
Everything in NP can be argued in perfect zero-knowledge
in a bounded number of rounds

Gilles BRASSARD

Drpartement IRO
Universit6 de Monlrral

Claude CREPEAU$

Laboratory for Computer Science
Massachusetts Institute of Technology

Moll YUNG

IBM T.J. Watson Research Center
Yorktown Heights, NY

ABSTRACT

A perfect zero-knowledge interactive protocol allows a prover to con-

vince a verifier of the validity of a statement in a way that does not give

the verifier any additional information [GMR, GMW]. Such protocols take
place by the exchange of messages back and forth between the prover and
the verifier. An important measure of efficiency for these protocols is the

number of rounds in the interaction. In previously known perfect zero-
knowledge protocols for statements concerning NP-complete problems
[BCC], at least k rounds were necessary in order to prevent one party from

having a probability of undetected cheating greater than 2 -k. In this paper,
we give the first perfect zero-knowledge protocol that offers arbitrarily high

security for any statement in NP with a constant number of rounds (under
the assumption that it is possible to find a prime p with known factoriza-
tion of p - 1 such that it is infeasible to compute discrete logarithms
modulo p even for someone who knows the factors of p - l , or more gen-

erally under the assumption that one-way group homomorphisms exist).
All these protocols are BCC-arguments rather than GMR-proofs [BC3].

t Supported in part by Canada NSERC grant A4107.
SuppOrted in part by an NSERC postgraduate scholarship; part of this research was per-

formed while this author was visiting the IBM Almaden Research Center.

I24

1. Introduction

Much excitement was caused when it was discovered in 1986 by Gotdreich, Micali
and Wigderson that all statements in NP have computational zero-knowledge interactive
proofs (under the assumption that secure encryption functions exist) [GMW]. See also
[BC1]. Such proofs, a notion formalized by Goldwasser, Micali and Rackoff a few years

previously, allow an infinitely powerful (but not trusted) prover to convince a probabilistic
polynomial-time verifier of the validity of a statement in a way that does not convey any
polynomial-time-usable knowledge to the verifier, other than the validity of the statement

[GMR]. Informally, this means that the verifier should not be able to generate anything in
probabilistic polynomial time after having participated in the protocol, that he could not
have generated by himself without ever talking to the prover (from mere belief that the

statement is true). A more precise definition (not needed for this paper) can be found in
[GMR].

A result similar to those of [GMW, BC1] was obtained independently by Chaum, but
under a very different model, which emphasizes the unconditional privacy of the prover's
secret information, even if the verifier has unlimited computing power [Ch]. Indepen-

dently, Brassard and Crrpeau considered a model (compatible with Chaum's) in which all

parties involved are assumed to have reasonable computing power, and they also obtained
a protocol unconditionally secure for the prover (meaning that the prover's safety did not

depend on unproved cryptographic assumptions) [BC2]. We shall refer to the settings of
either [Ch] or [BC2] as the BCC-setting in order to contrast it with the GMR-setting
described in the previous paragraph [BC3].

The difference between these settings is important because all the information on the

prover's secret is given to the verifier in the protocols of [GMW, BC1], albeit in enci-
phered form. (Hence, the verifier can have access to the prover's secret information, pro-
vided he can break the cryptographic assumption-perhaps by luck- or if he is willing to
undergo an infeasible computation. Such attacks from the verifier can even be performed
off-line, i.e. after completion of the protocol.) In contrast, no information at all (even in

the sense of Shannon's information theory [S]) is given to the verifier in the protocols of

[Ch, BC2], except with an exponentially small probability. This exponentially small pro-
bability of cheating for the verifier was subsequently removed by the same three authors
[BCC], thanks to an idea of Damgaard, yielding in effect a perfect zero-knowledge proto-
col in the terminology of [GMW], but in the BCC-setting. This implies that the prover's
safety would still be guaranteed in 500 years, even if strong organizations with unknown
computing power and algorithmic knowledge were to try to extract her secret. To sum-
marize, the crucial difference between computational and perfect zero-knowledge is that in
the former case the verifier may obtain information on the prover's secret through the
interaction, but he cannot make use of it in polynomial time (unless the cryptographic
assumption fails), whereas in the latter case, the verifier obtains no information whatso-
ever on the prover's secret (beyond its existence and the fact that the prover knows it).

