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Abstract 

We describe a protocol for quantum oblivious transfer, utilizing faint pulses of 
polarized light, by which one of two mutually distrustful parties (“Alice”) transmits 
two one-bit messages in such a way that the other party (“Bob”) can choose which 
message he gets but cannot obtain information about both messages (he wiU learn 
his chosen bit’s value with exponentially small error probability and may gain at 
most exponentially little information about the value of the other bit), and Alice will 
be entirely ignorant of which bit he received. Neither party can cheat (ie deviate 
from the protocol while appearing to  follow it) in such a way as to  obtain more 
information than what is given by the description of the protocol. Our protocol 
is easy to modify in order to implement the All-or-Nothing Disclosure of one out 
of two string messages, and it can be used to implement bit commitment and 
oblivious circuit evaluation without complexity-theoretic assumptions, in a way 
that remains secure even against cheaters that have unlimited computing power. 
Moreover, this protocol is practical in that it can be realized with available opto- 
electronic apparatus while being immune to any technologically feasible attack for 
the foreseeable future. 
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1 Introduction and history 

Quantum cryptography was initiated by Stephen Wiesner more than two decades ago [30]. 
Over the years, a large number of theoretical applications of quantum physics to cryp- 
tography have been discovered: unforgeable bank notes and multiplexing channel pol, 
unforgeable subway tokens [5], self-winding one-time pad [4], key distribution [3], oblivi- 
ous transfer [13], coin flipping [3, 81, and bit commitment [8] .  Recently, much excitement 
was created [29, 18, 14, 26, 15, 28, etc.] when the succe .~  of a first experimental proto- 
type was reported for the quantum key distribution protocol [l]. Until now, not only was 
this prototype the first physical realization of a quantum cryptographic protocol, but key 
distribution was the only quantum protocol ever proposed that could in fact be imple- 
mented reasonably with available technology, Even then, the prototype is not entirely 
convincing because it achieves secure key exchange over the distance of 32 centimeters! 

In this paper, we extend the applicability of quantum cryptography by describing a 
new protocol for oblivious transfer that  is practical in the sense that it can be realized with 
available opto-electronic apparatus while being immune to any technologically feasible 
attack for the foreseeable future, regardless of the computing power available to would-be 
cheaters. Techniques similar to those explained here can also be used to overcome the 
lack of tolerance to errors apparently inherent to the quantum bit commitment protocol 
of [8]. In this paper, we only concentrate on the new quantum oblivious transfer protocol, 
and leave it for the reader to figure out how these techniques apply to the bit commitment 
protocol. A major advantage of these protocols over the already-feasible key distribution 
is that bit commitment and oblivious transfer make perfect sense over a short distance. 

Previous quantum protocols have been proposed for both these tasks, but either they 
leaked too much information [30], or they could not have been implemented in practice 
because they required one party to generate pure single-photon light pulses [3] or because 
they could not tolerate errors due to detector noise [13, 81. 

Before we proceed, let us recall the purpose of Oblivious Transfer (OT). In  Rabin’s 
original OT [27], Alice sends a one-bit message to Bob, which he receives with probability 
50%! while receiving nothing otherwise. Bob finds out whether or not he received Alice’s 
bit, but Alice remains totally ignorant about this. Neither Alice nor Bob can influence the 
probability 50% of success. The related notion of 1-out-of-2 Oblivious Transfer ((i)-OT) 
was subsequently invented by Even, Goldreich and Lempel [16]. In this scenario, Alice 
and Bob, play the following game. Alice starts with two one-bit messages of her choosing. 
The purpose of the protocol is for Alice to transmit the messages to Bob in such a way 
that he can choose to receive either one of them (learning its value with exponentially 
small error probability) but cannot obtain significant partial information on both 2 1  while 
Alice remains entirely ignorant of which of the two messages he received. I t  is shown 
in [ll] that (:)-OT and Rabin’s OT are equivalent in the sense that either one can be 

In fact, what Wiesner called “multiplexing channel“ as early a., Ac! :-t- 1360’8 [30] is essentially 
what we now call 1-out-of-2 oblivious transfer (of messages rather than single bits), but his protocol 
leaked partial information on both messages and could be subverted by a receiver who lied about the 
quantum efficiency of his detectors. Thus, i t  can be said that the original inventor of oblivious transfer 
is Wiesner and that the current paper, which fixes the shortcomings of Wiesner’s protocol, is making 
quantum cryptography go full circle. 

More precisely, i f  b o ,  bi are Alice’s bits and A is the data Bob received through the protocol, then 
at least one of H(bolA. b l )  or H(b1 la, b o )  should be exponentially close to 1.  
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implemented from a primitive that implements the other. Therefore, a t  i e a t  from a 
theoretical point of view, it does not matter which of these two protocols we achieve. 
The Quantum OT protocol described in this paper implements directly (f)-OT, which 
is preferable from a practical point of view. 

Although OT might seem to be a bizarre idea at  first, it is now well-known [22, 121 
that it is a very useful primitive for building up interesting protocols, such as tweparty 
oblivious circuit evaluation (by which Alice owns a secret 2 ,  Bob owns a secret y, and 
both of them compute the value of f (z ,  y) for an agreed upon function f, in such a way 
that Alice learns nothing about y and Bob learns nothing about z, except for what can 
be inferred from one’s private input and the public value of f(z, y) ). 

