
Hash Functions 233...
7.1 Signatures and Hash Functions 233..........

FIGURE 7.1 234...
7.2 Collision-free Hash Functions 234.............

FIGURE 7.2 235...
7.3 The Birthday Attack 237............................

FIGURE 7.3 239...
7.4 A Discrete Log Hash Function 239............
7.5 Extending Hash Functions 242..................

FIGURE 7.4 243...
FIGURE 7.5 246...

7.6 Hash Functions From Cryptosystem 247..
FIGURE 7.6 248...

7.7 The MD4 Hash Function 248.....................
FIGURE 7.7 250...
FIGURE 7.8 251...
FIGURE 7.9 252...
FIGURE 7.10 253...

7.8 Timestamping 254.....................................
FIGURE 7.11 255...
FIGURE 7.12 255...

7.9 Notes and References 256........................
Exercises 256..

FIGURE 7.13 257...
FIGURE 7.14 258...

7
Hash Functions

7.1 Signatures and Hash Functions

The reader might have noticed that the signature schemes described in Chapter
6 allow only “small” messages to be signed. For example, when using the DSS,
a 160-bit message is signed with a 320-bit signature. In general, we will want
to sign much longer messages. A legal document, for example, might be many
megabytes in size.

A naive attempt to solve this problem would be to break a long message into
160-bit chunks, and then to sign each chunk independently. This is analogous
to encrypting a long string of plaintext by encrypting each plaintext character
independently using the same key (e.g., ECB mode in the DES).

But there are several problems with this approach in creating digital signatures.
First of all, for a long message, we will end up with an enormous signature (twice
as long as the original message in the case of the DSS). Another disadvantage is
that most “secure” signature schemes are slow since they typically use complicated
arithmetic operations such as modular exponentiation. But an even more serious
problem with this approach is that the various chunks of a signed message could
be rearranged, or some of them removed, and the resulting message would still be
verified. We need to protect the integrity of the entire message, and this cannot be
accomplished by independently signing little pieces of it.

The solution to all of these problems is to use a very fast public cryptographic
hashfunction, which will take a message of arbitrary length and produce a message
digest of a specified size (160 bits if the DSS is to be used). The message digest
will then be signed. For the DSS, the use of a hash function h is depicted
diagramatically in Figure 7.1

When Bob wants to sign a message 2, he first constructs the message digest
z = h (2) , and then computes the signature y = sigK (z) . He transmits the ordered
pair (x, y) over the channel. Now the verification can be performed (by anyone)
by first reconstructing the message digest z = h(z) using the public hash function
h, and then checking that VerK (z, y) = true.

233

234 CHAPTER 7. HASH FUNCTIONS

FIGURE 7.1
Signing a message digest

7.2 Collision-free Hash Functions

We have to be careful that the use of a hash function h does not weaken the
security of the signature scheme, for it is the message digest that is signed, not the
message. It will be necessary for h to satisfy certain properties in order to prevent
various forgeries.

The most obvious type of attack is for an opponent, Oscar, to start with a valid
signed message (z, y), where y = SigK(h(x)). (The pair (2, y) could be any
message previously signed by Bob.) Then he computes z = h(z) and attempts to
find 2’ # z such that h(z’) = h(z). If 0 scar can do this, (z’, y) would be a valid
signed message, i.e., a forgery. In order to prevent this type of attack, we require
that h satisfy the following collision-free property:

DEFINITION 7.1 A hash function h is weakly collision-free ii given a message
x, it iscomputationally infeasible tojindamessage I’ # x such that h(x’) = h(x).

Another possible attack is the following: Oscar first finds two messages 3: # x’
such that h(x) = h(x’). 0 scar then gives x to Bob and persuades him to sign the
message digest h(x), obtaining y. Then (x’, y) is a valid forgery.

This motivates a different collision-free property:

DEFINITION 7.2 A hash function h is strongly collision-free if it is computa-
tionally infeasible tofind messages x and x’ such that x’ # x and h(x’) = h(x).

Observe that strongly collision-free implies weakly collision-free.
Here is a third variety of attack. As we mentioned in Section 6.2, it is often

possible with certain signature schemes to forge signatures on random message
digests z. Suppose Oscar computes a signature on such a random z, and then he
finds a message x such that z = h(x). If he can do this, then (x, y) is a valid
forgery. To prevent this attack, we desire that h satisfy the same one-way property
that was mentioned previously in the context of public-key cryptosystems and the
Lamport Signature Scheme:

7.2. COLLlSION-FREE HASH FUNCTIONS 235

FIGURE 7.2
Using an inversion algorithm A to find collisions for a hash function h

1. choose a random x E X

~ 2. compute .z = h(x)

3. compute xr = A(z)

4. if q # 2: then

x t and x collide under h (success)

else

QUIT (failure).