125

Unfortunately, Fortnow proved that there can be no free lunch (unless the polynomial
hierarchy collapses) [F]: the prover's increased safety in [Ch, BC2,BCC] inevitably
requires that an infinitely powerful prover (in fact exponentially powerful would suffice)
could cheat the verifier. This is why the results of [Ch, BC2,BCC] could presumably
not have been obtained in the GMR-setting. More importantly in practice, even a
polynomial-time prover can cheat these protocols if the cryptographic assumptions turn
out to be ill-founded, but the prover's cheating must be performed while the protocol is

taking place. For this reason, protocols in the BCC-setting are better called arguments
rather than proofs [BC3]. Read [BCC] for additional comparison between these settings
and results, for the related notion of minimum disclosure, and for further discussion.

The main motivation behind the work of [GMW, BCI,Ch, BC2,BCC] described
above was a quest for generality: how much is it possible to prove in zero-knowledge if
little attention is paid to efficiency ? Other researchers were willing to sacrifice generality
on the altar of efficiency. The best known instance of this approach is Feige, Fiat and
Shamir's identification system [FFS], which handles an ad hoc problem relevant to the
purpose of identification, but could not handle statements about NP-complete problems.
One reason why the FFS scheme is so attractive in practice is that it requires only a few

rounds of communication between the prover and the verifier. In sharp contrast, the more
general protocols of [GMW, BC1, Ch, BC2, BCC] require an unbounded number of rounds
in order to achieve an arbitrarily high level of safety. This paper addresses the following
question: Is it possible to combine generality and arbitrarily high safety with a small (con-
stant?) number of rounds? (By one "round", we mean two "moves": a message sent
by the verifier followed by a message sent by the prover.) Our answer is that three rounds
suffice (under the assumption that it is possible to find a prime p with known factorization
of p -1 such that it is infeasible to compute discrete logarithms modulo p even for some-
one who knows the factors of p - l , or more generally under the assumption that one-way
group homomorphisms e x i s t - see section 5).

A similar question is currently being investigated independently by other researchers.
In the GMR-setting, Goldreich claims a bounded-round computational zero-knowledge
protocol for all statements in NP [G]. Feige and Shamir have also developed a bounded-
round computational zero-knowledge protocol for all statement in NP, but in a setting in
which both the prover and the verifier are limited to probabilistic polynomial time [FS].
However, being merely computational zero-knowledge, neither of these protocols offer
unconditional safety for the prover. In this paper, we give the first published bounded-
round perfect zero-knowledge protocol for all statements in NP (in the BCC-setting).
Note that Feige and Shamir also claim in [FS] that they have a bounded-round (in fact 2
rounds) perfect zero-knowledge protocol, but they give no detail in the current version of
their paper (March 1989). Nevertheless, it is clear that their solution is significantly
different from ours.

126

2. Towards the protocol

The protocols of [GMW, BC1,Ch, BC2,BCC] all follow the same basic template,

which we call the "sequential" approach. Schematically:

{perhaps some initialization}

{let k be a safety parameter}

for i~- - l t o k do
(1) The prover commits herself by sending x i to the verifier.

(2) The verifier sends challenge Yi to the prover.

(3) The prover meets the challenge by sending z i to the verifier.

At step 1, the prover places herself in a situation in which several challenges (2 in
[BC1, Ch, BC2, BCC], many in [GMW]) could be issued by the verifier. This is done in a

way that the prover can meet all of these challenges if and only if she is honest in her

claim, but meeting any specific one of them yields worthless information to the verifier.

Because the prover is required to meet only one challenge in each round, the verifier

learns nothing about her secret. Because the prover cannot predict ahead of time which

challenge will be issued, the verifier's confidence in the prover's claim increases with each

round. In fact, the verifier's confidence grows exponentially with the number k of rounds.
We assume here that the reader is already familiar with this type of reasoning, which is

the basic principle of all zero-knowledge and minimum disclosure protocols; otherwise,

we suggest he/she should read [BCC] first.

In order to reduce the number of rounds to a constant, the following template, which

we call the "parallel" approach, comes immediately to mind:

{perhaps some initialization}

{let k be a safety parameter}

(1) The prover commits herself by sending x 1 , Xa x k to the verifier.

(2) The verifier sends challenges y 1, Y2 Yk to the prover.

(3) The prover meets the challenges by sending z 1, z2 z k to the verifier.

