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1 Introduction 

In the late 1960’s a physicist, Stephen Wiesner, had the idea that the uncertainty 
principle could be used for cryptography (though he published his result much later 
[Wie83]). One of his ideas was that it would be possible to use a stream of polarized 
photons to transmit two messages in a way that would make only one of them readable 
at the receiver’s choosing. This notion, which he called “multiplexing”, is remarkably 
similar to the “one-out-of-two oblivious transfer” to be reinvented many years later 

[EGL83], and it even predates Rabin’s notion of oblivious transfer [Rab81] by more 
than a decade. In the late 1970’s, Wiesner’s invention was brought back to life by 
the work of Charles H. Bennett and Gilles Brassard, which resulted in a CRYPTO ‘82 
paper [BBBW82]. Subsequently, Bennett and Brassard used quantum cryptographic 
principles to implement basic cryptographic protocols, such as secret key exchange 
and coin tossing by telephone [BB84]. There has been recently much excitement 

in the field of quantum cryptography because a working prototype of the quantum 
key exchange channel has been successfully built at the IBM T. J. Watson Research 
Laboratory, Yorktown Heights [BBBSSSO]. 

In recent times, the importance of cryptographic primitives has been brought to 
light by the work of many researchers whose goal is to characterize precisely the 
primitives sufficient for the implementation of various cryptographic protocols. One 
of these primitives is a Bit Commitment Scheme. The importance and usefulness of 
such a primitive is enlightened by the work of [GMW86, BCC88] to mention just a 
few. 
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While such primitives are usually built under computational complexity assump- 
tions, it is sometimes possible to build them based on assumptions of a different na- 
ture, as pointed out by [Wie83, BBBW82, BB84, CK88]. The current paper presents 
the state-of-the-art in the technology of building a bit commitment scheme on a 
quantum mechanical assumption. The applications are numerous, including secure 
two-party computation. 

2 Physics background 

For a complete coverage of the physics of quantum cryptography, please consult 
[BB84] or chapter 6 of [Bra88]. The linear polarization of photons is a quantum 
state. In general, the value of this variable cannot be determined exactly. According 
to quantum mechanics, although the value of the polarization can be any angle in the 
(red) interval [0", 180"), only specific boolean (two states) predicates can be measured 
about this variable. Moreover, only one such measurement can be performed on any 
given photon because the measurement itself necessarily destroys the information. 
For instance, let 0 be the polarization of a photon. Assuming that it is known a 
pn'ori that 0 is either 0" or go", the predicate "Is 0 = O"?" can be measured accu- 
rately for these two quantum states (at least in principle). On the other hand, even 
if 0 is known to be either 0" or 45", then no measuring apparatus can distinguish 
between these two states with certainty, although some probabilistic information can 
be obtained. If we have no constraint on the set of possible values for 0, then the 
result of any apparatus designed to decide whether 0 = 0' will be a probabilistic 
answer dependent on the value of 0, but no certainty can be achieved. It is not a 
matter of technology, it is not that no one has a good enough apparatus to figure 
out 0; quantum theory tells us that it is impossible to determine this value with 
certainty. 

It is however possible (in principle) to build a device that always says "yes" if 
0 = 0" and always says "non when 0 = 90". In general, with such a device, 
Prob(devicesays "yes"(@) = cos2(@). This can be obtained by combining a Wol- 
laston prism with two photomultipliers (photon detectors). See figure 1. Consider a 
Wollaston prism set for distinguishing polarization angles 4 from 4 + 90". A photon 
polarized at  angle 0 will come out of this Wollaston prism on the left side with prob- 
ability cos2(0 - 4) (and will then be repolarized at angle 9) and on the right side 
with complementary probability sin2(@ - 9) (and will then be repolarized at angle 
4 + 90"). According to quantum mechanics, this device is the best that can be built 
with respect to measuring the polarization 0 of a single photon. 
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Figure 1: Photons passing t.hrough a Wollaston prism set at angle 0’. 

