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Abstract. In this paper we present an eficient protocol for “Commit- 
ted Oblivious Transfer” to perform oblivious transfer on committed bits: 
suppose Alice is committed to bits 00 and a1 and Bob is committed to b, 
they both want Bob to learn and commit to Ob without Alice learning b 
nor Bob learning ah. Our protocol, based on the properties of error cor- 
recting codes, uses Bit Commitment (BC) and one-out-of-two Oblivious 
Transfer (OT) as black boxes. Consequently the protocol may be im- 
plemented with or without a computational assumption, depending on 
the kind of BC and OT used by the participants. Assuming a Broadcast 
Channel is also available, we exploit this result to obtain a protocol for 
Private Multi-Party Computation, without making assumptions about a 
specific number or fraction of participants being honest. We analyze the 
protocol’s efficiency in terms of BCs and OTS performed. Our approach 
connects Zero Knowledge proofs on BCS, Oblivious Circuit Evaluation 
and Private Multi-Party Computations in a conceptually simple and ej- 
ficient way. 

1 Introduction 

Committed Oblivious Transfer (COT) is the natural fusion of one-out-of-two 
Oblivious Transfer (OT) [13] and Bit Commitment (BC). At the start of the 
protocol Alice is committed to  bits Fl, Fl and Bob to bit m. At the end Bob 
is committed to and knows nothing about ~ g .  Alice learns nothing about b. 

The current paper presents an eficient COT protocol. This protocol makes 
no assumption on the type of BCS and OTS that are used. For instance, with O T  
and BC based on the Quantum Channel [2, 31 we can perform COT without any 
computational assumption. Our protocol uses some elements of coding theory 
and simple Zero-Knowledge sub-protocols. It uses O(n)  OTS and O(n2)  BCS, 
where n denotes the security parameter, but uses only O(n)  BCS if they have 
a special xoR-property. The global running time is O(n2)  in the first case and 
O(n) in the second (excluding the time necessary to build the code). 

COT is a very powerful tool that can be used to perform general cryptographic 
tasks such ag Oblivious Circuit Evaluation (OCE)[19] or Mental Games [16, 171, 
and Distributed Computation [18]. Such tasks have been achieved before [19] 

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 ’95, LNCS 963, pp. 110-123, 1995. 
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regardless of COT from generic BC and OT, but unfortunately the solution was  
not only complicated but very inefficient. At EUROCRYPT ’89, CrCpeau [8] 
introduced COT under the label “Verifiable Oblivious Transfer” and used it in a 
simpler protocol for OCE based on the work of Goldreich and Vanish [17]. Unfor- 
tunately this protocol for COT used 0(n3) OTS, which is still rather inefficient. 

An apparently more efficient protocol for COT (using only o(n) OTs) was pre- 
sented in [18] under the label “Preprocess-Oblivious-Transfer” . Unfortunately, it 
is very easy to misbehave in that protocol in a way that allows Bob to get both 
bits with non-negligible probability and for Alice to learn b with a non-negligible 
probability. These problems can be fixed easily by straightforward techniques, 
but then the resulting protocol becomes more or less equivalent to that of [S] 
using Sa(n”) OTS. The best that we were able to get from protocols in the spirit 
of [S] and [18] is a protocol using Q(n2) OTs. 

In the second part of this paper we use the COT protocol to obtain an efficient 
protocol for Private Multi-Party Computation (PMPC). The problem of comput- 
ing a function when the participants want to keep their input private has been 
considered by many researchers under different models and various names (for 
an excellent overview see [15]). Distinguishing features of the several models are: 
the number of participants (P = 2 vs P 2 3), the presence or absence of some 
unproven intractability assumption, the communication model (private channels 
between each pair of participants, broadcast channels, oblivious transfers or a 
combination of these) and the capacity of dealing with malicious participants. 

We assume that a Broadcast Channel and an Oblivious Transfer Channel are 
available between each pair of participants. A protocol is a correct Multi-Party 
Computation if the output of the protocol to each participant is the same as 
that of the function it is emulating. Furthermore we say that such a protocol 
is fair if the the fact that one participant learns the output implies that every 
participant does. It is honest if an honest participant knows when he does not 
learn the output of the function and it is private if no coalition of less than P 
participants can learn information about the private inputs of other participants, 
other than what the output of the function logically implies. 