DEFINITION 7.3 A hash function h is one-way if; given a message digest z, it is
computationally infeasible tofind a message x such that h(x) = z.

We are now going to prove that the strongly collision-free property implies the
one-way property. This is done by proving the contrapositive statement. More
specifically, we will prove that an arbitrary inversion algorithm for a hash function
can be used as an oracle in a Las Vegas probabilisticalgorithm that finds collisions.

This reduction can be accomplished with a fairly weak assumption on the
relative sizes of the domain and range of the hash function. We will assume for
the time being that the hash function h : X + 2, where X and Z are finite sets
and 1x1 > 2121. Th is is a reasonable assumption: If we think of an element of X
as being encoded as a bitstring of length log, 1x1 and an element of Z as being
encoded as a bitstring of length log, 121, then the message digest r = h(x) is at
least one bit shorter than the message x. (Eventually, we will be interested in the
situation where the message domain X is infinite, since we want to be able to deal
with messages of arbitrary length. Our argument also applies in this situation.)

We are assuming that we have an inversion algorithm for h. That is, we have an
algorithm A which accepts as input a message digest z E Z, and finds an element
A(z) E X such that h(A(z)) = 2.

We prove the following theorem.

THEOREM 7.1
Suppose h : X -+ Z is a hush function where 1x1 and lZ\ arejnite and 1x1 2
2121. Suppose A is an inversion algorithmfor h. Then there exists a probabilistic
Las Vegas algorithm whichfinds a collision for h with probability at least l/2.

PROOF Consider the algorithm B presented in Figure 7.2. Clearly B is a
probabilistic algorithm of the Las Vegas type, since it either finds a collision or

236 CHAPTER 7. HASH FUNCTIONS

returns no answer. Thus our main task is to compute the probability of success.
For any x E X, define x - xi if h(z) = h(zl). It is easy to see that - is an
equivalence relation. Define

[x] = (2, E x : x - 2,).

Each equivalence class [x] consists of the inverse image of an element of Z, so
the number of equivalence classes is at most IZ]. Denote the set of equivalence
classes by C.

Now, suppose x is the element of X chosen in step 1. For this x, there are][x] I
possible XI ‘s that could be returned in step 3.][z]] - 1 of these xt ‘s are different
from x and thus lead to success in step 4. (Note that the algorithm A does not
know the representative of the equivalence class [x] that was chosen in step 1.)
So, given a particular choice z E X, the probability of success is (I [x] I - l)/ I [x] I.

The probability of success of the algorithm B is computed by averaging over
all possible choices for x:

lb11 - 1 P(success) = hsFx l[x]l

+Qy
CEC ZEC

= h C(lcl - 1)
CEC

= +I (p-g

> IXI- I4
- 1x1
> PI- IXIP - 1x1

1 = -.
2

Hence we have constructed a Las Vegas algorithm with success probability at least
l/2. I

Hence, it is sufficient that a hash function satisfy the strongly collision-free prop-
erty, since it implies the other two properties. So in the remainder of this chapter
we restrict our attention to strongly collision-free hash functions.

7.3. THE BIRTHDAY ATTACK 237

7.3 The Birthday Attack

In this section, we determine a necessary security condition for hash functions
that depends only on the cardinality of the set Z (equivalently, on the size of the
message digest). This necessary condition results from a simple method of finding
collisions which is informally known as the birthday attack. This terminology
arises from the so-called birthday paradox, which says that in a group of 23
random people, at least two will share a birthday with probability at least l/2. (Of
course this is not a paradox, but it is probably counter-intuitive). The reason for
the terminology “birthday attack” will become clear as we progress.

As before, let us suppose that h : X + Z is a hash function, X and Z are finite,
and 1x1 2 2121. Denote 1x1 = m and IZI = 12. It is not hard to see that there are
at least IZ collisions - the question is how to find them. A very naive approach
is to choose Ic random distinct elements xl, . . . , xk E X, compute %; = h(z;),
1 5 i 5 Ic, and then determine if a collision has taken place (by sorting the zi’s,
for example).

This process is analogous to throwing k balls randomly into n bins and then
checking to see if some bin contains at least two balls. (The k balls correspond to
the k random xi’s, and the n bins correspond to the n possible elements of Z.)

We will compute a lower bound on the probability of finding a collision by
this method. This lower bound will depend on k and n, but not on m. Since
we are interested in a lower bound on the collision probability, we will make the
assumption that 1 h- ’ (z) I M m/n for all % E Z. (This is a reasonable assumption:
if the inverse images are not approximately equal, then the probability of finding
a collision will increase.)

