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Abstract. We present an asymptotically optimal reduction of one-out-
of-two String Oblivious Transfer to one-out-of-two Bit Oblivious Trans-
fer using Interactive Hashing in conjunction with Privacy Amplification.
Interactive Hashing is used in an innovative way to test the receiver’s ad-
herence to the protocol. We show that (1 + ε)k uses of Bit OT suffice to
implement String OT for k-bit strings. Our protocol represents a two-fold
improvement over the best constructions in the literature and is asymp-
totically optimal. We then show that our construction can also accommo-
date weaker versions of Bit OT, thereby obtaining a significantly lower
expansion factor compared to previous constructions. Besides increasing
efficiency, our constructions allow the use of any 2-universal family of
Hash Functions for performing Privacy Amplification. Of independent
interest, our reduction illustrates the power of Interactive Hashing as an
ingredient in the design of cryptographic protocols.

Keywords: interactive hashing, oblivious transfer, privacy amplifica-
tion.

1 Introduction

The notion of Oblivious Transfer was originally introduced by Rabin [12]. How-
ever, a variant of OT was first invented by Wiesner [14] but his work was only
published post-facto. Its application to multi-party computation was shown by
Even, Goldreich and Lempel in [8]. One-out-of-two String Oblivious Transfer,
denoted

(2
1

)
–String OTk, is a primitive that allows a sender Alice to send one

of two k-bit strings, a0, a1 to a receiver Bob who receives ac for a choice bit
c ∈ {0, 1}. It is assumed that the joint probability distribution Pa0a1c from
which the inputs are generated is known to both parties. The primitive offers
the following security guarantees to an honest party facing a dishonest party:

– (Dishonest) Alice does not learn any extra information about Bob’s choice c
beyond what can be inferred from her inputs a0, a1 under distribution Pa0a1c.

– (Dishonest) Bob can learn information about only one of a0, a1. This excludes
any joint information about the two strings except what can be inferred from
Bob’s input, (legitimate) output, and Pa0a1c.
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202 C. Crépeau and G. Savvides

One-out-of-two Bit Oblivious Transfer, denoted
(2
1

)
–Bit OT or simply Bit OT,

is a simpler primitive which can be viewed as a special case of
(2
1

)
–String OTk

with k = 1. Its apparent simplicity belies its surprising power as a cryptographic
primitive: it is by itself sufficient to securely implement any two-party compu-
tation [9]. It is therefore not surprising that

(2
1

)
–String OTk can, in principle at

least, be reduced to Bit OT. However, as such generic reductions are typically
inefficient and impractical, many attempts at finding direct and efficient reduc-
tions have been made in the past. Besides increasing efficiency an orthogonal
goal of some of these reductions has been to reduce

(2
1

)
–String OTk to weaker

variants of Bit OT such as XOR OT, Generalized OT and Universal OT.

Contributions of This Paper. The original motivation behind our work
was to highlight the potential of Interactive Hashing [11, 10] as an ingredient
in the design of cryptographic protocols. This paper shows how in the context
of reductions between Oblivious Transfers, Interactive Hashing (both its round-
unbounded and constant-round version[6]) can be used for the selection of a
small subset of positions to be subsequently used for tests. This selection is suf-
ficiently random to thwart any dishonest receiver’s attempts at cheating as well
as sufficiently under the honest receiver’s control to protect his privacy.

We show how such tests can be embedded in the reduction of String OT
to Bit OT and weaker variants given by Brassard, Crépeau and Wolf [3]. The
tests ensure that the receiver cannot deviate from the protocol more than an
arbitrarily small fraction of the time, leading to two important improvements
over the original reduction:

1. The expansion factor n/k (namely, the ratio of Bit OT uses to string length)
is significantly reduced. Specifically:
– In the case of Bit OT and XOR OT it decreases from 2+ ε to 1+ ε′. This

is in fact asymptotically optimal as the receiver has n bits of entropy
after the n executions of Bit OT. For a formal proof that any reduction
of

(2
1

)
–String OTk requires at least k executions of Bit OT, see [7].

– In the case of Generalized OT it decreases from 4.8188 to 1 + ε′′, which
is again optimal.

– In the case of Universal OT it is reduced by a factor of at least 8 ln 2 =
5.545 (its exact value is a function of the channel’s characteristics).

2. The construction is more general as it allows any 2-Universal Family of Hash
Functions to be used for Privacy Amplification.

2 Oblivious Transfer Variants and Their Specifications

2.1
(2
1

)
–ROTk and Its Equivalence to

(2
1

)
–String OTk

(2
1

)
–ROTk is a randomized variant of

(2
1

)
–String OTk where Alice sends to Bob

two independently chosen random strings r0, r1 ∈R {0, 1}k, of which Bob learns
rc for c ∈R {0, 1}.
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Security Requirements. Let R0, R1 be two independent random variables
uniformly distributed in {0, 1}k corresponding to the strings sent by Alice. Let
C be a binary random variable uniformly distributed in {0, 1} corresponding
to Bob’s choice. The security requirements for

(2
1

)
–ROTk are captured by the

following information-theoretic conditions:

1. (Dishonest) Alice does not gain any information about C during the protocol.
In other words H (C) = 1.

2. (Dishonest) Bob obtains information about only one of the two random
strings during the protocol. Formally, at the end of each run of the protocol,
there exists some d ∈ {0, 1} such that H (Rd | Rd̄) = k.

Equivalence to
(2
1

)
–String OTk. It is easy to see that

(2
1

)
–ROTk reduces

to
(2
1

)
–String OTk. Conversely, as Protocol 1 shows, it is also possible to re-

duce
(2
1

)
–String OTk to

(2
1

)
–ROTk in a straightforward way. As

(2
1

)
–ROTk and(2

1

)
–String OTk are equivalent, in this paper we will focus on reductions of(2

1

)
–ROTk to Bit OT. This choice is motivated by the fact that the random-

ized nature of
(2
1

)
–ROTk and the independence of the two parties’ inputs yield

simpler constructions with easier to prove security.

Protocol 1. Reducing
(2
1

)
–String OTk to

(2
1

)
–ROTk

Let the inputs to
(2
1

)
–String OTk be a0, a1 ∈ {0, 1}k for Alice and c ∈ {0, 1} for Bob.

1. Alice uses
(2
1

)
–ROTk to send r0, r1 ∈R {0, 1}k to Bob, who receives rc′ for some

randomly chosen c′ ∈ {0, 1}.

2. Bob sends d = c ⊕ c′ to Alice.

3. Alice sets e0 = a0 ⊕ rd and e1 = a1 ⊕ rd̄ and sends e0, e1 to Bob.

4. Bob decodes ac = ec ⊕ rc′ .

Note that Step 1 of Protocol 1 can be performed before the two parties’ inputs
to

(2
1

)
–String OTk have been determined and its results stored for later. In Step

2 Bob sends to Alice a “flip bit” d which effectively allows him to invert the order
in which Alice’s strings are encrypted and thus to eventually learn the string ac

of his choice regardless of his initial random choice of c′ in Step 1.

