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Abstract. Interactive Hashing has featured as an essential ingredient in
protocols realizing a large variety of cryptographic tasks, notably Obliv-
ious Transfer in the bounded memory model. In Interactive Hashing, a
sender transfers a bit string to a receiver such that two strings are re-
ceived, the original string and a second string that appears to be chosen
at random among those distinct from the first.

This paper starts by formalizing the notion of Interactive Hashing as
a cryptographic primitive, disentangling it from the specifics of its vari-
ous implementations. To this end, we present an application-independent
set of information theoretic conditions that all Interactive Hashing pro-
tocols must ideally satisfy. We then provide a standard implementation
of Interactive Hashing and use it to reduce a very standard version of
Oblivious Transfer to another one which appears much weaker.

1 Introduction

Interactive Hashing (IH) is a cryptographic primitive that allows a sender Alice
to send a bit string w to a receiver Bob who receives two output strings, labeled
w0, w1 according to lexicographic order. The primitive guarantees that one of
the two outputs is equal to the original input. The other string is guaranteed to
be effectively random, in the sense that it is chosen beyond Alice’s control, even
if she acts dishonestly. On the other hand, provided that from Bob’s point of
view w0, w1 are a priori equiprobable inputs for Alice, the primitive guarantees
that Bob cannot guess which of the two was the original input with probability
greater than 1/2. We remark that typically both outputs are also available to
Alice. See Figure 1.

In this article we provide a study of Interactive Hashing in the information the-
oretic setting and in isolation of any surrounding context. This modular approach
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Fig. 1. Interactive Hashing: the sender Alice sends string w to Bob, who receives two
strings w0, w1, labeled according to lexicographic order. One of the two (in our example,
w0) is equal to the input string while the other is effectively randomly chosen. Bob
cannot distinguish which of the two was the original input.

allows specific implementations (protocols) of Interactive Hashing to be analyzed
independently of any applications in which they appear as sub-protocols. It thus
leads to a better appreciation of the power of Interactive Hashing as a crypto-
graphic primitive in its own right.

To demonstrate the relevance of Interactive Hashing, we present an applica-
tion to protocols for Oblivious Transfer (OT). Oblivious Transfer is an important
primitive in modern cryptography. It was originally studied by Wiesner [Wie70]
(under the name of “multiplexing”), in a paper that marked the birth of quantum
cryptography and was later independently introduced to cryptography in sev-
eral variations by Rabin [Rab81] and by Even, Goldreich and Lempel [EGL85].
Oblivious transfer has since become the basis for realizing a broad class of cryp-
tographic protocols, such as bit commitment, zero-knowledge proofs, and general
secure multiparty computation [Yao86,GMW87,Kil88,Gol04].

In a one-out-of-two Oblivious Transfer, denoted
(
2
1

)
-OT, a sender owns two

secret bits b0 and b1, and a receiver wants to learn bc for a secret bit c of his
choice. The sender will only collaborate if the receiver can obtain information
about exclusively one of b0 or b1. Likewise, the receiver will only participate
provided that the sender cannot obtain any information about c.

1.1 Organization of the Paper

We present the previous work on Interactive Hashing in Section 2. In Section 3
we identify and formalize the information theoretic security properties of Interac-
tive Hashing. Then, in Section 3.1 we turn our attention to the Interactive Hash-
ing implementation that appeared as a sub-protocol in [OVY93] and refer the
reader to recent work [Sav07,CCMS09] demonstrating that despite its simplicity,
it meets all security properties set forth in Section 3. This new proof of security
is an important improvement over the proof that appeared in [CCM98], where
the authors demonstrate that a slight variant of the IH protocol of [OVY93]
could be securely used in their specific scenario. The new proof is more general,
as it is based on the security properties stated in Section 3. Moreover, the proof
is significantly simpler and more intuitive. Lastly, it provides an easier to use
and much tighter upper bound on the probability that the protocol fails to ensure
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that one of the two strings is sufficiently random. Section 4 defines our example
problem: reducing

(
2
1

)
-OT to a very weak version of Oblivious Transfer. Section 5

exhibits the solution to our example problem using Interactive Hashing. Finally,
we conclude in Section 6 and introduce a few open problems.

2 Previous Work

Various implementations of Interactive Hashing have appeared as sub-protocols
in the cryptographic literature, first in computational contexts where at least
one of the participants is polynomially bounded and later also in contexts where
security is unconditional (information theoretic).

