
COMP-547B Homework set #1

Due Thursday February, 6 2020 until 23:59

To be submitted via MyCourse.

A. THEORY: Consider an expression of the form

 0 ≡ a x2 + b x + c (mod n).

1. Show that the x’s of the following form are all solutions of the above
system: . .
 x ≡ (−b ± √ b2 – 4ac) (2a)−1 (mod n)

when gcd(2a,n) = 1 and (b2 – 4ac) is a Quadratic Residue modulo n.
(Here √q is an integer square root of a quadratic residue q modulo n.)

2. Give all the necessary and sufficient conditions for existence of
solutions to the above system and for any tuple of parameters (a,b,c,n)
specify how many solutions exist ?

B. THEORY: Probability

Calculate a best upper bound on the probability that we mistakenly output a
composite number instead of a prime after the following events have occurred:

 • pick a random m-bit integer n such that gcd(n,210)=1
 • the procedure Miller-Rabin_prime(n,k) returns ‘prime’

1) Express your bound as a function of m and k.

(Assume that the prime number theorem is exact.)

2) If I want a random 4096 bits prime p, what k should be used in Miller-
Rabin_prime (p,k) to guarantee probability at most 1/250 of outputting a
composite number?

…more on back…

[10%]

[15%]

[15%]

[10%]

C. THEORY: Running time

Calculate a best upper bound (in Big O notation) on the running-time for
generating random numbers p and g as described below:

 • pick a random m-bit integer n such that n+1 = p is prime
 with known factorisation of n (using Kalai’s randfact)
 • pick a random integer g, 1 ≤ g ≤ n, that is a primitive element in .

1) Express your time bound as a function of m and k.
(assume all primality testing is done via Miller-Rabin_prime at cost O(m3k))

(Assume that the following statements are exact.

2) If I want a random 4096 bits prime p, what k should be used in Miller-
Rabin_prime (p,k) to guarantee probability at most 1/250 of outputting a
composite number or that p not be uniform ?

(Let Pm,k be the correct answer to question B,1). You may use Pm,k as part of
your current answer. In other words, no need to solve B,1) to solve the current
question.)

D. Small number calculations

Let n = 262 915 409 be a reasonably small integer and s be your 9-digit
student id number. (Show all your calculations)

1) Show that exactly one y ∈ { s, -s, 3s, -3s } is a quadratic residue mod n.

2) Find all the square roots of y modulo n.

3) Show that for any x s.t. gcd(x,n)=1, we also have that exactly one
y ∈ { x, -x, 3x, -3x } is a quadratic residue modulo n.
What is special about 3 and n that makes this work (modulo n)?

4) Find a base a such that Pseudo(a,n) returns composite.

5) What is φ(n) ?

𝔽P

…more on back…

[10%]

[15%]

Algorithm 2.1 (Primitive(q))

1: Let l1, l2, ..., lk be the prime factors of q−1 and mi = q−1
li

for 1 ≤ i ≤ k,

2: REPEAT

3: pick a random non-zero element g of Fq,

4: UNTIL gmi #= 1 for 1 ≤ i ≤ k,

5: RETURN g.

(Maple primroot, G[PrimitiveElement])
We use the following theorems to estimate the number of field elements

we must try in order to find a random primitive element.

Theorem 2.2 #{g : g is a primitive element of Fq} = φ(q − 1).

Theorem 2.3 lim inf
n→∞

φ(n) log log n

n
= e−γ ≈ 0.5614594836

Example: 2 is a primitive element of F5 since {2, 22, 23, 24} = {2, 4, 3, 1}.

37

Algorithm 2.1 (Primitive(q))

1: Let l1, l2, ..., lk be the prime factors of q−1 and mi = q−1
li

for 1 ≤ i ≤ k,

2: REPEAT

3: pick a random non-zero element g of Fq,

4: UNTIL gmi #= 1 for 1 ≤ i ≤ k,

5: RETURN g.

(Maple primroot, G[PrimitiveElement])
We use the following theorems to estimate the number of field elements

we must try in order to find a random primitive element.

Theorem 2.2 #{g : g is a primitive element of Fq} = φ(q − 1).

Theorem 2.3 lim inf
n→∞

φ(n) log log n

n
= e−γ ≈ 0.5614594836

Example: 2 is a primitive element of F5 since {2, 22, 23, 24} = {2, 4, 3, 1}.

37

≥

Algorithm 2.2 (Kalai randfact(n))

1: Generate a sequence n = s0 ≥ s1 ≥ s2 ≥ ... ≥ s! = 1 by picking
si+1 ∈R {1, 2, ..., si}, until reaching s! = 1.

2: Let r be the product of the prime si’s, 1 ≤ i ≤ !.

3: IF r ≤ n THEN with probability r/n RETURN (r, {prime si’s}).

4: Otherwise, RESTART.

Theorem 2.4 The probability of producing r at step 2 is Mn/r, where Mn =
∏

p≤n(1− 1/p).

Thus by outputting r with probability r/n in step 3, each possible value
is generated with equal probability Mn

r
r
n = Mn

n . The overall probability that
some small enough r is produced and chosen in step 3 is

∑

1≤r≤n
Mn

n = Mn.

Theorem 2.5 lim
n→∞

Mn log n = e−γ ≈ 0.5614594836

40

[5%]
[5%]
[5%]

[5%]
[5%]