Our new quantum OT protocol is described in Section 2, after a brief review of the 
main features of quantum physics. Section 3 reviews two .fundamental mathematical 
tools that are useful in  order to implement quantum OT in practice and prove its secu- 
rity. Section 4 describes the only possible cheating strategies under the technologically 
reasonable assumptions that light pulses cannot be stored for a significant length of time. 
Moreover, Section 4 proves, under this assumption, that our quantum OT protocol can- 
not be cheated by either party. Finally, Section 5 addresses more sophisticated attacks, 
which are completely infeasible a t  present or with any foreseeable technology: pulse stor- 
ing and coherent measurements. I t  is shown how to overcome the first of these attacks, 
but nothing is known about the unconditional security of our protocol against the second 
attack (which is even more unreasonable than the first, technologically speaking). Never- 
theless, even this second attack (or in fact a n y  attack consistent with quantum physics) 
can be thwarted from a computational point of view under the assumption that one-way 
functions exist. 

Let us emphasize that all known classical (ie nun-quantum) protocols for OT allow 
at  least one among Alice or Bob to cheat without risk of detection if she or he can break 
an unproved cryptographic assumption of some sort. Moreover, classical OT protocols 
necessarily offer the opportunity for one party to  attempt cheating off-line, which means 
that these protocols fail even if the cryptographic assumption can only be broken at  the 
cost of spending days of computing time on a supercomputer. More importantly, they 
can fail retrouctively if the appropriate algorithmic breakthrough is discovered years after 
the protocol has taken place, as long as the cheating party has kept a transcript of the 
execution of the protocol. In contrast, the basic quantum OT protocol fails against 
pulse storing only if the attack is carried out on-line, while the protocol is taking place. 
In particular, better technology in the future would not compromise the security of OTs 
carried out today. Similarly, the computational version of our scheme (assuming the 
existence of one-way permutations), which is secure against arbitrary technology but not 
arbitrary computing power, must be cheated on-line if it is to be cheated at all. 

2 Method 

This section describes a quantum oblivious transfer protocol implementable under re- 
alistic physical conditions and assumptions similar to those used in the quantum key 
distribution protocol of [2]. In particular we assume that the quantum transmission con- 
sists of series of very dim pulses of coherent or incoherent polarized light rather than 
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individual photons (which are harder to  generate), that the receiver attempts to de- 
tect the pulses by noisy, imperfectly quantum-efficient detectors such as photomultiplier 
tubes, and, as stated in the introduction, that the pulses cannot be stored for a signifi- 
cant length of time, so the receiver must measure each pulse before the next one arrives 
or else lose the opportunity of measuring it a t  all. 

The quantum transmission used in the protocol U S ~ S  light pulses of four canonical 
p ol ariz at ions: horizon t a1 , vertical, 45 - diagon a1 , and 135"- diagonal, henceforth denoted 
H ,  V ,  P ,  and Q respectively. As is well known, rectilinear ( H  and V )  photons can be 
reliably distinguished by one type of measurement, while diagonal ( P  and Q) photons can 
be reliably distinguished by another type of measurement; but the uncertainty principle 
of quantum physics decrees that a random outcome results, and all information is lost, 
if  one attempts to measure the rectilinear polarization of a diagonal photon, or vice 
versa. More generally, if a &polarized photon is subjected to a polarization measurement 
along axis 8, it behaves like a 6-polarized photon with probability cos'(4 - 0) and like 
a (0  + 90°)-polarized photon with the complementary probability sin2(# - 0). Such a 
measurement can be performed by using a B-oriented piece of birefringent material such 
as calcite to split the incoming light beam into two beams (polarized at  B and B f go"), 
then directing these beams into two sensitive photon detectors such as photomultiplier 
tubes. A pair of polarization states, such as H and V ,  or p and Q, that can be reliably 
distinguished by some measurement is called a basis; we will use polarization states H 
and V to represent the bits 0 and 1 respectively in the rectilinear basis, and P and Q to 
represent the same bits in the diagonal basis. 

At first it would seem that Rabin's OT could be achieved quite simply by having 
Alice send Bob a single photon encoding the bit to be obliviously transferred in one 
of the two canonical bases (rectilinear or diagonal), chosen randomly by Alice. Bob 
would then randomly choose a basis in which to measure the photon, and finally Alice 
would tell him the correct basis. At that point Bob would have a half chance of having 
received Alice's bit in the correct basis, and a half chance of knowing he had spoiled it, 
but Alice would not know which occurred. This simple protocol is inadequate because 
its probability of success would be seriously affected by inefficiency or noise in Bob's 
detectors, and because it would allow Bob to  get too much partial information about 
Alice's bit all the time by measuring in a basis intermediate between rectilinear and 
diagonal, say 0 = 221'. 

