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Abstract. We coiisider a situation where two parties, Alice and Bob,  
share a common secret string arid would like to mutually check their 
knowledge of that  string. We describe a simple and efficient protocol 
based on the exchange of quantum information to  check mutual knowl- 
edge of a common string in such a way that  honest parties will always 
succeed in convincing each other, while a dishonest party interacting 
with an honest party will have vanishingly small probability of convinc- 
ing him. Moieover, a dishonest party gains only d very small amount, of 
information about t,he secret string from running the protocol: whoever 
enters the protocol with no knowledge of the secret string would have 
to enter this protocol an exponential number of times in order to gain 
non-negligible information about the string. 
Our scheme offers an efficient identification technique with a security 
that  depends on no computational assumption, only on the correctness 
of quantum mechanics. We believe such a system should be used in smart- 
cards to avoid frauds from typing PIN codes to dishonest teller machines. 

1 In t 1-0 d u c t i o 11 

Weren’t you worried tlie last time you typed your PIN (Personal Identification 
Number) to an unknown teller machine that it could be a fake and that its sole 
purpose could he to steal your PIN? According to  a recent headline of the NY 
Times [as] maybe YOU should worry: 

“ONE LESS THING TO BELIEVE IN: FRAUD AT FAKE CASH MACHINE” 

The problem with current identification systems is that the customer must trust 
tlie equipment to  which he types his PIN. It is completely trivial to  modify a 
teller machine to  memorize the PIN numbers that people type to it. PINS are 
meant to be checked, not given. (Consult [I] for an extensive study of frauds at  
teller machines.) 

Of course, it  is always possible to completely solve the problem of identi- 
fication and authentication of messages by classical methods [9] that require 
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exchanging passwords which length are proportional to the number of uses. Un- 
fortunately, this is completely impractical: we want to rely on the existence of a 
s h o d  secret to check identity. 

A similar approach has been suggested in a computational model through 
tlie construction of pseudo-random generators [7] or pseudo-random families of 
functions [17] which requires only short secrets seeds. These solutions make sense 
only in a context where we put coiiiputational restrictions on the participants. 
For powerful parties i t  is trivial to  fake identities. 

In the computational model, more sophisticated tools were developed for this 
purpose: Zero-Knowledge Proofs of Identity [15] introduced in order to provide 
means by which an honest party may convince another party of his identity in a 
way that  cannot be replayed successfully to another party. This is true even if the 
verifying party tries his best to  extract valuable inforination out of the proving 
party. Moreover, a dishonest party attempting to prove an invalid identity will 
be detected by the verifying party except with vanishingly small probability. 

Noii-Coinputational Protocols 

The major drawback wit,li these proofs and ot,her computational techniques is 
that  deep down their security must rely 011 some computational assumption: the 
proof of knowledge can be checked if tlie identifying string i s  t,he solut,ion to 
soine hard public problem. If one can solve this problem, lie can fake identities. 
This is tlie case even if we build tlie protocol from perfect  cryptographic tools 
such as ideal Bit. Commitment or ideal Ol~livious Transfer. 

In the c.urrent paper, we coiisider a situation where two parties, Alice and 
Bob, share a coniinon secret string and would like to  mutually check their knowl- 
edge of tha.t string without disclosing it.  This problem has been extensively st,ud- 
ied by Fa.gin, Naor and Winkler [14] who provide a large number of scenarios 
where the problem may be considered. From the cryptogra.phic point of view 
only one of their solut.ions may be considered secure: a solut,ion based on t,he 
exist,ence of a one-out-of-t,wo Oblivious Transfer [13] which uses 52(n2) Transfers 
to do the job for a n  n-bit secret string. 

We describe a. simple and efficient protocol based on the exchange of quantum 
information t,o check mutual knowledge of a coiiimon string in such a way that 
honest pa.rt.ies will always succeed in convincing each other (except with van- 
ishingly sinall proba.bility), while a dishottest pa,rty interacting with an honest 
pa.rty will have only vanishingly small probability of convincing him. Moreover, 
a dishonest party ga.ins oidy a. very small amount of inforinat,ion about the secret 
string from running tlie protocol: whoever enters the protocol with no knowledge 
of tlie secret string would have to enter this protocol an exponential number of 
times in order t o  gain non-negligible information about the string. 

