
Computationally Convincing
Proofs of Knowledge

Gilles Brassard *
Universit6 de Montr6al t

Sophie Laplante ¶
Universit6 de Montr6al t

Claude Cr6peau $
Universit6 de Paris-Sud §

Christian L6ger [I
Universit6 de Montr6al t

1 I n t r o d u c t i o n

The original definition of interactive proof-systems, as given by Goldwasser, Micali and
Rackoff, does not impose limits on the prover's computing power [GMR89]. This is also
the case for Babai's Arthur-Merlin games IBM88]. Hence, the prover may wish to convince
the verifier of the t ru th of an assertion, but it does not really make sense for the prover to
convince the verifier that she 1 knows a proof of the assertion (of course she knows such a
proof if it exists since she is all-powerful). Nevertheless, Feige, Fiat and Shamir [FFS88],
and Tompa and Woll [TW87] have given formal definitions of what should constitute a
proof of knowledge in the context of interactive proof-systems.

Brassard, Chaum and Cr@eau have investigated a different setting, in which the
prover's computing power is limited [BC86, Cha86, BCC88]. The resulting protocols are
convincing for the verifier provided that he believes that the prover cannot break a given
cryptographic assumption while the protocol is in progress. Consequently, such proto-
cols are merely computationally convincing, as opposed to Goldwasser-Micali-Rackoff's
statistically convincing proof-systems [Bra91] (this terminology was recently suggested
by Chaum). Computationally convincing protocols are also known as arguments [BC89].
The advantage of the apparently weaker notion of arguments over that of proof-systems
is that arguments can be perfect zero-knowledge [GMW86] for N P - c o m p l e t e problems,

* Supported in part by Canada's NSERC.
t D6partement d'informatique et de recherche op6rationnelle, Universit~ de Montr6al, C.P. 6128,

suce. "A', Montrdal, QuSbec, Canada H3C 3J7.
t Supported in part by NSERC Postgraduate and Postdoctorate Scholarships.
§ Laboratoire de Recherche Informatique, Universit~ de Paris-Sud, B~timent 490, 91405 Orsay, France.

This research was performed in part while the author was a graduate student at M.I.T.
Supported in part by an NSERC Postgraduate Scholarship and by Qu6bec's Fonds FCAR.

I[Supported in part by NSERC and FCAR.
1 For convenience, we refer to the prover as a "she", and to the verifier as a "he", whereas both the

simulator and the extractor -see Section 3- are referred to as "it's.

252

as shown in [BCC88], which is ruled out for proof-systems by a result of Fortnow (unless
the polynomial-time hierarchy collapses) [For87].

The natural question of defining the notion of "computationally convincing proof of
knowledge" was addressed initially by Boyar, Lund and Peralta [BLP89]. In this paper,
we give a more general definition capable of taking into account very nasty behaviour
from the prover. We also prove that the constant-round arguments of [BCY89] for N P -
complete problems are proofs of knowledge according to our definition, which is much
more difficult to prove than for the k-round protocols of [BCC88]. Finally, we exhibit a
protocol that forces us to question the full generality of our definition of "computationally
convincing": it may be that a more general definition is needed still, and that we do not
yet know precisely when we should be convinced that a protocol is convincing.

2 Various degrees of cheat ing for provers

When an interactive protocol between a prover and a verifier is specified [GMR89], the
honest behaviour of both parties is determined exactly (although such behaviour can be
defined as a function of random choices). Any party that deviates from his or her pre-
scribed behaviour is known as a cheater. In some cases, a cheater produces an interaction
identical to the interaction that the honest party would produce. This can occur, for in-
stance, if the honest party is expected to choose a random i, compute x = a i m o d p, and
transmit x to the other party (where a is a generator of Zp), whereas the cheating party
computes x as 2a i m o d p for a randomly chosen i. This begs the question of when should
a protocol be convincing despite the possibility of undetectable cheating behaviour on the
prover's side. In other cases, a cheater deviates from his or her prescribed behaviour in a
way that could be detected by the other party, which will usually cause the protocol to
be terminated by the party detecting such a deviation.