Since the inverse images are all (roughly) the same size and the xi’s are chosen
at random, the resulting %i’s can be thought of as random (not necessarily distinct)
elements of Z. But it is a simple matter to compute the probability that k random
elements 21, . . . , %k E Z are distinct. Consider the ri’s in the order %I, . . . , %k.
The first choice %r is arbitrary; the probability that %2 # %I is 1 - l/n; the
probability that %s is distinct from %r and %2 is 1 - 2/n, etc.

Hence, we estimate the probability of no collisions to be

If x is a small real number, then 1 - x w e-“. This estimate is derived by taking
the first two terms of the series expansion

e-” = 1 - 2 + g - $. . . .
. .

238 CHAPTER 7. HASH FUNCTIONS

Then our estimated probability of no collisions is

So we estimate the probability of at least one collision to be
-k(k--l)

l-e = .

If we denote this probability by 6, then we can solve for k as a function of n and c

e* Ml--E
-k(k - 1)

n
w ln(1 - 6)

k2-kknln&.

If we ignore the term -k, then we estimate

If we take c = .5, then our estimate is

k M 1.176.

So this says that hashing just over fi random elements of X yields a collision
with a probability of 50%. Note that a different choice of e leads to a different
constant factor, but k will still be proportional to fi.

If X is the set of all human beings, Y is the set of 365 days in a non-leap year
(i.e., excluding February 29), and h(z) denotes the birthday of person z, then
we are dealing with the birthday paradox. Taking n = 365 in our estimate, we
get /C M 22.3. Hence, as mentioned earlier, there will be at least one duplicated
birthday among 23 random people with probability at least l/2.

This birthday attack imposes a lower bound on the sizes of message digests. A
40-bit message digest would be very insecure, since a collision could be found
with probability l/2 with just over 220 (about a million) random hashes. It is
usually suggested that the minimum acceptable size of a message digest is 128
bits (the birthday attack will require over 2 &Q hashes in this case). The choice of
a 160-bit message digest for use in the DSS was undoubtedly motivated by these
considerations.

7.4. A DISCRETE LXIG HASH FUNCTION 239

FIGURE 7.3
Chaum-van Heijst-Pfitzmann Hash Function

Suppose p is a large prime and q = (p - 1)/2 is also prime. Let Q and p
be two primitive elements of 5. The value log, /3 is not public, and we
assume that it is computationally infeasible to compute its value.
The hash function

h : (0,. . . , Q- 11 x (0,. .*9!7- w+~\~o~

is defined as follows:

h(z,, 22) = a”‘/3”* mod p.

7.4 A Discrete Log Hash Function

In this section, we describe a hash function, due to Chaum, van Heijst, and
Pfitzmann, that will be secure provided a particular discrete logarithm cannot be
computed. This hash function is not fast enough to be of practical use, but it is
conceptually simple and provides a nice example of a hash function that can be
proved secure under a reasonable computational assumption. The Chaum-van
Heijst-Pkmann Hash Function is presented in Figure 7.3. We now prove a
theorem concerning the security of this hash function.

THEOREM 7.2
Given one collision for the Chaum-van Heijst-Pfdzmann Hash Function h, the
discrete logarithm log, p can be computed eficiently.

PROOF SUppOSe we are given a COlliSiOn

~(zI, ~2) = h(n, 241,

where ($1 , 22) # (23,~). So we have the following congruence:

#p=z E cr23/3x4 (mod p),

or

Denote

(p--23 = - j3x4-x2 (mod p).

d=gcd(zd-zz,p--1).

Since p - 1 = 2q and q is prime, it must be the case that d E { 1,2, q, p - 1).
Hence, we have four possibilities for d, which we will consider in turn.

240 CHAPTER 7. HASH FUNCTIONS

First, suppose that d = 1. Then let

y = (24 - ~2)~’ mod (p - 1).

We have that

/3 E /l(x4-x2)Y (mod p)

E CY(“~-“~)Y (mod p),

so we can compute the discrete logarithm log, ,0 as follows:

log, p = (zt - 23)(24 - 2~)~’ mod (p - 1).

Next, suppose that d = 2. Since p - 1 = 2q where q is odd, we must have
gcd(z4 - x2, q) = 1. Let

y = (24 - x2)-’ mod q.

Now

(x4 - 22)~ = kq + 1

for some integer k, so we have

p(24-22)Y E pk’?+’ (mod p)

G (-l)kp (mod p)

E 3$3 (mod p),

since

So we have

pq E -1 (mod p).

It follows that

(gy(“4-“Z)Y q /3(“-“3)Y (mod p)

z *tp (mod p).

log, P = (XI - 33)~ mod (P - 1)

or

log, P = (XI - x3)y + q mod (p - 1).

We can easily test which of these two possibilities is the correct one. Hence, as in
the case d = 1, we have calculated the discrete logarithm log, ,L3.