Our scheme, based on coding theory, depends on no computational assump- 
tion, has a total running time of O(n2 37G)  a.nd a total of O ( n 2 )  photons are trans- 
mitted (if implement,ed with a one-out-of-two Oblivious Transfer, only O(72) such 
Transfers are necessary). We also present a scheme which uses only O(72) photons 
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but that cannot t(o1erate the transiiiission errors of a real quantum channel. We 
suggest the reader consults [S] for more details of quantum cryptography. 

We believe such a system should be used in sinartcards to  avoid frauds from 
typing PIN codes to dishonest teller machines. A PIN could still be used to  
activate the functions of the card but it should be typed directly to  the card (a 
device you might as well trust since your bank gives it to  youl and they have 
your money anyway!). The card would identify itself with tellers only through 
our mechanism: no PIN ever exchanged. 

The practical difficulty of our scheme is to embed the necessary technology 
for the Quantum Oblivious Transfer on a card. Since none of the technology is 
very fancy we believe such cards could be mass produced (see Section 4.6). 

2 Preliminaries 

2.1 Notations and Tools 
x i f b = 0  For b E ( 0 , l )  we define the selection function (z,y)[b] = where .- 

I and y a.re scalars. In general, if I and y are vectors with n components and 
b E { O , 1 } "  then (I, y)p] is the concatenation of(zi, yi)[b,j for all i E {I ,  2 , .  . , , n} .  
If we use a single z instead of a pair t.hen (.r)[q is the concatenation of the 2;'s 
for 6; = 1. For inshnce (1001)[1010~ = 10. We denote by A(s,?) the Hamming 
dist.ance between s and g. 

Now let us define what we nieaii by a secure identification protocol in our 
context. Suppose +(,,I ER ( 0 , l ) "  is the secret information shared by dlice and 
Bob. In t.he following we write Bob* (resp. Alice") to designate somebody trying 
t,o inipersonat,e Pob (resp. Alice). 

Definition 1. Bob" (or Alice')  1ia.s almost no information about + indesed 
by a securit,y pa.ranieter n., # = E R  ( 0 ,  l } " } n > O 1  if Bob*'s (or dlice"s) 
information about 4 can be inodeled by a set 0 = {@(nl (0, l}n},>o such that 
for some (Y > 0 and all sufficiently large 1% we have: 

and for each 4' E @ , , l )  we have: 

The Shannon information given by @ about # is such that  
A 

W ( t a ) I @ ( n ) )  5 2-1 6 > 0. 
Without loss of generality, we use # for an instance $(n) whenever the context 

An identification scheme hides the secret information 4 if when a cheating 
he ends up with almost no 

pern1it.s. We denote by 

party runs the prot,ocol with no information about 
information about 4. 

the it'' bit of 4 .  
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Definition 2. An identification scheme hides the secret information 4 shared 
by Alice and Bob, if for some a' 0, when Bob* (or Alice*), who starts with 
no information about 4 ,  cheats the protocol poly(n) times, he has probability 
greater than 1 - 2-a'n to  end up with almost no information about 4. 

The random variable 4* denotes tlie choice made by Alice' or Bob' to run 

If a malicious party P* has almost no information about #I then he cannot 
the protocol given that she (or he) has almost no information about 4. 

guess any bit q$ with non-negligible bias. 

Property 1 I f  P* has almost no information about 4 = {d(nl E R  (0, l }n}n>o 
there exists p > 0 such ihat for all 4' E ( 0 ,  l}n and each position i independently, 
IP(+t = 4j) - 5 2 - P " .  

If P* has alinost 110 information about 4 and executes a protocol leaking aliiiost 
no inforiliation about 4 then P4 has still almost no information. 

Property 2 If 9 0 ,  @I are two sets that gave almost no information about 4 then 
@ = 40 n @I g ives  almost no injormatioii about 4. 

These two properties are straightforward applications of the above definitions. 

2.2 Simple Quaiituiii Transmission 

I n  this paper we consider the most simple idealization of a quantum transmis- 
sion. There is only four different ways to transmit photons corresponding to  
the four polarization angles O ' ,  45', 90°, 135' that we denote I + + ) ,  I / ) ,  / I ) ,  I I) 
respectively. If Alice wants to send 6 E (0, l}, she used the following encoding 
rules: 

1. b = 0 is randomly encoded by I-) or 1 / ).  
2. 6 = 1 is randomly encoded by 11 ) or I \ ) .  

