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1. INTRODUCTION 
The concept of oblivious transfer (O.T.) that was i n d u c e d  by Halpern and Rabin m] turned 

out to be a very useful tool in designing cryptographic protocols. The related notion of "one-out-of- 
two oblivious transfer" was proposed by Even, Goldreich and Lempel in [EGL] together with some 
applications. Some more applications of this protocol can be found in recent papers [BCR], [GMWj. 
So far, the two notions where believed to be closely related but not known to be equivalent. This paper 
presents a proof that these two notions are computationally equivalent. 

Essentially, we show a protocol for "one-out-of-two oblivious transfer", based on the existence of 
a protocol for the oblivious transfer problem. The reduction presented does not depend on any crypto- 
graphic assumption and works independently of the implementation of O.T.. The implications of this 
reduction are: 

-there exists a protocol for ANDOS [BCR] if and only if there exists a protocol for 0.T 
-the completeness theorem of [GMW] can be based on the existence of O.T. 

2. DEFINITIONS 
Let US first remind the reader the flavours of O.T. we are considering. The concept of oblivious 

transfer (O.T.) was first introduced by Halpern and Rabin in m]. Essentially the O.T. is a two-party 
protocol such that: 

Definition 1: (O.T.) 

-Alice knows one bit b , 
-Bob gets bit b from Alice with probability i. 
-Bob knows whether he got b or not. 
-Alice does not know whether Bob got b or not. 

The related notion is the "one-out-of-two oblivious transfer" defined by Even, Goldreich and Lempel 
in [EGL]. This other protocol is: 
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Definition 2: (one-out-of-two O.T.) 

-Alice knows two bits bo and bl. 
-Bob gets bit bk and not b,- with P r ( k 4 )  = Pr (k= l )  =+ 

-Bob knows which of bo or bl he got. 
-Alice does not know which bk Bob got. 

In both these cases, the outcome of the transfer cannot be forced or inffuenced by either Alice or Bob. 
Although the smcture of these protocols is extremely similar, so far nobody had proven their 
equivalence. Since the fact that O.T. can be achieved from one-out-of-two O.T. is mvial, the problem 
essentially is to show how to achieve one-out-of-two O.T. from O.T.. 

3. PROTOCOL 
Before going into the explanation of the protocol, let us introduce a generalization of the O.T. 

protocol in the following way and consider the general case instead of the specific case. We define the 
p -0.T. to be a protocol such that: 

Definition 3: (p -0.T.) 

-Alice knows one bit b . 
-Bob gets bit b from Alice with probability p . 
-Bob knows whether he got b or not. 
-Alice does not know whether Bob got b or not. 

3.1. General idea 
The general idea of the protccol is to use the p -0.T. protocol many times over random bits until 

it is very likely that it worked roughly pn times. The hck  is to choose n large enough so that the p - 
O.T. protocol works at least ;pn of the time and not more than $pn of the time. Then to get a bit, 

two disjoint subsets of size $pn will be used, one of which will contain only indices of some p -0.T. 
that worked and the other will necessarily contain some indices of p -0.T. that did not work. Then the 
bits of each subset will be XORed together with one of the two bits to be disclosed. 

3.2. Details of the protmol 

which one Bob gets, they can do the following forp <$: 
Assume Alice owns bo, b l  two secret bits. To disclose one of them to Bob without knowing 

Protocol for one-out-of-two O.T. 

Alice and Bob agree on a security parameter s . 
Alice chooses at random Ks bits rl,r2, . . . ,rKS for some constant K to be later determined. 
For each of these Ks bits Alice uses the p -0.T. protocol to disclose the bit ri to Bob 

with probability p . 
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Bob selects U={il,iZ, . . . , ia,)  and V=(ia,+l,ia,+2, . . . , i2&)  where Us= 

Bob sends (X ,Y)==(U,V) or (X.Y)=(V,U) to Alice at random. 
Alice computes rnF CB r, and rn 1= @ ry . 

x s x  Y E Y  
Aliceretums toBobk,bk@rnoandb~@rnl  forarandombifk. 
Bob computes E { rn0.m 1 and uses it to get his semt  bit 

with U nV+ and such that he knows rij for each i; E u. 

If we have p >+ then they use the protocol for p =$ with a different value of K as suggested below. 

4. ANALYSIS 
We claim the following result about this protocol: 

Theorem: 
For an appropriately chosen constant K, 

Pr (Bob gets at least one of bo, b 1)21-2-~ and Pr (Bob gets more than one of b 0, b 

proof: 
Assume first that p 5;. Name xi the random variable such that 

0 if Bob did not get ri 

1 if Bob did get r; 

I =  

1 xi = 

First notice that by definition Pr(xi=l )  = l-Pr(xi=O) = p  . Consider the random variable Xi=Q;. 

Since the xi ’ S  are independent random variables, then Xi is dismbuted with a binomial dismbudon. 
According to Bernshtein’s Law of Large Numbers [Kr] 

Pr ( I F - p  I 2e) 2 2 e - i ~ ~  

for every E such that OeEip (1-p). In particular if we set i=Ks and &=$ we get 

O<&+ (1-p)  

because p 5; and also we get 

-% 
Pr ( I +-p I ’$1 I 2e I 2-s 

for KT l2 3’ 

However, what we really are interested in is 

Pr (Bob gets at least one of b 0, b 1) and Pr (Bob gets more than one of b 0, b 1) 

But we have that 
Pr (Bob gets at least one of bo, b 1) 
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12 
P 

Since s l l , K 1 7  andp%p we get, 

and 

QED. 

NOW, let's see the casep >+. 

Pr (Bob gets at least one of b~ b 1) 

2 f r  (Bob gets at least one of bo, b 1 I p =+) 

21-2-5 

whenever K 2 9 .  And also 

Pr (Bob gets more than one of bo, b 1) 
=Pr ( X K ~  =Ks ) 

12-s 
=p Ks 

for K2+. So K ~ U Z X  (?,+) is a sufficient condition for our purpose. 
18 7 [g p 

QED. 

Essentially, this theorem is claiming that Bob will get one of the bits except with an exponentially 
small probability, and Alice knows that he cannot get more than one of them except also with an 
exponentially small probability. In other words, this protocol achieves the one-out-of-two O.T. 
requirements with probability 1-2-s. 
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5. APPLICATIONS 
In [BCR] one can find a reduction between a problem named AN2BP (All or Nothing 2 Bits 

Problem) and a very general disclosure problem: ANDOS (All or Nothing Disclosure of Secrets). 
Essentially AN2BP is identical to one-out-of-two O.T. except that Bob choses the random bit k used 
by Alice to decide which bit he gets. So the protocol we describe. above accomplishes AN2BP if k is 
supplied by Bob. This reduction leads to the conclusion that ANDOS can be achieved from any p -  
O.T., for any constant p . Some more generalizations of O.T. can also be used as basis for reductions 
and will be explored in a further paper. 

In [GMWJ, a completeness theorem for interactive protocol is presented based on the existence of 
one-way functions and one-out-of-two O.T. protocols. T h i s  completeness theorem can now be based 
on the existence of p -0.T. and one-way functions. It seems possible that p -0.T. is easier to construct 
directly than one-out-of-two O.T., in general. 

6. OPEN PROBLEMS 
An interresting problem is to transform an O.T. in which Alice leams with probability q whether 

Bob got the bit b or not. or an O.T. in which Bob always leams a bias about b into a one-out-of-two 
O.T.. Also it would be very interresting to find a way of achieving one of these variations only using 
one-way functions. 
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