The next possibility is that d = q. But

o<xt<q-1

7.4. A DISCRETE L.OG HASH FUNCTION 241

and

so

-(q - 1) 5 x4 - x2 5 q - 1.

So it is impossible that gcd(x4 - x2,p - 1) = q; in other words, this case does
not arise.

The final possibility is that d = p - 1. This happens only if 22 = x4. But then
we have

&lpzz E ax3pC2 (mod p),

so

azl z ax3 (mod p),

and xt = x3. Thus (x1,x2) = (x3,24), a contradiction. So this case is not
possible, either.

Since we have considered all possible values for d, we conclude that the hash
function h is strongly collision-free provided that it is infeasible to compute the
discrete logarithm log, /3 in I?&,. 1

We illustrate the result of the above theorem with an example.

Example 7.1
Suppose p = 12347 (so q = 6173), Q = 2 and p = 8461. Suppose we are given
the collision

a5692p’44 E CY~‘~@“~ (mod 12347).

Thusxt =5692,x2 = 144,x3 = 212andx4 = 4214. Now,gcd(xd-xz,p-1) =
2, so we begin by computing

y = (x4 - x2)-’ mod q

= (4214 - 144)-l mod 6173

= 4312.

Next, we compute

y’ = (x1 - 23)~ mod (p - 1)

= (5692 - 212)4312 mod 12346

= 11862.

242 CHAPTER 7. HASH FUNCTIONS

Now it is the case that log, /3 E {y’, y’ + q mod (p - 1)). Since

ay’ mod p = 21’862 mod 12346 = 9998,

we conclude that

log,P=y’+qmod(p-1)

= 11862 + 6173 mod 12346

= 5689.

As a check, we can verify that

25689 G 8461 (mod 12347).

Hence, we have determined log, /3. 0

7.5 Extending Hash Functions

So far, we have considered hash functions with a finite domain. We now study
how a strongly collision-free hash function with a finite domain can be extended
to a strongly collision-free hash function with an infinite domain. This will enable
us to sign messages of arbitrary length.

Suppose h : (&)m + (&) t is a strongly collision-free hash function, where
m 2 t + 1. We will use h to construct a strongly collision-free hash function
h* : X + (Z#, where

x = fi (z#.
i=m

We first consider the situation where m 2 t + 2.
We will think of elements of X as bit-strings. 1x1 denotes the length of x (i.e.,

the number of bits in x), and x 11 y denotes the concatenation of the bit-strings x
and y. Suppose (xl = n > m. We can express x as the concatenation

2 = Xl II x2 II . . . II Xkr

where

and

1x11 = (221 = . . . = (xk-t(=m-t-l

)xkl=m-t-l-d,

7.5. EXTENDING HASH FUNCTIONS 243

FIGURE 7.4
Extending a hash function h to h’ (m 2 t + 2)

1. fori=ltok-ldo
yi = Xj

2. yk = xk 11 od

3. let yk+l be the binary representation of d

4. 91 = Not+’ II Yl)
5. fori= ltokdo

9i+l = h(gi II 1 II Yi+l)
6. h*(x) = gk+l.

where 0 5 d 5 m - t - 2. Hence, we have that

We define h*(x) by the algorithm presented in Figure 7.4.
Denote

Y(X) = Yl II Y2 II . . . II Yk+l*

Observe that yk is formed from Xk by padding on the right with d zeroes, so that
all the blocks yi (1 5 i 5 k) are of length m - t - 1. Also, in step 3, yk+l should
be padded on the left with zeroes so that Iyk+l I = m - t - 1.

In order to hash x, we first construct y(x), and then “process” the blocks
YI,Y2,. . ., yk+l in apaxticularfashion. It is importantthat y(x) # y(x’) whenever
x # x’. In fact, yk+l is defined in such a way that the mapping x I+ y(x) will be
an injection.

The following theorem proves that h* is secure provided that h is secure.

THEOREM 7.3
Suppose h : (Q” + (&) t is a strongly collision-free hash function, where
m 2 t + 2. Then thefunction h’ : U&(&)’ + (&)t, as constructed in Figure
7.4, is a strongly collision-free hash function.

PROOF Suppose that we can find x # x’ such that h’ (x) = h’ (2’). Given such
a pair, we will show how we can find a collision for h in polynomial time. Since
h is assumed to be strongly collision-free, we will obtain a contradiction, and thus
h* will be proved to be strongly collision-free..

244 CHAPTER 7. HASH FUNCTIONS

Denote

and

Y(X) = Yl II YZ II . . * II Yk+l

Y(4 = ?A II & II . . . II ?A+,,
where 2 and x’ are padded with d and d’ O’s, respectively, in step 2. Denote the
values computed in steps 4 and 5 by gt, . . . , gk+t and g{, . . . , gi+,, respectively.