A prover is wall-behaved if she acts in such a way that she will never be called a cheater
when interacting with an honest verifier (except perhaps with negligible probabihty if such
is the case already for the honest prover). In particular, honest provers are well-behaved.
In the context of arguments such as in [BCC88, BCY89], consider the case of a cheating
prover who is capable of efficiently breaking the cryptographic assumption upon which the
verifier's confidence is based. This allows her to make bogus commitments that she can
subsequently open as she desires, depending on the challenges that she receives from the
verifier. As a result, she can be well-behaved, yet she can convince the verifier of whatever
she wants. On the other hand, in the context of proof-systems ~ la Goldwasser, Micali
and Rackoff, a prover would have no possible advantage in being merely well-behaved
rather than completely honest.

Both in proof-systems and in arguments, it is always possible that a very lucky cheat-
ing prover will not be caught by the honest verifier because she managed to guess ahead
of time all the challenges that the verifier will issue. Although this event has a negligible
probability of occurring, it is impossible to avoid entirely; on the other hand, no amount
of computing power can help the prover increase the likelihood of its occurrence. This
probability of lucky undetected cheating can either be required to be superpolynomially

253

small as a function of the size of the instance considered, or exponentially small as a
function of an explicit so-called confidence parameter (depending on the author's prefer-
ence). We favour the second approach, in which the prover and verifier agree beforehand
on the value of an integer k such that the verifier is willing to tolerate a probability 2 -k
that the prover, if dishonest, will be lucky enough not to be caught. We say that the
prover is reluctant if she has a non-negligible probability of being caught cheating by the
verifier, yet her probability of success is strictly better than 2 -k. Notice that there is a
sharp discontinuity between a probability equal to 2 -k and a probability greater than 2 -k
of undetected cheating. In order to achieve probability 2 -k, it suffices for the prover to
attempt guessing the verifier's challenges and hope for the best. In order to increase this
probability, the prover must proceed in a more subtle fashion.

In the context of proof-systems, there is no possible advantage for a prover to be reluc-
tant. Indeed, if she can achieve a probability of success better than 2 -k, it is necessarily
because the statement she claims is in fact true, and therefore she could just as well be
honest and make sure she will not be caught (except perhaps with negligible probability).
Here again, however, the situation is different with arguments. It makes perfect sense for
a cheating prover to try to break the cryptographic assumption while the protocol is in
progress. Such a prover could succeed some of the times but not always. As a result,
she could be caught cheating with a non-negligible probability, yet she could also succeed
with a probability significantly greater than 2 -k. If the reluctant prover's probability of
undetected cheating is 2 -k + p for p > 0, we say that her advantage is p. Notice that in
general, p could depend on various parameters of the protocol, such as k.

3 T h e e x t r a c t o r

The notion of simulator was already put forward in the original paper that introduced
the concept of zero-knowledge (STOc '85 version of [GMR89]). Recall that the simulator's
purpose is to efficiently produce a view of what the verifier would see if he were to interact
with the prover. The existence of such a simulator demonstrates clearly that the verifier
did not need the prover to get whatever he obtained, and thus that he learned nothing
from the prover. Usually, the simulator achieves this goal by using the verifier as a black-
box over which it has complete control. In particular, the simulator controls the verifier's
coin tosses, it can take snapshots of the verifier, and it can restore the verifier to a previous
state. Also, the simulator can interact with the verifier, making him believe that he is
talking to the prover.

Similarly, it is natural to consider yet a fourth actor (introduced implicitly by Tompa
and Woll [TW87], explicitly but namelessly by Feige, Fiat and Shamir [FFS88], and named
observer by Boyar, Lund and Peralta [BLP89]). We prefer to call this actor the eztractor
because of its active role. Just as the simulator is given complete control over the veri-
fier, the extractor is given complete control over the prover. In this case, the extractor
can interact with the prover, making her believe that she is talking to the verifier. The
extractor's purpose is to extract the "secret knowledge" that the prover claims to have.
Thus, the existence of an efficient extractor demonstrates that the prover was honest in

254

claiming her knowledge. The extractor is the main tool that has been proposed so far to
formalize the notion of "proof of knowledge".