Our result can now be stated as follows. Suppose that P participants wish 
to evaluate a boolean circuit F consisting of rn boolean gates. Then there exists 
a correct, prioate, honest and fair protocol to evaluate F using O(P2n2rn) BC 
s and O(P2nm) OT s. If instead of having BC and OT as basic primitives we 
only have the simpler Oblivious Transfer of Rabin [26], then the number of such 
primitives required is O(P2n3m). 

It is rather unfortunate that a single dishonest participant can make the 
PMPC protocol abort. Nevertheless, this is unavoidable, since to guarantee that 
no dishonest coalition can have any advantage over an honest participant, the 
protocol requires everybody’s cooperation. In section 5 of [MI, Goldwasser and 
Levin describe a protocol (henceforth called GL) under the same assumptions 
as ours. Though we adopt many of their ideas (some of which are common 
knowledge), the protocol presented here is far more efficient. For instance, to 
implement an AND gate for P participants GL uses computations on polynomials, 
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and many conditions that have to be verified while the main protocol is in 
progress are verified through rather inefficient sub-protocols. In this paper we 
demonstrate a conceptually much simpler way to accomplish this same task using 
and extending techniques introduced in [21, 161. 

This also allows us to give a proper analysis of the complexity (in terms of 
the underlying cryptographic primitives) of our protocol, which in GL is quite 
difficult. In other words, whereas GL shows that a protocol for PMPC exists 
under the current assumptions, we provide a much simpler and more efficient 
implementation. 

The remainder of this paper starts with a section elaborating on the assump 
tions, and introducing some useful notations. Section 3 contains the protocol 
and proof for COT, whereas Section 4 extends the tolls of Section 2 and finally 
Section 5 outlines the protocol and proof for PMPC. 

2 Preliminaries 

2.1 

In this paper OT and BC are used as black boxes. Since these are well-known 
protocols, we only describe them briefly. 

In a one-out-of-two Oblivious Transfer Bob has to choose between learning bit 
a0 or a1 prepared by Alice but she does not learn his choice b.  Bob learns at, and 
obtains no information about a&. Implementations of OT can only exist under 
some assumption. For instance, OT can be constructed if trapdoor functions exist 
[16], from a noisy channel [ll, 121, or from a quantum channel [2, lo]. It is also 
a well-known fact that using O(n) of Rabin’s Oblivious Transfers [26] one can 
construct one-out-of-two Oblivious Transfer [7]. 

to Bob in such a way 
that she is able to reveal it later in a unique way (a )  butkob is not able to find 
its value by himself. Alice cannot change her mind and open 

Bc is impossible without making an assumption. It is easy-to convert any 
version of Oblivious Transfer into a BC. Using error-correcting codes this is done 
at a cost of O(n) OTS per BC [3]. Bc can also be implemented under the assump 
tion of the existence of a one-way function (or equivalently a pseudo-random bit 
generator) by a result of Naor [25], from a noisy channel [12], or from a quantum 
channel [3]. 

One-out-of-two Oblivious Transfer and Bit Commitment 

In a Bit Commitment Alice sends a committed bit 

as ii. 

2.2 Bit Commitments with XOR 

In this subsection we show how to prove that some BCS satisfy an xoR-relation 
without giving away their values. For this purpose we use special Bit Commit- 
ments (Bcx) and proof techniques described by Kilian [21 221 (partly attributed 
to Rudich and Bennett). To commit to b using a BCX ?I b , Alice uses 2n plain 
BCs, @ J $ ? J ~ ,  ..., b3-,$bF-$ such that for each i E { 1 .. .n}  : biL @ biR = b .  To open m, Alice opens its 2n plain BCS. Bob accepts only if indeed all pairs of BCs XOR 
to the same value b .  