At tlie receiving end Bob chooses how he measures the incoining photon either 
by reading it in rectilinear basis (I-), I J ) ) ,  denoted +, or i n  the diagonal basis 
(I / ) ,  I \ ) ) ,  denoted X. We suppose this is the only choice he can make. If the 
photon T encodes a bit B in t,he rectilinear (resp. diagonal) basis and the receiver 
measures it i n  the rectilinear (resp. diagonal) basis then he gets the bit b (except 
if an error occurred during transmission). If T is measured in the diagonal (resp. 
in the rectilinear) basis theii a random bit is received. For a basis 4 E { +, X } 
and a bit 6 we write 4p1 for the transmission of the encoded bit b in a photon 
polarized in the basis d.  For more details about how quantum transmission works 
in general consult [ S ] .  
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3 A basic quaiituin identification 

Suppose Alice and Bob who have the secret string dA and dB respectively want 
to test whether dA = + B  without revealing their values. In order to  achieve 
this, they are willing to use quantum and public channels. The transmission of 
c ER (0, l} polarized in basis 4 E R  {if., X }  hides all information about 4 to 
anybody who Iias almost no a priori information on the values of c and 4. This 
suggests the use of the secret 4A to  encode securely the transmission basis. 

Suppose Alice and Bob share 4 = + A  = d B  ER {if., x } " .  In order for 
Alice to prove to Bob that  she knows 4 ,  she could transmit a random string c 
taken from a sparse but large subset of (0 , l )"  polarized in basis 4. Therefore, i t  
suffices for Alice to  choose a random codeword c from a code C, which she sends 
to Bob. He then measures it in q5 to obtain the decoded string E. If the quantum 
channel is noiseless then E = c. (In the more realistic case, the quantum channel 
would be modeled a s  a binary syiiinietric channel with parameter E . )  If there is 
a large number of codewords in C, it could be the case that iiieasuring c in basis 
4* hides almost all information about 4.  Conversely if Alice does not know c$ 
it could be very unlikely t,liat she succeeds to send E close to a codeword c, as 
long as codewords are not too close to each other. Protocol i d e i ~ t ( 4 ~ ,  dB), shown 
below. implements this idea given c the error rates of the quantum channel. 

Protocol 3.1 ( i d e n f ( d A , d B )  ) 

1:  Alice rind Gob agree on a brnary h e a r  (n ,  A, , ,  d,)-code C,, E C by speczfyzng 
a generattng matrix G for C,, . 
2: dhce chooses a rundom word x E R  { O ,  and takes c = x G .  

3: Do 
,=l 

- Alice sends to Bob 
- Gob meastires the znconiing photon zn the basrs 4: and obtains ;$. 

photon polorazed 2n 4tfc,] .  

4 :  Soh accepts if when decodtng 2, he obtains c' E C,, such that  b ( c ' ,  S )  5 
(€ + r o ) n  for 60 > 0 I 

Suppose Alice and Bob share the same private sequence 4 = dA = d B .  This 
implies that, for any €0 > 0 and except with vanishingly small probability, Bob 
will decode 2 as  c which is at  Hamming distance less than ( E  + E O ) R  from t given 
71 sufficiently large. 

Now consider a malicious Alice (denoted by Alice') is trying to impersonate 
the real Alice. We assume t.liat Alice' knows almost nothing about d B  at the 
beginning. Therefore she will have roughly half the positions different from Bob 
and thus sends random bits i n  half the positions. It, is easy to show that if the 
minimum distance d, of C, is such that d, > 2 n ( ~  + E O ) ,  Alice' will be detected 
with probability greater than 1 - 2-"" Tor (Y > 0. By this attempt, she will not 
learn more than a vanishingly sinall amount of Shannon information about d B .  
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3.1 idelat(+, +*) w i t h  a dishonest B o b  

Let qb ER {+, X}" be Al ice ' s  secret a.nd let c be the transmitted random 
codeword taken from C,,. Bob' chooses a set of bases 4* and measures each 
photon i in the basis 4; in order to obtain 2. Roughly speaking, one half of the 
bases of +* will match with the bases of qb.  Thus approximatively half of the 
bits he will receive are the bits of the codeword sent by Alice. The other bits 
(the positions i for which 4; # 4;) are not correlated with the bits transmitt,ed. 
For Bob* to  be una.ble to determine a substantial amount of inforinat'ion about 
4, the code must be chosen so that a.ny half of the bits of the codewords are 
purely random. Hence, if the proportion of the bits Bob' sees about a codeword 
is random and the rest of the bits he received are not correlated (thus random) 
the thing he gets is a purely random string. Given that the same would 11a.ppend 
for all but a few $* almost no further informa.tion about 4 can be determined. 

A similar concept in a different setting was studied by [4],[24] ( ( n , j ,  k)- 
functions) and [lo] (t-resilient func.t,ions). The next definition is taken froin [4]. 