It is easy to prove that the parallel approach cannot help the prover cheat. At first, it

seems equally certain that if the verifier could not squeeze additional knowledge out of the

sequential protocol, running the protocol in parallel cannot possibly help him to do so.
However, nothing is certain in this world except death and taxes, and indeed this intuit ion

is f a l se (as pointed out in [GMW] in relation with their protocol for graph isomorphism).

This is because the parallel approach makes it possible for the verifier to choose each

challenge as a function of the entire set of prover's commitments. This may seem harm-
less but if this choice of challenges is made according to a one-way function, it makes it
possible for the verifier to obtain information (the transcript of his conversation with the

prover) that he could apparently not have obtained efficiently without access to the prover
(or to her secret information). Whether this could in some cases help the verifier compute

127

the prover's secret is a most interesting open question. Read [BCC] for a discussion of

this issue.

In order to sketch our perfect zero-knowledge parallel solution (in the BCC-setfing),

we must review a bit commitment scheme used in [BCC] (due in part to Damgaard

[CDG] and independently to Boyar, Krentel and Kurtz [BKK]). The purpose of a bit

commitment scheme is to allow one party (usually the prover) to commit to the value of a

bit in a way that prevents the other party from learning it without the first party's help,

but also in a way that prevents the first party from changing its value.

Initially, the prover and the verifier agree on a large prime p for which they both
know the factorization of p - 1 (finding large primes p with known factorization of p - 1

and with a known generator can be done efficiently in practice). They also agree on a
.

generator ct for Z p , the multiplicative group of integers modulo p . Thanks to their

knowledge of the factors of p - l , they can both verify with certainty that p is a prime and

* Given any integer i, 0< i <p -2 , it is easy to compute that o~ is a generator of Z p .

cx i rood p efficiently, but no efficient algorithm is known to invert this process (even if

the factors of p - 1 are known, provided they are not too small [PH]), an operation known

as extracting the discrete logarithm. In order to set up a bit commitment scheme, the
,

verifier chooses a random s e Z p and gives it to the prover. We assume that the prover

is not capable of computing the discrete logarithm of s while the protocol is in progress.

In order to commit to bit x e {0, 1}, the prover selects a random integer r ,
0 < r <p -2 , and she computes b = t~rs x m o d p . She gives b to the verifier but she

keeps r as her secret witness. For convenience, we shall refer to b as a blob. Subse-

quently, if the prover wishes to show the verifier which bit she had committed to with a

given blob b, an operation known as opening the blob, she simply shows him the

corresponding witness r . The verifier can then check whether b - c ((m o d p) or
b - ~rs (mod p).

It is easy to see [BCC] that the prover is able to open a given blob both ways

(i.e. she is able to cheat) if and only if she can efficiently compute (or already knows) the

discrete logarithm of s , which we assumed to be infeasible for her. Moreover, any ele-
,

ment of Zp can be used by the prover as commitment to 0 just as well as to 1, depending

only on her knowledge about it (the witness). Therefore, it is information-theoretically
impossible for the verifier to distinguish a commitment to 0 from a commitment to 1
(regardless of the verifier's computing power).

Using this bit commitment scheme, a perfect zero-knowledge argumentative protocol
for satisfiability is given in [BCC]. (Such a protocol was erroneously claimed in [BC2].)

For the protocol of [BCC] to be perfect zero-knowledge, it is crucial that it be performed

sequentially. Curiously, however, the parallel version of this argument is perfect zero-
knowledge under the condition that the verifier knows the discrete logarithm of s. ff he is

willing to cooperate, this is easy for the verifier to achieve: instead of choosing s at ran-
,

dom among Z p , he should choose j at random, 0 < j <p -2 , and compute s = aJ rood p .

128

Of course, the difficulty is that the prover has no reason to trust that the verifier will

choose s according to this new rule. This is a serious consideration because [BCC]

describes a way for the verifier to choose s so that a parallel session of the protocol

would probably yield a transcript he could not have obtained by himself. In order to

remove this difficulty, the following "parallel" protocol comes to mind:

{initialization}

(1) The prover and the verifier agree on p , ~ and k.

(2) The verifier chooses an integer j , 0 < j < p - 2 ;

computes s = o~J rood p ;

sends s to the prover;

convinces the prover that he knows the discrete logarithm of s .

{main protocol as in [BCC] but in parallel}

(3) The prover commits herself by sending x 1, x2 x~ to the verifier.

(4) The verifier sends challenges y 1, Y2 Yk to the prover.