3 Review of earlier quantum protocols 

3.1 A bit commitment scheme 

Consider two parties: a sender  S and a receiver R. Assume that S has a bit b in 
mind, to which she’ would like to be committed toward R. That is, S wishes to 
provide R with a piece of evidence that she has a bit in mind and that she cannot 
change it. Meanwhile, R should not be able to tell from that evidence what b is. 
At a later time, however, it must be possible for S to open the commitment, that is 
to show R which bit she had committed to, and convince him that this is indeed the 
genuine bit that she had in mind when she committed. 

The first quantum bit commitment scheme ever proposed is due to Bennett and 
Brassard [BB84] (actually, the protocol they describe is only claimed to implement 
coin tossing, but it is obvious how to modify it in order to implement bit commitment; 
here, we proceed the other way around). Let us briefly review this protocol and its 
main weaknesses before describing our new scheme in Section 4. Let s be a security 
parameter. In order to commit to bit b toward R, S initiates the following protocol. 

For the sake of convenience, we shall refer to S as a “she” and to R as a “he”. 



52 

Protocol  3.1 ( BB-commit(b) ) 

1: S chooses a vector B = ( b l ,  bz ,  ..., b,) of s random bits 

2: R chooses a vector 0 = ( 8 1 , 8 2 ,  . . . , 6 , )  of s random 6; E {0’,45’] 

3: DO S sends a photon with polarization b x 45’ + b; x go’, 
J 

:=1 
which R reads at angle 0, 

R sets b: t 0 
1 

if photon came out on the left 
if photon came out on the right i 

4: R keeps 0 and B’ = ( b i ,  b i ,  ..., b i )  secret 

5 :  S keeps b and B secret until (and if)  she later opens her comciitment 

Notice that since b, is chosen at random, the received bit b: revaals no inforrna- 
tion about b. Therefore receiving B’ = ( b i ,  bk, ..., b t )  reveals not :ling about b. But 
of course, R could be dishonest and perform a different measurement on the pho- 
tons sent by S in the hope of learning something about b. In fact, a very strong 
statement can be proved: quantum mechanics tells us that no measuring apparatus 
can distinguish a commitment to O from a commitment to  1, unless it is possible to  
communicate information faster than the speed of light. It is impossible to  obtain 
even a probabilistic bias about which bit was committed to. Therefore, the privacy 
of 5 ” s  bit b is unconditionally protected. But why is S committed? 

To open her commitment, S initiates the following protocol with R. 
~~ 

Protocol  3.2 ( BB-open((B, b ) ,  (B‘, 0 ) )  ) 

1: S reveals b and B to R 

2: DO R checks that b: = b; whenever Bi = b x 45” 

3: if this condition is satisfied for all i then R outputs “accept” 

s 

1=1 

else R outputs “reject” 

First note that if S is honest then the condition is always satisfied, provided 
that no transmission errors have occurred due to imperfections of the apparatus (the 
possibility of transmission errors in practice is addressed in section 3.3). Now suppose 
that a cheating S tries to  “commit” in a way that will enable her to open B as 0 or 1 at 
her later choice. In order to  achieve this, she may prefer to send her photons at angles 
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that are not among {0", 45", go", 135"). A strategy for a cheating S consists of a vector 
CP = ($1, $ 2 ,  ...? q S )  of values in the real interval [0", 180") together with two binary 
vectors Bo = ( b y ,  b t ,  ..., by) and B' = ( b ; ,  b:, ..., bf) .  In order to use this strategy, 
S sends her ith photon with polarization angle 4; during protocol BB-commit. If she 
wishes to open the commitment as b E (0, l}. she runs BB-open with (Bb,  b )  as her 
share of the input. The strategy is succpssful if 

V i  [(el = 0") 5 (6;  = b:)  and (0,  = 45") + ( b t  = a : ) ] .  (1) 

An optimal strategy is one that has the highest probability of being successful. 