Defin i t ion3  [4]. For any  integers n ,  j, k such that n 3 j + k, j > 0 and k > 0, 
a function f . GF(Q)" -+ GF(Q)J  is ( n , j ,  k )  i f ,  no matter how one fixes any I;  of 
its inputs, each of the QJ outputs can be produced in esactly Q n - J - k  different 
ways by varying the remaining 77 - k symbols. 

If each symbol of f(x) is obtained by coiiiputiiig a weighted sun1 011 a subset of 
the digits in then f(z) is said to be ,or-(,, j ,  k). In [4] the function f is from 
?i-bit strings to j-bit strings, here we coiisider an arbitrary field. The following 
theorem showing how to coiistruct ( n ,  j, k)-functions, was originally proved for 
functions over binary strings. It is straightforward to generalize it to functions 
over arbitraiy fields. 

Theorein4 141. For u sef o f i iu lues  (71,j,  k), there erzsfs ail xor-(n, j ,  k)- f i inct ion 
f r o m  CF(Q)"  t o  GF(Q)J  zf n i i d  only 7f there exzsts an [ n ,  j ,  k + 11 lzneur codes 
C,, over  G F ( Q ) .  

If G is the generating inat.rix of a [n , j ,  k + 11-code C, t,hen the function 
f ( z )  = GxT (x* is x transposed) is zor - ( n , j , k ) .  Saying that f is ( n , j , k )  
implies that j - ' ( z )  is a set which have uniforin projection on any k coordinates 
[lo]: 

Def in i t ion5  [lo]. A set S 5 GF(Q)" has a uniform projection 011 any j 
coniponents if for all w E (0, I}" of weight j and all a E GF(Q)k,  the set 
SW,* = {z  E S : (1,x)[,1 = u }  is such that #S,,, = $. 

If f ( x )  = GzT is ( 7 1 , j ,  b )  then f-'(z) = Hx', where H is the parity check 
matrix for C,,. The matrix H is also the generating matrix for the dual C,' of 
C,, . The liest theorem makcs the connection between uniform projections and 
some conditioiis oil the dual of the codes C,,. 



139 

TheoremG. I f  there ezists a f a m i l y  of codes C = {C,,},,>O such  that  for n 
sufficiently large t h e  dual Ck of C,, has m i n i m u m  distance d; wiih % 2 C > f ,  
protocol i d e 7 1 t ( 4 ~ ,  4’) hides a ~ 7 l l O S t  all in forniat ion about q5A t o  Bob* except 
w i th  probability exponeniially sma l l  in n.  T h i s  holds given an idealized quan tum 
1 ran sin ission . 

proof sketch: By property 1, except with vanishingly small probability A(4* ,  4 A )  2 
(1 - o n .  Thus, the  number of positions for which Bob’ sees the  bits of c is less 
than ( 1 1 .  Let H be the generating matrix for C,$ of minimum distance Cn. T h e  
function H t T  has uniform projection on any Cn components. Thus ,  any Cn bits 
of a codeword c (those for which HcT = 0) are random when c ER C,,. Since the 
other (1 - C)n positions are random, the string i. he received is purely random. 
Therefore, the  set 0, = {d lA(d ,  r#~*) 2 (1 - O n }  models t he  knowledge leaked 
to Bob* by the  actual execution of the  protocol. I t  is easy to show tlhat @I gives 
almost 110 information about 4.  Let @o be the model for Bob”s knowledge about 
b4 before the actual execution The  set Q, = 0, n GI models Bob*’s knowledge 
after the current execution given he had almost no information when entering 
the protocol. By property 2 the set PS gives almost no inforinatioii about b A .  For 
Gob* executing poly(rz) times the protocol, the  set 

I ’ O l Y ( n . )  

@ =  n @ t  

Z = l  

where CP, models the information leaked about 4 for the it’’ execution gives 
almost no information about 4-”. We conclude tha t  i d e n t ( d A ,  $*) hides almost 
all information about dA t o  Gob’. 0 

3.2 Code Properties 

Over t,he last few sections we have suggest,ed some conditions 011 our codes. Let US 

now sui~inia.rize the properties that  fa.inilies of codes C must sa.tisfy to guarantee 
the security of protocol i d e i ~ t ( 4 ~  , @) while preserving efficiency of the  scheme. 