2.2 Weaker Variants of Bit OT

By relaxing the security guarantees against a dishonest receiver (Bob) we obtain
weaker variants of Bit OT, as described below. In all cases b0, b1 denote Alice’s
input bits. Whatever extra choices may be available to Bob, he can always act
honestly and request bc for a choice c ∈ {0, 1}. As in ‘regular’ Bit OT, dishonest
Alice never obtains information about Bob’s choice.
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XOR OT (XOT). Bob can choose to learn one of b0, b1, b⊕ where b⊕
def= b0⊕b1.

Generalized OT (GOT). Bob can choose to learn f(b0, b1) where f is any of
the 16 possible one-bit functions of b0, b1.

Universal OT (UOT). Bob can choose to learn Ω(b0, b1) where Ω is any ar-
bitrary discrete memoryless channel whose input is a pair of bits and whose
output satisfies the following constraint: let B0, B1 ∈ {0, 1} be uniformly
distributed random variables and let α ≤ 1 be a constant. Then,

H (B0, B1 | Ω (B0, B1)) ≥ α.

Note that we disallow α > 1 as the channel would not allow Bob to act honestly.

3 Tools and Mathematical Background

3.1 Encoding of Subsets as Bit Strings

Let x be a small constant. In our protocols we will need to encode subsets of
xn elements out of a total of n as bit strings. Let K =

(
n
xn

)
be the number of

such subsets. There exists a simple and efficiently computable bijection between
the K subsets and the integers 0, . . . , K − 1, providing an encoding scheme
with output length m = �log (K)� ≤ nH (x). See [5] (Section 3.1) for details
on its implementation. Note that in this encoding scheme, the bit strings in
{0, 1}m that correspond to valid encodings, namely the binary representations
of numbers 0, . . . , K − 1, could potentially make up only slightly more than half
of all strings. In order to avoid having to deal with invalid encodings, we will
consider any string w ∈ {0, 1}m to encode the same subset as w (mod K). Thus
in our modified encoding scheme each string in {0, 1}m is a valid encoding of
some subset, while to each of the K subsets correspond either 1 or 2 bit strings
in {0, 1}m. This imbalance1 in the number of encodings per subset turns out to
be of little importance in our scenario thanks to Lemma 1 below.

Lemma 1. Assume the modified encoding of Section 3.1 mapping subsets to bit
strings in {0, 1}m. If the fraction of subsets possessing a certain property is f ,
then the fraction f ′ of bit strings in {0, 1}m that map to subsets possessing that
property satisfies f ′ ≤ 2f .

Proof. Let P be the set containing all subsets possessing the property, and let
Q be its complement. Then f = |P |

|P |+|Q| . The maximum fraction of strings in
{0, 1}m mapping to subsets in P occurs when all subsets in P have two encod-
ings each, while all subsets in Q have only one. Consequently, f ′ ≤ 2|P |

2|P |+|Q| ≤
2|P |

|P |+|Q| = 2f ��

1 Note that this imbalance could be further reduced, if necessary, at the cost of a slight
increase in the encoding length. Let M ≥ m and let every w ∈ {0, 1}M map to the
same subset as w (mod K). Then each of the K subsets will have at least � 2M

K
� and

at most � 2M

K
� different encodings.
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3.2 Interactive Hashing

Interactive Hashing is a primitive (first appearing in [11, 10] in the context of
perfectly hiding commitments) that allows a sender to send an m–bit string s to
a receiver, who receives both s and another, effectively random string in {0, 1}m.
The security properties of this primitive that are relevant to our setting are:

1. The receiver cannot tell which of the two output strings was the original in-
put. Let the two output strings be s0, s1 (labeled according to lexicographic
order). Then if both strings were apriori equally likely to have been the
sender’s input s, then they are aposteriori equally likely as well.

2. When both participants are honest, the input is equally likely to be paired
with any of the other strings. Let s be the sender’s input and let s′ be the
second output of Interactive Hashing. Then provided that both participants
follow the protocol, s′ will be uniformly distributed among all 2m −1 strings
different from s.

3. The sender cannot force both outputs to have a rare property. Let G be
a subset of {0, 1}m such that |G|

2m is exponentially small in m. Then the
probability that a dishonest sender will succeed in having both outputs s0, s1
be in G is also exponentially small in m.

Implementation of Interactive Hashing. In our reductions we will use Pro-
tocol 2 to implement Interactive Hashing. All operations below take place in F2.

Protocol 2. Interactive Hashing
Let s be a m-bit string that the sender wishes to send to the receiver.

1. The receiver chooses a (m − 1) × m matrix Q of rank m − 1. Let qi be the i-th
query, consisting of the i-th row of Q.

2. The receiver sends query q1 to the sender. The sender responds with c1 = q1 · s
where · denotes the dot product.

3. For 2 ≤ i ≤ m − 1 do:
(a) Upon receiving ci−1 the receiver sends query qi to the sender.

(b) The sender responds with ci = qi · s

4. Both parties compute the two solutions to the resulting system of m− 1 equations
and m unknowns and label them s0, s1 according to lexicographic order.

Security of Protocol 2. The properties of the linear system resulting from
the interaction between the two parties easily establish that the first security
requirement is met: that the receiver cannot guess which of the two output
strings was the sender’s original input to the protocol. Let V be the receiver’s
(marginal) view at the end of the protocol and let s0, s1 be the corresponding
output strings. Note that V would be identical whether the sender’s input was s0

or s1 as the responses obtained after each challenge would be the same in both
cases. Consequently, if before the protocol begins the sender is equally likely to
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have chosen s0 and s1 as input — both with some small probability α — then
at the end of the protocol each of these two strings has equal probability 1/2

of having been the original input string given V . We remark that a dishonest
receiver would gain nothing by selecting a matrix Q in a non-random fashion or
with rank less than t − 1.

As for the second property, let s be the sender’s input and let s′ be the
second output of Interactive Hashing. We first note that since the linear system
has two distinct solutions, it is always the case that s′ 	= s. To see that s′ is
uniformly distributed among all strings in {0, 1}m \ s, it suffices to observe that
Q is randomly chosen among all rank m − 1 matrices and that the number of
such Q’s satisfying Q(s) = Q(s′) ⇔ Q(s − s′) = 0 is the same for any s′ 	= s.

Concerning the third security requirement, it can be shown (see [5], Lemma 6)
that if G is an exponentially small (in m) subset of {0, 1}m, then whatever
dishonest strategy the receiver might use with the aim of forcing both outputs s0
and s1 to be strings from G, he will only succeed in doing so with exponentially
small probability. We remark that more recent, unpublished results by the second
author of this paper establish a tight upper bound of 15.682 · |G|/2m for this
probability and that this upper bound remains valid for all ratios |G|/2m.

More Efficient Implementations of Interactive Hashing. A constant-
round Interactive Hashing protocol appears in [6]. The construction capitalizes
on results from pseudorandomness, in particular efficient implementations of
almost t-wise independent permutations, to significantly reduce the amount of
interaction necessary. Specifically, it is shown that 4 rounds are sufficient for
inputs of any size, in contrast to Protocol 2 that requires m−1 rounds for inputs
of size m. The main disadvantages of this constant-round implementation are
its much greater complexity as well as the fact that some parameters in the
construction require prior knowledge of an upper bound on G. As our only
efficiency concern in this paper is the number of Bit OT executions, we will
not deal with this alternative construction any further even though the authors
believe that it would be a suitable replacement to Protocol 2, at least in the
context of our reductions.

