
On the Reversibility of Oblivious Transfer *

Claude CrCpeau 1 Miki6s S b t h a *
Laboratoire de Recherche en Informatique

UniversitP de Paris-Sud
BPtiment 490

91405 Orsay FRANCE

Abstract
i\ (:)-OT, (one-out-of-two Bit Oblivious Transfer) is a technique by which a party S owning

two secret bits b , b l , can transfer one of them b, to another party R, who chooses c. This is
done in a way that does not release any bias about bz to R nor any bias about c to S. How can
one build a 2TO-(i) ((;)-OT2 from R to S) given a (i)-OT, (from S to a)? This question is
interesting because in many scenarios, one of the two parties will be much more powerful than
the other.

In the current paper we answer this question and show a number of related extensions. One
interesting extension of this transfer is the (:)-OTk (one-out-of-two String O.T.) in which the
two secrets qo, q1 are elements of CFk(2) instead of bits. We show that $TO-(:) can be obtained
at about the same cost as (3-OT:, in terms of number of c a b to (i)-OTz.

1 Introduction
A G)-OT2 (one-out-of-two Bit Oblivious Transfer) is a technique by which a party S owning two
secret bits 4, b l , can transfer one of them b, to another party 72, who chooses C. This is done in
a way that does not release any bias about b,- to R nor any bias about c to S. This primitive
was first introduced in (EGL831 with application to contract signing protocols. A natural and
interesting extension of this transfer is the (:)-OT: (one-out-of-two String Oblivious Transfer,
know as ANNBP in (BCRSG]) in which the two secrets Q O , Q ~ are elements of GFk(2) instead of
bits. One can find in [CS] a reduction of C)-OTt to (;)-OT,, i.e. an efficient two-party protocol

to achieve (:)-OT,k based on the assumption of the existence of a protocol for (f)-OT,. This
reduction uses essentially 9k calls to (i)-OT, to perform one (i)-OTi.

Assume now that we are in a scenario where one party is much more powerful in terms of
computational ower or simply in terms of technology than the other pasty. In such a setting it
is likely that (3-OT2 can be implemented in one direction but not the other. In particular one
can make a computational assumption of the ‘*weaker“ party but not of the other. This scenario
was also studied by Ostrovsky, Venkatesan and Yung in [OVYSl] where they independently give
a reduction similar to 2.1. Also if quantum technology is used [Cre90,BC91] it might be the case
that one party is limited in the equipment it can carry (especially if one participant sits on a smart
card!). Therefore a fundamental question is:“Can we reverse (i)-OT,?”.

‘This work waa performed while the authors were viaiting the Universitit des Saarlandes, Saarbruckea.
‘Supported in part by an NSERC Postdoctorate Scholarship.
‘Supported in part by an Alexander von Humboldt Fellowshio

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT ’91, LNCS 547, pp. 106-113, 1991.
0 Springer-Verlag Berlin Heidelberg 1991

107

Let’s call ,TO- and ,TO- the reversed versions of I -OT, and -OT,. As we shall
see in section 2 we can achieve 2TO-(t) from (i)-OT, at the cost of using (t)-OT, many times
(not necessarily constant) to perform a single ,TO-(:). On the other hand, we show in section 3
that if we wish to perform many ,TO-(;) simultaneously (to perform !TO-(:) for instance) it is
possible to reduce the marginal cost to a constant number of calls to (:)-OT, per *TO-(:).

2 Reversing (T)-OT,

from (~)-oT~.
To start with, consider the following reduction that constitutes our first attempt to build a ,TO-(:)

Reduction 2.1 (,TO-(:)(c , ($,b ,)) f rom (i)-OT,)

(2 2:) 1: S finds a random bit-matrix C =

such that COO @ COI = t and 40 @ C11 = c.

2: S runs (:)-OT,((Cm,Col),bo) and (:)-OT,((Go, Cll),bl) with R.
3: R computes b t C, @ Clb, and sends b to S .
4: S computes oui + COO @ Clo @ b and outputs out.