We leave it for the reader to verify that for all choices of Bo and B', there is exactly 
one choice of @ that will maximize S's probability of success. In that optimal choice, 
it is always the case that all 4 i?s  belong to {22$" ,  67i0,  112:', 157;"). For example, 
if by = 1 and bf = 0, then it is best to set di = 67 i "  because 6: is likely to be 1 if R's 
reading angle 6'; was 0" whereas b: is likely to be 0 if 0, was 45". With this strategy, S's 
probability of failure is sin'(22;') z 15 % for each i. Therefore, whichever strategy 
is used, the probability that equation 1 holds is at most ( c 0 ~ ~ ( 2 2 ~ ~ ) ) ' ,  which can 
be made arbitrarily small. (If R follows his protocol blindly, S's simplest optimal 
strategy is to set 4; = 22;" and bp = bi = 0 for all i. However, a human R might 
become suspicious. Therefore, it is safer to choose Bo and B' randomly and to set 
accordingly.) 

3.2 Coin tossing 

Bennett and Brassard used this technique in order to implement a protocol for coin 
tossing by (quantum!) "telephone" [Blu81] as follows. 

Protocol 3.3 ( BB-cointoss ) 

1: S chooses a random bit bo and uses BB-commit(b0) with R 

2: R chooses a random bit bl and sends it to S 

3: S runs BB-open(b0) with 72 

4: R wins the coin toss if and only if bl = bo 

This protocol can be broken exactly if the bit commitment scheme can be broken. 
Of course, S could refuse to  cooperate at step 3 if she decides that she does not wish 
the result of the coin toss to become known to R. 
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3.3 The problems with this scheme 

The bit commitment scheme of section 3.1 and the resulting coin tossing protocol 
have major defects both in principle and in practice. 

As mentioned in [BB84], these schemes can be defeated in theory using the 
consequences of the Einstein - Podolsky - Rosen so-called “EPR paradox” [EPR35]. 
The interested reader can consult [BB84] for a more detailed explanation. Let us 
only say here that this kind of attack is rather implausible in practice because the 
apparatus necessary to perform it is far beyond the current available technology, and 
because even a small failure in the cheater’s technology will result in the loss of her * 
possibility of cheating. Nevertheless, from a theoretical point of view, it is important 
to  design a protocol that is not subject to the EPR threat. This is precisely the main 
purpose of the current paper, as we shall proceed to explain in the next section. 

In addition to the theoretical weakness described above, the schemes of [BB84] 
suffer from two problems in practice. One of these problems is easy to deal with but 
the other is not. The first practical problem is that it is not reasonable to expect in 
protocol BB-open that b: = 6i every single time that 0, = b x 4 5 ” .  Indeed, transmission 
errors will necessarily occur in practice. Such errors can be due to misalignment of 
S’s and 72’s apparatuses, to dark currents in R’s photomultipliers and to photons 
repolarizing for one reason or another while in transit. Also, photomultipliers do 
not have perfect efficiency, and therefore R will receive nothing at all most of the 
time (in which case he knows that he did not receive the photon, unless he is fooled 
by his own photomultipliers’ dark current - a reasonably rare event). Fortunately, 
the actual apparatus built in Yorktown Heights to demonstrate the feasibility of the 
quantum key exchange protocol IBBBSSSO] shows that it is entirely reasonable to 
expect an error rate below 5 7% when a photon is received (or thought to be received). 
On the other hand, recall that S’s optimal cheating strategy would give her the value 
of each relevant b: with probability roughly 85 % (even if no transmission errors occur). 
Therefore, the protocol remains safe against S’s cheating attempts even if R accepts 
provided that b: = b; at least 90% of the times when the photon is detected and 
0; = 6 x 45”. The only price to  pay for this increased robustness is that the security 
parameter s must be chosen larger in order to attain the same small probability of 
undetected cheating. 