We identify two cases, depending on whether or not 12 I f lx’/ (mod m - t - 1).

case 1: 121 ye! IdI (mod m - t - 1).

Here d # d’ and yk+t # d+,. We have

%k 11 1 11 Yk+l) = Qk+l

= h*(x)

= h*(x’)

= d+1

= h(d II 1 II Yi+A

which is a collision for h since yk+t # dl+, .

case 2: 1x1 E lx’1 (mod m - t - 1).

It is convenient to split this into two subcases:

case2a: 1x1 = (2’1.

Here we have k = ! and yk+t = dk+,. We begin as in case 1:

h(gk 11 1 11 Yk+l) = gk+l

= h*(x)

= h*(x’)

= !A+,

= WC II 1 II YL+d.

If gk # g$, then we fmd a collision for h, so assume gk = gi. Then we have

hk-I 11 1 11 Yk) = Sk

= s;,

= h(dc-1 II 1 II Yi).

Either we find a collision for h, or gk-t = gL_, and yk = dk. Assuming
we do not find a collision, we continuing working backwards, until finally

7.5. EXTENDING HASH FUNCTIONS 245

we obtain

= s’l
= wt+’ II Yi).

If yr # y{, then we find a collision for h, so we assume yr = y{ . But then
yi = yi for 1 5 i 5 k + 1, so y(x) = y(x’). But this implies x = 2’ since
the mapping 2 I+ y(z) is an injection. Since we assumed x # x’, we have
a contradiction.

case2b: 1x1 # 11’1.

Without loss of generality, assume lx’1 > 1x1, so e > k. This case proceeds
in a similar fashion as case 2a. Assuming we find no collisions for h, we
eventually reach the situation where

h(@+’ II YI) = 91

= d-k+1

= h&c 11 1 11 d-k+&

But the (t + 1)st bit of Ot+’ II yt is a 0 and the (t + 1)st bit of gi-k II 1 II
yimk+, is a 1. So we find a collision for h.

Since we have considered all possible cases, we have the desired conclusion.

The construction of Figure 7.4 can be used only when m > t + 2. Let’s now
look at the situation where m = t + 1. We need to use a different construction for
h*. As before, suppose 1x1 = n > m. We first encode x in a special way. This
will be done using the function f defined as follows:

f(O) = 0

f(1) = 01.

The algorithm to construct h*(x) is presented in Figure 7.5.
The encoding x c) y = y(x), defined in step 1, satisfies two important proper-

ties:

I. If x # x’, then y(x) # y(x’) (i.e., x I+ y(x) is an injection).

2. There do not exist two strings x # I’ and a string z such that y(x) = z II
y(x’). (In other words, no encoding is apostfi of another encoding. This is
easily seen because each string y(x) begins with 11, and there do not exist
two consecutive l’s in the remainder of the string.)

246 CHAPTER 7. HASH FUNCTIONS

FIGURE 7.5
Extending a hash function h to h’ (m = t + 1)

l. let Y = YIYZ . . . Yk = 11 II f(a) 11 f(X2) 11 . . . 11 f(Xn)

2. 91 = h(@ II YI)
3. fori= 1 tok-ldo

si+l = h(gi II Y~+I)
4. h*(x) = gk.

THEOREM 7.4
Suppose h : (Z#+’ + (762)” is a strongly collision-free hash function. Then the
function h’ : U~o=t+l(Z2)’ + (Qt, as constructed in Figure 7.5, is a strongly
collision-free hash function.

PROOF Suppose that we can find x # x’ such that h’ (x) = h* (x’). Denote

Y(x) = YlY2.. . ?/k

and

y(x’) = y’ly;. . .y;.

We consider two cases.

easel: k=P.

As in Theorem 7.3, either we find a collision for h, or we obtain y = y’.
But this implies x = x’, a contradiction.

case 2: k # e.

Without loss of generality, assume e > k. This case proceeds in a similar
fashion. Assuming we find no collisions for h, we have the following
sequence of equalities:

Yk = d

Yk-I = Y;-,

.

Y1 = Y;-k+l*

But this contradicts the “postfix-free” property stated above.

We conclude that h* is collision-free. 1

7.6. HASH FUNCTIONS FROM CRYPTOSYSTEMS 247

We summarize the two constructions of in this section, and the number of
applications of h needed to compute h*, in the following theorem.

THEOREM 7.5
Suppose h : (ZZ)~ + (a) t is a strongly collision-free hash function, where
m 2 t + 1. Then there exists a strongly collision-free hash function

h’ : fi (ZZ$ + (iZ#.
iZ7l

The number of times h is computed in the evaluation of h* is at most

l+ I*1 ifm>t+2

2n+2 ifm=t+l,

where 1x1 = 12.