Theorem 2.1 If S and R follow honestly the reductron 2.1 then S 5 output value will be b,.

Proof. We make use of the following trivial Lemma:

Lemma 2.2 Vb,Q,cl [c ,$cb = b A (c , $ c l)] .

We have the following equalities

out = CmCiob
= (CGab cob) @ (cio @ clbl)

= (4 A (Coo @ ‘201)) CB (4 A (Clo @ CII)) by Lemma 2.2
=
= b,

(bo A E) @ (b i A C)

1
Unfortunately, this reduction does not provide a full solution to our problem because i is clear

that S can “cheat” this reduction in the sense that he c a n get 4 @ bl by picking a matrix C
such that Coo @ Col = Clo @ Ci1 = 1. Indeed what the above reduction achieves is not really a
,TO-(:)but something weaker that can be described in terms of a scalar product. Consider the
following reduction ralacs that returns the scalar product (co, c1). (b, b,) to S on respective inputs
(~ 0 ~ ~ 1) and (4 , b i) .

108

Reduct ion 2.2 (ralacs((~,cl),(bo,bl)) f rom -OT,)

1: S finds a random bibmatrix C =
such that Cw @ Col = co and Cl0 @ CI1 = cl.

2: S runs (t)-OT,((Cw,Col),bo) and (i)-OT2((C10,C11). b l) with 72.

3: R computes b t Cob, @ C1bl and sends b to S.

4: S computes out + COO @ Clo f3 b and outputs out.

The proof of the correctness of th is reduction can be obtained in a way similar to that of
theorem 2.1. Notice that in fact the reduction 2.1 is nothing more than reduction 2.2 performed
with arguments ((Z,c),(b~,bl)). Thus we have

Theorem 2.3 If S and I2 follow honedy ihe reduction 2.2 then S’s output value will be (q,c1).

(boy bi).
But this time, the reduction we get is also “private”. The notion of privacy expresses the fact

that all the actions that a cheating participant could take are of no advantage over being honeat
(in the sense that whatever a cheater gets by cheating he could get by behaving honestly using
different input). For a precise definition of this notion we refer the reader to [Cre90,CM91].

Theorem 2.4 The reduction 2.2 U both 72-privaic and S-private.

Proof. The R-privacy of this reduction is simple to prove since all the information 72 may get
(one bit in each line of C) is purely random. The S-privacy is due to the fact that any choice of C
defines some legitimate values for Q a d c1 that could be used honestly in the reduction (this waa
not the case with reduction 2.1).

For sake of simplicity, we present the following reduction scalar, dual to ralacs, with exactly
the same properties except that R gets the output from scalar instead of S in ralacs.

1: S finds a random bit-matrix B =

such that BOO @ BOI = bo and Blo @ B11 = b l .

2: S runs (:) -OT2((B~,Bo1) ,eo) and (;)-OT,((Blo, Bl l) , c l) with 72.
3: S computes b t Bw f3 El0 and sends b to 72.

4: R computes out t Boo @ Blcl f3 b and outputs out.

We study scalar instead of ralacs in the rest of the paper in order to be able to define reductions
in the “forward” direction, that is with information flowing from S to 72. The reader should keep
in mind that the constructions based on scalar can be achieved in the ‘‘reverse” direction by
switching S and R and using ralacs instead.

The reader may observe that indeed scalar is nothing else but a specific implementation of a
primitive known as 2BP defined in [BCR86]. In a computational model, a similar idea is implicitly
used to solve the problem of computing scalar products in full generality in [GVSS]. In [BCRM] it

1 09

is shown that given any primitive that transfers either b, bl or any one bit of information about
b, bl, it is possible to construct a protocol statistically indistinguishable from (i)-OT,. Since
reduction 2.3 enables an adversary to get either b, bl . b~ @ or no information at all (!!), it is
clear that we can apply their solution.