A protocol for achieving (:)-OT based on the above idea was proposed by Crkpeau 
and Kilian [13], but it was impractical because it failed dramatically in a realistic setting 
in which transmission errors may occur and dim light pulses are used rather than single 
photons. The more complicated protocol below is free from these disadvantages. The 
first step is necessary to adjust the protocol to the physical limitations of Bob's detection 
apparatus, but it may be skimmed at  first reading, being somewhat peripheral to  the 
main idea of the protocol. (The dark count rate d is a detector's probability of registering 
a count during a time slot when no photons are incident on it,  and the quantum efficiency 
q is the excess probability, above d, of registering a count when one photon is incident 
on the detector; a typical photomultiplier tube might have d = and q = 25%.) Let 
bo and 61 be Alice's bits and let c be Bob's choice (ie Bob wishes t o  obtain 6c). 

2 
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1. Bob teils Alice the quantum efficiency q and dark count rate d of his detectors. 
If these values are satisfactory (see below), Alice next tells Bob the intensity p of 
light pulses she will be using, the fraction a of these pulses she will expect him to 
detect successfully, and the bit error rate E she will be willing to correct in his da ta  
to compensate for his dark counts and other noise sources. She also decides on a 
security parameter N used below, which she communicates to Bob. Alice and Bob 
agree on a linear binary error-correcting code capable of correcting with very high 
probability N-bit words transmitted with expected error rate E (see Section 3.1). 
More precisely, a would normally be set to 1 - e--(pq+2d) x pp, the Poisson prob- 
ability of detecting 1 or more photons (or dark counts) in a pulse of intensity p,  
but might be set lower to allow for attenuation in the optical path between Alice 
and Bob. Similarly E would normally be set to d / a  z d/pp,  the expected error rate 
from dark counts in Bob’s two detectors, but might be set higher to compensate 
for other noise sources. Alice’s choice of p is guided by the need to simultaneously 
set a FZ p q  high enough and E M d/pq low enough that a cheating Bob, whose 
detectors were in fact far less noisy and more efficient than he claimed, would not 
gain a significant advantage from the brighter pulses and more voluminous check 
information he had thus induced Alice to send. In Section 4.3 it  is shown that 
safe oblivious transfer can be achieved when H ( ~ E )  < - (1 - e -p  - pe-@)/2a, 
where H is the entropy  function3. If this condition cannot be met, Alice aborts 
the protocol. 

Finally, Alice and Bob engage in a test run in which Alice sends pulses of intensity 
p in a prearranged sequence of polarizations, and Bob, reading each pulse in the 
correct basis, verifies that he can indeed detect the pulses with probability greater 
than a and error rate less than E .  

2.  Alice sends Bob a random sequence of 2N/a faint pulses of the four canonical 
polarizations. 

3. Bob randomly decides for each pulse whether to measure i t  in the rectilinear or 
diagonal basis, and records the basis and measurement result in a table whenever 
(with probability approximately a)  a pulse is detected. Therefore Bob should SUC- 

cessfully receive roughly 2N pulses. If he receives a few more, he ignores the excess; 
if he receives a few less, he completes his table by making a few random guesses, 
so that it has exactly 2N entries. Bob then reports to Alice the  arrival times of all 
2N pulses he committed himself to have received, but not the bases he used or his 
measurement results. 

4. Alice tells Bob the bases she used to send each of the pulses he received. 

5 .  Bob partitions his pulses into two sets of N pulses each: a “good” set consisting 
(as much as possible) of pulses he received in the correct basis, and a “bad” set 
consisting (as much as possible) of pulses he received in the wrong basis. He tells 
Alice the addresses of the two sets, but he does not tell her which is the good set 
and which is the bad set. At this point, Bob shares with Alice a word (ie an N-bit 
string) corresponding to his good set of measurements (with an  expected error rate 

The entropy function is defined as H(p) = plg ?. -k (1 - p ) l g  1. 
1 -P 
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not greater than E ) ;  he shares nothing (or nearly nothing since he may have received 
slightly more than N bits in the correct basis) with her with respect to his bad 
set of measurements provided that he faithfully followed the protocol. Alice does 
not know which word she shares with Bob. (It may well be that Bob did not quite 
receive N good pulses because of statistical fluctuations in the number of pulses 
received -which could be less than 2 N  - and in the proportion of Fulses that he 
measured in the correct basis -which could be slightly under f . However, when 
N is large enough, the errors that  this might create in his good set are negligible 
compared to the expected errors due to noise.) 

6 .  Using the error-correcting code chosen at step 1, Alice computes the syndromes 
of the words corresponding to each set, and she sends them to Bob over an  error- 
free channel. Given this data,  Bob should be able to recover the original word 
corresponding to his good set but not that  corresponding to his bad set. 

Furthermore, Alice computes a random subset parity for each set, and tells Bob 
the addresses defining these random subsets, but not the resulting parities. At this 
point, Bob knows one of these parities exactly, while knowing nothing (or nearly 
nothing) about the other parity, and he knows which parity he knows. Of course, 
Alice knows both parities, but she does not know which one Bob knows. Let t o  
and 11 denote these parity bits, and let i. denote which one Bob knows. 

7 .  Bob tells Alice whether or not c = 2. (This is the very first time in the protocol 
that c enters into play.) 

8. I f c  = E ,  Alice gives zo@,bo and 21 @ b l  to Bob (in this prescribed order), otherwise 
she gives him 20 @ bl and 21 @ bo. From this, Bob extracts b,. 