The other practical problem with the schemes of [BB84] is much more serious. 
Recall that the protocol calls for S to send single polarized photons to R. Although 
this is possible in principle, it is very difficult to achieve in practice. It is much easier 
to send very dim pulses of polarized photons, as with the experimental quantum key 
exchange apparatus. Unfortunately, such dim pulses will sometimes contain more 
than one photon, and all the photons in any single pulse will be polarized at the 
same angle. These multiphoton pulses are of no consequences for key exchange, but 
they spell doom on the bit commitment scheme described above. Indeed, whenever 

Only S can take advantage of the EPR loophole. As previously stated, R has no possibility of 
cheating whatsoever. 
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R reads a pulse a t  angle 0, and detects photons coming out both on the right and the 
left, it is very likely to mean that the pulse contained more than one photon and that 
they were all polarized either a t  angle 45'-0, or 135" -0;. In either case, the value of b 
becomes known to R. There is no known way to  get around this difficulty in practice 
with the bit commitment scheme of Bennett and Brassard. In sharp contrast, the new 
scheme that we now describe remains secure even if a small number of multiphoton 
pulses occur. 

4 A new bit commitment scheme 

4.1 How t o  commit 

In order to commit to a bit b, S builds an s x s boolean matrix: 

which is random subject to the following property: 

V I < i < s  [ $ b i , j = b  

She sends it to R using the following protocol. 

Protocol 4.1 ( BC-commit(b) ) 

1: S builds a random s x s boolean matrix B as indicated above 

2: DODO S chooses a random $t,J E {0°,45"} and 
a s  

r = l  3=1 

R chooses a random B;,j E {OD, 45'1 
s s  

1=1 7=1 
3: DODO S sends a photon with polarization &, j  + 6i,,  x 90°, 

which 72 reads at angle B;,j 

R sets b:,j + 
0 
1 

if photon came out on the left 
if photon came out on the right { 

4: R keeps B' and 0 (see below) secret 

5:  S keeps 6,  B and 
commitment 

(see below) secret until (and if) she later opens her 
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where 

If both participants are honest, B’ is such that 

V 1 5 i 5 s, 1 5 j 5 s [Prob(b:,j = b;,j) = 3. 
However, if R uses angle B,,j = 22+”, he will end up getting more information about B. 
It is an easy exercise to prove that this is the optimal strategy for a cheating R. 
With such measurements, ‘d 1 5 i 5 s ,  1 5 j 5 s [Prob(bij = bi,,) = cos2(22io)]. 
Nevertheless, even then the matrix B‘ reveals very little about b. We measure this 
fact by computing Prob(b = OIB’) and Prob(b = lIZ?‘) for every possible B‘. We are 
satisfied if there exists a positive constant cr < 1 such that 

IProb(b = OIB’) - Prob(b = 1IB’)I 5 as 

for every B’. Since Prob(b = OlB’) + Prob(b = 11B’) = 1, the following condition is 
sufficient for this result. 

Theorem 4.1 There exists a positive constant a < 1 such that 

- (I’ _< Prob(b = OlB’) 5 1 + a’. 

Proof. 

Provided in the journal version of the paper. 0 

4.2 How to open 

The above theorem shows that an honest S does not reveal much about her secret 
bit b by sending the matrix B through the quantum channel, hence R may at best 
learn an exponentially small bias about bit b. But for this to be a commitment, it 
should be possible for S to convince R of what bit she has committed to. She should 
not be able to open the “commitment” to  show a bit of her choice. 