Their solution requires a blow up in the number of times the primitive is used. In fact, in order
to get a protocol that will be exponentially close to @)-OT, (in some parameter s) their approach
requires Q (s) calls to scalar.

Combining the two ideas, the find resulting reduction is

Reduction 2.4 ((:)-OT,((b, h) , c) from scalar)

1: S chooses random bits bJ, ..., bi and bi , ..., bi
* s

such that @bi = bo and Bbl = bi.
I = l :=I

2: S chooses 3s random bits XI ,..., n., @A, ..., @a,@; ,..., 81.
3: Db IF A, = 0 THEN

,=1
execute ah -scalar((b&, @ \) , (E , c)) and a: cscal..((@,b,b',),(~,c))
ELSE
execute II(I -sealar[(@)b, b ;) , (Z , c)) and t sca lar ([bb ,~) l ,) , (~ , e)) .

4: S reveals r l , ~ ~ , ..., rS to R.

5: R computes out + @a&, and outputs out.
8

1=1

Theorem 2.5 The seduction 2.4 i s a correct and datutically private reduction of (:)-OT,to
scalar.

In other words, if both parties behave honestly then the reduction 2.4 implements a (:)-OT,usine
calls to scalar. In all cases, S will gain no information whatsoever about R's input, while R may
learn information about both b, bl but only with probability 2-". The formal proof of these
statements will appear in the final paper.

3 Achieving (:)-OTi from scalar

Assume S and R have a mean of accomplishing (:)-OT, and that they wish to perform a :TO-(:)
over the two k-bit strings po,q1. For any string +, let x' denote the z t h bit of x. For a set of indices
I = 'il, i z , ..., i,,,}, we define X I to be the concatenation z''z''...z'~, the indices taken in increasing
order.

As mentioned earlier, there is a reduction from (:)-OTi to (t)-OT2, therefore we could apply

this reduction to obtain (:)-OT: from scalar. Unfortunately, this solution will significantly in-
crease the number of call to scalar necessary to implement (:)-OT$. In [CS] an almost optimal

reduction from (i)-OT: to (:)-OT2 requires about 9 k calls to (:)-OT,. If we combine this with
our reduction 2.4 we get a total expansion factor in Q (k (s + logk)) calls to scalar in order to
achieve a protocol exponentially close (in 8) to (:)-OTi. The purpose of this section is to design
a better reduction that achieves (i)-OT: with only O(s + k) calls to scalar.

110

3.1 Main Tool
Consider a function f : GF"(2) 4 GF'(2) with the nice property that for every input string I
and every I such that #I < d, seeing the bits z1 releases no information about f(z). Let us be
more precise about this.

Definition 3.1 A subset I C {1,2, ..., n} biases a function f : G F (2) -+ GF'(2) if

390,91,z [#W = z l , f(Z) = Qo) # #{zlz' = X I , f (z) = Ql}]

such an z1 is said to release Infomation about f(x).

Definition 3.2 A (n, k,d)-function is a function f : GF"(2) -+ GFk(2) such that

WI C {1,2 ,..., n}, #I < d [I doq not bias j] ,

We seek (n, k,d)-functions that are easily computable and for which random inverses can be
easily computed. If we choose f to be a linear function f(z) = M z we get that f is an (n, k,d) -
function if and only if M is the generator matrix of an (n, k , d) binary linear code. The proof of
this fact can be found in [BBFUS,CGH*85].

Our main idea is the following. To transfer one of qo,q1, S picks at random two bit strings
io ,z l such that qo = f(zo) and q1 = f (z l) . Then using the protocol scalar the bits of zo,zl are
transferred to 72 in a way that an honest E! will be able to get exactly zc and compute qc = f(ze),
while a cheating R would get less than d bits of a t least one of 20.21 and therefore no information
about one of QO or 41.

3.2 New Reduction
First we present a new reduction from (:)-OT: to (:)-OT, that uses the (n, k,d)-functions and
from which the reduction from (i)-OT: to scalar will be deduced. Assume that we define f from
a (n, Rn, 6n) binary linear code, we do the following:

Reduction 3.1 ((i)-OTp"((qo,ql),c) from (:)-OT,)

I 1: S finds random z0,q such that f(zo) = qo and f(z1) = 91.