(5) The prover meets the challenges by sending z 1, z 2 z k to the verifier.

This looks great . . , except that all the known protocols by which the verifier could con-

vince the prover that he knows the discrete logarithm of s [CEG, CEGP] are inherently

sequential! Although it is generally believed that a parallel version of these protocols

would not help the verifying party (who is our prover in this case) in attempts to compute

the discrete logarithm of s , no one has yet been able to prove this.

Another idea to obtain an argument that remains perfect zero-knowledge even if run

in parallel is to force the verifier to choose his challenges before he gets to see the

prover's commitments. In other words, we could ask the verifier to commi t to his chal-

lenges. The resulting protocol would look like this:

{initialization}

(1) The prover and the verifier agree on p , (~ and k.

(2) The verifier chooses s in Z p ,

sends s to the prover.

{main protocol}

(3) The verifier chooses bits Yl, Y2 Yk and commits to them.

(4) The prover commits herself by sending x 1 , x 2 x k to the verifier.

(5) The verifier opens challenges y 1, Y2 y~ for the prover.

(6) The prover meets the challenges by sending z 1, z 2 z k to the verifier.

The natural question at this point is: "which bit commitment scheme should the verifier

use in step 3 ? " The obvious answer would be to require that the prover also chooses an

* and sends it to the verifier, so that the verifier would commit to bit y by com- g in Z p ,

puting (x r gY rood p for a random r . However, there is a nicer (and somewhat surprising)

solution: the verifier commits to his challenges using his very own s ! This sounds crazy

because nothing prevents the verifier from knowing the discrete logarithm of s, in which

129

case his "commitments" would be worthless. Nevertheless, the only way the verifier can

cheat in his challenge commitments is by knowing the discrete logarithm of s, but this is

precisely the case in which the protocol of [BCC] remains perfect zero-knowledge even in

parallel, regardless of how or when the verifier chooses his challenges. Therefore, either

the verifier chooses s in step 2 in a way that he does not know its discrete logarithm, in

which case he must choose his challenges in step 3 before seeing anything from the
prover, or he chooses s in a way that he knows its discrete logarithm (i.e. he chooses the

discrete logarithm and computes s from it), in which case no harm is done if the verifier

does not choose his challenges until step 5.

Unfortunately, the protocol we have just described still does not work for a rather

subtle reason: it becomes possible for the prover to cheat without finding the discrete log-

arithm of s. Although it is true that the prover is not capable of opening any of her blobs

in more than one way (assuming she does not know the discrete logarithm of s), it is pos-

sible for her to create blobs that she cannot open at all at the time o f their creation, but

that she will be able to open later. When the verifier opens his own commitments at
step 5, she will be able to open her blobs to show bits related to those that the verifier had
committed to. As a simple example, assume that the verifier commits to some challenge

y in step 3 by choosing a random r and computing c = o~rs y . After the verifier has given

his commitment c to the prover, the prover can create a blob d by computing

d = t~q c rood p for a randomly chosen q. Clearly, the prover cannot open this blob yet.

Nevertheless, the verifier will reveal r to the prover in step 5, and this will enable the

prover to "open" her blob d as bit y by showing "witness" q + r rood p -1 . This ability

to relate the value of some of her blobs to the challenges she will subsequently be issued

spells doom on the protocol of [BCC]. (This difficulty can only be replaced by other
difficulties if we insist that the verifier's commitments to his challenges be based on a

different g. These new difficulties range from the argument being no longer perfect zero-

knowledge to providing other back doors for the prover to cheat.)

In order to solve this ultimate difficulty and finally obtain the promised bounded-

round perfect zero-knowledge argumentative protocol, we must force the prover to emit

only blobs that she knows how to open at the time of their creation. Let b be a blob

created by the prover. We say that it is a 0-blob (resp. a 1-blob) if the prover can exhibit

an r such that b ~ ct r (modp) (resp. b = t~rs (m o d p)) . As argued previously, no

prover-created blob can be simultaneously a 0-blob and a 1-blob unless the prover knows
(or can find easily) the discrete logarithm of s. However, a blob can be neither a 0-blob

nor a 1-blob if it was not created "according to the rules" by the prover. We call such

blobs "EPR-blobs" by analogy with the Einstein-Podolsky-Rosen "paradox" of quantum
physics. Again, the danger of EPR-blobs is that they could subsequently become either
0-blobs or 1-blobs when the prover obtains further information from the verifier (i.e. when

the verifier opens his commitments to his challenges). The following subprotocol allows
the prover to convince the verifier that a given blob is not EPR.