--...-__- -__. c _ _  
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If Alice is committed to several BCXS FI,(l, ...,a she can prove to Bob 
that @-, m= c for some public value c without disclosing the bj's as follows. 
First, Bob specifies to Alice k random permutations to shuffle the n pairs tL, qR 
of each B C X .  Then, for each i E {1 ... n }  Alice announces C ~ L  = @=, t& and 
CiR = qB. Finally, for each i E { l...n} Bob randomly asks Alice to open 
either all the [l&?s or the E Z s ,  and verifies that the revealed values are consistent 
with CjL or CiR. If this is the case, Bob is convinced that the BCXS satisfy the 
linear relation announced by Alice, since her probability of convincing him of 
a bad relation without detection is exponentially small in n .  Note that this 
technique can be used to prove that two BCXS and are equal (different) 
simply by proving @ = 0 f~ = 1) .  

Since each such proof destroys the BCX involved, we must copy them first. 
Suppose Alice is committed to and she wants two instances of this commit- 
ment, i.e. such that b = b1 = b2.  Alice creates 3n pairs of BCS such 
that each pair XORS to b .  Then Bob randomly partitions these 3n pairs in three 
subsets of n pairs, thus obtaining(1,Fl and b2 and asks Alice to prove that 

= as suggested above. This destroys 8 bo and m, but if Alice succeeds 
Bob is convinced that 

Because of the complexity of these constructions, for the remaining of this 
paper we consider as a unitary BCX operation: creation of a BCX, opening of a 
BCX, or proof that a constant number of BCXS satisfy a given linear relation. 

and 

and are two BCXS with the same value as m. 

3 Committed Oblivious Transfer 

Suppose that Alice is committed to bits m, and Bob is committed to bit m. After running c o T ( T / , k ) m  Bob will be committed t o m  = at,. Alice, 
whatever she does, cannot use the protocol to learn information on b and Bob, 
whatever he does, cannot use the protocol to learn information on UZ;. 

3.1 Coding Theory 

In our protocol for COT, a code is required. The code is not used to correct 
transmission errors (although it could if necessary) but in a more elaborate way 
for efficiency and security reasons. 

Let u and E be some positive constants such that Bob can choose an [n ,  k ,  dl 
linear code for which k > (1/2 + 2u)n and d > En. The code must be efficiently 
decodable. The number of errors corrected by the decoding algorithm affects the 
efficiency of the protocol. It suffices that the algorithm corrects Q ( n )  errors to 
guarantee the asymptotic security of the protocol. 

Although Concatenated codes [14] are the most common codes with these 
properties, we recommend using the Superconcentrator Codes of Spielman [27] for 
their remarkable efficiency: they can be coded and decoded in linear time. In our 
protocol, we construct codewords, decode codewords and prove that some words 
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are codewords. All these operations can be achieved in time O ( n ) .  In particular, 
to prove that a committed word is a codeword it is sufficient to prove a linear 
number of statements each involving only a constant number of committed bits 
XoRed together. For more details on coding theory in general we refer the reader 
to [24]. 

3.2 Informal Protocol 

Intuitively c o T d G $ F ) a  is performed by doing an imperfect “One-out-of- 
two Committed Oblivious String Transfer” of two random codewords co and ci . 
This transfer is imperfect in the sense that even the honest Bob learns informa- 
tion about both words. He learns all the bits of Cb and some bits of ci;. We use 
this trick because Bob is not only interested in getting at, and committing to 

= ab, but he also wants to know that if he had ran the protocol with 5 it 
would have worked as well. This is to prevent Alice from misbehaving on some 
part of her protocol so to learn b as a result of Bob aborting or not. 

and Bob to m. Bob 
chooses a code with suitable properties,. Alice commits to and m, two ran- 
domly chosen codewords, and proves that this is the case. She Obliviously Trans- 
fers co and c1 to Bob in such a way that for each pair of bits Bob can choose to 
learn one of cg or cl ,  but not both. Bob reads the bits to learn mostly cb and 
a small part of c6. As suggested above he must gain a little bit of information 
on c6 to prevent Alice from learning which word he is interested in (and thus 
b ) .  A cheating Alice could use very different words c0,cl in the OTS and in the 
BCS. To prevent this, Alice is forced to open a small fraction of the committed 
bits on both sides, at Bob’s choosing, to let him check that the bits he received 
through the OT are the same. If Alice cheats a lot for one of the two words (or 
both) she will be caught without Bob revealing which one he was interest in. If 
Alice passes the test, only a small number of inconsistencies can remain between 
the bits Bob received and the bits Mice is committed to. Bob uses the fact that 
his word w should be a codeword to correct these. 