3.3 Tail Bounds

Markov’s Inequality. Let X be a random variable assuming only positive
values and let µ = E [X ]. Then Pr [X ≥ t] ≤ µ

t .

Chernoff Bounds. Let B(n, p) be the binomial distribution with parameters
n, p and mean µ = np. We will use the following versions of the Chernoff bound
for 0 < δ ≤ 1:

Pr [B(n, p) ≤ (1 − δ)µ] ≤ e−δ2µ/2 (1)

Pr [B(n, p) ≥ (1 + δ)µ] ≤ e−δ2µ/3 (2)

From (1) we can also deduce the following inequality

Pr [B(n, p) ≤ µ − ∆n] ≤ e−∆2n/2 (3)
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3.4 Error Probability and Its Concentration on an Erasure Event

Fano’s Lemma (Adapted from [3]). Let X be a random variable with range
X and let Y be another, related random variable. Let pe be the (average) error
probability of correctly guessing the value of X with any strategy given the
outcome of Y and let h(p) def= −p log p − (1 − p) log(1 − p). Then pe satisfies:

h(pe) + pe · log2(|X | − 1) ≥ H (X | Y ) (4)

Specifying an Erasure Event ∆. Let X be a binary random variable and
let pe be the error probability of guessing X correctly using an optimal strategy
(in other words, pe is the minimum average error probability). Let p ≤ pe. For
a specific guessing strategy with average guessing error at most 1/2, let E be an
indicator random variable corresponding to the event of guessing the value of
X incorrectly. Note that Pr

[
Ē

]
≥ Pr [E] ≥ pe ≥ p. Define ∆ to be another

indicator random variable such that

Pr [∆ | E] =
p

Pr [E]
Pr

[
∆ | Ē

]
=

p

Pr
[
Ē

] (5)

It follows that Pr [∆] = 2p and that Pr [E | ∆] = Pr
[
Ē | ∆

]
= 1

2 . Suppose
that the value of ∆ is provided as side information by an oracle. Then with
probability 2p we have ∆ = 1 in which case X is totally unknown We will refer
to this event as an erasure of X . This leads to the following lemma:

Lemma 2. Let X be a binary random variable and let pe be the error probability
when guessing X. Then X can be erased with probability 2p ≤ 2pe.

3.5 Privacy Amplification

Privacy Amplification [2] is a technique that allows a partially known string
R to be shrunk into a shorter but almost uniformly distributed string r that
can be used effectively as a one-time pad in cryptographic applications. For our
needs we will use a simplified version of the Generalized Privacy Amplification
Theorem [1] (also covered in [2]) which assumes that there are always u or more
unknown physical bits about R (as opposed to general bounds on R’s entropy).

Theorem 1. Let R be a random variable uniformly distributed in {0, 1}n. Let
V be a random variable corresponding to Bob’s knowledge of R and suppose that
any value V = v provides no information about u or more physical bits of R.
Let s be a security parameter and let k = u − s. Let H be a 2-Universal Family
of Hash functions mapping {0, 1}n to {0, 1}k and let H be uniformly distributed
in H. Let r = H(R) Then the following holds:

H (r | V H) ≥ k − log
(
1 + 2k−u

)
≥ k − 2k−u

ln 2
= k − 2−s

ln 2
(6)

It follows from Equation (6) that I(r; V H) ≤ 2−s/ ln 2. From Markov’s inequality
it follows that the probability that Bob has more than 2−s/2 bits of information
about r is no larger than 2−s/2/ ln 2.
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4 Previous Work

All reductions of
(2
1

)
–ROTk to Bit OT fall within two major categories: reduc-

tions based on Self-Intersecting Codes (Section 4.1) and reductions based on
Privacy Amplification (Section 4.2).

4.1 Reductions Based on Self-intersecting Codes

These reductions use a special class of error-correcting codes called “self-inter-
secting codes” encoding k-bit input strings into n-bit codewords. They have the
extra property that any two non-zero codewords c0, c1 must have a position i
such that c0i 	= 0 	= c1i. Consult [4] for more details.

Advantages and Disadvantages. The main advantage of this approach is
that the self-intersecting code can be chosen ahead of time and embedded once
and for all in the protocol. One of its main disadvantages is the rather large
expansion factor n/k, theoretically lower-bounded by 3.5277 [13] and in practice
roughly 4.8188. Another important limitation is that this approach does not lend
itself to generalizations to weaker forms of Bit OT, such as XOT, GOT and UOT.

4.2 Reductions Based on Privacy Amplification

In Protocol 3 we introduce the construction of [3] upon which our own construc-
tion (Protocol 4) builds and expands.

Protocol 3. Reducing
(2
1

)
–ROTk to Bit OT

1. Alice selects R0, R1 ∈R {0, 1}n. Bob selects c ∈R {0, 1}.

2. Alice sends R0, R1 to Bob using n executions of Bit OT, where the i-th round
contains bits Ri

0, R
i
1. Bob receives Rc.

3. Let k = n/2− s where s is a security parameter. Alice randomly chooses two k ×n
binary matrices M0, M1 of rank k and sets r0 = M0 · R0 and r1 = M1 · R1.

4. Alice sends M0, M1 to Bob, who sets rc = Mc · Rc.

It is easy to see that Protocol 3 always succeeds in achieving
(2
1

)
–ROTk when

both parties are honest. The properties of Bit OT guarantee that (dishonest)
Alice cannot obtain any information on Bob’s choice bit c at Step 2. On the
other hand, at the end of Step 2 (dishonest) Bob is guaranteed to be missing
at least n/2 bits of Rd for some d ∈ {0, 1}. This is exploited at Step 3 by
performing Privacy Amplification with output length k = n/2 − s. Specifically,
the 2-universal family of Hash Functions used in Protocol 3 guarantees that rd

is uniformly distributed in {0, 1}k and independent of rd̄ except with probability
exponentially small in s. It is shown in [3] that using this family of hash functions
this property can be maintained even if Bit OT is replaced with weaker variants
such as XOR OT, Generalized OT and Universal OT — albeit at the cost of
further reducing the size of k.
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Advantages and Disadvantages. Besides its apparent simplicity and straight-
forward implementation, the reduction of Protocol 3 has two main advantages
over reductions based on Self-Intersecting Codes: Using n executions of Bit OT
one can achieve

(2
1

)
–ROTk for k slightly less than n/2, leading to an expansion

factor of 2 + ε. Consequently, it achieves a lower expansion factor than any re-
duction based in Self-Intersecting Codes. Using the 2-universal family of Hash
Functions defined at Step 3, the reduction works without any modification when
Bit OT is replaced with XOT and requires only a decrease in the size of k to
work with GOT and UOT.

The construction suffers from two disadvantages: The proof of security relies
heavily on the properties of matrices in F2 used for Privacy Amplification in
Step 3. A general result for any universal class of hash functions was left as an
open problem. In every run of the protocol a new set of matrices M0, M1 must be
selected and transmitted, thereby increasing the amount of randomness needed
as well as the communication complexity by Θ(n2) bits.