While reviewing the previous work, the reader should bear in mind that so
far, Interactive Hashing has never been presented as an independent primitive.
Instead, it only appears within the context of larger protocols achieving a variety
of different cryptographic tasks. Not surprisingly, the properties it is expected to
have can vary significantly from one application to the next, and thus the proof
of security in each case depends on the specific setting.

2.1 Uses of Interactive Hashing in Computational Contexts

Interactive Hashing first appeared as a sub-protocol within a protocol achieving
Oblivious Transfer from an unbounded sender to a polynomial-time bounded
receiver [OVY93]. Soon thereafter, Interactive Hashing was deployed in various
other scenarios, such as zero-knowledge proofs [OVY94] and bit commitment
schemes [OVY92,NOVY98], where at least one of the participants was compu-
tationally bounded. For more recent applications of Interactive Hashing in this
setting consult [HHK+05,NOV06,NV06,HR07].

2.2 Uses of Interactive Hashing in Information Theoretic Contexts

Beside the computational scenarios in which it was originally used, Interactive
Hashing proved to be an important tool in information theoretic contexts as well.
Its first such use was in protocols for Oblivious Transfer which are information-
theoretically secure under the sole assumption that the receiver’s memory is
bounded [CCM98,Din01,DHRS07]. Interactive Hashing was later used to opti-
mize reductions between Oblivious Transfer variants [CS06].

We remark that while some of the security properties required of Interactive
Hashing in information theoretic settings bear a very close resemblance to their
counterparts in computational settings, some other properties are substantially
different. Moreover, the transition from computational to information theoretic
settings requires a re-evaluation of all security properties of any protocol. For
this reason, starting with [CCM98], the security properties of the underlying In-
teractive Hashing sub-protocol have been re-evaluated in the light of the specific,
information theoretic context where it was used.
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3 Information-Theoretic Secure Interactive Hashing

We now formalize the security properties that Interactive Hashing is expected
to satisfy in information theoretic contexts. As these properties do not depend
on any specific application, they allow us to define Interactive Hashing as an
independent cryptographic primitive.

Definition 1. Interactive Hashing is a cryptographic primitive between two play-
ers, the sender and the receiver. It takes as input a string w ∈ {0, 1}t from the
sender, and produces as output two t–bit strings one of which is w and the other
w′ �= w. The output strings are available to both the sender and the receiver, and
satisfy the following properties:

1. The receiver cannot tell which of the two output strings was the original
input. Let the two output strings be w0, w1, labeled according to lexicographic
order. Then if both strings were a priori equally likely to have been the
sender’s input w, then they are a posteriori equally likely as well1.

2. When both participants are honest, the input is equally likely to be paired
with any of the other strings. Let w be the sender’s input and let w′ be the
second output of interactive hashing. Then provided that both participants
follow the protocol, w′ will be uniformly distributed among all 2t − 1 strings
different from w.

3. The sender cannot force both outputs to have a rare property. Let G be a
subset of {0, 1}t representing the sender’s “good set”. Let G be the cardinality
of G and let T = 2t. Then if G/T is “small”, the probability that a dishon-
est sender will succeed in having both outputs w0, w1 be in G is comparably
“small”.

Remark 1. In the computational contexts of Section 2.1, similar properties to
Properties 1 and 2 were also required. On the other hand, the computational
counterpart to Property 3 is usually stated quite differently, as there is no pre-
determined good set G. For instance, in [NOVY98] where the inputs and outputs
of Interactive Hashing are interpreted as images under a one-way permutation
π, one of the two outputs is required to be sufficiently random so that any
polynomial-time algorithm that can compute pre-images to both outputs a sig-
nificant fraction of the time can be used to efficiently invert π on a randomly
chosen string with non-negligible probability.

We shall also point out that Property 3 is easy to satisfy when G ∈ o(
√

T )
because of the so called Birthday paradox. If the receiver picks a random hash
function h from {0, 1}t → {0, 1}t−1 and announces it to the sender, only with
very small probability will there exist a pair w0, w1 ∈ G such that h(w0) = h(w1).
The real challenge, met by Interactive Hashing, is to obtain Property 3 for sets
G such that G ∈ Ω(

√
T ).