For instance, assume that the prover claims that some Boolean formula • is satisfiable.
For simplicity, let us assume initially that the prover is well-behaved. If the interactive
protocol under consideration is a proof-system k la Goldwasser, Micali and Rackoff, as
considered by Feige, Fiat and Shamir and by Tompa and Woll, the extractor's goal would
be to obtain a satisfying assignment for kg. This definition of what an extractor should do
is fine in the context of a proof-system. However, it would obviously be inappropriate if
the protocol under consideration is merely computationally convincing, because ~ could
in fact be non-satisfiable even if the prover is well-behaved - - but of course not honest - - if
she can break the cryptographic assumption. In order to take this possibility into account,
Boyar, Lund and Peralta proposed that the extractor's purpose should be either to obtain
a satisfying assignment for ~, or to break the protocol's bit commitment scheme [BLP89].
Here, we give a different and slightly more general definition, which does not depend on
the notion of bit commitment, and which can take into account reluctant provers.

Let us say that the cryptographic assumption needed for the verifier to be convinced
by the protocol is that the prover cannot perform task T(x) while the protocol is in
progress, except with negligible probability, where x is an instance of T normally chosen
by the verifier. For example, T(x) could be the task of extracting the discrete logarithm
of x. When dealing with a well-behaved prover, the extractor's task is either to obtain a
satisfying assignment for • or to succeed at performing task T(z) on an arbitrary (not
necessarily random) instance x of T imposed upon the extractor from the outside. The
extractor must achieve this goal efficiently, not counting the time spent waiting for the
prover to perform her share of the protocol. Intuitively, such an extractor shows that
either the prover knows a satisfying assignment for $ (or can compute one easily from
what she knows), or that she has the ability of breaking the cryptographic assumption
upon which the protocol is based.

But what if the prover is reluctant? Let p be the prover's advantage. Recall that
this means that the prover has probability 2 -k + p of not being caught cheating when
interacting with the honest verifier, where k is the protocol's confidence parameter. In this
case, we still ask that the extractor should succeed at either figuring out a satisfying
assignment for • or performing task T(x), but it is allowed to take c/p times longer to
achieve this goal than if the prover had been well-behaved, where c is a constant. Notice
that this definition is not really interesting when p is so small that one can break the
cryptographic assumption in time linear in 1/p.

To summarize the proposed definition, a protocol is a computationally convincing proof
of knowledge based on cryptographic task T with confidence parameter k if there exists
an extractor capable of dealing with any prover whose probability of not getting caught
cheating by the honest verifier is 2 -k + p for a strictly positive p. Assume that the prover
claims to know a satisfying assignment for ~. The extractor is given an arbitrary instance
x of task T and complete control over the prover. The extractor's goal is either to figure
out a satisfying assignment for ~, or to solve task T(z). The extractor's expected time
must be linear in 1/p and in the expected time that the protocol between this prover and
the honest verifier would have taken.

255

4 Examples

It is rather easy to prove that the early perfect zero-knowledge arguments for N P -
complete problems given by Brassard, Chaum and Cr6peau [BCC88] are proofs of knowl-
edge, as pointed out in [BLP89]. In order to obtain more challenging examples of natural
protocols that deserve to be shown to be proofs of knowledge, one must consider more
recent protocols. For instance, [BLP89] considered the subtle case of noninteractive treat-
ment of parity gates, which leads to surprising difficulties.

In this section, we consider the case of constant-round protocols, that is protocols that
can achieve an arbitrarily high confidence parameter k with a fixed number of rounds of
interaction between the prover and the verifier. These protocols are harder to deal with
because the extractor's main tool in all previous proofs of knowledge (computationally
convincing or otherwise) had been to get the prover to answer two different sets of chal-
lenges on the same prover's set of commitments. The difficulty with constant-round
protocols is that they require the verifier (hence the extractor) to commit to her (its)
challenges early in the protocol, i.e. before getting to see the prover's commitments. This
makes it possible for the prover to choose her commitments as a function of the verifier's
(or the extractor's) committed challenges, as we shall now see.