1. Given our mode of t.ransmission via the qua.ntum channel, we want C to be 

2. Each Cn E C must be efficiently constructible and efficiently decoda.hle. 
3. Each C,, E C must h v e  minimal distance d, such tha t  $- 1 2 ( ~  + €0) for 

4 .  The dual C,‘ of C,l E C must have minimal distance dk  such tha t  $ 2 C 

a. family of binary codes. 

€0  > 0. 

for < > 4. 
The  set of conditions a.bove is bad news. First of all, these conditions cannot 

be satisfied because of Plotkin’s bound 011 codes [20] when < > f .  Fortunately, 
modifications t,o t,lie protocol (for instance by using more than  two transinission 
bases) open the  possibility of relaxing this condition to i > 0. But even then, no 
known family of codes satisfies t.hese four condit,ions at  once. It. is nevert,heless 
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easy to  fiiid codes meeting a.ny t.liree of them. For instance, concatenated codes 
[16] achieve conditions 1, 2 and 3, random binary linear codes meet conditions 
1,3 and 4,  while Reed-Solomon codes meet 2,3 and 4. 

It is common in coding theory to take care of arbitrary long messages via 
block codes. These codes are of no help in our setting because their duals have 
sinall minimum distance. This is easy to  see since i t  is sufficient t o  observe a 
constant number of bits to t,ell if a word is a candidate codeword or not. 

On top of these problems due to  coding theory, more fundamental problems 
arise from our protocol: we Inve made a very strong assumption tlhat Alice' and 
Bob* send and receive photons in only two possible bases. In reality we would 
have to deal with the fact t,liat they can use very different quantum states and 
quantum measurements. I t  is indeed completely unknown to us if this protocol 
is safe under t,liese general condit,ions. 

The main problem in quantum cryptography is to provide proofs for the se- 
curity of cryptogra.phic primitives assuming the most general quantum measure- 
inent.s an opponent. could ma,ke. Nevertheless, the full security of the quantum 
bit comniitiiient primitive has been obtained i n  [5 ]  and quantum oblivious trans- 
fer h a s  been shown secure against a large set of measurements[21]. Basing our 
ideiitifica.tion scheme on such primitives gives ]nore freedom on the codes while, 
a t  the same price, providing security aga,inst any qua.litum measurements. Obliv- 
ious transfer has already been used by [14] to solve the problem of identification. 
In t.lie nest. section, we present a different solut,ion based on quantum oblivious 
t,ransfer and t,heorem 0.  

4 The Filial Protocol 

No existing family of codes 1iieet.s the four conditions above. One way around this 
problem is t,o drop condit,ion 1. To do so we need a means of transferring elements 
of a larger field G'F(Q) at once. This is esa.ct,ly the purpose of a (:)-OST, a h e -  
Out-of- Two 0hlit:ious Sfring Tmnsfer [ll]. We can thus modify our protocol to 
use this primitive instead of the quantum t,ransmission of section 3. A nice side 
effect of this modification is that transmission errors also go away. 

Doing tmliis inodificat,ion is not, very costly since a (:)-OST can be iinple- 
mented using a. constant number of (i)-OT, [ll], which in  t,urn can be obtained 
from t,he quanteum t,ransmission [GI. The solution we describe next works over 
GF(4) (and t.lius we use a (i)-OT4), 

The Appendix provides a. modified protocol (from [GI)  for Quantum Oblivious 
Transfer ( (?)-OT4) suflicient for this application. That protocol also relies on 
the existence of a bit commitment. To avoid coiiiputational assumptions again 
at that level we recoininend using trhe Quantum Bit Commitment Scheme of [5]. 
The prot.oco1 of the nest, sulxect,ion combined with the one from the Appendix 
constitute the coniplet,e Quantum Oblivious hlutual Identification. 
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4.1 Protocol 

Suppose Alice and Bob share 4 = q5A = q5B ER (0 , l )" .  In order for Alice to  
prove to  Bob that  she knows 4,  she transmits a random string c taken from a 
sparse but large set C, in such a way that if they agree on the same 4 he receives 
c and verifies that it belongs to C ,  but otherwise receives a rather random string 
which is unlikely to be in C. 

More precisely, let M be a randoin 11 x k matrix over GF(4). (In banking 
applications, A4 is chosen by the bank and may be made public.) Let Cn be the 
[n, k,, d,] linear code over GF(4) generated by Ad. Let C t  be the [n, n - kn, d;] 
1inea.r code over GF(4) dual to C,. 

Protocol 4.1 ( identOT(r,hA)(4B) ) 

1: AJice p i c k s r , ~  E R  {00,01,10,11}". 