Theorem: Let 2. be the da ta  Bob obtains from the protocol. At least one of H(bolA, bi) 
or H(blJA, bo) is exponentially close (in N )  to 1. Regardless ofwhat happens, Alice learns 
nothing. 

Proof: The rest of this paper constitutes the proof of this theorem. The  main idea is 
that Alice uses an error-correcting code to give Bob enough side information to correct 
the errors in the good set but not the bad set, then hashes each set down to a single bit 
in such a way that Bob’s residual information on the bit corresponding to his bad set is 
negligibly small. 

Note: Because privacy amplification 171 can be used to distill more than one bit, it is 
easy to modify the protocol so that bo and bl are &bit messages rather than single bits, 
in effect implementing directly the two-message version of ANDOS, the all-or-nothing- 
disclosure-of-secrets of [g] . 

3 Review of useful tools 

Two fundamental tools will be needed in order to allow the honest Bob to  receive bit bc 
while preventing a cheating Bob from learning something about both bits: concatenated 
codes and privacy amplification. 
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3.1 Concatenated codes 

One major problem in making our protocol work in practice is that we need to furnish 
Bob with information by which he can correct the small error rate of the good pulses 
(due to dark counts and other unavoidable noise), and do so with reasonable decoding 
effort and exponentially small (in N )  residual error probability; while at the  same time 
preventing him (except with exponentially small probability of success) from correcting 
all the errors in a set containing a significant proportion of pulses received in wrong 
bases, even with unlimited decoding effort. A concatenated code [17] combining a Reed- 
Solomon (RS) code [23] and a random linear binary code of exponentially smaller size is 
an appropriate choice for this purpose. 

Such codes offer exponentially small residual error probability, while allowing infor- 
mation to be transmitted through a noisy binary symmetric channel efficiently at a rate 
R(E)  5 1 - H(2&) Their decoding may be accomplished efficiently by Beriekamp’s al- 
gorithm for the RS-code and by a brute-force search for the random linear code (the 
brute-force search takes exponential time in the size of the random linear code, but this 
is efficient since this code is chosen to be exponentially smaller than the =-code). 

Recall that to each binary linear error-correcting code is associated a p a r i t y  check 
matrix H so that a word b is a codeword if and only if HbT is the zero vector. For an 
arbitrary word 6, the value of HbT is called the syndrome of b.  Our use of error-correcting 
codes is somewhat nonstandard. Instead of sending a codeword into the (noisy) quantum 
channel, Alice sends a random word. To allow efficient decoding by Bob, she also sends 
him the corresponding syndrome over a noiseless channel. I t  is easy to see that this does 
not alter Bob’s decoding effort, and i t  has the advantage of facilitating the use of privacy 
amplification (see below). 

The fact that these codes can also prevent Bob (except with exponentially small 
probability of success) from correcting the errors in a set containing a significant propor- 
tion of pulses received in wrong bases, even with unlimited decoding effort, is far more 
complicated to demonstrate. We sketch in Section 4.2 that  whatever set of (canonical or 
noncanonical) bases Bob uses at step 3 to get his da ta  and whatever partition he chooses 
at step 5 ,  the additional information provided to him by Alice does not enable him to 
correct the errors in both sets, or even gain partial information about more than one of 
Alice’s bits (except with exponentially small probability). 

3.2 Privacy amplification 

Privacy amplification is a tool developed in [7] for distilling a short very secret string 
from a longer partly-secret one. Here, we need only a rather simple special case of this 
technique. Let E denote a string of length N about which Bob knows only k parity bits4,  
where k < N .  A special case of Theorem 10 in [7 ,  p. 2241 says that if a random subset of 
the bits of x is chosen, the probability that Bob has any information about its parity is 
less than 2 - ( N - k - 1 ) /  In 2 .  

A parity bit about I is the exclusive-or of an arbitrary subset of the bits of z. In particular, physical 
parity bits. bits and check bits generated by linear error-cornction codes, such an the syndrome of I, 
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In particular, consider the case in which Bob already knows t bits of I and consider a 
security parameter s. If no more than N - t  -s -  1 additional parity bits are given to Bob 
as the syndrome of 2 with respect to a linear code, the expected amount of information 
he has on the parity of a random subset of z is less than 2-3/  In 2. (Tbis is a conservative 
estimate since it is likely that the check bits would not be entirely independent from the 
bits previously known.) Therefore, if Bob knows a proportion y < 1 - H ( ~ E )  of the bits 
of 2 before receiving the  syndrome, and if enough check bits are provided to correct a 
proportion E of errors, then the probability that Bob knows anything about the parity of 
a random subset of the bits of z remains arbitrarily small provided that z is sufficiently 
long. 

4 Various cheats and how to overcome them 

Let us first notice that there is very IittIe that Alice can do in order to cheat the quan- 
tum OT protocol of Section 2. Obviously, she can cheat at step 8 by telling Bob the 
complement of what she should. However, this does not count as genuine cheating since 
in this case an OT will have been carried out,  except that  the bit transferred will not 
have been what it should have (nothing can prevent this type of cheating unless Alice 
has to commit to her bits before the start  of the protocol - an entirely different problem 
known as verifiable oblivious transfer [12]). 