= cb and proves to Alice that it is a codeword. It is now 
Bob’s turn to convince Alice that he is committed to what he actually received 
through the OT (he is not committed to an arbitrary codeword, but actually to 
C b ) .  Alice opens a random set of positions and Bob shows that the bits he is 
committed to are consistent with the bits Alice reveals and m. This is sufficient 
to convince Alice that Bob is committed to Cb without her learning b.  

= Cb, he gets some information on cj, 
revealed by the fact that it is a codeword and by the bits opened by Alice 
in the checks. To get rid of that information, Alice chooses a random privacy 
amplification [l] function h such that 0 b  = h ( C b )  and ag = h(c6) and proves these 
two relations to Bob. Bob commits to 

In the beginning Alice is committed to and 

Bob commits to 

Although Bob is committed to 

= h(w)  and proves this to AIPce. 
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3.3 Formal protocol 

Before starting the protocol, Alice is committed t o m ,  bl and Bob t o m .  After 
the protocol Bob will be committed to m. Let u, 6 be two positive constants aa 
defined in Section 3.1, and let n denote the security parameter. At any point in 
the protocol, a failure in a proof or check leads the participants to abort. 

Protocol 3.1 ( C O T U 4 , F )  a ) 
1: Bob chooses and announces to Alice a decodable [n, k, d] linear code C 

with k > (1/2+2a)n and d > en, 
2: Alice randomly picks C O , C I  E C, 

3: Bob randomly picks 10,11 c {I ... n}, with 1101 = 1111 = un, 11 n 10 = 0 
and sets b' t 6 for i E lo-and b' t b for i @ l o .  

4: Alice runs o ~ ( c & c f ) ( b ' )  with Bob who gets w i ,  for i E {1,2, ..., n}. 
5: Bob tells I = I0 U 11 to Alice who opens 
6: Bob checks that wi = c;, for i E 10 and that w' = c;, for i E 11, 

y d  [c;b for each i E I. 

sets wi t c6, for i E l o ,  corrects w using C's decoding algorithm, 
commits to 

with lZzl = un, Zz n Z = 4 and opens 

for i E { 1 . . ! n}, and proves that lu)'lgal. . .m E C .  
7:  Alice randomly picks and announces a subset 12 c&..n} 

8: Bob proves that m= &, for a E I z .  
9: Alice randomly picks and announces a privacy amplification function 

and ci for i E L. 

.~ 

h : {0,1}" + {0, l}, such that a0 = h(c0) and a1 = h c 
and proves m= h am!. . .m a n d m i =  h [#. . im. 

10: Bob sets a c h(w),  commits t o m  and proves = h w1 w2 . . .B. 

3.4 Zero-Knowledge proofs 

In the protocol, Alice and Bob make a number of zero-knowledge proofs. All these 
proofs are easily achieved if we are able to perform XOR proofs on committed 
bits. This is why the protocol uses BCXS and not plain BCS. 

In Step 2 and 6 a party must show to the other that a set of committed 
bits form a codeword. In any linear code, this operation can be achieved by 
showing that the syndrome of the word is the zero-vector. This takes O(n2) BCX 
operations. In the case of Superconcentrator Codes, it is sufficient to prove that 
each bit is the XOR of a constant number of (publicly known) other bits of the 
word. Therefore it takes only O(n) BCX operations. 

or i E 1 2 .  First, for each 

contains no information on b. For the other positions, where c$ # c';, one of co or 
C I  must be 0 and the other must be 1. When co = 0 and c1 = l 'we have ci  = b, 
therefore Bob proves a@m = 0. In the opposite situation c i  = b ,  therefore 

In Step 8 Bob must prove to Alice that = 

position in which c\ = c i ,  Bob can simply open Pi wi because in this case w' 
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Bob proves = 1.  Both of these proofs give no information on b and 
take constant time. The total for all the positions in 1 2  is O(n)  BCX o erations 

for some committed bit z and word x. If h is a random linear function specified 
by a public random subset H of the bits of 2 it defines a universal hash function 
[4]. In this case it suffices to  show z@$d  = 0 which takes O(n)  BCX operations. 