7.6 Hash Functions From Cryptosystems

So far, the methods we have described lead to hash functions that are probably too
slow to be useful in practice. Another approach is to use an existing private-key
cryptosystem to construct a hash function. Let us suppose that (P, C, K, E, D) is
a computationally secure cryptosystem. For convenience, let us assume also that
‘P = C = K = (ZZ)~. Here we should have n 2 128, say, in order to prevent
birthday attacks. This precludes using DES (as does the fact that the key length
of DES is different from the plaintext length).

Suppose we are given a bitstring

2: = xl 11 22 11 . . . 11 xk,

where xi E (iZ$, 1 5 i 5 k. (If the number of bits in x is not a multiple of 12,
then it will be necessary to pad x in some way, such as was done in Section 7.5.
For simplicity, we will ignore this now.)

The basic idea is to begin with a fixed “initial value” go = IV, and then construct
Qlt**., gk in order by a rule of the form

gi = f(Xi,%l),

where f is a function that incorporates the encryption function of our cryptosystem.
Finally, define the message digest h(x) = gk.

Several hash functions of this type have been proposed, and many of them
have been shown to be insecure (independent of whether or not the underlying

248 CHAPTER 7. HASH FUNCTIONS

FIGURE 7.6
Constructing M in MD4

1. d=447-(jclmod512)

2. let !T denote the binary representation of 1x1 mod 264, I!] = 64

3. M=x]]l])Od]Je

cryptosystem is secure). However, four variations of this theme that appear to be
secure are as follows:

9i = egi-1 (Xi) 63 Xi

gi =eg,-,(xi)fBx:i@gi-~

si = es,-,(xi @a-l) @xi

gi = eg,-,(xi $9~1) @xi @SC-I.

7.7 The MD4 Hash Function

The MD4 Hash Function was proposed in 1990 by Rivest, and a strengthened
version, called MDS, was presented in 1991. The Secure Hash Standard (or
SHS) is more complicated, but it is based on the same underlying methods. It was
published in the Federal Register on January 3 1, 1992, and adopted as a standard
on May 11, 1993. (A proposed revision was put forward on July 11, 1994, to
correct a “technical flaw” in the SHS.) All of the above hash functions are very
fast, so they are practical for signing very long messages.

In this section, we will describe MD4 in detail, and discuss some of the modi-
fications that are employed in MD5 and the SHS.

Given a bitstring x, we will first produce an array

M = M[O]M[l] . . . M[N - 11,

where each M [i] is a bitstring of length 32 and N E 0 mod 16. We will call each
M[i] a word. M is constructed from t using the algorithm presented in Figure
7.6.

In the construction of M, we append a single 1 to x, then we concatenate
enough O’s so that the length becomes congruent to 448 modulo 512, and finally
we concatenate 64 bits that contain the binary representation of the (original)

7.7. THE MD4 HASH FUNCTION 249

length of x (reduced modulo 2 64, if necessary). The resulting string M has length
divisible by 512. So when we break M up into 32-bit words, the resulting number
of words, denoted by N, will be divisible by 16.

Now we proceed to construct a 128-bit message digest. A high-level description
of the algorithm is presented in Figure 7.7. The message digest is constructed as
the concatenation of the four words A, B, C and D, which we refer to as registers.
The four registers are initialized in step 1. Now we process the array M 16 words
at a time. In each iteration of the loop in step 2, we first take the “next” 16 words of
M and store them in an array X (step 3). The values of the four registers are then
stored (step 4). Then we perform three “rounds” of hashing. Each round consists
of one operation on each of the 16 words in X (we will describe these operations
in more detail shortly). The operations done in the three rounds produce new
values in the four registers. Finally, the four registers are updated in step 8 by
adding back the values that were stored in step 4. This addition is defined to be
addition of positive integers, reduced modulo 232.

The three rounds in MD4 are different (unlike DES, say, where the 16 rounds
are identical). We first describe several different operations that are employed in
these three rounds. In the following description, X and Y denote input words,
and each operation produces a word as output. Here are the operations employed:

X A Y bitwise “and” of X and Y
X V Y bitwise “or” of X and Y
X @ Y bitwise “xor” of X and Y
TX bitwise complement of X
X + Y integer addition modulo 232
X < s circular left shift of X by s positions (0 5 s 5 3 1)

Note that all of these operations are very fast, and the only arithmetic operation
that is used is addition modulo 2 32 . If MD4 is actually implemented, it will be
necessary to take into account the underlying architecture of the computer it is run
on in order to perform addition correctly. SUppOSe ai e2esU4 are the four bytes in a
word. We think of each ai as being an integer in the range 0, . . . ,255, represented
in binary. In a big-endiun architecture (such as a Sun SPARCstation), this word
represents the integer

~312~~ + ~322’~ + ~~32~ + ~4.