Example 1: The protocol of [BCY89]

The first perfect zero-knowledge constant-round argument ever proposed for an N P -
complete problem is due to Brassard, Cr6peau and Yung [BCY89]. Unfortunately, it is
rather complicated, and until recently it was conjectured not to be a computationally
convincing proof of knowledge according to the above definition. Here, we briefly sketch
a proof that this conjecture was wrong. In order to simplify, we will only consider the
case of well-behaved provers (the general case has been worked out in detail). Please note
that this example can be skipped without loss of continuity by readers unfamiliar with
the protocol of [BCY89].

~s Let p be a large prime and a be a certified generator of Z~ that the prover and
the verifier agree to use. Let the cryptographic assumption be that it is infeasible to
extract discrete logarithms modulo p. Let s E Zp be provided "from the outside" to the
extractor. Let • be a Boolean expression for which the prover claims to know a satisfying
assignment. The extractor's purpose will be either to obtain a satisfying assignment for
qJ, or to extract the discrete logarithm of s. Playing the role of the honest verifier (but
using the externally supplied s instead of choosing one at random), the extractor follows
honestly the protocol with the prover until the step at which she replies to the challenges
given about her control blobs. At this point, the extractor resets the prover to her state
just before accepting these challenges, and the extractor gives her the complementary
set of challenges. From the prover's reply to these two sets of challenges, the extractor
can easily determine a way in which to open each and every one of the actual blobs
initially supplied by the prover. For each i, 1 < i < k, the extractor decides whether
this way of opening the blobs that hid the ith "scrambled circuit" would have been an
acceptable answer to challenge 0. (Note that this way of opening the blobs could provide

256

a bad answer to challenge 0 even if the prover is assumed to be well-behaved because, if
really faced with challenge 0, perhaps the prover would open the blobs differently.) The
extractor continues honestly with the protocol by opening its main challenges in the way
that it had committed to very early in the protocol. The extractor collects the prover's
answers to them. With probability 1 - 2 -k (because the prover is assumed to be well-
behaved), there is at least one i such that one of two good things happens, in which case
the extractor will have succeeded:

The extractor had deduced earlier a way of opening the actual blobs for circuit i
that would not have satisfied challenge 0, yet challenge 0 was asked of the prover for
this value of i and she gave a valid answer. In this case, the extractor has seen how
to open at least one of the blobs in two different ways, which allows it to deduce
efficiently the discrete logarithm of s.

The extractor had deduced earlier a way of opening the actual blobs for circuit i
that would have satisfied challenge 0. Challenge 1 was asked of the prover for this
value of i and she gave a valid answer. In this case, the extractor has seen a valid
answer to both challenges for the same value of i. Either these two answers are
compatible in the sense that whenever a given blob is opened by the prover under
both challenges it is always opened to show the same bit, or not. If the answers are
compatible, the extractor can easily deduce a satisfying assignment for kg. If not,
the extractor has seen how to open at least one of the blobs in two different ways,
and this is enough to deduce efficiently the discrete logarithm of s.

Example 2: The protocol of [Bra90]

A new constant-round argument for NP-comple t e problems was recently discovered by
Brassard [Bra90]. It is easier to understand than the [BCY89] protocol and it is easier
to prove that it is a proof of knowledge 2. Here, we give in detail an extractor capable of
dealing with well-behaved provers for this protocol. We then sketch a modification to the
extractor that allows it to deal also with reluctant provers. Finally, we describe in section 5
a small innocuous-looking change to the protocol of [Bra90], which produces an intriguing
phenomenon: it yields a protocol that appears to be computationally convincing without
being a proof of knowledge according to our definition.