What would count as a genuine success in cheating for Alice would be if she could 
determine (or at least get an indication about) which of her bits was of interest to Bob 
(ie the value of c ) .  But notice that Bob does not say anything tha t  involves c until 
step 7. Moreover, i. is purely random and information-theoretically hidden from Alice 
because she cannot tell which of Bob’s sets was the good set 5 .  Therefore, telling Alice 
a t  step 7 whether or not c = 2 does not reveal any information about c either. Thus, 
it is information-theoretically impossible for Alice to cheat, regardless of her computing 
power and available technology, provided that Bob faithfully follows his protocol. 

Nevertheless, there i s  one thing that Alice can attempt in the hope that Bob will 
goof she can use garbage for one of the two syndromes she sends at step 6. The  point is 
that  Bob would have no way of detecting such behaviour if she sends garbage in relation 
to his bad set (which he does not even try to correct). Therefore, if Bob complains, she 
learns that this must be because she chose to send garbage for the good set. In itself, 
this cheat would not pay off because Bob would catch Alice in the act of cheating before 
she had any chance to learn something: Bob’s choice c is not used in the protocol until 
step 7,  after Alice is asked to send her syndromes. However, if Bob does not complain, 
Alice might infer that she picked the bad set -since otherwise, she may think, he w o d d  
have complained! This is more serious because in this case the protocol will continue and 
Alice will learn Bob’s choice c, and moreover Bob will not even be aware of this leakage. 
Of course, each time Alice gambles on this, she runs a 50% chance of being caught, but 
it may be worthwhile since it could be that even one undetected success is enough to 
tell Alice a great deal. There is an easy way out for Bob: if he discovers tha t  Alice has 
cheated, he stoically shuts his mouth and continues as if nothing had happened. (Once 

This is why we had to use noninteractive reconciliation, such 88 that provided by error-correcting 
codes, rather than the inleraclrve reconciliation protocols of [6, 21. 
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aware of Alice’s dishonesty, he takes whatever actions are necessary to counter her plans, 
but he must do so discreetly.) If Alice knows that this will be Bob’s behaviour, she 
knows that she cannot hope to learn anything from cheating, and thus she may not even 
attempt it.  Potential harm caused by this kind of cheating behaviour from Alice can also 
be prevented mathematically rather than psychologically. The  protocol used in [13] to 
reduce (f>-OT to sc-called a-(:)-OT can be used here to ensure that Alice cannot gain 
information on Bob’s choice except with exponentially small probability, and tha t  she is 
almost certain to be caught in the act (before gaining any information) if she even tries. 

In sharp contrast, several cheating strategies are available for Bob to attempt creating 
two good sets at step 5, or at  least two sets so that he learns something about both of 
Alice’s bits. We shall now demonstrate that ,  regardless of Bob’s strategy, there is at 
least one set that would result in Bob learning at most an exponentially small bias 
on the corresponding bit of Alice. Without loss of generality, we shall concentrate on 
symmetric strategies, ie cheating strategies that favour neither of the sets formed by Bob. 
Indeed, any asymmetric strategy would reduce Bob’s advantage about one of Alice’s bits, 
and would therefore be less good if Cheating Bob’s goal is to learn something about both 
bits. 

4.1 The standard attack 

Let us first consider the easy case in which Bob does not cheat at step 3 .  In such a 
case, Bob’s only symmetric strategy would be to select about N / 2  good bits (and thus 
N / 2  bad bits) in each set. As a r e sd t ,  Bob knows only about half of the bits in each 
set. As long as the number of check bits sent by Alice at step 6 for each set is less than  
N/2, it follows that Bob knows less than N parity bits about each set. Hence, privacy 
amplification applies to conclude that Bob’s expected information on the parities of both 
random subsets chosen by Alice at  step 8 are vanishingly small. Therefore, this attack 
is futile whenever H ( ~ E )  < 3, ie E < 5.501%, as we have seen in Section 3.2. 

To be technically exact, one should consider the case in which Bob is more 
lucky than average a t  step 3 and gets more than N good bits. The number L of 
good bits follows a Binomial(2N, 1/2). Therefore, the standard deviation of L / 2  is m. This implies that  the probability that L / 2  exceeds N / 2  + 5m is about 
one in two million. Moreover, one should also take account of the privacy amplification 
parameter s (cf Section 3 . 2 ) .  Setting s = 21 makes Bob’s probability of knowing the 
parity of a random subset less than about one in two million as well. Therefore, if the 
code’s syndromes are of length less than N / 2  - 5 m  - 22 bits, the probability that 
Bob succeeds a t  cheating is no better than one in a million. In practice, this means that 
E should be somewhat smaller than 5.501% for Alice to accept to play the game, but 
that the threshold probability tends to 5.501% as N tends to infinity. In our analysis 
of the other, more sophisticated, attacks, we shall be somewhat sloppy and determine 
E as if Bob did not get more information than average. A more careful analysis will be 
provided in the final paper. 
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4.2  The Breidbart attack 