130

Let b be a non-EPR-blob, which we shall call the a c t u a l blob. Let r be the prover's

witness that would allow her to open this blob. In order to convince the verifier that she

can open blob b, she creates k additional c o n t r o l blobs b I , b 2 b k by randomly

selecting k integers r t , r 2 r k , O < r i < p - 2 , a n d k bits x 1 , x 2 x k , and com-

puting b i = o~hs xi rood p , 1 <i <k . She gives all the control blobs to the verifier. At this

point, the verifier selects k random challenges h I , h 2 h k in {0, 1} and sends them

to the prover. For each h i = 0, the prover opens the control blob b i by showing r i .

For each h i = 1, the prover shows that she can open the actual blob b if and only if she

can open the control blob b i . This is done as follows:

- if b is an xi-blob, the prover computes w = r i - r m o d p - 1 and gives it to the

verifier, who checks that b i = ct w b (mod p);

- if b is a (t - x i) - b l o b , the prover computes w = r i + r rood p - 1 and gives it to the

verifier, who checks that b b i = o~ w s (mod p).

In the case when h i =1, the verifier learns whether b is an xi-blob or a (1-xi)-blob.

However, this is of no consequence since he learns nothing about whether b i is a 0-blob

or a 1-blob. It is easy to see that if b were an EPR-blob, the prover would be caught

cheating in the above subprotocol with probability 1 - 2 -k.

We are now ready for the final solution.

3. Sketch o f t h e p r o t o c o l

Here is a sketch of the promised bounded-round perfect zero-knowledge argumenta-

tive protocol for satisfiability. This protocol builds upon the unbounded-round perfect

zero-knowledge protocol for satisfiability given in [BCC]. The x i ' s committed to by the

prover in step 2 below are "scrambled Boolean circuits" h la [BCC]. The prover's com-

mitments to the x i ' s is realized at the rate of one blob for each bit. To understand the

protocol below, it suffices to know that these x i ' s are designed in such a way that they

can be subjected to two different challenges. In one case, the prover has to open all the

blobs, in effect revealing x i . In the other case, the prover has to selectively open some of

the blobs, in effect showing the existence of a satisfying assignment. The only way the

prover can meet both challenges is by knowing a satisfying assignment (assuming she is

incapable of cheating her bit commitments), but meeting either one of them yields no

information to the verifier. For more detail, please consult [BCC].

0) The prover and the verifier agree on p and c~ and on a safety parameter k

(the factorization of p - 1 is known). This does not count towards the number of

rounds in the protocol because it can be done ahead of time and because the

numbers p and 0t could be in the public domain (chosen once and for all by an

authority that needs not be trusted).

131

1) The verifier selects s in 7..p, Yl, Y2 Yk in {0, 1},

a n d r l , r 2 r k , O<_r i _<p-2;

he computes ci = o (i s y~ rood p , 1 <i <k ;

he sends s, c 1, c2 c k to the prover.

2) The prover creates k scrambled circuits x 1 , x 2 x k [BCC] and commits to

them by sending the verifier one blob for each bit of the x i ' s (these blobs are

called the a c t u a l blobs); for each actual blob, the prover also creates k c o n t r o l

blobs, which she sends to the verifier.

3) For each control blob received by the verifier in step 2, the verifier selects a

random challenge h ; The verifier sends all of these challenges to the prover.

4) For each challenge h corresponding to actual blob b and control blob /~, the

prover either opens blob /~ (if h = 0), or shows that she could open blob b if

and only if she could open blob/~ (if h = 1), as explained at the end of the pre-

vious section. (At this point, the verifier is convinced that none of the actual

blobs received in step 2 were EPR-blobs.)

5) The verifier opens the blobs Cl ,C 2 Ck (from step 1) by giving

r l , r 2 r k to the prover. This yields challenges Y l , Y 2 Y k .

(The verifier can "chea t" here and "open" Cl, c 2 c k to show different

bits if he knows the discrete logarithm of s, but this is of no consequence as

argued previously and proved formally in the next section.)

6) The prover meets the k challenges exactly as in [BCC]: she opens all the actual

blobs to show x i if Yi = 0, and she selectively opens some of the blobs for x i

if Yi = 1.