1 Note that if we want this property to hold for all possible outputs, then w must be
uniformly chosen. Otherwise, this property will only hold whenever w happens to be
paired with a string w′ having the same a priori probability as w.
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3.1 A Secure Protocol for Interactive Hashing

We will be examining the implementation of Interactive Hashing given in Pro-
tocol 1. This standard implementation was originally introduced in a compu-
tational context by Ostrovsky, Venkatesan, and Yung [OVY93]. In Section 3.1
we will see that this very simple protocol actually meets all our information
theoretic security requirements as well.

Protocol 1. Interactive Hashing

Let w be a t-bit string that the sender wishes to send to the receiver. All oper-
ations below take place in the binary field F2.

1. The receiver chooses a (t − 1) × t matrix Q uniformly at random among all
binary matrices of rank t − 1. Let qi be the ith query, consisting of the ith

row of Q.
2. For 1 ≤ i ≤ t − 1 do:

(a) The receiver sends query qi to the sender.
(b) The sender responds with ci = qi · w.

3. Given Q and c (the vector of Bob’s responses), both parties compute the
two values of w consistent with the linear system Q ·w = c. These solutions
are labeled w0, w1 according to lexicographic order.

Remark 2. One way of choosing the matrix Q is to choose a (t − 1) × t binary
matrix uniformly at random and test whether it has rank t − 1, repeating the
process if necessary. Note that a later variation of the protocol [NOVY98] chose
Q in a canonical way to guarantee that it has rank t − 1, which results in a
somewhat more practical implementation. However, this appears to complicate
the proof of security.

Theorem 1 establishes the security of Protocol 1.

Theorem 1. [Sav07,CCMS09] Protocol 1 satisfies all three information theo-
retic security properties of Definition 1. Specifically, for Property 3, it ensures
that a dishonest sender can succeed in causing both outputs to be in the “good
set” G with probability at most 15.6805 · G/T .

3.2 Proofs of Information Theoretic Security

Cachin, Crépeau, and Marcil [CCM98] proved a similar property to Property 3
for a slight variant of Protocol 1 in the context of memory-bounded Oblivious
Transfer where again, the goal of a dishonest sender is to force both outputs of
the protocol to be from a subset G of cardinality G (out of a total T = 2t). While
their approach relies on upper-bounding the number of the sender’s remaining
good strings during the various rounds of the protocol, the new proof of [Sav07,
CCMS09] focuses instead on following the evolution of the number of pairs of
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good strings remaining after each round. This seems to be a more natural choice
for this scenario, as there is exactly one such pair remaining at the end of the
protocol if the sender succeeds in cheating and none otherwise (as opposed to two
strings versus zero or one). Consequently, the probability of cheating is simply
equal to the expected number of remaining pairs. Thanks to the nature of the
protocol, it is relatively easy to establish an upper bound on the expected number
of remaining pairs after each incoming query, and to keep track of its evolution
through the protocol.

The new approach of [Sav07,CCMS09] not only leads to a simpler and more
robust proof of security, but more importantly, it also allows to establish a more
general and much tighter upper bound on a dishonest sender’s probability of
cheating. Specifically, it allows to show that any strategy a dishonest sender
might employ can succeed with probability no larger than 15.6805 · G/T , for all
fractions G/T of good strings. The corresponding upper bound in [CCM98] is√

2 · 8
√

G/T and is only valid provided that G/T <
(
16t8

)−1. It should be noted
that the new upper bound is in fact tight up to a small constant. Indeed, the
probability of succeeding in cheating using an optimal strategy is lower-bounded
by the probability of getting two good output strings when the sender chooses
w ∈ G as input and then acts honestly. By Property 2 of Interactive Hashing, w
is equally likely to be paired with any of the remaining strings. It follows that the
probability of w being paired with one of the other G− 1 good strings is exactly
G−1/T−1. Assuming that G ≥ 50, the new upper bound is larger than this lower
bound by a factor of at most 15.6805 · (G

T

) (
T−1
G−1

)
< 15.6805

(
G

G−1

)
≤ 16. This

establishes that the new upper bound is tight up to a small constant in all cases
where the possibility of cheating exists.