2: DnU Alice runs (;)-OT4(r,,s,)(+F) with Bob who recetues u,. 

3: Bob ptcks z, y E R  {00,01,10,  llJn and announces rt to Alice. 
4: Alice ptcks  c E R  C,,, computes ond sends ti + c @ ( f  @ 2, s @ Y)[ ,A] .  

5: Bob accepts only zj Y fB w @ (2, ~ ) ( + E I  E Cn. 

1=1 

I n  the ahove protocol, i n  contrast to protocol 3.1, the randomization of step 
3 is necessary heca.use the (:)-OT, no longer provides the fact that a ra.ndom 
element, is oht.a.ined when 4; # and we do not want Alice t.o t,ake a.dvantage 
of that fact,. Froin t.he previous sections it is I I O ~  easy t,o see why the protocol 
is correct and secure. 

4.2 i d e n t O T ( 4 , d )  with honest par t i e s  

If Alice and Bob share the same private sequence 4 = 4 A  = &B then 

21 63 'u 63 ( X I  !/)[@I = c a3 (7' a3 2, s 63 !/)[@I 63 (1.1 4[@1 @ ( 2 7  !/)[@I = c. 

Therefore Bob accepts. 

4.3 identOT(4*,  4B) with a dishonest d i c e  

Suppose a malicious Alice (denoted by Alice') tries to impersonate the real 
Alice. We assuine t.hat Alice' knows almost nothing about 4B at the begin- 
ning. This section specifies code parameters that  allow Bob to  reject Alice* with 
probability exponentially close to one. 

Now we show how to choose the parainet,er k of code in order to eliminate 
the chances that Alice' identify as Alice successfully. 

Theorem 7. If d, E Q(n)  Bob wall reiect Alice' except with probabrlrty expo- 
n e v i i n l l y  srnall i n  1 )  
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proof sketch: Bob's final calculation is u @ 21 @ (z, y)[,p] which by definition of 
21 is u @ ( r  @ z, s @ y ) [ p ] .  A l i c e ' ~  who knows r ,  s ,  2, y may try to choose a u 
cleverly to  make this a codeword for as many d E  as possible. We show this is 
not possible. 

First notice that for any fixed T ,  s, when t, y are uniformly chosen at ra.ndom 
A ( r @ r ,  s@y) z 3n/4 .  By the assumption that Alice' has almost no information 
about d E  we know that  the number of equally likely candidates for qiE is roughly 
Y. Fix a u and a @' and assume t,he corresponding word has syndrome S.  We 
know t1ia.t all the d' that are different from q5E i n  the positions where r @ 3: 
and s @ y are the sa.me will not, change the result of the calculation. Therefore 
roughly 2"14 values of d B  will yield the sa.me result with syndrome S .  

On the other hand, any 4' that differ from ds in positions where r@z and s@y 
are different will yield a different result. As long as the number of differences is 
110 more t.lian &/'2 the resulting words cannot have the same syndrome because 
this would imply t.hat the code contains a. word of weight less than d,, a.nd no 
other word of syndrome S ca.n be closer than t.hc oiic we s t a t ed  from. Therefore 
2"14 ) possibilities for d B  will yield result*s of a.nother syndrome and 
each of these is associa.ted to a single word of syndrome S .  

( ) 
times more possibilit,ies for d B  t.hat do not yield a word of syndrome S than 
those that yield a \17ord of syndrome S. If (1, >_ 2672 for some consta.nt 6,  this 
value is roughly '2 vrL. Therefore t.he probability that Alice* gets Bob to accept 
is no more t1ia.n 2-"" with CY = 3 8 ( 6 ) / 4 .  

d / 7  3n/4 ( 
d m / 2  37214 In conclusion, for any fixed u and 5', there is always at  least 

a 
We need to linow more than  just t,lie fa.ct that Alice' will fail most of the 

time: we show t1ia.t i n  t,he case of failure she cannot learn much a.bout $B. 

TheoTena8. If [I,, E L?(n) Alice" learns a l inos t  nofhziig about * B ,  excepi with 
probabzlaiy e x p o ~ r e ~ ~ t i a l l y  small in 77.. 

proof sketch: By the same coulit.ing argument a.s above, t.liere cannot be more 
t,han 2(1-3h(')/4)f1 possibilities of &B that would yield codewords. Wien reject.ed, 
dlice"s only gain in  knowledge is that the real $5 was not one of those. Thus  

0 
The consequence of these tlieorems is t,lia.t, with probability 1 - 2-"* Al ice  

will  be rej:Ject.cd and i n  t.liat case she ma.y discard only 2('-3h(L)/4)" strings as 
candidat,es for @ .  She will t,liiis st,ill have almost 110 inforination about d B  even 
after disca.rdiiig poly(?c.) x 2(1-3b(')/4!n strings. 

she can e1iminat.e only that m a n y  strings. 