In a little-endiun architecture (such as the Intel 8Oxxx line), this word represents
the integer

~42~~ + ~32’~ + ~22~ + al.

MD4 assumes a little-endian architecture. It is important that the message
digest is independent of the underlying architecture. So if we wish to run MD4
on a big-end&t computer, it will be necessary to perform the addition operation
x + Y as follows:

250 CHAPTER 7. HASH FUNCTIONS

FIGURE 7.7
The MD4 hash function

1. A = 67452301 (hex)

B = efcdub89 (hex)

C = 98budcfe (hex)

D = 10325476 (hex)

2. fori=OtoN/16-ldo

3. forj=Oto15do

X[j] = M[16i + j]

4. AA=A

BB=B

cc=c

DD=D

5. Round1

6. Round2

7. Round3

8. A=A+AA

B=B+BB

c=c-?-cc

D=D+DD

1. Interchange xt and x4; 22 and x3; yt and ~4; and y2 and y3.

2. Compute 2 = X + Y mod 232

3. Interchange zt and ~4; and z2 and 23.

Rounds 1, 2, and 3 of MD4 respectively use three functions f, g and h. Each
of f, g and h is a bitwise boolean function that takes two words as input and
produces a word as output. They are defined as follows:

f (X, Y, 2) = (X A Y) v ((TX) A 2)

g(X,Y,Z) = (XAY)V(XAZ)V(YAZ)

h(X,Y,Z) =X@Y@Z.

The complete description of Rounds 1,2 and 3 of MD4 are presented in Figures
7.8-7.10.

7.7. THE MD4 HASH FUNCTION

FIGURE 7.8
Round 1 of MD4

1. A=(A+f(B,C,D)+X[0])<3

2. D=(D+f(A,B,C)+X[1])<7

3. C= (C+ f(D,A,B) +X[2]) < 11

4. B = (B + f (C, D, A) + X[3]) << 19

5. A=(A+f(B,C,D)+X[4])<<3

6. D=(D+f(A,B,C)+X[5])<7

7. C=(C+f(D,A,B)+X[6])<11

8. B = (B + f (C, D, A) + X[7]) < 19

9. A = (A + f (B, C, D) + X[8]) << 3

10. D = (D + f (A, B, C) + X[9]) < 7

11. C=(C+f(D,A,B)+X[lO])<<ll

12. B = (B + f(C, D,A) + X[ll]) < 19

13. A = (A + f (B, C, D) + X1121) @I 3

14. D = (D + f (A, B, C) + X[13]) < 7

15. C = (C-t f(D,A, B) +X[14]) << 11

16. B = (B + f (C, D, A) + X[lS]) < 19

251

MD4 was designed to be very fast, and indeed, software implementations on
Sun SPARCstations attain speeds of 1.4 MbytesIsec. On the other hand, it is
difficult to say something concrete about the security of a hash function such as
MD4 since it is not “based” on a well-studied problem such as factoring or the
Discrete Log problem. So, as is the case with DES, confidence in the security
of the system can only be attained over time, as the system is studied and (one
hopes) not found to be insecure.

Although MD4 has not been broken, weakened versions that omit either the
first or the third round can be broken without much difficulty. That is, it is easy to
find collisions for these two-round versions of MD4. A strengthened version of
MD4, called MD5, was proposed in 1991. MD5 uses four rounds instead of three,
and runs about 30% slower than MD4 (about .9 Mbyte&x on a SPARCstation).

The Secure Hash Standard is yet more complicated, and slower (about .2
Mbytes/set on a SPARCstation). We will not give a complete description, but we
will indicate a few of the modifications employed in the SHS.