3.3 An Alternative Implementation

Ding et al. [DHRS07] make use of a new, constant-round Interactive Hashing pro-
tocol to achieve Oblivious Transfer with a memory-bounded receiver. The main
idea behind their protocol, which requires only four rounds of interaction (com-
pared to t − 1 rounds in Protocol 1), is that if the receiver sends a random per-
mutation π to the sender (Round 1) who then applies it to his input string w and
announces a certain number of bits of π(w) (Round 2), then two more rounds suf-
fice to transmit the remaining part of π(w) so that only 1 bit remains undeter-
mined: in Round 3, the receiver chooses a function g uniformly at random from
a family of 2–wise independent 2–1 hash functions, and in Round 4 the sender
announces the value of the function applied to the remaining bits of π(w). The
output of the Interactive Hashing protocol consists of the two possible inputs to
the permutation π consistent with the values transmitted at rounds 2 and 4. The
security of this scheme is based on the observation that the permutation π in the
first round divides the (dishonest) sender’s good set G into buckets (indexed by
the bits transmitted at Round 2), so that with high probability, in each bucket
the fraction of good strings is below the Birthday Paradox threshold. This allows
regular 2–1 hashing to be used in Rounds 3 and 4 to complete the protocol.
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It should be noted that since a random permutation would need exponential
space to describe, the construction resorts to almost t-wise independent permu-
tations, which can be efficiently constructed and compactly described.

Unfortunately, the protocol of [DHRS07] is less general than Protocol 1 for a
variety of reasons: first, its implementation requires that the two parties know a
priori an upper bound on the cardinality of the dishonest receiver’s good set G, as
this will determine the number of bits of π(w) announced in Round 2. Secondly,
the upper bound for the probability that Property 3 is not met is, according to the
authors’ analysis, Ω (t · G/T) and only applies when G ≥ 4t. Moreover, the proto-
col does not fully satisfy Property 2, but only a slight relaxation2 of it. Lastly, the
protocol is very involved, and probably prohibitively complicated to implement
in practice. We leave it as an open problem to improve upon this construction.

4 Reducing OT to a Very Weak OT

We illustrate the power of Interactive Hashing in information theoretic contexts
by considering the following straightforward scenario, originally suggested by the
second author: suppose that a sender Alice and a receiver Bob wish to implement
1-out-of-k Bit Oblivious Transfer, which we will denote as

(
k
1

)
–Bit OT. For the

purposes of our example, suffice it to say that Alice would like to make available
k randomly chosen bits to Bob, who must be able to choose to learn any one
of them, with all choices being equally likely from Alice’s point of view. Alice
is only willing to participate provided that (dishonest) Bob learns information
about exclusively one bit, while Bob must receive the assurance that (dishonest)
Alice cannot obtain any information about his choice. Suppose that all that
is available to Alice and Bob is an insecure version of

(
k
1

)
–Bit OT, denoted

(k − 1)–faulty
(
k
1

)
–Bit OT, which allows honest Bob to receive (only) one bit of

his choice but might allow a dishonest Bob to learn up to k−1 bits of his choice.
The rest of this section focuses on the early work of the first two authors who
had made repeated but unsuccessful attempts to find a satisfactory reduction
of

(
k
1

)
–Bit OT to (k − 1)–faulty

(
k
1

)
–Bit OT, whereas Protocol 4 shows how

Interactive Hashing makes such a reduction almost trivial.

Remark 3. For simplicity, Protocol 2 and Protocol 4 reduce
(
2
1

)
–Bit OT to weaker

versions of OT without any loss of generality since
(
k
1

)
–Bit OT can in turn be re-

duced to
(
2
1

)
–Bit OT using the well-known reduction in [BCR86]. We shall denote

“x+ky” to be “x+y mod k” except if x+y ≡ 0 (mod k) in which case “x+ky = k”.
More formally, x +k y = (x + y − 1 mod k) + 1.

4.1 Reduction of
(2
1

)
–Bit OT to O(

√
k)–Faulty

(k
1

)
–Bit OT

As a warm up exercise we exhibit a simple reduction of
(
2
1

)
–Bit OT to O(

√
k)–

faulty
(

k
1

)
–Bit OT, a faulty primitive, allowing a dishonest Bob to get at most

O(
√

k) bits of Alice’s input at his choosing.
2 It approximates the uniform distribution over the remaining strings within some

η < 2−t.
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Protocol 2. Reduction of
(
2
1

)
–Bit OT to O(

√
k)–faulty

(
k
1

)
–Bit OT

Let b̊0, b̊1 and c̊ be the inputs of Alice and Bob, respectively, for
(
2
1

)
–Bit OT.

1. Alice and Bob agree on a security parameter n.
2. For 1 ≤ i ≤ n do:

(a) Alice selects at random bits ri1, ri2, . . . , rik while Bob selects at random
ci ∈R {1, . . . , k}.