5 The New Reduction of
(2
1

)
–ROTk to Bit OT

Notation and Conventions. In our reduction, two randomly chosen strings
T0, T1 ∈R {0, 1}n are transmitted pairwise using n executions of Bit OT. We
denote by ti0, t

i
1 the bits at position i of T0, T1, respectively. Let I be the set of all

n positions. For a subset s ⊆ I let T (s) be the substring of T consisting of the bits
at all positions i ∈ s in increasing order of position. Note that T (I) = T . Subsets
of I of cardinality xn will be mapped to bit strings of length m = �log

((
n
xn

))
�

using the encoding/decoding scheme of Section 3.1.

Intuition Behind Protocol 4. At Step 1, the two parties agree on the value
of x which will determine the proportion of bits sacrificed for tests.

At Step 2 Alice selects the two random n-bit strings to be transmitted to Bob
using n executions of Bit OT.

At Step 3 Bob randomly chooses his choice bit c ∈ {0, 1}. He also selects a
small subset s ∈ I of cardinality xn. This selection is made by first choosing
an encoding w uniformly at random among {0, 1}m and then mapping it to
the corresponding subset s. This guarantees that on one hand, s is sufficiently
random and on the other hand, that every string in {0, 1}m is equally likely to
be Bob’s initial choice. The latter fact will be crucial in preventing Alice from
guessing Bob’s choice bit in later steps.

At Step 4 Alice transmits T0, T1 using n executions of Bit OT. Bob selects
to learn tic at all positions except at the few positions in s where his choice is
reversed. As a result he knows most bits of Tc and only xn bits of Tc̄. See Fig. 1.

The goal of the protocol at Step 5 is to select a second, effectively random
subset. Bob starts by sending w to Alice using Interactive Hashing, the output
of which will be w0, w1. As from Alice’s point of view both strings are equally
likely to have been Bob’s original choice at Step 3, Property 1 of Interactive
Hashing (Section 3.2) guarantees to Bob that Alice cannot guess the value of b
such that wb = w. At the same time Property 3 of Interactive Hashing provides
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Protocol 4. New reduction of
(2
1

)
–ROTk to Bit OT using Interactive Hashing

1. Alice and Bob select x to be a (very small) positive constant less than 1.

2. Alice chooses two random strings T0, T1 ∈R {0, 1}n.

3. Bob chooses a random c ∈R {0, 1}. Let m = �log
((

n
xn

))
�. Bob selects w ∈R {0, 1}m

uniformly at random and decodes w into a subset s ⊂ I of cardinality xn according
to the encoding/decoding scheme of Section 3.1.

4. Alice transmits T0, T1 to Bob using n executions of Bit OT, with round i containing
bits ti

0, t
i
1. Bob chooses to learn ti

c if i /∈ s and ti
c̄ if i ∈ s.

5. Bob sends w to Alice using Interactive Hashing (Protocol 2). Alice and Bob com-
pute the two output strings, labeled w0 , w1 according to lexicographic order, as
well as the corresponding subsets s0, s1 ⊂ I . Bob computes b ∈ {0, 1} s.t. wb = w.

6. Alice checks that |s0 ∩ s1| ≤ 2 · x2n and aborts otherwise.

7. Both parties compute s′
0 = s0 \ (s0 ∩ s1) and s′

1 = s1 \ (s0 ∩ s1).

8. Bob announces a = b ⊕ c to Alice. He also announces T0(s′
1−a) and T1(s′

a).

9. Alice checks that the strings announced by Bob are consistent with a and contain
no errors. Otherwise she aborts the protocol.

10. Alice and Bob discard the Bit OT’s at positions s0 ∪ s1 and concentrate on the
remaining positions in J = I \ (s0 ∪ s1). Let j = |J | and R0 = T0(J), R1 = T1(J).

11. Alice chooses two functions h0, h1 randomly and independently from a 2-universal
family of hash functions with input length j and output length k = j − 6xn ≥
n − 8xn. She sets r0 = h0(R0) and r1 = h1(R1). She sends h0, h1 to Bob.

12. Bob sets rc = hc(Rc).

Alice with the guarantee that the choice of one of w0, w1 was effectively random
and beyond Bob’s control. We will see that this implies that the corresponding
subset is also random enough to ensure that a cheating Bob will fail the tests at
Step 9 except with negligible probability.

At Step 6 Alice makes sure that the intersection of s0, s1 is not too large as
this would interfere with the proof of security against a dishonest Bob.

Fig. 1. During the n Bit OT executions Bob chooses ti
c at positions i ∈ I \ s, and ti

c̄

at positions i ∈ s. In the Figure, c = 0 so in the end Bob knows T0(I \ s) and T1(s).
Note that while s ⊂ I is shown here as a contiguous block, in reality the positions it
represents occur throughout the n executions.
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Fig. 2. Honest Bob sends his subset s to Alice through Interactive Hashing. With
overwhelming probability this procedure produces two outputs s0, s1 of which one is
s and the other is effectively randomly chosen. Alice does not know which of the two
was Bob’s original choice. The intersection of s0, s1 is later excluded to form s′

0, s
′
1.

Fig. 3. After establishing sets s′
0, s

′
1, Alice expects Bob to announce either T0(s′

0) and
T1(s′

1) or T0(s′
1) and T1(s′

0) depending on the value of a. If Bob’s choice was c = 0 as in
Figure 1 and s = s0 after Interactive Hashing, then he would choose the latter option.

Fig. 4. After Bob has passed the tests, both players ignore the Bit OT executions at
positions s0 ∪ s1 and form strings R0, R1 from the remaining bits. Then independent
applications of Privacy Amplification on R0, R1 produce r0, r1 ∈ {0, 1}k.

At Step 7 the two parties exclude the bits in this intersection from the tests
that will follow since Bob cannot be expected to know both T0(s0 ∩ s1) and
T1(s0 ∩ s1). What remains of s0, s1 is denoted s′0, s′1.

At Step 8 Bob effectively announces Tc(s′̄b) and Tc̄(s′b) in both cases. Note
that the only information related to c which is implied by the announced bits is
the value of a, which is already made available to Alice at the beginning of the
step. Alice can correctly guess c = a ⊕ b if and only if she can correctly guess b.

At Step 9 Alice checks that the strings were announced correctly and are con-
sistent with the value of a — see Fig. 3. If that is the case then Alice is convinced



212 C. Crépeau and G. Savvides

that Bob has not deviated much from the protocol at Step 4. In a nutshell the
idea here is that Interactive Hashing guarantees that even if Bob behaves dishon-
estly, without loss of generality s1 was chosen effectively at random. Therefore,
if Bob can announce all bits in T0(s′0), T1(s′1), say, it must have been the case
that he knew most bits in T1 to begin with and consequently few bits in T0. In
fact, we prove that if (dishonest) Bob learns more than 5xn bits of both T0 and
T1 during Step 4 then he gets caught with overwhelming probability.

In Step 10 the two players discard the Bit OT executions at positions s0 ∪ s1
that were used for tests and concentrate on the remaining j executions. Note
that j ≥ n − 2xn. As Bob passed the tests of Step 9, Alice is convinced that
there is a d ∈ {0, 1} such that Bob knows at most 5xn bits in Td and thus at
most 5xn bits in Rd. This implies that he is missing at least j − 5xn bits of Rd.

In Step 11 she thus sets k = (j − 5xn) − xn ≥ n − 8xn and performs Privacy
Amplification (with security parameter xn) on R0, R1 to get r0, r1. See Fig. 4.