In Step 9 and 10 a party must show to the other that t = h (+I.. 2 8 .12"D* 

iEH 

3.5 Validity of the Protocol 

There are several ways in which Alice and Bob may misbehave when they execute 
our protocol. At any point Alice or Bob can decide to stop cooperating and they 
can commit to values different from those used in the oblivious transfer. The 
main point is that Bob cannot claim to be committed to ab if he is not, and that 
even if the protocol aborts no unintended information leaks. 

Bob cannot commit to q. First observe that we cannot force Bob to commit 
to a b  after he has learned this value in Step 9. However, this is equivalent to the 
situation in which Bob refuses to open after the protocol since an unopened 

is useless to Alice. So the only important fact is that if the protocol has 
completed without complaints and Bob is committed to a bit, this must be (db. 

We show informally why this is true. Suppose Bob commits to = a. This 
means that he has proved at  Step 10 that = h(w). Since U b  = h ( C b )  this implies 
that w # C b .  Bob has proved at Step 6 that w is a codeword, so the Hamming 
distance between w and Cb is greater than en or, equivalently, they differ in 
more than en positions. But Alice has asked Bob to open un positions chosen at  
random and for all these positions the bits were equal to their counterparts in 
cb. This cannot happen except with a probability exponentially smali in n. 

Alice learns nothing about b. It is not hard to see that if Ala'ce performs COT 
honestly she learns nothing about b .  Furthermore, regardless of how Alice cheats, 
she gains no information about 6. A straightforward analysis of each step of the 
protocol shows that only in Step 1 , 5 , 6 , 8  and 10 Bob sends actual information to 
Alice. In Step 1 and 5 the information is independent of b .  For Step 6,8 and 10 the 
definition of BC and the fact that the proofs are Zero-knowledge guarantee that 
Alice learns nothing about b. The only other way Alice could learn information 
would be to misbehave in such a way that Bob has to abort if b = 0 (or b = 1) in 
Steps 7 or 9. This way she could learn b and Bob would catch her only if b = 1 
(or b = 0). 

In Step 10 Bob will alwavs succeed since he calculates Q himself. If Bob 
fails the proofs at Step 6 or 8, this implies that Wl.. .m # mi. . .m. 
But since cb is a codeword (as proved in Step 2) this means that their Hamming 
distance is at least t because otherwise the decoding algorithm would have led to  
Cb. Since t E O(n) the check of Step 6 has only an exponentially small probability 
of success. Thus, if the check of Step 6 succeeds, the proofs of Step 6 and 8 will 
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fail with exponentially small probability whatever b is. And since 1101 = 1111 the 
check of Step 6 has the same probability of success whatever b is. 

Bob learns nothing about ag, Alice does not want a dishonest Bob to learn 
ag. In fact it is not sufficient that Bob learns no information about ag. We want 
that for all dishonest Bob' the amount of information he has about ag after 
interacting with Alice will be the same as before, even if he knew Qb to start 
with. This is to ensure that Bob does not learn any correlation between a0 and 
01 through our protocol, for instance Q b  Qj ag. 

Note that the information on uo and a1 is completely uncorrelated. Because 
Alice picks co and c1 at random, no information about ag is sent before she 
reveals h. For Bob to learn h he must pass Alice's test of Step 8 and convince 
her that he is committed t o m  = cb. If Bob wishes to have no more than 2""12 
candidates for Qb by the time he commits at Step 6,  he must have acquired on 
side b at least n / 2  + 3 a n / 2  of the n + 2an bits available to him through Step 
4 and 5.  This is the case because there are 2n/2+2an codewords, and thus after 
learning n / 2  + 3un/2  extra bits, 2""12 of them remain equally possible. If Bob 
gets n / 2  + 3 a n / 2  bits on side b, it leaves him with no more than n / 2  + 4 2  
bits on side b of the n + 2un bits available. In this case there are also 2""/' 
candidates for c6 even after learning un extra bits at Step 7. 