(b) Alice uses O(
√

k)–faulty
(
k
1

)
–Bit OT to send her k bits to Bob, who

chooses to learn rici .
(c) Alice picks a random distance Δi ∈R {1, . . . , k/2} and announces it to

Bob.
(d) Bob announces σi such that ci = σi +k c̊Δi to Alice.

3. Alice computes R0 =
n⊕

i=1

riσi and R1 =
n⊕

i=1

ri(σi+kΔi).

4. Alice sends e0 = b̊0 ⊕ R0 and e1 = b̊1 ⊕ R1 to Bob.
5. Bob obtains b̊̊c = ec̊ ⊕ Rc̊ = ec̊ ⊕

⊕n
i=1 rici .

It is relatively straightforward to see that when both participants are honest,
Protocol 2 allows Bob to obtain the bit of his choice since he knows Rc̊ =⊕n

i=1 rici and can thus decrypt ec̊. In case Alice is dishonest, Bob’s choice c̊ is
perfectly hidden from her when she obtains σi at Step 2d. This is because at
the beginning of the protocol, Bob is equally likely to make the choices σi or
σi +k Δi.

Now consider what a dishonest Bob can do. At round i, upon learning Δi in
Step 2c, the probability that there exists a pair of indices at distance Δi where
Bob knows both bits is less than �i(�i−1)/2

k/2 when Bob knows �i bits out of k.
This is because the maximum number of distances possible between �i positions
is �i(�i−1)/2, while the total number of distances is k/2. Thus, for an appropriate

choice of the hidden constant in the O() notation we have
O(

√
k(

√
k−1)/2)

k/2 < 1/2.
In consequence, the probability that in Step 2d Bob is able to claim a σi such that
he knows both riσi and ri(σi+kΔi) is less than 1/2. See Figure 2 for an example.
Therefore, the probability that after n rounds Bob may compute both R0 and
R1 is less than 1/2

n.

4.2 Reduction of O(
√

k)–Faulty
(k
1

)
–Bit OT to (k/2)–Faulty

(k
1

)
–Bit OT

As a continuation of the previous exercise we reduce O(
√

k)–faulty
(
k
1

)
–Bit OT

to (k/2)–faulty
(
k
1

)
–Bit OT, a faulty primitive allowing a dishonest Bob to get

at most k/2 bits of Alice’s input at his choosing.
It is again relatively straightforward to see that when both participants are

honest, Protocol 3 allows Bob to obtain the bit of his choice since he knows
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Fig. 2. O(
√

k)–faulty
(

k
1

)
–Bit OT: Each row i corresponds to a round and in each row

O(
√

k) grey squares indicate the positions obtained by a dishonest Bob. The bold lines
indicate the distance Δi chosen by Alice. Bob can obtain both bits in the end if a pair
of grey squares exists at the right distance in each row. We see that a few rows have
such a pair but many don’t.

Fig. 3. (k/2)–faulty
(

k
1

)
–Bit OT: Each two rows 2i − 1, 2i correspond to round i. Row

2i − 1 shows the number of bits known to dishonest Bob (in light grey). Each row 2i,
shows an execution of (k/2)–faulty

(
k
1

)
–Bit OT after mixing via πi, and shifting via σi

to align as many known bits (in darker grey) as possible in the first Θ(
√

k) positions.
Most of the times, it is not possible to save all the Θ(

√
k) known bits.
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Protocol 3. Reduction of O(
√

k)–faulty
(
k
1

)
–Bit OT to (k/2)–faulty

(
k
1

)
–Bit OT

1. Alice and Bob agree on a security parameter n.
2. Bob selects at random c ∈R {1, . . . , k}.
3. For 1 ≤ i ≤ 2n do:

(a) Alice selects at random bits ri1, ri2, . . . , rik while Bob selects at random
ci ∈R {1, . . . , k}.

(b) Alice uses (k/2)–faulty
(
k
1

)
–Bit OT to send her k bits to Bob, who

chooses to learn rici .
(c) Alice picks a random permutation πi ∈R {1, . . . , k} → {1, . . . , k} and

announces it to Bob.
(d) Bob computes a shift σi such that πi(ci) = σi +k c and announces it to

Alice.
4. Alice computes For 1 ≤ j ≤ k

Rj =
2n⊕

i=1

riπ−1
i (σi+kj).