An obvious way in which Bob can cheat is by measuring Alice's pulses in bases other than 
rectilinear or diagonal. The most extreme such strategy would be for him to measure 
each pulse in the so-called Ereidbart basts [5], which is angle 2 2 i o ,  precisely half-way 
between the canonical bases. When he does this, Bob obtains each of Alice's bits with 
probability p = COS? 22;" = (2 + d ) / 4  x 85.3553%. Note that knowing a bit with 
probability p yields only 1 - H(P) x 0.399 bit of information in the sense of Shannon, 
whereas a legitimate measurement in a canonical basis yields an expected 0.5 bit of 
Shannon information. Nevertheless, it could happen that Breidbart measurements are 
more useful in the presence of additional check bit information and/or more resistant to 
privacy amplification, 

I t  turns out that this is not so: no measurement can do better than the legitimate 
measurements in canonical bases. We now sketch the proof of this claim. Due to  space 
limitation we cannot give a complete proof, which will appear in the journal version of 
this paper. Rather, we restrict our attention to the situation in which Bob performs only 
Breidbart measurements6. We analyse the volume of check bits that Alice can give to 
Bob without compromising the secrecy of her two bits. First we make a few legitimate 
simplifications of the situation we want to analyze. The following scenario summarizes 
the situation. 

We assume that the quantum channel is error free (this only makes Bob more 
powerful). 

+ Alice sends Bob a bit string b = 61, 6 2 ,  ..., 6 ~ .  

+ Bob receives i t  as b' = b i , b $ ,  ..., b/N through a binary symmetric channel which 
transmit bits correctly with probability P (from the Breidbart measurements). 

0 Alice reveals the syndrome Sb = HbT to Bob, where H is the K x N parity check 
matrix of the linear code considered (A' is the syndrome length). 

Alice picks a random subset I of {I, 2, ..., N }  and announces i t  t o  Bob. 

Bob wants to approximate z = @ b i .  
i E I  

Let the actual number of errors in Bob's data be D (out of N bits). To simplify the 
analysis, assume that the exact value of D is revealed to Bob by God. We are about to 
prove Bob's inability to  cheat even when provided with this additional information, which 
of course implies the same in the real world (since he could elect not to use the information 
even if provided). As long as K 5 3 N / 5 ,  we now show that,  except with exponentially 
small probability, Bob will have an exponential number of equally likely candidates for 
Alice's original string b. Therefore, privacy amplification applies to  conclude that his 
information on z is vanishingly small. In contrast, any value of K larger than N / 2  would 
have allowed Bob to guess t with good probability if his information had been obtained 

A prior;, i t  could be that the best strategy for Bob is a mixed strategy in which he measures some 
pulses in the Breidbart basis, some in canonical bases, and perhaps some others in yet other bases. 
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by use of measurements in canonical bases (in which case Bob would know half the bits 
of b exactly and would have no information on the other half). 

For any positive 6 < 1 - f?, except with exponentially small probability (as a function 
of N), for all large enough N .  

N / 2  < N - D < (0 + 6 ) N .  

Moreover, the number of words at Hamming distance D from b' is (g), which is thus 
lower-bounded bv 

Using the approximation [23] 

2 W A ) N  q Y ) s d  2aNX( 1 - A )  ' 

(;) > 2 H y N  

2 W A ) N  

JaNX(1- A )  - XN 

we get the lower bound 

because 8X(1  - A) 5 1 precisely when X 2 ,b' (or X 5 1 - p). 
We want to obtain a lower bound on the number of words at distance D from b' 

that have b's syndrome since those are the only candidates for b in the eyes of Bob. 
Unfortunately, we cannot simply divide the above lower bound on (g) by 2 K ,  which 
is the number of syndromes, because there is no reason a pr iar i  to believe that all the 
syndromes are equally represented among the words at  distance D from b'. Let M 
stand for ( g ) / Z " .  Let N D ( ~ ,  y) be the number of words with syndrome y at distance D 
from a fixed word w with syndrome x (this function is well defined because its value is 
independent of the specific choice of w ;  moreover, N D ( z ,  y) = Nn($, x @ y) = N D ( Y ,  2 ) ) .  

Provided that 5 3 N / 5 ,  we now show that N D ( s b # , s b )  is exponentidly large except 
with exponentially small probability, where the probability is taken over all choices of 
b' at distance D from b .  More precisely, we now show that No(&, , sb) 2 2-'M with 
probability at least 1 - 2-' for any security parameter r > 0. 

Starting from word b ,  each syndrome s occurs N D ( S ~ ,  s) times among the words a t  dis- 
tance D from b .  Therefore syndrome s has probability N D ( S ~ ,  s)/(:) = N D ( ~ ,  sb)/(:) 
of being selected, ie of being that of the actual 6'. Thus, any syndrome s for which 
N D ( s , S ~ )  < 2-'M (which wouid be bad because it would mean less uncertainty for 
Bob) has  probability of occurrence less than ( 2 - ' M ) / ( : )  = &2-'. Even if all but 
one syndrome were in that category, their collective probability would still be less than 
2 - " .  This establishes the claim that N D ( S ~ * ,  sb) 2 2-'M, except with probability less 
than 2- ' .  