In conclusion, if Bob gains as few as n / 2  + 3 a n / 2  bits on side b ,  he has 
probability no more than 2-'"/2 of committing to the right codeword at Step 6, 
and any wrong codeword will have at least cn differences with the correct one. 
In this case the test of Step 8 would have an exponentially small probability in 
n of succeeding. On the other hand, if Bob gains as few as n / 2  + u n / 2  bits on 
side b then, by a theorem of Bennett, Brassard and Robert [l], his probability of 
obtaining any information whatsoever about h(cg) is less than 2-un /2  provided 
h is chosen at random. 

3.6 Complexity of the protocol 

The exact complexity of the protocol depends on the kind of BCS and OTS used 
by the participants. We thus make our analysis based on the number of BCS 
and OTS that are required to perform the protocol. If the OT and BC being used 
require a constant number of communication rounds, then all the OTS and proofs 
can be done in parallel and the COT protocol also requires a constant number of 
rounds. 

The protocol uses O ( n )  OTS which are performed in Step 2,  when co and c1 

are transferred. It also requires O(n) BCXS for both Alice and Bob to commit 
to c0,cl resp. w. All the proofs on the BCXS can be done with only O(n)  BCX 
operations. 

If the BCXS are not available one can use the trick described in Section 2.2. To 
perform COT, O(n2)  BCS are used to perform the O(n) necessary BCX operations. 
In this case, the overall complexity is O(n) OTS and O(n2)  BC operations. 



118 

4 Extension of the primitives to multiple participants 

The second goal of this paper is to describe a protocol for Multi-Party Computa- 
tion. To reach this goal, we enhance BCX and COT (prefixed with G for “global”), 
allowing other participants (who do not provide an input) to act as “verifier” 
to check that the active participant(s) behave honestly. Secondly we show how 
COT can be used to obtain a protocol for evaluating a partial AND gate between 
two participants, a mandatory step for PMPC. 

4.1 

A Global Bit Commitment with XOR (GBCX) is a bit commitment to a group 
of participants. A GBCX is conceptually equivalent to P - 1 BCXS, one to each 
participant, all with the same value. GBCXS are constructed such that a dishonest 
participant A cannot open it as a different value to two honest participants 
Bj, &. An obvious, but very inefficient way to achieve this is that A proves to 
each pair of participants that the two BCXS they hold are equal. 

We show how to do this more efficiently. To commit to a bit a using a GBCX, 
A makes 2n(P - 1) pairs of (plain) BCS, 2n to’each of the other participants 
B1 ...&-I, such that for i E { 1 ... 2n} and j E { l...(P - l)}, asL @ ajR = a. Then 
each Bj chooses and broadcasts a random permutation of size 2n and renames his 
2n pairs accordingly. , .  For i E {1 ... n} A announces Ko e { j  : (a:,, a$J = (0, a)} 
and K1 c { j  : (aiL,aiR) = (1,ii)) in a random order. Then all participants 
flip n fair coins together (requiring O(nP)  BCS) to construct a random tuple 
(SI ..&) E { L , R } ” .  For i E 11 ... n } ,  j E (1 ... P-  1) A opens $is.:. Finally, 
each Bj verifies that the values of the ds, opened to him correspond with those 
broadcasted, and that Wi t { j  : aiS, = 0) equals either Ko or K1. 

After this protocol A has n pairs of untouched BCS with each Bj (those with 
a‘ E {(n+ 1) ... 2n}), which constitute the new QBCX. It is easy to verify that if A 
tries to commit to two different bits with two honest participants, or if he tries 
to construct inconsistent commitments, he will be caught by each pair of honest 
participants except with exponentially small probability, 

Although the role of A (the “active” participant) is different from the role of 
the BjS (the “passive” participants) in the protocol, the cost of creating a GBCX 
is the same for everybody, O(Pn)  BCS. Once created, operations on GBCXS, such 
as proving linear relations and copying, are reduced to P operations between A 
and Bj using BCXS. For A the cost of one such operation is O(Pn) ,  but for the 
Sj it is only O(n) (since after the creation they do not need to interact with 
other users). 

