S. If d,, > 2én for some constant &, this
value is roughly 725n Therefore the probability that Alice” gets Bob to accept
is no more than 27" with o = 3H(8)/4.

a

We need to know more than just the fact that Alice® will fail most of the
time: we show that in the case of failure she cannot learn much about ¢g.

Theorem 8. If d, € £2(n) Alice” learns almost nothing about ¢, except with
probability exponentially small in n.

proof sketch: By the same counting argument as above, there cannot be more
than 201=38()/4n poscibilities of ¢ g that would yield codewords. When rejected,
Alice™’s only gain in knowledge is that the real ¢ was not one of those. Thus
she can eliminate only that many strings. a

The consequence of these theorems is that with probability 1 — 272" Alice
will be rejected and in that case she may discard only 2(1-38(e)/4n gtrings as
candidates for ¢#. She will thus still have almost no informmation about ¢& even
after discarding poly(n) x 201 =3R4 strings.

4.4 identOT (¢4, ¢*) with a dishonest Bob

Now we analyze the situation from the point of view of an honest Alice facing a
malicious Bob™.

Theorem 9. Except with exponentially small probability in n, ProtocolidentOT(¢)
hides all information about ¢* to Bob™ if the code is a [n,kn, dp]-code with a
dual [n,n — ky,, d]-code such that d, > (3 +7)n for0 <y < 3.
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proof sketch: For each position i such that ¢7 = ¢, Bob will get the codeword
position ¢; of ¢. The #{i|¢{ = ¢} is at most (3 + ¥)n except with probability
smaller than 2e~7"". The remaining positions (j) of (z, y)gs)@udv for ¢] # ¢f
are not correlated with ¢; as long as r and s were originally chosen at random.
Since the dual has minimum distance d' > (% + 4)n we conclude that theorem
6 applies and that Protocol IdentOT hides the information ¢4 to Bob*. 0

Example: Codes with such properties exist over GF(4). For instance, a ran-
dom n x 0.91n 4-ary matrix is likely to define a [n,0.91n,0.02n] code with a
[n,0.09n,0.52n] dual code. Assymptoticaly, the probability that such a matrix
do not define a code with these parameters is exponentially small in n.

4.5 Complexity

Protocol 4.1 runs in time O(n?) (to choose a codeword) and uses O(n) (f)—OT,;,
where n s the security parameter. When combined with the sub-protocol from
the Appendix the total running time of the final protocol becomes O(n®) and a
total of O(n?) photons are transmitted. The running time decreases to O(n?37%)
if more efficient codes such as the Superconcentrator Codes of Spielman [25] are
used in the protocol of the Appendix in both the Oblivious Transfer and the Bit
Commitment (time O(n?)) and if all the commitments are done at once in order
to save on the time necessary to compute the hash function (O(n) products of a
vector by a matrix with a total of O(n?) operations may be replaced by a matrix
product which takes only time O(n?37%)).

We must point out that despite the fact that our Protocol 4.1 is more efficient
than that of Fagin, Naor and Winkler [14] in terms of (1) OT,, when used
together with the Quantum Oblivious Trausfer their protocol can be made as
efficient as ours in terms of photons. This is because their protocol requires
n transfers of n-bit strings (which implies 2(n?) G)—OTZ) while our protocol
requires only n transfers of 2-bit strings (which can be done with O(n) (f)—OTZ).
The fact 1s that the Quantum Oblivious Transfer can be used to transfer 1, 2 or
up to O(n) bits at no extra cost. In order to have a real gain in terms of photons
transmitted we need a Quantum O-T that requires only a constant number of
photons to transfer a constant number of bits (see open problem 3).

4.6 Implementation Remarks

The protocol from the appendix uses quantum transmission both for Oblivious
Transfer and Bit Commitment. At first glance, it seems like the quantum trans-
mission of data must go in both directions, since the Oblivious Transfer goes
from Alice to Bob and the Bit Commitment goes the other way. As pointed out
in {12], there is no need for photons traveling both ways. These two protocols
may be implemented with the photons going in a single direction. It does not
matter who send the photons to who, the same result can be achicved from them.
(A similar idea was suggested by Hans-Joachim Knobloch {19].)
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Because of the above remark, in a smartcard scenario it suffices to implement
on the card the technology for sending polarized photons: a weak light source
with a multiple polarizer system. As for the ATM it would have to use the more
elaborate technology for making polarization measurements on the incoming
photons. Since the distance between the sender and receiver could be of a few
millimeters the actual error rate of the quantum transmission would be extremely
low (error rates of 0.5% have been observed on hundreds of meters [22]).

5 Conclusion and Open Questions

We have presented a protocol for mutual identification based on the existence of
an Oblivious Transfer and have shown improvements to the Quantum Oblivious
Transfer in order to combine them in an efficient Quantum Mutual Identification
Protocol. Here is a few open problems:

1. It would be interesting to show that the protocol of section 3 is secure even
if the participants use arbitrarily complicated physics.

2. Find binary codes satisfying conditions 2,3, and 4.

3. Find a reduction of (f)-OST to the quantum transmission that requires only
a constant number of photons per word of constant length.

4. Implement the necessary technology on a smartcard!
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Appendix

We refer the reader to [6, 5, 12] for more details on this protocol. Here en is a
limit on the number of errors that can be tolerated from real noise. The actual
error rate ¢ should be less than € in order to reject an honest Alice accidentally
only with probability exponentially small in n.

Protocol 5.1 { (})-OT,(g0,91)(c) )

1: D,IO
=1

= Alice picksri €p {0.1} and 8. ep {$, X },
~ Bob picks i ep {$, X},
—~ Alice sends to Bob a photon m; with polarization Bitrils
- Bob measures photon n; in basis 8] and obtains a bit rl.
2: Bob runs commit(riry...tn 3185... 85} with Alice.
3: Alice picks a random bit { and announces it to Bob.
4: 1f t =20 then
- Bob runs unvel(rir...r;, 51 85...5%),
~ Alice checks that #{i | i = p{ and r; #£7i} < en,
- Alice and Bob restart the protocol.
&: Alice announces her choices $12...8, to Bob.
6: Bob randomly selects two subsets Io, 1y C {1, ...,n) subject to
[lo| = |I1] = n/2, Ioﬂh =@ andVi € Ip,B: = Bl or Vi € I1, B; # B,
and announces I, I, to Alice.
7: Alice

= receives Jo, Jy, and defines wo — v o7 0.0 and wy — 1
1 2

T
Tny2

AFEN Tnt2

' T
1
with j € Jy and j} < jiy, forbe {0,1} and 1 <1< 2/2,
= computes their syndromes So — Syn{wo) and Sy — Syn(w;)
with respect to an agreed upon linear code C (consult [6] for details),
~ picks a random privacy amplification function h : {0,1}™/* — {0,1}?,
- computes Go — go B h{we) and §; — q1 & h(w1),
— sends Sy, S1,h, §o,§1 to Bob.
8: Bob
— recetves So, S, R, o, 1,
— computes a word W of syndrome S. using the decoding algorithm of C from
word w' = r:‘r,'z...rfﬂ/2 with i € Iy and 4§ < 1141 for 1 <1< nj2,

— computes and returns gc — ¢ & h(@).

The privacy amplification function used in Step 7 can be a the concatenation
of the XOR of two random subsets of the bits of its input. In the Bit Commitment
protocol of Step 2, a single privacy amplification function can be used for all of
them.