For the sake of self-containment, let us lift from [Bra90] the relevant protocol. In order
to understand this protocol, one must know that the xi's are bit strings that the prover
will commit to, waiting for challenges yi's from the verifier, for 1 < i < k. Whenever
yi = 0, the prover should open all the bits of xi ; whenever yi = 1, the prover should
selectively open some of the bits of xl . This is done in such a way that it is easy to
deduce a satisfying assignment for ty from the answer to both challenges for any given i
(provided that the commitments that are opened according to both challenges are opened
consistently), but that seeing the answer to only one challenge for each i provides no

2 On the other hand, it is much harder to prove that it is perfect zero-knowledge, which does not
concern us here.

257

information. For simplicity, we denote by zi the information that the prover supplies in
order to meet challenge y~.

One aspect that distinguishes this protocol from the k-round protocol of [BCC88] is
that both the prover and the verifier are asked to commit to various bits. This is done
in a way that is unconditionally concealing [BY90]. For this purpose, they initially agree
on a prime p and a certified generator a for Zp. (Recall that Zp stands for the set of
integers between 1 and p - 1, whereas Zp-1 stands for the set of integers between 0 and
p - 2.) Then, the prover sends a random t E Zp to the verifier and the verifier sends a
random s E Z~ to the prover. Committing to bit b is achieved by computing a~u b m o d p,
where r is randomly chosen among Zp_l and u is either t (when the verifier commits) or s
(when the prover commits). Neither party can break a commitment without computing a
discrete logarithm. More generally, unconditionally concealing bit commitment schemes
based on one-way certified group actions could be used [BY90].

P r o t o c o l 1 (t h e p ro toco l o f [Brag0])

1: The prover and verifier agree on a large prime p for which they both know
the factorization of p - 1, and they agree on a generator a of Zp. They
also agree on a confidence parameter k. All the arithmetic in this protocol is
implicitly performed modulo p.

2: The prover chooses a random £ E Zp_l ;
she computes t = a t ;
she sends t to the verifier.

3: The verifier chooses a random s E Z~, random bits yl, y2 , . . - , Yk,

and random w l , w 2 , . . . ,wk in Zp-1 ;
for each i, 1 < i < k, he computes hi = a~tY ' ;

the verifier sends s and hi, h2 , . . . , hk to the prover.

4: The prover commits herself to xl, x2 , . . . , x~. All the prover's commitments
are made with respect to s, i.e. whenever the prover wishes to commit to
bit b, she does so by computing a~s ~ for a random r E Zp-1 •

5: The verifier opens challenges Y l , Y 2 , . . . , Y k for the prover by revealing
W l , W 2 , • . • , W k •

6: The prover verifies that h i -~ awit ~ for all i's.
If not, she terminates the protocol;
if so, she meets the challenges by sending Zl, z~ , . . . , zk to the verifier.
Also, she gives £ to the verifier.

7: The verifier accepts if and only if t = d and the prover was able to meet
each and every one of the challenges.

258

In order to prove that this protocol is a computationally convincing proof of knowledge,
let us initially consider the case of a well-behaved prover. Let q) be the boolean expression
for which the prover claims to know a satisfying assignment. The extractor proceeds as
follows, where "step i " refers to Protocol 1, whereas "step E i " refers to Protocol 2.

P r o t o c o l 2 (an extractor for P r o t o c o l 1)

E l :

E2:

E3:

E4:

E5:

E6:

The extractor follows step 1 honestly with the prover. This results in a
choice of p, a and k.

The extractor waits for the prover to carry out step 2 and supply t.

The extractor gets s from the outside. It chooses the y~'s and the wi's, and
computes the hi's as the honest verifier would at step 3. It sends s and the
h~'s to the prover.

The extractor waits for the prover to carry out step 4 and supply her com-
mitments to her secret x~'s.

The extractor takes a snapshot $5 of the prover. The extractor opens its
challenges honestly, as the honest verifier would at step 5.

The extractor waits for the prover to carry out step 6 and supply the zi's
and g.

E7:

ES:

E9:

E l0 :

The extractor restores the prover to snapshot state $5.