2: S finds random m, yl such that I yo I=I y1)= en and such

that 5 yo" =zband 5 yi" =z i , fo r 1 5 i 5 n.
mr(,- l)e+l rn=(s-l)e+l

3: S finds a random permutation u of { 1,2, ..., en}.

4: ro execute at + (;)-OT,((~;('), yp")), c).

5: S reveals u to a.
6: D"0 7Z computes I' +-

7: R computes out + f(z) and outputs out.

."
,=1

6
rn=(t-l)c+l

,=1

Theorem 3.3 If S and R follow honedly the reduction 3.1 then R 5 output value will be qe.

F

111

Proof. By definition of the yi 's, it is clear that the value of z computed at step 6 is indeed ze. It
follows from the definition of f that the output is therefore correct.

On the other hand, the only significant way 72 could cheat this reduction is by using values of
c that are not the same all the time at step 4. Name for 1 5 z 5 en, ci the value of c used by R
at step 4. Name C. the less frequent value among the cirs. Let

1 if R got yt-')e+l, ..., yk
" = { 0 otherwise

be the indicator random variable of zi (with value 1 if and only if R can compute 26) and d e h e
similarly ti. We claim that the expected number of 2:. that R can compute will not exceed 6n
with very high probability (if e is big enough). This implies that he cannot get any information
about qc., because f is a (n,Rn,Gn)-function.

Claim 3.4 I f f o t c > 0 we have e > -(1+ €)log 6 then

for some corutant 0 < a < 1.

The proof of this claim can be obtain by extension of Chernoff's bound [Chva].
What we seek now is to minimize the number of (:)-OT, used. If we start with string of length

Rn, this reduction uses en calls to (:)-OT,, thus the expansion factor to be minimized is e / R
under the conditions that

0 e is a positive integer,

e > -(1 + e)log6,

0 we most be able to obtain a (n, Rn, 6n) binary linear code.

It is known that a random Rn x (1 + e)n binary matrix generates a ((1 + e)n,Rn,6n) binary
linear code such that R k: 1 - H (6) with probability essentially 1, where H (z) is the entropy
function H (s) = z log z + (1 - z) log(1 - z) (consult [MS77]).

If we put all these facts together we get that the optimal value occurs around e = 4. This leads
us to values of 6 0.06 and R k: f . Thus a total expansion factor of about e/R !=z 6. This is not
bad at all considering that the best know reduction from (i)-OTi to (:)-OT, gives an expansion
factor of about 5 (consult [CS]). Also, any family of codes with better parameter than those given
by the Varshamov-Gilbert curve [MS77] will reduce the ratio e/R even more.

3.3 Switching to scalar
What we described in subsection 3.2 is a technique to perform (i)-OTi from (;)-OT,. The reason
for this is that we can easily extend the above reduction to a reduction for (:)-OTi based on
scalar with an expansion factor twice bigger. The idea is simply to combine the reductions 3.1
and 2.4.

112

~

Reduction 3.2 ((i)-OTp((qo,ql),c) from scalar)

1: S finds random Z O , Z ~ such that f(z0) = qo and f(q) = q1.

2: S finds random y0,yl such that 1 y0 I=I yl I= en and such

that 6 yo" =z; and 6 y r =z; , for 15 i s n.
m=(1--l)e+l m=(i-l)e+l

3: S finds a random permutation u of {1,2, ..., en}.

4: S chooses 3en random bits q, ..., A,, @A, ..., @:",@;, @)I".

5: DO IF rl = 0 THEN
en

,=I

run @, cscalar((yoO"',@);),(E,c)) and a; c s c a l a r ((~) b , u l (' ') , (E , c))
ELSE
run @, crealar((@)b,yl(')),(E,~)) and 0); c~calar((yoo"',@)',),(E,c)).