4. Proof of the protocol

Two claims must be established: the prover can follow this protocol to the verifier's

satisfaction if and only if she knows the secret she claims to have, and the verifier learns

nothing about the prover's secret from running the protocol. The first (resp. second) claim

must hold even if the prover (resp. verifier) deviates arbitrarily from her (resp. his)

prescribed behaviour.

We leave to the reader the details of the proof that the prover cannot succeed in this

protocol unless

• she genuinely knows the secret she claims to have; or

• she can compute the discrete logarithm of s while the protocol is in progress

(without any help from the verifier); or

• she is very lucky (with probability 2 -k, she could guess the k challenges

Yl ,Y2 Yk before she has to commit to her scrambled circuits

t32

x I , x 2 x k ; also with probability 2 -k, she could succeed at creating an EPR-

blob that would pass detection at steps 3 and 4).

Therefore, under the assumption that computing discrete logarithms is infeasible (even

when the factorization of p - I is known), the prover can cheat only with negligible proba-

bility. Furthermore, such attempted cheating would be of the "dar ing" kind [BCC].

The proof that the protocol is perfect zero-knowledge is more interesting. In order to

show that the verifier cannot learn anything even if he deviates arbitrarily from his

prescribed behaviour, we must show how to simulate exactly his conversation with the

prover in expected polynomial time, without in reality ever talking to the prover. The

reader not familiar with the concept of simulation (in the context of zero-knowledge)

is referred to [GMR, GMW].

The simulation is made more difficult by the fact that it must be able to handle an

honest verifier that follows the protocol when choosing his challenges in step 1 and open-

ing them faithfully at step 5, just as well as a cheating verifier that initially chooses an s

for which he knows the discrete logarithm so that he is free to postpone choosing his

challenges until step 5. The simulator must also handle strange situations in-between.

As always, the simulator will use the verifier as a deterministic "black box" supplied by

an external source of randomness under the control of the simulator. By "the simulator

resets the verifier", we mean that the simulator sets the verifier back in his starting state

and that the simulator will supply the verifier with the same sequence of " r andom" bits

(hence the simulator must store the random bits provided to the verifier, so that she can

repeat them after resetting).

The simulation proceeds as follows:

0) The simulator and the verifier agree on p , c~ and k as in the real protocol.

If the verifier refuses to behave properly, the simulator stops.

1) The simulator waits for the verifier to provide s and c 1 , c 2 c k . If the

verifier refuses to behave properly, the simulator stops.

2) The simulator creates as many blobs as the real prover would have to commit to

circuits x I , x 2 x k , except that each and every of these blobs is a 0-blob.

(This cannot be detected by the verifier since 0-blobs are information-

theoretically indistinguishable from 1-blobs.) For each of these blobs, the simu-

lator also provides k control blobs as the real prover would have.

3) The simulator waits for the set of verifier challenges about the control blobs.

If the verifier refuses to behave properly, the simulator stops.

4) The simulator meets all the challenges concerning the control blobs, which she

can do easily since none of her actual blobs were EPR.

5) The simulator waits for the verifier to open his commitments from step 1, yield-

ing challenge bits Yl, Ye Yk (as well as r t , r e rk). If the verifier

133

refuses to behave properly, the simulator stops. (Here, "improper behaviour"

includes giving some Yi and r i such that C. i :/: ~r~SYt m o d p .)

6) At this turning point in the simulation, the simulator resets the verifier and goes

over steps 0 and 1 again. It is no longer possible for the verifier to behave

improperly since it had not done so the first time around in the same context,

with the same random bits, and with the same interaction with the simulator.

For the same reason, the verifier will submit the same s and the same c i ' s as he

did at step 1.

7) The simulator creates k scrambled circuits x 1 , Xz x k such that she can

meet challenge Yi on circuit x i for each i, 1 <i < k. The simulator commits to

these k circuits and she emits the usual control blobs.

8) The simulator waits for the set of verifier challenges about the control blobs.

If the verifier refuses to behave properly, the simulator goes back to step 6.

9) This step is exactly like step 4.

10) The simulator waits for the verifier to open his commitments from step 1

(in fact from step 6, as far as the verifier "thinks"), yielding challenge bits

331,332 33 k (as well as r l , r2 rk)" If the verifier refuses to behave

properly, the simulator goes back to step 6.

11) There are two possibilities at this point: either the verifier did not change any of

his challenges as a result of being given a set of blobs at step 7 different from

those previously given at step 2, or he changes at least one of them (which he

can do only if he knows the discrete logarithm of s).