Putting this together with our lower bound on (g), we conclude that, except with 
probability less than 2-' and provided that N / 2  < N - D < ( p  + b ) N ,  
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Let p and Y be two arbitrary positive constants such that p + Y < H(P + 6) - g ,  which 
is always possible provided that K < 3 N / 5  and 6 is small enough. Setting r = p N  
yields the final result that ND(S~,,SJ,) > 2’”/fl, which is exponentially large in N ,  
except with probability less than Z-pN + Prob[N - D 2 ( p  + 6)N or D 2 N / 2 ] ,  which 
is exponentially small in N .  

At this point one can invoke the privacy amplification theorem of [7] and say that 
the residual information about z = eiEI bi  is exponentially small in N because Bob has 
exponentially many candidates from which to choose b. This completes the argument 
from which we conclude that canonical measurements would have been more useful to 
Bob since they would allow Cheating Bob to recover both of Alice’s messages easily if she 
were willing to  supply as many as K = 3N/5  check bits in her syndromes (see Section 4.1). 

The analysis for all possible canonical and noncanonical measurements is somewhat 
similar to what we just presented but  much more complicated. From now on we msume 
that Bob makes his measurements in the canonical bases, because he would gain less 
information otherwise. 

4.3 Beamsplitting 

Another way  by which Bob can cheat involves step 3 again. The idea is to capitalize on 
the fact that the pulses sent by Alice at step 2 are not pure single-photon states. Recall 
that  Alice’s pulses are sent with an expected p photon per pulse, where p is significantly 
smaller than 1. More precisely, a perfectly efficient photc-counter would count for each 
pulse a number of photons tha t  follows a Poisson distribution with mean p.  In particular, 
there is a probability .( = 1 -e-” -pe-@ p2/2  that  a pulse would give rise to a multiple 
count. We shall assume conservatively that whenever a multiple count is obtained, Bob 
learns Alice’s bit with certainty 8 .  

I t  is now important to remember that Honest Bob’s detectors have less than perfect 
efficiency. Recall that  Bob’s counting efficiency, denoted by a,  was determined a t  step 1 
and that the number of pulses sent by Alice at step 2 is M = T / a ,  where T = 2N 
is the number of pulses that Bob must receive successfully. But now consider the caSe 
of Cheating Bob, whose photodetectors are in fact perfect, Such a Bob can obtain 
Alice’s bit with certainty for the entire set of ME = T(/a multiple-count pulses, and he 
would report success on those at  step 3. Assuming that ( < a -otherwise, Alice would 
have aborted the protocol a t  step 1 - Bob still has to report success o n  an additional 
( I  - < / a ) T  pulses, which he chooses randomly among the single-count pulses. which he 
rzad (according to the honest protocol) in random canonical bases. 

To be technically exact. one needs Lemma 9 rather than Theorem 10 from [7] in this c-. 
In principle, though not with present technology, he could do this by analyzing the photon number 

state of the original pulse without spoiling its polarization, then separating all two-photon pulses into 
two single photons and measuring one in each canonical basis. After hearing the correct basis from Alice 
at step 4, he would know which measurement w a s  relevant and thus learn Alice’s bit with certainty. 
In practice, he could learn Alice’s bit with probability 75% for double-count pulses by a much simpler 
apparatus in which a half-silvered mirror is used to split the beam into two parts, one measured recti- 
linearly and one diagonally. If two counts were obtained in such an apparatus, Bob would be able, after 
hearing the correct basis from Alice, to determine her bit accurately except when (with probability 25%) 
both COUAtS had occurred in the wrong-basis half of the apparatus, in which case he would know that 
h e  failprl to learn anything about Alice’s bit. 
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As a result, Bob knows T</a bits from beamsplitting and about half of the remaining 
(1 - < / a ) T  bits from “honest” behaviour, for a total of yT bits, where y = f + (/2a. 
This is (1 +(/a) times more bits than the T / 2  that  he would have expected to  know had 
he not taken advantage of multiple-count pulses. In this case, the symmetric cheating 
strategy consists of splitting the T = 2N bits in two sets of size N so that he knows a 
proportion y of the bits in each set. From here, the analysis is similar to that of the 
standard attack (Section 4.1), except that  Bob knows a larger fraction of the bits of 
whichever set is chosen by Alice. Therefore, this cheat will be thwarted provided that 
H(2c) < 1 - y = f - [/2a. 

This completes the formal demonstration of the main theorem (Section 2), under the 
reasonable assumption that Bob must measure each pulse before the next one arrives 
or else lose the opportunity of measuring i t  at all: the protocol is safe, even against 
cheaters having access to unlimited computing power, because step 1 makes sure that 
H(2c) < 4 - €/2a. The closer to this value is E ,  the more pulses will have to be received 
successfully by Bob at  step 3 in order to thke account of expected statistical deviations, 
as explained in Section 4.1. (It is according to this consideration that Alice chooses the 
value of N at step 1.) 

As a numerical example, consider the case in which the efficiency of Honest Bob’s 
photodetectors is q = 25%, and assume that Alice sends her pulses at intensity p = 0.05. 
In this case, ignoring dark counts and attenuation in the optical channel, Bob’s ex- 
pected counting efficiency would be a = 1 - e-pq M 1.242%, ( % 0.1209%, 7 M 54.87%, 
and therefore expected error rates E up to about 4.725% on the legitimate use of the 
quantum channel can be tolerated. If errors are due only to dark counts, this implies 
that one expected dark count every 2000 time slots can be tolerated, which is entirely 
reasonable with current technology. 