Thanks to its knowledge of g, kindly supplied by the prover at step E6, the
extractor is now in a position to cheat the "commitments" that it had offered
at step E3. The extractor uses this information to carry out step 5 again,
but with a different collection of randomly chosen challenges 31, ~2, . -- , ~)k.

The extractor waits for the prover to carry out step 6 again and supply the
corresponding new collection of $~'s.

Consider any i such that y~ # ~i. Either all the commitments opened by
the prover about the bits of x~ are opened consistently in z~ and ~i or not.

- If this is so, the extractor has just seen consistent and valid (because
by assumption the prover is well-behaved) answers to both challenges
about the same z i . From this, the extractor can easily deduce a sat-
isfying assignment for ~.

- Otherwise, the extractor has seen at least one commitment opened by
the prover in two different ways. From this, the extractor can easily
deduce the discrete logarithm of s since the prover's commitments were
based on s.

259

It is clear that this extractor succeeds with certainty if it deals with a well-behaved
prover. Moreover, it does not take more than twice the time needed to carry out the
actual protocol between this prover and the honest verifier. But it is just as clear that
it could fail miserably against a reluctant prover. In fact, it is easy to design a reluctant
prover that will make this extractor fail with certainty for specific values of s.

Let us now sketch how to deal with reluctant provers. Let k be the confidence pa-
rameter. Consider a reluctant prover whose probability of undetected cheating is 2 -k +
when interacting with the honest verifier. A first idea would be to design an extractor
that would follow Protocol 2 exactly, but would start all over again whenever the prover
misbehaves. A careless analysis could make us believe that this extractor would have to
try on average less than 1/p times before being lucky enough to observe a run in which the
prover does not misbehave. Unfortunately, this is not so for two different reasons. First of
all, it could be that the prover will always misbehave if given some specific s at step 3 (the
probability that the prover does not misbehave is taken over all possible random choices
of both parties, and this includes the random choice of s that the verifier is required to
make at step 3). In this case, the extractor would be caught into an infinite loop. The
other problem is that the extractor needs not one, but two correlated runs of the protocol
for which the prover does not misbehave. The fact that these required runs are correlated
(they share steps 1 through 4) introduces additional difficulties because the probability
that the prover will not misbehave once a specific run of protocol 1 reaches step 5 could
depend on the specific choices of s and hi, h2 , . . . , hk. However, this probability cannot
depend on the specific choice of yl, y2 , . - . , yk because these are information-theoretically
hidden from the prover at that point.

It is easy to deal with the first difficulty: At step E3 the extractor calls g what it gets
from the outside, it chooses a random j E Zp-1, and it computes s = ~aJ m o d p. Now
s is a random element of Z v but the extractor can easily compute the discrete logarithm
of the prescribed ~ once and if the discrete logarithm of s is obtained.

In order to deal with the second difficulty, a careful analysis of the probabilities in-
volved is necessary. The extractor follows step E1 through step E6 (with the small change
already indicated for step E3), except that it starts all over again whenever the prover
misbehaves. Assuming that the prover has not yet misbehaved and that step E6 is com-
pleted successfully, the extractor tries to carry out step E7 to step E9. If the prover
misbehaves, the extractor does no t go back to the starting point. Rather, it tries again
step E7 to step E9. The extractor tries again and again these steps until a successful
round is obtained, but with a time limit. After more than l i p attempts have failed, the
extractor gives up and goes back to the starting point. If, on the other hand, an execution
of step E7 to step E9 succeeds, the extractor can proceed to step El0 and complete its
task.

A detailed analysis of this strategy shows that the total expected number of times
that the extractor has to restore the prover (including going back to the starting point)
is in the order of 1/p. This analysis will be provided in the journal version of this paper.
(It is easy to show that this number is in the order of 1/~ 2, but in fact it is in the order
of 1/p.) As a consequence, our extractor achieves its goal in expected time that is simply
c/p times greater than the time taken by the actual protocol between this prover and the

260

honest verifier, for a (small) constant c. This completes the proof that Protocol 1 is a
computationally convincing proof of knowledge.