Gains in Efficiency. As k ≥ n − 8xn for any small constant x, the expansion
factor n/k is 1 + ε for some small constant ε = 8x

1−8x . This is asymptotically
optimal (see [7]) and represents a two-fold improvement over the corresponding
reduction in [3] where the expansion factor was at least 2 + ε′.

5.1 Proof of Security and Practicality

Theorem 2. The probability of failure of Protocol 4 with honest participants is
exponentially small in n.

Proof. If both parties are honest then Protocol 4 can only fail at Step 6. We will
show that for any (fixed) w ∈ {0, 1}m that Bob inputs to Interactive Hashing at
Step 5, the probability that the second output w′ is such that |s ∩ s′| > 2 · x2n
is exponentially small in n. Let s be the subset corresponding to Bob’s choice of
w. We will call a subset s′ bad if |s ∩ s′| > 2 · x2n. Likewise, we will call a string
w′ ∈ {0, 1}m bad if it maps to a bad subset.

We start by showing that the fraction of bad subsets is exponentially small in
n. Suppose s′ ⊂ I is randomly chosen among all subsets of cardinality xn. One
way to choose s′ is by sequentially selecting xn positions uniformly at random
without repetition among all n positions in I. The probability qi that the i–th
position thus chosen happens to collide with one of the xn positions in s satisfies

qi <
xn

n − xn
=

x

1 − x

As a thought experiment, suppose that one were to choose xn positions inde-
pendently at random, so that each position collides with an element of s with
probability exactly q = x

1−x . This artificial way of choosing xn positions can only
increase the probability of ending up with more than 2x2n collisions. We can
use the Chernoff bound (2) to upper bound this (larger) probability. Assuming
x < 1/2 and setting δ = 1 − 2x we get

Pr
[
B(xn,

x

1 − x
) > 2x2n

]
≤ ε′
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where ε′ = e−
(1−2x)2x2

3(1−x) n. This in turn guarantees that when s′ is selected in the
appropriate way, the event |s ∩ s′| > 2 · x2n occurs with probability ε < ε′. In
other words, the fraction of bad subsets is upper bounded by ε < ε′.

By Lemma 1, the fraction of bad strings in {0, 1}m is at most 2ε. As w itself
is bad, it follows that among all 2m − 1 strings other than w the fraction of
bad strings is no larger than 2ε. Since by Property 2 of Interactive Hashing, w
is paired to some uniformly chosen w′ 	= w, the probability that the protocol
aborts at Step 6 is upper bounded by 2ε which is exponentially small in n. ��

Theorem 3. Alice learns nothing about (honest) Bob’s choice bit c.

Proof. During Bob’s interaction with Alice, his choice bit c comes into play only
during the Bit OT executions of Step 4 and later at Step 8 when Bob announces
a = b⊕c. As Bit OT is secure by assumption, Alice cannot obtain any information
about c in Step 4. As for Step 8, since (honest) Bob chooses w uniformly at
random in {0, 1}m, both w0 and w1 are apriori equally likely choices. By Property
1 of Interactive Hashing (see Section 3.2), the aposteriori probabilities of w0, w1
having been Bob’s input are then equal as well. Consequently, Alice cannot guess
b with probability higher than 1/2 and the same holds for c = a ⊕ b. ��

Security Against a Dishonest Bob. The proof of security against a dishonest
Bob is considerably more involved. The main idea is that if Bob deviates from
the protocol more than a small fraction of the time then he gets caught by the
end of Step 9 with overwhelming probability. If, on the other hand, he deviates
only a small fraction of the time, then Privacy Amplification effectively destroys
any illegal information he may have obtained. We start with some definitions and
lemmas that will help to prove the main theorem (Theorem 4) of this section.

Definition 1. For a bit string σ, define up(σ) to be the number of bits in σ that
can be guessed correctly with probability at most p < 1. These bits will be referred
to as unknown bits.

Definition 2. Let s ⊂ I. Assuming Definition 1, we call s good for Tc if
up(Tc(s)) ≤ 3x2n. Otherwise, we call s bad for Tc. We say that s is good for
either T0 or T1 if at least one of up(T0(s)), up(T1(s)) is at most 3x2n.

Definition 3. Let w be a string in {0, 1}m. We call w good for Tc if the subset
s it encodes is good for Tc according to Definition 2. Otherwise, w is bad for Tc.

Lemma 3. Let up(Tc) ≥ 5xn. Then among all subsets s ⊂ I of cardinality xn

the fraction of good subsets for Tc is less than e−x2n/8.

Proof. We will use the Probabilistic Method to show that the probability that a
randomly chosen subset s is good for Tc is less than e−x2n/8. One way of choosing
s would be to sequentially choose xn positions in I at random and without
replacement. Note that regardless of previous choices, for all 1 ≤ i ≤ xn the
probability qi of position i being chosen among the up(Tc) positions of unknown
bits always satisfies
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qi >
up(Tc) − xn

|I| ≥ 5xn − xn

n
= 4x

This implies that the probability of choosing a good subset for Tc would be
greater if we were to choose the xn positions independently at random so that
each position corresponds to an unknown bit with probability q = 4x. In this
artificial case the distribution of the number of unknown bits is binomial with
parameters xn, 4x and mean µ = 4x2n. Applying the Chernoff bound (Equation
1) with δ = 1/4 we get

Pr
[
B(xn, 4x) ≤ 3x2n

]
≤ e−x2n/8

We conclude that a subset s chosen randomly in the appropriate way has proba-
bility smaller than e−x2n/8 of being good for Tc, which establishes the claim. ��

Lemma 4. Let both up(T0), up(T1) ≥ 5xn. Then the fraction of strings in {0, 1}m

that are good for either T0 or T1 is no larger than 4 · e−x2n/8.

Proof. It follows from Lemma 3 and the Union Bound that the proportion of
good subsets for either T0 or T1 is no larger than 2 · e−x2n/8. Lemma 1 in turn
guarantees that the fraction of strings in {0, 1}m that are good for either T0 or
T1 in {0, 1}m is at most 4 · e−x2n/8. ��

Lemma 5. Let both up(T0), up(T1) ≥ 5xn. Then the probability that (dishonest)
Bob will clear Step 9 is exponentially small in n.

Proof. By Lemma 4, the proportion of good strings in {0, 1}m for either T0 or
T1 is at most 4 · e−x2n/8. By Property 3 of Interactive Hashing, the probability
that both w0, w1 will be good at Step 5 of the protocol is at most ε1 which is
exponentially small in m (and hence in n). Consequently, with probability at
least 1 − ε1, at least one of the two bit strings (without loss of generality, w1) is
bad for both T0 and T1. In other words, w1 corresponds to a subset s1 with both
up(T0(s1)), up(T1(s1)) ≥ 3x2n. Moreover, as Alice did not abort at Step 6 it must
be the case that |s0 ∩ s1| ≤ 2x2n. It follows that both up(T0(s′1)), up(T1(s′1)) ≥
3x2n − 2x2n = x2n. Therefore, however Bob decides to respond in Step 8, he
must correctly guess the value of at least x2n unknown bits in one of T0, T1. As
the bits were independently chosen, the probability of guessing them is ε2 ≤ px2n.

Bob will clear Step 9 only if he got two good strings from Interactive Hashing
or got at least one bad string and then correctly guessed all the relevant bits.
This probability is upper bounded by ε1 + ε2 (exponentially small in n). ��

Theorem 4. The probability of (dishonest) Bob successfully cheating in Protocol
4 is exponentially small in n.