5. Bob outputs c and Rc =
⊕2n

i=1 rici .
6. Alice outputs R1, . . . , Rk.

Rc =
⊕2n

i=1 rici . In case Alice is dishonest, Bob’s choice c is perfectly hidden
from her when she obtains σi at Step 3d.

The rest of the reasoning is a bit more subtle. See Figure 3 for an example.
Consider the first Θ(

√
k) bits known by Bob. The number of sequences containing

k/2 known bits that will have exactly those Θ(
√

k) bits in the correct position
is given by

(
k − Θ(

√
k)

k/2

)
<

(
k − Θ(

√
k)

(k − Θ(
√

k))/2

)
≈

√
2
π

2k−Θ(
√

k)

√
k − Θ(

√
k)

.

All k shifts of these sequences are also successful for Bob because he can shift
them to align them with the first Θ(

√
k) bits known, thus a grand total of at

most k times more or
√

2
π

√
k + Θ(

√
k)2k−Θ(

√
k). However, any new execution

of (k/2)–faulty
(
k
1

)
–Bit OT combined with a random permutation πi yields a

completely random sequence with an equal number of bits known and unknown,
or one out of

(
k

k/2

) ≈
√

2
π

2k√
k
. So the probability that a random sequence can

be shifted to have the first Θ(
√

k) known bits in the correct positions is at most
the ratio of the two expressions:

k
(k−Θ(

√
k)

k/2

)

(
k

k/2

) <

√
k + Θ(

√
k)2k−Θ(

√
k)

2k/
√

k
< O(k)2−Θ(

√
k) � 1/2.



24 C. Crépeau, J. Kilian, and G. Savvides

We assume that the number of bits known to Bob after the first i rounds is in
Ω(

√
k) (a position j is known to Bob if so far he obtained all the bits necessary

to later compute Rj), otherwise we have already achieved our goal. For n > k,
starting from k/2 known bits, and repeating the protocol 2n times, one of the
following two options must hold:

1. At some round, Bob is left with less than O(
√

k) known bits
2. At all rounds, Bob has Ω(

√
k) bits left, and has thus lost fewer than k/2

bits overall (unlikely since under these conditions, the expected number of
bits lost is n > k)

This guarantees that the total number of bits still valid at the end of the protocol is
definitely O(

√
k) except with exponentially small probability. Thus, this reduction

can be used as a substitute for O(
√

k)–faulty
(
k
1

)
–Bit OT in Protocol 2.

The combination of Protocol 2 and Protocol 3 is a Θ(n2) time reduction from(
2
1

)
–Bit OT to (k/2)–faulty

(
k
1

)
–Bit OT. However, it is easy to see that it will

fail completely if we start with (k−1)–faulty
(
k
1

)
–Bit OT instead of (k/2)–faulty(

k
1

)
–Bit OT. This is because in each execution of step 3c the resulting sequence

will be a run of k − 1 known bits. In this situation Bob is able to choose a shift
σi such that he never loses a single bit through the operations of Step 4.

We finally note that indeed for any ε < 1, if dishonest Bob obtains εk bits per
transfer, xoring two transfers, after permuting and shifting as in Protocol 3, trans-
fers on average ε2k instead of εk. We may thus claim that the combined transfer
produces at most ε′k known bits, for ε′ = ε2+ε

2 < ε, except with exponentially
small probability. Repeating this idea at most a constant number of times pro-
duces a resulting ε′ < 1/2. Since the sequence ε > ε′ > ε′′ > ... converges to zero,
using a constant extra amount of work we can extend the result established for
ε = 1/2 to any ε < 1. This was the state of affairs until information theoretic
Interactive Hashing was considered as a tool to solve this problem.

5 Reducing to (k − 1)–Faulty
(k

1

)
–Bit OT Using

Interactive Hashing

Finally, we reduce
(
2
1

)
–Bit OT to (k − 1)–faulty

(
k
1

)
–Bit OT, a faulty primitive

allowing a dishonest Bob to get at most k−1 bits of Alice’s input at his choosing.
For simplicity, we will also assume that k is a power of 2.