6: S reveals u and X I , A?, ..., x , to R.

7: Db computes z l + 6
8: 'R computes out + f(z) and outputs out.

C@n,-1 (m) .
mr(i - I)c+l

, = I

Without entering into too many details, this reduction is clearly correct by construction. Again
in this case the only significant way R could "cheat" is by using different values of c at step 5.
Replacing (:)-OT, by scalar does not change the expected number of 26's and 21's received by
R. The analysis is therefore the same as for reduction 3.1. The cost of reduction 3.2 in terms of
the number of calls to scalar is twice the coat of reduction 3.1 in terms of calls to (:)-OT2. This
leaves us with a total expansion factor of about 12 for reduction 3.2.

3.4 :TO-@) from (;)-OT,
Let's not forget our final goal which was to accomplish a !TO-(:) with a minimum number of
(i)-OT2. The reduction 3.2, when the roles of S and R are reversed and ralacs is used instead
of scalar, leads us to a solution for $TO-(:) using roughly 12k calls to ralacs. Combining with
reduction 2.2 we get a correct and statistically private reduction of $TO-(:) to (:)-OT, using
roughly 24k such calls. This compares reasonably with the result in the forward direction using

If one wishes to accomplish an approximation to :TO-(:) where all the probabilities involved
may differ of at most ?-', then running reduction 3.2 to accomplish :TO-(;), for 1 E O(s + k) will
reduce all the probabilities below that limit. The initial strings qo, q1 of length k can be arbitrarily
padded to length 1. The total cost in terms in (:)-OT, will be in O(s + k).

9% calls [CS].

Acknowledgements
We would like to thank Gilles Brassard and Johannes Buchmann, for their help, comments, and
support.

113

References
[BBRS8] C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public discus-

sion. SIAM J. Computing, 17(2):210-229, April 1988.

G. Brassard and C. Crkpeau. Quantum bit commitment and coin tossing protocols.
In S. Vanstone, editor, Advances in Cyptology: Proceedings of Crypto 'SO, Springer-
Verlag, 1991. to appear.

G. Brassard, C. Cdpeau, and J . 4 . Robert. Information theoretic reductions among
disclosure problems. In 27"' Symp. of Found. of Computer Sci., pages 168-173, IEEE,
1986.

[BC91]

[BCRSG]

[CGH*85] B. Chor, 0. Goldreich, J. Hastad, J. Friedmann, S. Rudich, and R. Smolensky. The bit
extraction problem or t-resilient functions. In Proceedings of the 26th IEEE Symposium
on Foundations of Computer Science, pages 396-407, IEEE, Portland, 1985.

V. Chvatal. Probabilistic methods in graph theory. Annals of Operatiow Research, [Chv84]
1 : 171-182, 1984.

[CM91]

[Cree901

C. CrCpeau and S. Micali. Secure two-party protocols. 1991. in preparation.

C. CrCpeau. Correct and Private Reductions among ObIiviow Transfers. PhD thesis,
Department of Elec. Eng. and Computer Science, Massachusetts Institute of Technology,
1990. Supervised by Silvio Micali.

C. Crkpeau and M. Shtha. Efficient reductions among oblivious transfer protocols.
submitted to STOC 91.

ICSI

[EGL83] S. Even, 0. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In
R. L. Rivest, A. Sherman, and D. Chaum, editors, Proceedings CRYPT0 86, pages 205-
210, Plenum Press, New York, 1983.

0. Goldreich and R. Vainish. How to solve any protocol problem-an efficiency improve-
ment (extended abstract). In C. Pomerance, editor, Advances in Cryptology: Proceed-
ings of Crypto '87, pages 73-86. Springer-Verlag, 1988.

F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

R. Ostrovsky, R. Venkatesan, and M. Yung. On the complexity of asymmetric games.
In Proceedings of Sequences '91, 1991. to appear. This work was first presented at the
DIMACS workshop on cryptography, October 1990.

[GV88]

[MS77]

[OVYSl]