To open her commitment, the honest S initiates the following protocol with R. 
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Protocol  4.2 ( BC-open((B, @, b ) ,  (B' ,  0 ) )  ) 

1: S reveals b,  B and @ to R 

2: DsO R checks that &)br,3 = b 
r = l  

j=1 

9 s  

3: DODO R checks that b:,J = bl,J ahenever 81,1 = 

4: if this condition is satisfied for all z and j ,  then R outputs "accept" 

GI j=1 

else R outputs "reject" 

In order to  prove that S cannot cheat, one must once again take account of all the 
possible ways in which S could deviate from her prescribed behaviour, not only in BC- 
open but also in BC-commit. In particular, she could bypass the choice of matrices B 
and G at steps 1 and 2 in BC-commit, and send photons with arbitrary polarization 
angles at step 3. In general, a strategy for a cheating S consists of a matrix 6 of 
arbitrary angles, together with two pairs of matrices Bo, Q0 and B', G1 such that Bo 
and B' are boolean, whereas ipO and @' contain only 0" and 45". In order to use this 
strategy, S sends her photons with polarization angles according to  6 during protocol 
BB-commit. If she wishes to open the commitment as b E {0,1}, she runs BB-open 
with (B' ,  Gb, b)  as her share of the input. A strategy is successful if 

V i , j  [($" 1 J  = 0; IJ  ,) + (b:,, = b;,,) and ($:,, = O,, j )  j (b;,, = b: , j )] .  (4) 

Theorem 4.2 There exists a constant Q < 1 such that the probability of success of 
any strategy is at most a*. 

Proof. 

First notice that there are no probabilities associated with whether a strategy 
satisfies equation 3. Thus, we may as well assume that this equation holds, which 
implies that Bo and B' differ at least once in each row. Therefore, there are at least s 
bits that are different between these two matrices. Let i and j be such that by,j # bt j .  
First consider the case in which $:,j = dt,j = 4. With probability i, the reading 
angle Oi,, is equal to 4. If this occurs, equation 4 is necessarily violated. Also with 
probability f ,  0;,j # 4, in which case equation 4 is (vacuously) satisfied for such values 
of i and j. Therefore, the choice of &,j is irrelevant when by,j # b:,j and @ j  = $$, 
and the probability that this will cause the strategy to be rejected is always f .  
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Now consider the case in which 4:,j f- c&. In order to maximize her chances of 
satisfying equation 4, S'S optimal strategy is to send the corresponding photon at an 
angle 4 ; , j  that will simultaneously maximize her chances that it will be read as bp.j if 
measured at angle i$y,j, whereas it will be read as bt,i if measured at angle $$. That 
angle is easily seen to be 67;' if b t j  = 0 and q57,J = 45" or if = 1 and d7,j = 0". 
The angle 157;' is optimal for the other two cases. In all cases, equation 4 is violated 
with probability sin'(22i') M 15 %. 

F i s  shows clearly that it is always preferable to set o:,~ + ?:,: whenever b!%J # bi,j,  
but that even then the probability of success is at most cos2('12i"i 85% for each 
such pair ( i , j ) .  Since there must be at least s such pairs in order to  satisfy equation 3, 
we conclude that no strategy can succeed with probability greater than ( C O S ~ ( ~ ~ $ " ) ) ~ ,  

which can be made arbitrarily small. 

4.3 The problems with this new scheme 

Recall that the original bit commitment scheme of Bennett arid Ijrassard [BB84] 
suffered from problems in principle as well as in practice. Unfortunately, this is also 
the case with our new scheme. However, the new protocoi is somewhat of a dual 
to he old one because the problems that were serious with the old scheme are of no 
consequence with the new scheme, and vice versa. Also, the only party that had a 
possibility of cheating in an ideal implementation of the old scheme was S ,  whereas 
now it is R. We shall see in section 5 how to capitalize on this role reversal. 