It is relatively straightforward to see that when both participants are honest,
Protocol 4 allows Bob to obtain the bit of his choice since he knows Rd =⊕n

i=1 rici and can thus decrypt ec̊. In case Alice is dishonest, Bob’s choice c̊ is
perfectly hidden from her when she obtains f at Step 6. This is because at the
beginning of the protocol, Bob is equally likely to make the choices encoded by
w0 as those encoded by w1. Consequently, by Property 1 of Interactive Hashing,
given the specific outputs, the probability of either of them having been the
original input is exactly 1/2. Hence d is uniformly distributed from Alice’s point
of view and so f = d ⊕ c̊ carries no information about c̊.
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Protocol 4. Reduction of
(
2
1

)
–Bit OT to (k − 1)–faulty

(
k
1

)
–Bit OT

Let b̊0, b̊1 and c̊ be the inputs of Alice and Bob, respectively, for
(
2
1

)
–Bit OT.

1. Alice and Bob agree on a security parameter n.
2. For 1 ≤ i ≤ n do:

(a) Alice selects at random bits ri1, ri2, . . . , rik .
(b) Alice uses (k − 1)–faulty

(
k
1

)
–Bit OT to send her k bits to Bob, who

chooses to learn rici for a randomly selected ci ∈R {1, . . . , k}. .
3. Bob encodes his choices during the n rounds of 2b as a bit string w of length

n · log(k) by concatenating the binary representations of c1, c2, . . . , cn.
4. Bob sends w to Alice using Interactive Hashing. Let w0, w1 be the output

strings labeled according to lexicographic order, and let d ∈ {0, 1} be such
that w = wd.

5. Let p1, p2, . . . , pn be the positions encoded in w0 and let q1, q2, . . . , qn be the

positions encoded in w1. Alice computes R0 =
n⊕

i=1

ripi and R1 =
n⊕

i=1

riqi .

6. Bob sends f = d ⊕ c̊ to Alice.
7. Alice sends e0 = b̊0 ⊕ Rf and e1 = b̊1 ⊕ Rf̄ to Bob.
8. Bob decodes b̊̊c = ec̊ ⊕ Rf⊕c̊ = ec̊ ⊕ Rd.

Fig. 4. (k−1)–faulty
(

k
1

)
–Bit OT: using Interactive Hashing Bob chooses two sequences

of indices labelled with “zeros” and “ones”. One of them corresponds to the sequence
he knows (in the case where he is honest) while the second is the result of Interactive
Hashing. Except with exponentially small probability, even if Bob is dishonest, one of
the sequences will contain a missing (white) bit (a “one” in this example). Note that
both “zero” and “one” may end up in the same location, once in a while, which is not
a problem.
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As for the case where Bob is dishonest, we can assume that he always avails
himself of the possibility of cheating afforded by (k− 1)–faulty

(
k
1

)
–Bit OT, and

obtains k − 1 out of k bits every time. Even so, though, by the end of Step 2, it
is always the case that the fraction of all good encodings among all kn possible
encodings of positions is no larger than f =

(
k−1

k

)n
< e−n/k (an encoding is

“good” if all positions it encodes are known to Bob). Note that while f can be
made arbitrarily small by an appropriate choice of n, the number of good strings
f ∗ kn always remains above the Birthday Paradox threshold. By Property 3 of
Interactive Hashing, Bob cannot force both w0 and w1 to be among these “good”
encodings except with probability no larger than 15.6805 ·e−n/k. This probability
can be made arbitrarily small by an appropriate choice of the security parameter
n. See Figure 4 for an example.

6 Conclusion and Open Problems

We have presented a rigorous definition of Interactive Hashing by distilling and
formalizing its security properties in an information theoretic context, indepen-
dently of any specific application. This opens the way to recognizing Interactive
Hashing as a cryptographic primitive in its own right, and not simply as a sub-
protocol whose security properties, as well as their proof, depend on the specifics
of the surrounding application. We have also demonstrated that there exists a
simple implementation of Interactive Hashing (Protocol 1) that fully meets the
above-mentioned security requirements, and cited a proof of correctness that
significantly improves upon previous results in the literature.

Open problems. The interested reader is encouraged to consider the following
open problems:
1. Devise a more appropriate name for Interactive Hashing which better cap-

tures its properties as a cryptographic primitive rather than the mechanics
of its known implementations.

2. Investigate how much interaction, if any, is really necessary in principle to
implement Interactive Hashing.

3. Explore ways to implement Interactive Hashing more efficiently.To this end,
the constant-round Interactive Hashing protocol of [DHRS07] briefly de-
scribed in Section 3.3 is an important step in the right direction. Improve
on this construction so that it meets all the security requirements.
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