Global Bit Commitment with XOR proof (GBCX) 

,-:-. 
.---’. 

4.2 

Global Committed Oblivious Transfer (GCOT) is the extension of COT to a group. 
For Alice and Bob GCOT achieves exactly the same functionality as COT but 

Global Committed Oblivious Transfer (GCOT) 
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it allows the passive participants to be convinced that Alice and Bob do not 
conspire, i.e. that indeed after G c o T d ~ l , ~ ) @  Bob is committed to B. 

Some modifications are necessary to change COT to GCOT: (1) The error- 
correcting code C of Step 1 must be chosen by all participants; (2) BCXS are 
replaced by GBCXs and all commitment openings and proofs are done to each 
participant; (3) the subset 1 2  in Step 7 must be chosen by all participants. 

In order to choose 1 2 ,  only O(n log(n)) random coins have to be flipped, at 
the expense of O(Pn log(n)) plain BCS for each participant. When many GCOTs 
on different inputs are performed in parallel, as will be the case in the evaluation 
of AND gates in the final protocol, the same 1 2  may be used. Therefore we do 
not take this cost into account in the next paragraph, but deal with it later. 

For one GCOT Alice and Bob have to perform O(n) active GBCX operations 
(resulting in a total of O(Pn2)  BCS) and O(n)  OTS. The others have to perform 
o(n) passive GBCX operations (resulting in O(n2)  BCB). 

4.3 PAND and GPAND 

As a step towards PMPc we introduce a two-party protocol, called PAND, that 
takes the BCXS from Bob as inputs. After the execution 
of PAND Alice is committed t o m  and Bob tom such that a A b = a‘ $ b’, and 
neither participant learns the other’s input value. Since the output is composed 
of the pair a’ and b’, we call this protocol PAND for Pair-AND. 

We implement PAND using COT. Alice randomly chooses a bit a’, commits 
to = a and proves it. Then Alice performs c o ~ 4 7 , v b a  with 
Bob who gets B b’ . (Notice that b = 0 =$ b‘ = a‘ a‘ @ b’ = 0 and that 
b = l  =$ b ‘ = a ’ $ a  =$ a ’ $ b ’ = a , s o a A b = a ’ ~ b ’ . )  

GPAND is a generalization of the PAND to a group: two active participants 
want to make a PAND, while the passive participants want to be sure that indeed 

A 161 = @ m. The GPAND is done as a PAND, with COT replaced by 
GCOT. The cost of one GPAND is of the same order as the cost of one GCOT, both 
for the active and the verifying participants. 

from Alice and 

5 Private Multi-Party Computation (PMPC) 

In this section we show how, given OT and BC between each pair of participants 
and a reliable Broadcast Channel, P participants can perform a correct, hon- 
est, fair and private Multi-Party Computation, where we make no assumptions 
about the number of honest participants. The protocol consists of three steps: 
initialization, computation and revelation. At each step we make extensive use 
of the primitives previously defined. 

5.1 Initialization 
In the initialization step all participants agree on the circuit F to be evaluated 
and on a security parameter n. They also agree on a parameter u and a code C 
for the GCOT sub-protocol. 
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In the PMPC protocol each bit involved is represented by a Distributed Bit 
Commitment (DBC) consisting of P shares, each share being a GBcX created by 
a different participant. The value of a DBC is the XOR of the value of its shares, 
therefore even P - 1 participants are not able to reconstruct the value of the 
DBC if one participant refuses to cooperate. 

As a second part of the initialization step each participant uses DBCS to 
commit to his input bits. To create a DBC of value a ,  A asks each participant to 
commit to a random bit using a GBCX, and to open it to A only. Then A creates 
a GBCX such that the XOR of all the GBCXS equals a .  

5.2 Computation 

In the computation step the participants evaluate the circuit consisting of AND 
and NOT gates, one gate after the other, where the input and output bits of each 
gate are DBCS. 