4.4 

NOW we analyze the situation from the point of view of an  honest Alice facing a 
malicious Bob". 

Theorem 9 .  Except wz th  erponentzn l ly  small  probabzlzty 211 11, Profocol identOT(4) 
hides a l l  ziiforinaizoii nboul 4" t o  .Gob* zf t he  code 2s a [n,  k,, d,]-code wzth a 
d u a l  [ n ,  17 - k,, , il:,]-code such  f h a t  d:, 2 (+ + y)n f o r  0 < y < f . 

i d e ? ~ t O T ( 4 ~ ,  $*) wi th  a dishoiiest  Bob 
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proof sketch: For each position i such that 4: = 4:, Bob will get the codeword 
position c, of c. The #{ilq5p = 9 : )  is at most (!j + 7 ) .  except with probability 
siiialler than 2e-72n. The reinaiiiing positions ( j )  of (2, y ) [ # ~ ]  @u@v for 4; # 4; 
are not correlated w i t h  cj as long as r and s were originally chosen at  random. 
Since tlie dual has minimum distance d' > ($ + r ) n  we conclude that theorem 

0 G applies and that Protocol IdentOT hides the information 4A to  Bob'. 

Example: Codes with such properties exist over GF(4) .  For instance, a ran- 
dom n x 0.91n 4-ary matrix is likely to  define a [n,O.Sln,O.O2n] code with a 
[TI, O.O9n, 0.52nI dual code. Assymptoticaly, the probability that such a matrix 
do not define a code with these parameters is exponentially small in n. 

4.5 Coiiiplexity 

Prot.ocol 4.1 runs in time O(n') (to choose a codeword) and uses O ( n )  (T)-OT,, 
where n is the security parameter. When combined with t,he sub-protocol from 
t,he Appendix the total running time of the final protocol becomes O(n3) and a 
t.otal of o(n2) photons are t,ransinit>ted. 'The runniiig time decreases to O(n2.376)  
if more efficient codes such as t,lie Superconcentrator Codes of Spielman [a51 are 
used i n  the prot,ocol of the Appendix i n  both the Oblivious Traiisfer and the Bit 
Coiiimitiiieiit (t,iiiie O ( n 2 ) )  and if all the commit~iients are done at  once i n  order 
t.o save on t.he time necessary to compute the hasli function ( O ( n )  products of a 
vector by a mat,ris w i t h  a tot.al of O(n3) operations may be repla,ced by a matrix 
product which t.a.kes only time O(n2.3 i6) ) .  

We iiiust point out tha,t despite the fact that our Prot,ocol 4.1 is more efficient 
than t,liat of Fagin, Naor and \Vinkler [14] i n  terms of (:)-OT2, when used 
toget her with the Quant.um Oblivious Traiisfer their prot,ocoI can be made as 
efficient as ours in terms of photons. This is because their protocol requires 
7) t.ransfers of n-bit st,riiigs (which implies 52(n2) (;)-OT,) while our protocol 
requires only 1% transfers of 2-bit strings (which can be done with O ( n )  (;)-OT,). 
The fa.ct is that the Quaiituni Oblivious Transfer can be used to transfer 1, 2 or 
up to O ( n )  bits a t  no estrra cost. In order to have a real gain i n  terms ofphotons 
t.ransiiiit,ted we need a Quantum O-T that requires only a constant iiuinher of 
photons to  transfer a. constant number of hits (see open problem 3) .  

4.6 Iinplcineiitatioii Remarks 

The protocol from the appendix USCS quantum transmission both for Oblivious 
Transfer and Bit Commitment. At first glance, it seeins like the quantum trans- 
mission of data must go i n  both direct,ions, since the Oblivious Transfer goes 
froiii Alice to Bob mid the Bit Commitment goes the other way. As pointed out 
in (121, there is no need for photons traveling both ways. These two protocols 
may be implemented with the photons going i n  a single direction. It does not 
matter wlio send the pliotoiis to who, tlie same result call be achieved from them. 
( A  similar idea was suggested by Hans-Joachim I~nobloch [19] .) 
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Because of the above remark, in a smartcard scenario it suffices to implement 
on the  card the  technology for sending polarized photons: a weak light source 
with a multiple polarizer system. As for the ATM i t  would have to use the  more 
elaborate technology for niaking polarization measurements on the  incoming 
photons. Since the distance between the sender and  receiver could be of a few 
milliineters the actual error rate of the quantum transmission would be extremely 
low (error rates of 0.5% have been observed on hundreds of meters [ 2 2 ] ) .  