5 More sophisticated attacks 

In principle, the quantum OT protocol described in Section 2 could be subjected to more 
sophisticated attacks, which are possible in principle although infeasible at present or 
in the foreseeable future. The  first of these attacks, pulse storing, can be overcome at 
the cost of making the protocol more complicated, although i t  would remain possible to 
implement it with current technology. The second attack, coherent measuremenis, may 
be impossible to counter, but it is even more unrealistic than the first one. 

5.1 Pulse storing 

Instead of measuring the pulses at step 3, Bob could merely pretend to do  so, while in 
fact storing all the pulses he pretended to detect in a lossless delay line. Then, after Alice 
has announced the sending bases at step 4, he could measure them in the correct bases 
-which he now knows- using a perfectly efficient detector. He would then be able to 
present Alice with two “good” sets of bits, and thus obtain both bo and b l .  In order to 
mount such an attack, it is clear that  Bob needs to be able to keep the pulses’ polarization 
for an arbitrary long time (because Alice might suspect Bob of attempting this attack 
and thus wait for a while before step 4) and that he must have perfect or near-perfect 
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photo-detection. However, even th rs  would not be sufficient. Bob’s additional difficulty 
is that he must tell Alice a s  early as step 3 which pulses he claims to  have successfully 
measured. But recall that the pulses are so dim that even a perfectly efficient apparatus 
would detect only about a fraction p of them. No technology is available or foreseeable for 
determining whether the pulse would be detected (formally, measuring the number-state 
of the pulse) without in fact attempting to detect it,  which would spoil it! 

Even if we grant Bob the technology necessary to perform this attack, there is a 
conceptually easy fix to the OT protocol. First of all, Alice would send 3N/a pulses 
at step 2, allowing roughly 3N of them to be successful if Bob is honest. Then, before 
step 4 ,  Bob would use a bit commitment scheme to commit to each of the bases used 
for his successful measurements as well as to  the bits thus obtained. Still before step 4, 
Alice would select a random subset of N reported successes, and ask Bob to  open his 
commitments for those. This allows Alice to  check that Bob’s commitments are correct 
(subject to error rate E )  when his committed basis is correct and that his commitments 
are uncorrelated to the correct bits when his basis is incorrect. Not only does this prove 
to Alice that Bob measured the pulses before step 4, but also that he did not measure 
them in noncanonical bases (such as the Breidbart basis). 

But of course, one may ask which commitment scheme should be used? Obviously, 
we would lose most of the benefit from quantum cryptography if we used a scheme that 
is merely computationally secure. Fortunately, quantum bit commitment schemes exist 
[3, 81. Even though the schemes presented in [3, 81 are technologically unreasonable, as 
mentioned in the introduction, the techniques used in the current paper can be used also 
to modify the scheme of [8] in order to render it feasible with current technology. 

5.2 Coherent measurements 

So far, we have limited Bob to measuring pulses one at  a time, and combining the classical 
results of these measurements with information subsequently obtained from Alice. The 
formalism of quantum mechanics allows a more general kind of measurement, which is 
even more infeasible than pulse storing. Such a measurement would treat the entire 
sequence of M pulses sent during step 2 as a single 2 M s t a t e  quantum system, cause it 
to interact coherently with an intermediate quantum system of comparable complexity, 
maintain the phase coherence of the intermediate system for an arbitrarily long time, 
then finally measure the intermediate system in a way depending on the information 
provided by Alice at step 4. 

In the light of the previous section, avoiding this attack appears easy. Indeed the fix 
we just showed for pulse storing will also apply to  this kind of attack. Unfortunately, 
the bit commitment scheme of [8] is also susceptible to coherent measurements (although 
in the case of that scheme the receiver will be Alice, which means that she will be the 
one who can potentially cheat). Alternatively, we could use the bit commitment scheme 
implicit in [3], but 21 is susceptible to  an attack related to the Einstein-Podolsky-Rosen 
paradox (in addition to requiring the use of single-photon pulses, which are hard to 
generate in practice). As a consequence, i t  is not known whether our protocols can be 
made unconditionally secure against all possible attacks consistent with quantum physics. 
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Nevertheless, an interesting protocol results if we are satisfied with computational 
security. Indeed, it is well-known that computationally secure bit commitments are pos- 
sible under the assumption that one-way functions exist [20, 19, 241. Therefore, quantum 
physics provides for an OT protocol that is computationally secure against unrestricted 
technology (including the ability to perform coherent measurements) under the sole as 
sumption that one-way functions exist. This is interesting because Impagliazzo and 
Rudich have proved that one-way functions are not sufficient to implement OT in the 
classical (ie non-quantum) model [21]. Moreover, under the assumption that one-way 
permutations [25] or one-way group actions (lo] exist, it is possible to accomplish a 
quantum O T  protocol that will leak no additional information to either party unless the 
computational assumption is broken on-line, while the protocol is taking place. In con- 
trast, all classical OT protocols are susceptible to off-line cheating: at least one party 
11% complete information (in the sense of Shannon) on the other party’s secret. 
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