A variation on this extractor works even if the extractor does not know p beforehand.
The idea is that the prover can figure out an estimate on p from the number of unsuccessful
tries before the first time that it manages to reach step E7. Details will also be given in
the journal version of this paper.

5 An intriguing question

Consider a slight modification to Protocol 1, in which we no longer require the prover
to supply t at step 6. Although we do not yet know how to prove this, we believe that
the resulting protocol is just as safe from the verifier's point of view. This is so because
the only way the prover could use her additional freedom towards cheating would be by
choosing t at step 2 in a way that she does not know its discrete logarithm (because if
she actually does know it, she has nothing to lose by revealing it at the very end of the
protocol). But this choice of t is done so early in the protocol that we do not see how it
could help the prover cheat no matter how cleverly she chooses it.

Nevertheless, the modified protocol does not appear to be a proof of knowledge even
against well-behaved provers. The problem is that a well-behaved (yet cheating) prover
could make x l , z 2 , . . . , x k , as well as the way in which she commits to their bits, depend
on s and hi, h2 , . . . ,hk . This, together with the extractor's ignorance of the discrete
logarithm of t (whose knowledge is needed to cheat its commitments), would deprive the
extractor of its chances of getting the prover to show two compatible runs of Protocol 1.
Therefore, this modified protocol could be the first interactive protocol ever proposed
that is computationally convincing, yet that is not a proof of knowledge according to our
definition (although a case could possibly be made for Example 3 in [FFS88, p. 79]).

The behaviour of this particular protocol indicates a more general situation, which
occurs even in the original definition of [FFS88] (which deals with arbitrarily powerful
provers). In fact, all definitions based on the existence of an extractor rely implicitly on
the following assumptions:

1. The extractor can deduce the secret if it manages to get the prover to answer a
polynomial number of well-chosen questions.

2. The extractor can in fact manage to get the prover to answer such questions.

In the case of Protocol 1, the first assumption corresponds to the fact that the extractor
succeeds if it gets the answer to both challenges for any given xl. The second assumption
is fulfilled because the extractor learns at step 6 how to change its commitments without
risking a change in the prover's xi's. However, in some cases (as in the modified version
of Protocol 1), a clever prover could keep the extractor from making progress by forcing
any small change in the current configuration to affect dramatically the outcome of the
round, rendering the extractor powerless to get the answers it needs, therefore making
the reconciliation of any information thus obtained infeasible.

261

This observation is the basis for the outline of a simpler protocol that serves to il-
lustrate this surprising behaviour. Consider a trap-door function q0 such that knowing
the trap-door is Turing-equivalent to having a deterministic inversion algorithm for ~.
By this, we mean that anyone knowing the trap-door can easily invert ~ on all inputs,
whereas access to a black-box for the computation of ~-1 allows one to compute the
trap-door efficiently (provided that one is free to choose which inputs to give the black
box). Let h be a one-way hash function which has the same image as ~. Finally, let @
be an operator on the image of ~ such that x ® y is uniformly distributed, provided that
this is so for at least one of x or y. For instance, qo could be the squaring function mod-
ulo a Blum integer, the trap-door would be the factors of the modulus, and ® would be
modular multiplication. Consider the following protocol for the proof of knowledge of the
trap-door that allows computing the inverse of ~.

Protocol 3 (knowledge of a trap-door)

1: The prover and verifier set up a bit commitment scheme.

2: The verifier picks a random x E Image(q0) and commits to it via c=.

3: The prover chooses a random z and sends y = h(c=, z) to the verifier.

4: The verifier opens c=, thus revealing x.

5: The prover produces qv-l(x ® y).

Under the proper assumptions on the functions and commitment scheme involved, we
intend to prove that the verifier should be convinced. Intuitively, this is so because the
prover has no control over the choice of x, and therefore over the value of x ® y. On the
other hand, none of the moves available to the extractor can help it obtain the answer to
a question of its choice, hence the answers provided by the prover at step 5 are apparently
useless for the extractor even when dealing with the honest prover.