5 Conclusion and Open Questioiis 

We have presented a protocol for mutual identificat,ioii based on the  existence of 
an  Oblivious Transfer and have shown improvements to the Quantum Oblivious 
Transfer in order to combine them in an efficient Quantum Mutual Identification 
Protocol. Here is a few open problems: 

1. I t  would be interesting to show that the protocol of sectioii 3 is secure even 

2 .  Find bina.ry codes satisfying conditions 2 , 3 ,  and 4. 
3.  Find a reduction of (T)-OST to the quantum transmission that requires only 

4. Implement the necessxy t,echnology on a smartcard! 

if the part,icipa.nts use arbit,rarily complica.ted physics. 

a constant. number of photons per word of consta.nt length. 
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A p p e 11 d ix 

We refer t he  rea.der to [G, 5,  121 for more details on this protocol. Here cn is a 
limit on the  number of errors that  can be tolerated from real noise. The actual 
error rate c' should be less than c in  order to reject an  honest A l i c e  accidentally 
only with probability exponentially sinall in 7 1 .  

Protocol 5.1 ( (;)-OT,(qo, ~I)(c) ) 

I:  Do 
i= 1 

- Alice picks T ,  ER IO.1) and p, E R  {+, X ) ,  
- Bob picks 
- Alice sends to  Gob a photon xi  with polaritation ,#,r.,~, 
-- S o b  nieasiires plio/ori T, i n  basis /3: and obtains a bit I-:. 

E R { +, X } ,  

2: Bob runs C O ~ J , , ~ ~ ~ ( T ~ T  ~ . . . T : , ~ ; P ; . . . P : , )  with Alice. 
3: Alice picks  a 1-ut2do1n b i t  t a n d  unnounces  it to  Gob. 
4 :  if t = 0 then  
- Bob runs 11 71 2re z 1 (  I-; 1-1 . . . T:,,!?; / I ; .  . .,!i':%), 
- Alice checks that # { a  I pi = ,8: a n d  T; # I-:} < E n ,  

- Alice and Liob restart the protocol .  
5: Alice u i inounce~  her choices 
6: Bob randornly selects two subsets I o , I ~  C { I ,  ..., n ]  subject to  

...an to  Bob. 

llal=lI1l=n/?, I o n I I  = O  o n d V i f l o , p ; = , 8 ~  o r V i € I I , / 3 , # / 3 : ,  
a n d  a1InolI7~C€s I<., Ir to  Alice. 
7: Alice 

~~ rt-ceitw~s Jo,  J l ,  und defines ufo +- T , ~ T  0 ..~,o und w] +- I- I T  I . . .  
1 '2' n / ?  3 ,  3 2  T J : / 2  

t c i l h  jy E J b  a n d  jp < J;+, f o r  h E { 0 , 1 }  und 1 5 2 < 1 ~ 1 2 ,  
- c o r n p ~ t e . ~  thcir syndromes So - S y n ( u ~ 0 )  ond S1 - Syn(w1) 

iiv1.h respect to  o i a  agreed 1111on linear code C (consult [G] for deta i l s ) ,  
- picks u randoin priuacy utnplification j unc t ion  I A  : {o, 1)71/2 - { o ,  I}', 
~~ cotnpules  io - qo @ h(  too) arid 41 - q~ ti3 h.(w1), 
- sendsSo , .S1 ,h , t j 0 , i1  to  Bob. 

- receives S o .  S1, h , 40, 41 , 
~ cornpzrtcs u word ib ofsyi2dronie S, tising the  decoding algorithrn of C f r o m  

ioord 10' = T : , T ,  2 . . . ~ , , , 2  with il E I0 and il < i l + l  fo r  1 5 I < n /2 ,  
~ cornpvt€s rrnd r.eturns qc - Jc iI, l l . (G).  

8: Gob 

I ,  

The privacy amplificat,ioii fiinct,ioii used i n  Step 7 can be a the co~~ca t~ena t ion  
of the  XOR of two random suhset.s of t.he bits of its input .  In the  Bit Commitment 
protocol of S k i ,  2, a. single privacy amplification function can be used for all of 
tliein. 