Proof. Let v0, v1 ⊆ I be the positions where (dishonest) Bob requested ti0, t
i
1

respectively during Step 4. Note that v0 ∩ v1 = ∅. We distinguish two cases:
(Case 1 and Case 2 taken together establish the claim.)
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Case 1: Both |v0| , |v1| ≤ n − 5xn
In this case u1/2 (T0) , u1/2 (T1) ≥ 5xn, so by Lemma 5 (dishonest) Bob will fail
to clear Step 9 except with exponentially (in n) small probability.

Case 2: One of |v0| , |v1| is greater than n − 5xn
Without loss of generality, let |v0| > n − 5xn. Then Bob knows less than 5xn
bits about T1, and consequently, less than 5xn bits about R1 = T1(J). Note
that as T0, T1 are independently chosen, even if an oracle were to subsequently
provide all the bits of T0 (or R0 , or r0), Bob would obtain no new information
about R1. As u1/2 (R1) ≥ j − 5xn, Privacy Amplification with output length
k = (j − 5xn) − xn destroys all but an exponentially (in n) small amount of
information about r1, with probability exponentially close to 1. ��

6 Extension to Weaker Variants of Bit OT

We demonstrate that Protocol 4 can accommodate weaker versions of Bit OT.
Specifically, it requires no modification at all if Bit OT is replaced with XOT,
while a virtually imperceptible decrease in the output length k guarantees its
security with GOT. Decreasing k even further allows us to prove the Protocol’s
security when Bob has access to UOT with α ≤ 1. As in all three cases honest
Bob’s choices during Step 4 are identical to the case of Bit OT and remain equally
well hidden from Alice’s view, the proofs of Theorems 2 and 3 (establishing the
Protocol’s practicality and security against dishonest Alice) carry over verbatim
to the new settings.

On the other hand, arguing that the Protocol remains secure against dishonest
Bob is more involved and requires a separate analysis in each case. The basic
idea, however, is the same as in the case of Bit OT and consists in showing
that if Bob has deviated ‘significantly’ from the protocol then he gets caught
with overwhelming probability, and if he has not, then Privacy Amplification
effectively eliminates any illegal information he may have accumulated.

6.1 Security Against a Dishonest Bob Using XOT

Theorem 5. The probability of (dishonest) Bob successfully cheating in Protocol
4 is exponentially small in n even if the Bit OT protocol is replaced with XOT.

Proof. Let v0, v1, v⊕ ⊆ I denote the sets of positions i where (dishonest) Bob
requested ti0, t

i
1, t

i⊕ = ti0 ⊕ ti1 respectively during Step 4. As in the proof of
Theorem 3, we distinguish two cases, in both of which the probability of cheating
is exponentially small in n, as desired.
Case 1: One of |v0| , |v1| is greater than n − 5xn
Without loss of generality, let |v0| > n − 5xn. Then |v1 ∪ v⊕| < 5xn. Conse-
quently, Bob knows less than 5xn bits about R1 even if he is provided with all
the bits of T0 by an oracle after Step 4. We note in passing that such oracle in-
formation can only be helpful for the positions in v⊕. Since u1/2 (R1) > j − 5xn,
Privacy Amplification with output length k = (j − 5xn) − xn would destroy all
but an exponentially (in n) small amount of information about r1, with proba-
bility exponentially close to 1.
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Case 2: Both |v0| , |v1| ≤ n − 5xn.
This implies that both |v1 ∪ v⊕| and |v0 ∪ v⊕| are at least 5xn and consequently,
u1/2 (T0) , u1/2 (T1) ≥ 5xn. By Lemma 5, Bob will fail to clear Step 9 except with
exponentially (in n) small probability. ��

Gains in Efficiency. The expansion factor is identical to the case of Bit OT
(and optimal). Compared to the reduction in [3], ours is again twice as efficient.

6.2 Security Against a Dishonest Bob Using GOT

In the case of Generalized OT, during round i of Step 4 dishonest Bob can choose
to obtain f(ti0, t

i
1) for any of the 16 functions f : {0, 1}2 �→ {0, 1}. Without

loss of generality, we will assume that Bob never requests the two constant
functions as this would provide him with no information. It is not difficult to
see that in our context the information content of each of the remaining 14
functions is equivalent to that of one of the four functions f0, f1, f⊕, fAND defined
in Equation (7) below. We will thus assume that Bob always requests the output
of one of these functions. In keeping with the notation of previous sections we
let v0, v1, v⊕, vAND ⊆ I be the positions where Bob requested f0, f1, f⊕, fAND
respectively.

f0(t0, t1) = t0, f1(t0, t1) = t1, f⊕(t0, t1) = t0 ⊕ t1, fAND(t0, t1) = t0 ∧ t1 (7)

A Necessary Modification to Protocol 4. Our proof of security requires
that k be slightly shorter than in the case of Bit OT and XOR OT, that is
k = (j − 8xn) − xn ≥ n − 11xn.

The security analysis of the protocol in this setting is somewhat more com-
plicated compared to the case of Bit OT and XOT. This is due to the fact that
requesting fAND may or may not result in loss of information about (t0, t1): with
probability 1/4 the output of fAND is 1 and so Bob learns both bits while with
complementary probability 3/4 the output is 0 in which case the input bits were
(0, 0), (0, 1), (1, 0), all with equal probability. Note that in this latter case both
t0, t1 are unknown as each can be guessed correctly with probability at most 2/3.

Complications Arising from Adaptive Strategies. If dishonest Bob’s re-
quests could be assumed to be fixed ahead of time, our analysis would be quite
straightforward since we could claim that among all requests in vAND, with high
probability a fraction 3/4 − ε would produce an output of 0 and thus both t0, t1
would be added to the set of unknown bits in T0, T1. Our task is complicated by
the fact that Bob obtains the output of the function he requested immediately
after each round and can thus adapt his future strategy to past results. For ex-
ample, Bob may be very risk-averse and start by asking for fAND in the first
round. If he is lucky and the output is 1, he asks for fAND again, until he gets
unlucky in which case he starts behaving honestly. This strategy makes it almost
impossible to catch Bob cheating while it allows Bob to learn both r0, r1 with
some nonzero — but admittedly quite small— probability. This example illus-
trates that we cannot assume that |vAND| is known ahead of time and remains
independent of results obtained during the n executions of Step 4.
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Dealing with Adaptive Strategies. In order to prove the security of the
protocol for any conceivable strategy that dishonest Bob might use, we start by
observing that at the end of Step 4 one of the following two cases always holds:

Case 1: One of |v0| , |v1| > n − 8xn, Case 2: Both |v0| , |v1| ≤ n − 8xn

Note that these two cases refer only to the types of requests issued by Bob
during Step 4 and do not depend in any way on the results obtained along the
way. Given any (adaptive) strategy S for Bob, one can construct the following
two strategies: Strategy S1 begins by making the same choices as S but ensures
that eventually the condition in Case 1 will be met: it “applies the brakes” just
before this constraint becomes impossible to meet in the future and makes its
own choices from that point on in order to meet its goal. Similarly, Strategy S2
initially copies the choices of S but if necessary, stops following them to ensure
that the condition of Case 2 is met. Let δ, δ1, δ2 be the probabilities of successfully
cheating using Strategies S, S1, S2, respectively. We will argue that δ ≤ δ1 + δ2.
To see this, imagine three parallel universes in which Bob is interacting with
Alice using strategies S, S1, S2 respectively. Recall that by the end of Step 4 the
universe of Strategy S is identical either to the Universe of Strategy S1 or to
the Universe of Strategy S2 (one of the two never had to “apply the brakes”).
Therefore, Strategy S succeeds only if one of S1, S2 succeeds and so δ ≤ δ1 + δ2.