(a) If Yi = 33i for all i, the simulator is capable of meeting the challenges

331,332 33k because she prepared her scrambled circuits in step 7 pre-

cisely with this goal in mind.

(b) If there is at least one i such that Yi :/:33i, the simulator computes

r i - f i mod p - 1 or f i - r i mod p - 1 , depending on whether yi = 0 or

Yi = 1, respectively. The result is clearly the discrete logarithm of s.

Armed with this information, the simulator can "chea t" in opening the

blobs supplied in step 7 in any way she wants, making it child's play to

meet the challenges 331,332 33k.

For each set of random bits supplied to the verifier, this simulation yields a probabil-

ity distribution on the conversation between the verifier and the simulator that is identical

with the probability distribution on the conversation between the verifier and the real

prover. Also, the expected time for the simulation is only twice the expected time that a

conversation with the real prover would have taken. Neither of these claims is immediate

because the verifier can decide to behave improperly at step 8 or 10 depending in strange

ways on the blobs received from the simulator at step 7. The key to the argument is to

134

consider the probability p that the simulator will reach step 6. Once step 6 is reached, the

probability that the verifier will have to be reset at least once is exactly 1-p. If p is

large, the simulator is likely to proceed to step 11 directly, without having had to reset the

verifier more than once; if p is small, the simulator is likely to stop quickly, without ever

reaching step 6. Fortunately, the bad case for the simulator is unlikely to happen: it is

when she reaches step 6 although p was small (in this case, she will probably have to

loop back on step 6 a large number of times). We leave the details to the reader.

5. Generalization

We have shown how to obtain a bounded-round perfect zero-knowledge argument

under the specific assumption that it is possible to find a prime p with known factoriza-

tion of p - 1 such that it is infeasible to compute discrete logarithms modulo p even for

someone who knows the factors of p - 1 . This is but a special case of the assumption that

one-way group homomorphisms exist (and can be obtained) [IY].

Definition: A function h:X --)Y is a one-way group homomorphism if (X , ,) and (Y, *)

are finite groups, if h is a homomorphism (h (x*z)= h (x)*h (z) for all x ,z E X), and if

1) it is possible to draw efficiently at random into X with uniform distribution;

2) given any y ~ Y, it is possible to test efficiently whether or not y is in the image

of h ;

3) the operations , and the computation of inverses in both groups can be performed

efficiently; and

4) the homomorphism h is one-way: given any x ~ X , h(x) can be computed

efficiently, but given the value of h (x) for a randomly chosen x ~ X, it is computa-

tionally infeasible to find a z ~ X such that h(z)=h(x), except with negligible

probability (of course, the above does not exclude finding z = x)° []

The suggested candidate of one-way group homomorphism we have used

so far is X = ({ 0 , 1 p - 2 } , + m o d p - 1) , Y = ({ 1 , 2 p - 1 } , x m o d p) and

h (x) = ax mod p , where p is a prime and ct is a generator of Y. It is because of require-

ment (2) that 0~ must be a generator.

Given any one-way group homomorphism, the verifier can "set the blobs" by choos-

ing j e X at random and computing s = h (j) . The verifier gives s to the prover. The

prover commits to bit b by choosing r e X at random and computing h (r) if b = 0 or

s*(h (r)) if b = 1. It is easy to see that the prover cannot open a blob both ways unless

she knows how to compute an inverse of s under h. Conversely, it is information-

theoretically impossible for the verifier to infer from a blob which bit it encodes.

The protocol given in section 3 of this paper can be generalized directly to these blobs.

Here again, either the verifier chooses s in the way stipulated above, in which case he

knows its inverse under h and thus the parallel version of the [BCC] protocol is perfect

135

zero-knowledge, or else he chooses s in a way that he does not know its inverse, in which

case his commitments (Cl, c 2 ck) to his future challenges (Yx, Y2 Yk) are

genuine commitments and thus the parallel version of the [BCC] protocol is not less
secure than the sequential version (hence, it is perfect zero-knowledge as well). However,

a subtlety occurs with respect to the use of "control blobs", which were intended to

prevent the prover from issuing EPR-blobs: they work exactly as before, but only if the

group X is abelian. Fortunately, control blobs can be replaced by the notion of "crypto-

graphic capsules" [Be], which works even in the non-abelian case.