Since the output bit of a gate can be an input bit to several other gates we 
must be able to copy DBCS. To make P copies of a DBC each participant makes 
P copies of his share (a GBCX).  The NOT operation on a DBC is equivalent to a 
copy, except that one designated participant inverts the value of his GBCX. 

To evaluate an AND gate on two DBCS of value Q and b we observe that 
(& Q i )  A (@j”=, b j )  = @yj=l ui A b j .  In other words, one Distributed AND 
can be reduced to P2 GPANDS, one between each pair of participants. After all 
the GPANDs have been done each participant chooses a GBCX that equals the XOR 
of all his shares and he proves this. This GBCX is his share of the DBC whose 
value equals a A b. 

To evaluate one AND gate O(P2) GPANDS and so O(P2)  GCOTS are executed. 
Each participant will be actively involved in P GCOTS, each requiring O(n) OTS 
and O(n) active GBCXs operations. Each participant also verifies O(P2) GCOTs 
between other participants. For one such GCOT verification he is involved in O(n) 
passive GBCX operations. Therefore each participant is involved in O(Pn)  active 
GBCXs and O(P2n)  passive GBCXs. This results in O(P2n2) BCs and in O(Pn) 
OTs.  

We must also take into account the cost for creating the subset I2 used in 
every GCOT. Only one random 12 suffices for many parallel GCOTS, and since 
the creation of a single 12 requires O(nlog(n)) coin flips, it requires a total of 
O(Pnlog(n)) BCS per participant. This does not change the previously stated 
complexity. 

5.3 Revelation 

At the end of the computation step each output bit of the circuit is hidden 
in a DBC. In order for each honest participant to learn an output bit of F ,  
every participant could open his share of the DBC representing the answer, but 
obviously a dishonest participant could quit when he has more information than 
others. Better solutions, which achieve fairness, appear in the literature [6][18]. 
They can easily be incorporated into our protocol. 
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5.4 The validity of the PMPC protocol 

We do not claim to provide a full proof that the protocol presented here is 
secure. The security of the final protocol relies on the security of all the sub- 
protocols that constitute it. Due to space restrictions, we only give a brief and 
sketchy proof that PMPC satisfies the four desired properties mentioned in the 
introduction. 

Correctness: If all participants are honest the output of our protocol should 
equal the output of the function to be emulated. This is verified because each 
sub-protocol outputs the value it is designed for. 

Privacy: Observe that from a participant’s point of view the GBCX is the 
smallest “unit” to which he can commit and that no coalition can open it if 
the owner does not cooperate. Because of the way each DBC is constructed each 
participant holds a share of each bit of the computation, so for all sub-protocols 
no information about the values of the DBCS is revealed as long as at least 
one participant is honest. Therefore, before the revelation of the output bits no 
coalition of less than P participants can obtain any information whatsoever on 
the input bits, intermediate bits or output bits of the computation, except for 
what can be deduced from the information already known by the coalition. A 
more formal analysis along these lines could benefit from the definition of privacy 
given in 1231. 

Fairness: This is an issue in the revelation step only. We want to prevent 
one or several parties from learning more information on the output bits before 
the others. For the fairness of our protocol we totally rely on the model and 
definitions given by Goldwasser and Levin [18]. Though the implementation of 
their protocol differs from ours their model still applies, in particular their notion 
of fairness. 

Honesty: Note that no coalition of participants can cheat on the resulting 
output DBCS of any sub-protocol. For the full protocol this means that, once the 
input bits have been committed to, no coalition of less than P players can change 
the values of an output DBC without being caught (except with exponentially 
small probability). In other words, even though any coalition can disrupt the 
protocol by preventing it from completing, no coalition can make an honest par- 
ticipant accept the output of F when any of the output DBCS has been tampered 
with. 

5.5 Complexity of the PMPC protocol 

It is easy to see that to evaluate a circuit F composed of m gates O(m) DBC 
operations are needed. The most expensive operation on DBCS is the evaluation 
of an AND gate, so the overall complexity of the PMPC protocol is U(P2n2m) BCs 
and O(Pnm) OTS. Since BC and OT can be implemented using O(n)  of Rabin’s 
Oblivious Transfers, PMPC can be performed using U(P2n3m) of them. 
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