It remains to prove that both δ1, δ2 are exponentially small in n. To do this,
we let Σ1, Σ2 be any adaptive strategies ensuring that the conditions of Case
1 and Case 2, respectively, are met. We will show that for any such strategies
(thus, for S0, S1 as well), the probabilities of success ∆1, ∆2 are exponentially
small in n, and therefore so is δ (since δ ≤ δ1 + δ2 ≤ ∆1 + ∆2).

Theorem 6. The probability of (dishonest) Bob cheating in (modified) Protocol
4 is exponentially small in n even if Bit OT is replaced with GOT.

Proof. We will prove that ∆1, ∆2 are both exponentially small in n.
Without loss of generality, let |v0| > n − 8xn at the end of Step 4. Then Bob

knows at most 8xn bits about T1, even if he is provided with all the bits of
T0 by an oracle. Consequently, u1/2 (R1) > j − 8xn and therefore using Privacy
Amplification with output length k = (j − 8xn) − xn ≥ n − 11xn will result in
Bob having only an exponentially small amount of information about r1 (even
given r0), except with an exponentially small probability ∆1.

As for Strategies Σ2, we start by showing that Pr
[
u2/3 (T1) ≤ 5xn

]
is small.

Since any such strategy guarantees that |v1| ≤ n − 8xn, it follows that
|v0 ∪ v⊕ ∪ vAND| ≥ 8xn. Given this constraint, the probability that u2/3 (T1) ≤
5xn is maximized if |vAND| = 8xn, |v0| = |v⊕| = 0. This is because each re-
quest in v0 and v⊕ results with certainty in the corresponding bit in T1 being
unknown, while a request in vAND produces an unknown bit in T1 with prob-
ability 3/4 (moreover, in this case the unknown bit can be guessed correctly
with probability 2/3 instead of 1/2). Using the Chernoff bound (Equation 1) with
(n, p, δ) �→ (8xn, 3/4, 1/6) gives

Pr
[
u2/3 (T1) ≤ 5xn

]
≤ Pr

[
B(8xn,

3
4
) ≤ 5xn

]
≤ e−xn/12
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and similarily for u2/3 (T0). By the Union Bound, both u2/3 (T0) , u2/3 (T1) ≥ 5xn

except with probability at most 2 · e−xn/12. In this case, Lemma 5 guarantees
that Bob will manage to clear Step 9 with some probability ε exponentially small
in n. We conclude that using any Strategy Σ2, Bob can successfully cheat with
probability ∆2 ≤ 2 · e−xn/12 + ε which is exponentially small in n.

Probability of Successfully Cheating Using Any Adaptive Strategy S.
As argued above, for any adaptive strategy S, the probability δ of cheating is
upper bounded by δ1 + δ2 ≤ ∆1 + ∆2 and hence exponentially small in n. ��

Gains in Efficiency. As k ≥ n − 11xn for any small constant x, the expansion
factor n/k is 1 + ε′ for some (related) small constant ε′. It is only slightly larger
than the expansion factor in the case of Bit OT and XOR OT and remains
asymptotically optimal. This represents an increase in efficiency by a factor of
about 4.8188 over the corresponding reduction in [3].

6.3 Security Against a Dishonest Bob Using Universal OT

In this case, in each round of Bit OT at Step 4 dishonest Bob can choose to
obtain the output of any discrete, memoryless channel subject to the following
constraint: let B0, B1 be independent, uniformly distributed random variables
corresponding to Alice’s inputs to Bit OT and let Ω = Ω(B0, B1) be the chan-
nel’s output to Bob. Then for some constant α ≤ 1 the following holds:

H ((B0, B1) | Ω) ≥ α (8)

Note that we require α to be at most 1 since otherwise, the channel would
disallow honest behavior as well. Let ε to be any (very small) positive constant
strictly less than 1/2. We can then partition all possible channels satisfying the
constraint of Equation 8 into the following three categories.

Ω0: All channels satisfying H (B0 | Ω) < εα and H (B1 | B0Ω) > (1 − ε)α.

Ω1: All channels satisfying H (B1 | Ω) < εα and H (B0 | B0Ω) > (1 − ε)α.

Ωb: All channels satisfying H (B0 | Ω) ,H (B1 | Ω) ≥ εα.

Let ρ(α) be the unique solution x ∈ [0, 1/2] to the equation h(x) = α. Let p0 =
p1 = ρ ((1 − ε)α) and pb = ρ (εα). Then from Fano’s inequality and Lemma 2
(Section 3.4) we can assert the following:

– p0 is a lower bound on the error probability when guessing the value of B1
after using a channel of type Ω0 and this is true even if the value of B0 is
known with certainty. There thus exists an indicator random variable ∆0
(provided as side information by an oracle) which leads to an erasure of
B1 with probability 2p0. Note: when there is no erasure (∆0 = 0) it is not
necessarily the case the corresponding bit is known with certainty.
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– Likewise, p1 lower bounds the error probability when guessing B0 given the
value of B1 and the output of a channel of type Ω1. This implies the existence
of side information in the form of an indicator random variable ∆1 that leads
to an erasure of B0 with probability 2p1 = 2p0.

– When using a channel of type Ωb, the probability of guessing B0 incorrectly
given the channel’s output is at least pb, and the same holds when guessing
the value of B1. Thus, there exists an indicator random variable ∆0

b (resp.
∆1

b) which, if provided by an oracle, would lead to an erasure of B0 (resp.
B1) with probability 2pb. Note that this statement is true only if the oracle
provides one of ∆0

b , ∆
1
b each time. To see why this is so, suppose both were

provided at the same time. Since ∆0
b along with Ω might contain more infor-

mation about B1 than was available in Ω alone, one can no longer assume
that the event ∆1

b = 1 would necessarily correspond to an erasure of B1.

In order to simplify our analysis we will assume that after each round of UOT
in Step 4, an oracle supplies Bob with the following side information, depending
on the type of channel that Bob used:

Ω0: The exact value of B0, as well as the value of ∆0. Note that this leads to
B1 being erased with probability 2p0.

Ω1: The exact value of B1, as well as the value of ∆1. Note that this leads to
B0 being erased with probability 2p1 = 2p0.

Ωb: One of ∆0
b , ∆

1
b , chosen at random with equal probability. Note that this

leads to each of B0, B1 being erased with probability pb in each round (not
independently, though: B0 and B1 cannot be erased at the same time).

Another Modification to Protocol 4. For any very small positive constant
ε, let pb

def= ρ(εα) and p0
def= ρ((1−ε)α). Our proof of security will require that we

reduce k even further at step 11, by setting k = 2p0(j − 8pbn) ≥ 2p0n − 9p0pbn.
For convenience, we will also set x = p2

b in Step 1.