Finally, note that there is no need for the homomorphism h to be trap-door, and if it
is, the trap-door information must kept secret from the prover.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge fruitful discussions with Charles H. Bennett, Joan

Boyar, David Chaum, Ivan Damgaard, Uri Feige, Oded Goldreich, Joe Kilian, Phillip
Rogaway and Adi Shamir.

BIBLIOGRAPHY

[Be]

[BKK]

[BCC]

[BC1]

[BC2]

[BC3]

[Ch]

[CDG]

[CEG]

Benaloh, J.C., "Cryptographic capsules: A disjunctive primitive for interactive proto-
cols", Advances in Cryptology - CRYPTO '86 Proceedings, Springer-Verlag, 1987,
pp. 213-222.

Boyar, J.F., Krentel, M.W. and Kurtz, S.A., "A discrete logarithm implementation of
zero-knowledge blobs", Journal o f Cryptotogy, to appear.

Brassard, G., Chaum, D. and CrEpeau, C., "Minimum disclosure proofs of knowledge",
Journal of Computer and System Sciences, vol. 37, no. 2, 1988, pp. 156-189.

Brassard, G. and CrEpeau, C., "Zero-knowledge simulation of Boolean circuits",
Advances in Cryptology - CRYPTO '86 Proceedings, Springer-Verlag, 1987, pp. 224-233.

Brassard, G. and Cr6peau, C., "Non-transitive transfer of confidence: A perfect zero-
knowledge interactive protocol for SAT and beyond", Proceedings of the 27th IEEE Sym-
posium on Foundations of Computer Science, 1986, pp. 188-195.

Brassard, G. and CrEpeau, C., "Sorting out zero-knowledge", Advances in Cryptology -
EUROCRYPT '89 Proceedings, Springer-Verlag, to appear.

Chaum, D., "Demonstrating that a public predicate can be satisfied without revealing any
information about how", Advances in Cryptology - CRYPTO "86 Proceedings, Springer-
Verlag, 1987, pp. 195-199.

Chaum, D., Damgaard, I.B. and van de Graaf, J., "Multiparty computations ensuring
privacy of each party's input and correctness of the result", Advances in Cryptology -
CRYPTO "87 Proceedings, Springer-Verlag, 1988, pp. 87-119.

Chaum, D., Evertse, J.-H. and van de GraM, J., "An improved protocol for demonstrating
possession of discrete logarithms and some generalizations", Advances in Cryptology -
EUROCRYPT '87 Proceedings, Springer-Verlag, 1988, pp. 127-141.

136

[CEGP]

[FFS]

[FS]

[F]

[G]

[GMW]

[GMR]

[IY]

[PH]

[s]

Chaum, D., Evertse, L-H., van de Graaf, J. and Peralta, R., "Demonstrating possession of
a discrete logarithm without revealing it", Advances in Cryptology - CRYPTO "86
Proceedings, Springer-Verlag, 1987, pp. 200-212.

Feige, U., Fiat, A. and Shamir, A., "Zero knowledge proofs of identity", Journal of
Cryptology, vol. 1, no. 2, 1988, pp. 77-94.

Feige, U. and Shamir, A., "Zero knowledge proofs of knowledge in two rounds", submit-
ted to CRYt~O '89, March 1989.

Formow, L., "The complexity of perfect zero-knowledge", Proceedings of the 19th ACM
Symposium on Theory of Computing, 1987, pp. 204-209.

Goldreich, O., personal communication.

Goldreich, O., Micali, S. and Wigderson, A., "Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design", Proceedings of the 27th IEEE Sym-
posium on Foundations of Computer Science, 1986, pp. 174-187.

Goldwasser, S., Micali, S. and Rackoff, C., "The knowledge complexity of interactive
proof systems", SlAM Journal on Computing, vol. 18, no. 1, 1989, pp. 186-208.

Impagliazzo, R. and Yung, M., "Direct minimum-knowledge computations", Advances in
C r y p t o l o g y - CRYPTO '87 Proceedings, Springer-Veflag, 1988, pp. 40-51.

Pohlig, S. and Hellman, M.E., "An improved algorithm for computing logarithras over
GF(p) and its cryptographic significance", IEEE Transactions on Information Theory,
vol. IT-24, 1978, pp. 106-110.

Shannon, C.E., "A mathematical theory of communications", Bell System Technical
Journal, vol. 27, 1948, pp. 379-423 and 623-656.