One thing that is not ruled out by quantum mechanics is the possibility of eval- 
uating predicates on several photons at once. Such possibility is known in the world 
of quantum mechanics as coherent measurements. For instance, there are functions 
f such that, given two photons of polarization d1 and d2, there might exist a way 
to find out more about f($l, &) than what can be obtaincd by applying f (or per- 
haps another function) to what can be measured about $* and d z  separately. Such 
a possibility would make the commitment scheme described above totally insecure if 
the gt of the values carried by many photons could be measured at once, even if only 
a reasonably good estimate on the answer could be obtained. Indeed, the value of b 

could then be recovered easily using equation 2: b = @ bi,, and taking majority on 

Fortunately, not only is no technology available to  do coherent measurements, 
but its availability is not predicted for any foreseeable future. In fact, physicists 
do not even know how to get photons to interact in ways that could lead to  such 
measurements. Therefore, although such a possibility exists in principle for R to 
cheat, there should be very little concern that the protocol be broken this way in 
practice. On the other hand, it is easy to  see that the EPR threat that allowed S to 
cheat the protocol of Bennett and Brassard does not apply to the new scheme even 
in principle. (And conversely, coherent measurements could not help break the old 
scheme even in principle.) 

9 

the rows. j=1 
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From a practical point of view, howehrer, notice that even a few transmission 
errors will lead R to believe that S is cheating and thus to reject her commitments 
even when she is honest. Because occasional transmission errors are technologically 
unavoidable, it is important to be able to deal with them if this scheme is ever to 
be used in practice. We do not know of any simple solution to solve this difficulty 
because it would be easy for S to  cheat if 77 were willing to tolerate that b:,j # bi,j even 
occasionally when 6t,J = d;,,. Nevertheless. this problem will be addressed in another 
paper whose purpose is to  deal with transmission errors in quantum protocols. That 
paper, which is currently in preparation with Charles H. Bennett [BBCSO], solves not 
only the question of practical quantum bit commitment, but also that of practical 
quantum oblivious transfer . 

On the other hand, recall that the bit commitment scheme of Bennett and Bras- 
sard was seriously impaired in practice b y  the difficulty of producing single polarized 
photons. A more careful analysis in  the proof of theorem 4.1 shows that this is not 
a worry with the new protocol presented here. Our protocol works just as well if 
multiphoton pulses happen, providcd : k i t  their occurrence is not too frequent (at the 
cost of using a slightly larger security parameter s). 

5 Have we gained anything? 

As it turns out, having two different schemes is better than one even if each of them 
can be broken in principle. Indeed, one can build a coin tossing protocol that can be 
broken only if one can implement both the EPR attack and coherent measurements. 
Consider the following protocol. 

Protocol 5.1 ( BC-cointoss ) 

1: S chooses a random bit bo and uses BB-commit(b0) with R 

2: R chooses a random bit bl and uses BC-commit(b1) with S 
(the roles of R and S are temporarily interchanged) 

3: S runs BB-open(b0) with R 

4: R runs BC-open(b1) with S 

5:  R wins the coin toss if and only if 61 = bo 

In principle, this protocol can be broken only if S can implement the EPR attack 
as well as the coherent measurement attack. R has no way of cheating whatsoever, 
unless he can design an apparatus that can transmit information faster than the speed 
of light. The proof of this claim will be provided in the journal version of the paper. 
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6 Conclusion and open problems 

In the light of ongoing progress in experimental physics [AG86], it is reasonable to 
fear that the EPR attack on the bit commitment scheme (or coin tossing protocol) of 
[BB84] could be implemented. The bit commitment scheme that we have presented in 
this paper does not yield to  this attack. Unfortunately, we can still describe an attack 
on this new scheme, which is possible in principle although not in practice, based on 
coherent measurements. Can one build a bit commitment scheme unbreakable in 
an absolute way, based solely on the equations of quantum mechanics? We cannot 
answer this question at this time even if practical considerations are not taken into 
account. 

Still we have been able to  build a coin tossing protocol that is secure unless both 
attacks can be implemented. This seems to indicate that maybe Bit Commitment is 
more than Coin Tossing since, at this time, we are unable to offer a bit commitment 
scheme with this same level of security. 
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