Theorem 7. The probability of dishonest Bob successfully cheating in (modi-
fied) Protocol 4 is exponentially small in n even if the Bit OT protocol is replaced
with UOT satisfying the constraint of Equation (8).

Proof. Let v0, v1, vb ⊆ I be the positions in Step 4 where Bob selected a channel
of type Ω0, Ω1, Ωb, respectively. Then, at the end of Step 4 one of the following
two cases always holds:

Case 1: One of |v0| , |v1| > n − 6pbn

Case 2: Both |v0| , |v1| ≤ n − 6pbn

We proceed as in the proof of security for GOT in Section 6.2.
Without loss of generality, let |v0| > n − 6pbn at the end of Step 4. This

implies that at least j − 6pbn of the bits of R1 were received over a channel of
type Ω0. Let µ1 be the expected number of erasures in R1, resulting from the side
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information ∆0 provided by the oracle in each round. Then µ1 ≥ 2p0 (j − 6pbn).
From Equation (3) we deduce that with probability exponentially close to 1 there
will be at least 2p0 (j − 7pbn) erasures, in which case u1/2 (R1) ≥ 2p0 (j − 7pbn).

Applying Privacy Amplification with output length k = 2p0 (j − 8pbn) will
thus produce an almost-uniformly distributed k-bit string r1 (independent of
r0), except with exponentially (in n) small probability. Note that as p3

b < 1/2

and j ≥ n − 2x2n = n − 2p4
bn, the output size k satisfies k = 2p0 (j − 8pbn) ≥

2p0
(
n − 2p4

bn − 8pbn
)

≥ 2p0 (n − 9pbn) = 2p0n − 9p0pbn.
The probability of any strategy Σ1 successfully cheating is at most equal to the

probability that there are too few erasures to begin with plus the probability
that Privacy Amplification failed to produce an almost-uniformly distributed
string. Our choices guarantee that this probability is exponentially small in n.

We show that with near certainty both u1/2 (T0) and u1/2 (T1) are at least
5xn, which by Lemma 5 guarantees that Bob will fail to clear Step 9 with
probability exponentially close to 1. We start by upper bounding the probability
that u1/2 (T1) ≤ 5xn. Since |v1| ≤ n − 6pbn, there are at least 6pbn bits that
were either sent over a channel of type Ω0 or Ωb. We will assume that exactly
6pbn bits were sent over a channel of type Ωb, as this choice minimizes the
expected number of erasures in T1 given our constraints, and hence maximizes
the probability that u1/2 (T1) ≤ 5xn. Note that the expected number of erasures
of B1 in this case is pb · 6pbn = 6p2

bn = 6xn. By the Chernoff bound

Pr
[
u1/2 (T1) ≤ 5xn

]
≤ Pr

[
B(6pbn, pb) ≤ 5p2

bn
]

≤ λ

where λ is exponentially small in n.
The same argument applies to u1/2 (T0). Therefore, both u1/2 (T0) , u1/2 (T1) ≥

5xn except with probability at most 2λ. Then Lemma 5 guarantees that Bob
will fail to clear Step 9 with probability 1 − ε′ for some ε′ exponentially small
in n. We conclude that using any Strategy Σ2, Bob can successfully cheat with
probability at most 2λ + ε′ which is exponentially small in n.

Probability of Cheating Using Any Adaptive Strategy S. As argued in
Section 6.2, the probability of successful cheating for any adaptive strategy S
is upper bounded by the sum of the probabilities of success of any strategies
Σ1, Σ2. We have shown that both of these are exponentially small. ��

Gains in Efficiency. In both our reduction and that of [3], the expansion
factor is a function of α. In our case k ≥ 2p0n − 9p0pbn. Since pb = ρ(εα), p0 =
ρ((1− ε)α), for ε → 0 we get p0 → ρ(α), pb → 0 and therefore k ≈ 2ρ(α)n, which
translates to an expansion factor of 1

2ρ(α) + ε′. The corresponding expansion
factor in [3] is at least 4 ln 2

pe
where pe is the unique solution in (0, 1/2] to the

equation h(pe) + pe log2 3 = α. It is easy to verify by means of a graph that for
all 0 ≤ α ≤ 1, we have ρ(α) > pe. Consequently, our expansion factor is always
at least 8 ln 2 = 5.545 times smaller than the one in [3]. It is noteworthy that
in the special case where α = 1 we have ρ(α) = 1/2 and therefore the expansion
factor is 1 + ε′, which is optimal. Proving optimality for other values of α is left
as an open problem.
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7 Conclusions, and Open Problems

We have demonstrated how the properties of Interactive Hashing can be ex-
ploited to increase the efficiency and generality of existing String OT reductions.
Specifically, we have shown that our reductions are optimal in the case of Bit
OT, XOT and GOT, as well as for the special case of UOT where α = 1. We
conclude by listing some problems that our current work leaves open. (1) Mod-
ify Protocol 4 so that it never aborts when both participants are honest. This
will require proving that Interactive Hashing would not allow a dishonest Bob
to obtain strings w0, w1 such that the corresponding subsets s0, s1 have a large
intersection. (2) Prove that our reduction is optimal for all α in the case of UOT,
or modify it accordingly to achieve optimality. (3) Replace the Interactive Hash-
ing Protocol (Protocol 2) with an appropriately adapted implementation of the
constant round Protocol of [6] and prove that the ensuing reduction (Protocol
4) remains secure. (4) Further explore the potential of Interactive Hashing as
an ingredient in cryptographic protocols design.
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5. C. Cachin, C. Crépeau, and J. Marcil. Oblivious transfer with a memory-bounded
receiver. In IEEE Symposium on Foundations of Computer Science, 1998.

6. Y. Zong Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivious
transfer in the bounded storage model. In TCC, pages 446–472, 2004.

7. Y. Dodis and S. Micali. Lower bounds for oblivious transfer reductions. Lecture
Notes in Computer Science, 1592, 1999.

8. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

9. Joe Kilian. Founding crytpography on oblivious transfer. In STOC ’88: Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 20–31,
New York, NY, USA, 1988. ACM Press.

10. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge
arguments for NP using any one-way permutation. Journal of Cryptology, 11(2),
1998.

11. R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all-powerful ad-
versary. AMS DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 13, 1993.

12. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Memo
TR–81, Aiken Computation Laboratory, Harvard University, 1981.

13. D.R. Stinson. Some results on nonlinear zigzag functions. Journal of Combinatorial
Mathematics and Combinatorial Computing, 29:127–138, 1999.

14. S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.


	Introduction
	Oblivious Transfer Variants and Their Specifications
	\rot and Its Equivalence to \stringot
	Weaker Variants of Bit OT

	Tools and Mathematical Background
	Encoding of Subsets as Bit Strings
	Interactive Hashing
	Tail Bounds
	Error Probability and Its Concentration on an Erasure Event
	Privacy Amplification

	Previous Work
	Reductions Based on Self-intersecting Codes
	Reductions Based on Privacy Amplification

	The New Reduction of \rot to Bit OT
	Proof of Security and Practicality

	Extension to Weaker Variants of Bit OT
	Security Against a Dishonest Bob Using XOT
	Security Against a Dishonest Bob Using GOT
	Security Against a Dishonest Bob Using Universal OT

	Conclusions, and Open Problems


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