• Changing its choice of x at step 2 will force a change in the commitment c=. This
will affect the choice of y in a computationally unpredictable fashion.

• Changing the prover's random tape just before step 3 can also only make things
worse for the extractor, for similar reasons.

• The extractor cannot change x successfully at step 4 without breaking the bit com-
mitment scheme.

• Changing the prover's random tape just before step 5 would not affect the round,
since the honest prover's algorithm for q0 -1 is deterministic.

Notice that if the commitment scheme is unconditionally concealing [BY90], it would be
safe against arbitrarily powerful provers. Hence Protocol 3 would be a proof-system that
demonstrates proof of knowledge, yet it would not be granted this status by the definition
of [FFS88]. Furthermore, such a protocol does not even have to be zero-knowledge.

262

We are currently working at formalizing the ideas presented in this section. Much
remains to be done before we can assert that the our definition of computationally con-
vincing proofs of knowledge, as well as Feige, Fiat and Shamir's definition, are too restric-
tive. Should we be correct on this, the next question will obviously be to find a better
definition.

R e f e r e n c e s

IBM88]

[BLP89]

[Bra90]

[Bra91]

[BCC881

[BC86]

[BC89]

[BCY89]

[BY90]

[Ch~S6]

[FFS88]

[For87]

[GMW86]

[GMR89]

[TW87]

Babai, L. and S. Moran, "Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes", Journal of Computer and System Sciences, Vol. 36,
1988, pp. 254-276.
Boyar, J., C. Lund, and R. Peralta, "On the communication complexity of zero-
knowledge proofs", manuscript submitted to the Journal of Cryptology, 1989.
Brassard, G., "Constant-round perfect zero-knowledge made easy (and efficient)",
manuscript available from the author, 1990.
Brassard, G., "Cryptology column - - How convincing is your protocol?" Sigact
News, in preparation, 1991.
Brassard, G., D. Chaum, and C. Cr6peau, "Minimum disclosure proofs of knowl-
edge", Journal of Computer and System Sciences, Vol. 37, no. 2, 1988, pp. 156-189.
Brassard, G. and C. Cr6peau, "Non-transitive transfer of confidence: A per/ect zero-
knowledge interactive protocol for SAT and beyond", Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, 1986, pp. 188-195.
Brassard, G. and C. Cr6peau, "Sorting out zero-knowledge', Advances in Cryptology:
EUROCRYPT '89 Proceedings, Springer-Verlag, to appear.
Brassard, G., C. Cr6peau, and M. Yung, "Everything in N P can be argued in
perfect zero-knowledge in a bounded number of rounds", Proceedings o] the 16th
International Colloquium on Automata, Languages and Programming, Springer-
Verlag, 1989, pp. 123-136. Final paper to appear in Theoretical Computer Science
as "Constant-round perfect zero-knowledge computationalty convincing protocols".
Brassard, G. and M. Yung, "One-way group actions", Advances in Cryptology:
CRYPTO '90 Proceedings, Springer-Verlag, to appear.
Chaum, D., "Demonstrating that a public predicate can be satisfied without reveal-
ing any information about how", Advances in Cryptology: CR YPTO '86 Proceedings,
Springer-Verlag, 1987, pp. 195-199.
Feige, U., A. Fiat, and A. Shamir, "Zero knowledge proofs of identity", Journal of
Cryptology, Vol. 1, no. 2, 1988, pp. 77-94.
Fortnow, L., "The complexity of perfect zero-knowledge", Proceedings of the 19th
ACM Symposium on Theory of Computing, 1987, pp. 204-209.
Goldreich, O., S. Micali, and A. Wigderson, "Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design", Proceedings of the
27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 174-187.
Goldwasser, S., S. Micali, and C. Rackoff, "The knowledge complexity of interactive
proof systems", SIAM Journal on Computing, Vol. 18, no. 1, 1989, pp. 186-208.
Tompa, M. and H. Woll, "Random self-reducibility and zero-knowledge proofs of
possession of knowledge", Proceedings of the 28th IEEE Symposium on Foundations
of Computer Science, 1987, pp. 472-482.