252 CHAPTER 7. HASH FUNCTIONS

FIGURE 7.9
Round 2 of MD4

1. A = (A + g(B, C, D) + X[O] + 5A827999) << 3

2. D = (D + g(A, B, C) + X[4] + 5A827999) < 5

3. C = (C + g(D, A, B) + X[8] + 5A827999) < 9

4. B = (B + g(C, D, A) + X[12] + 5A827999) < 13

5. A = (A + g(B, C, D) + X[l] + 5A827999) < 3

6. D = (D + g(A, B, C) + X[5] + 5A827999) < 5

7. C = (C + g(D, A, B) + X[9] + 5A827999) < 9

8. B = (B + g(C, D, A) + X[13] + 5A827999) << 13

9. A = (A + g(B, C, D) + X[2] + 5A827999) < 3

10. D = (D + g(A, B, C) + X[6] + 5A827999) << 5

11. C = (C+g(D,A, B) +X[10]+5A827999) <9

12. B = (B + g(C, D, A) + X[14] + 5A827999) << 13

13. A = (A + g(B, C, D) + X[3] + 5A827999) << 3

14. D = (D + g(A, B, C) + X[7] + 5A827999) < 5

15. C = (C + g(D, A, B) + X[ll] + 5A827999) < 9

16. B = (B + g(C, D, A) + X[15] + 5A827999) < 13

2. SHS is designed to run on a big-endian architecture, rather than a little-
endian architecture.

2. SHS produces a 5-register (160-bit) message digest.

3. SHS processes the message 16 words at a time, as does MD4. However,
the 16 words are first “expanded” into 80 words. Then a sequence of 80
operations is performed, one on each word.

The following “expansion function” is used. Given the 16 words X[O], . . . ,
X [151, we compute 64 more words by the recurrence relation

X~]=X~-3]$X~-8]$Xlj-l4]$X[j--16],16<j<79. (7.1)

The result of Equation 7.1 is that each of the words X[161, . . . , X[79] is formed
as the exclusive-or of a predetermined subset of the words X [0], . . . , X [151.

For example, we have

X[16] = X[O] @ X[2] @ X[8] @ X[13]

7.7. THE MD4 HASH FUNCTION 253

FIGURE 7.10
Round 3 of MD4

1. A = (A + h(B, C, D) + X[O] + 6ED9EBAl) < 3

2. D = (D + h(A, B, C) + X[8] + 6ED9EBAl) << 9

3. C = (C + h(D, A, B) + X[4] + 6ED9EBAl) << 11

4. B = (B + h(C, D,A) + X[12] + 6ED9EBAl) < 15

5. A=(A+h(B,C,D)+X[2]+6ED9EBA1)(<3

6. D = (D + h(A, B, C) + X[lO] + 6EDBEBAl) < 9

7. C = (C + h(D, A, B) + X[6] + 6ED9EBAl) < 11

8. B = (B + h(C, D, A) + X[14] + 6ED9EBAl) < 15

9. A = (A + h(B, C, D) + X[l] + 6ED9EBAl) < 3

10. D = (D + h(A, B, C) + X[9] + 6ED9EBAI) < 9

11. C= (C+h(D,A,B)+X[5]+6EDBEBAl) < 11

12. B = (B + h(C, D, A) + X[13] + 6ED9EBAl) < 15

13. A=(A+h(B,C,D)+X[3]+6ED9EBA1)<3

14. D = (D + h(A, B,C) + X[ll] + 6ED9EBAl) < 9

15. C = (C + h(D, A, B) + X[7] + 6ED9EBAl) < 11

16. B = B + h(C, D, A) + X[15] + 6ED9EBAl) < 15

X[17] = X[l] @ X[3] @ X[9] @ X[l4]

X[18] = X[2] @ X[4] @ X[lO] $ X[15]

X[19] = X[O] $ X[2] $ X[3] $ X[5] $ X[8] $ X[ll] $ X[l3]

X[79] = X[l] $ X[4] $ X[5] $ X[8] $ X[9] $ X[12] $ X[13].

The proposed revision of the SHS concerns the expansion function. It is
proposed that Equation 7.1 be replaced by the following:

X[j] = (X~-3]@X~-8]@X[j--14]@X~-16]) < 1,16 < j 5 79. (7.2)

As before, the operation “<< 1” means a circular left shift of one position.

254 CHAPTER 7. HASH FUNCTIONS

7.8 Timestamping

One difficulty with signature schemes is that a signing algorithm may be compro-
mised. For example, suppose that Oscar is able to determine Bob’s secret exponent
a in the DSS. Then, of course, Oscar can forge Bob’s signature on any message
he likes. But another (perhaps even more serious) problem is that the compromise
of a signing algorithm calls in to question the authenticity of all messages signed
by Bob, including those he signed before Oscar stole the signing algorithm.

Here is yet another undesirable situation that could arise: Suppose Bob signs a
message and later wishes to disavow it. Bob might publish his signing algorithm
and then claim that his signature on the message in question is a forgery.

The reason these types of events can occur is that there is no way to determine
when a message was signed. This suggests that we consider ways of timestumping
a (signed) message. A timestamp should provide proof that a message was signed
at a particular time. Then, if Bob’s signing algorithm is compromised, it would
not invalidate any signatures he made previously. This is similar conceptually to
the way credit cards work: if someone loses a credit card and notifies the bank
that isssued it, it becomes invalid. But purchases made prior to the loss of the card
are not affected.

In this section, we will describe a few methods of timestamping. First, we
observe that Bob can produce a convincing timestamp on his own. First, Bob
obtains some “current” publicly available information which could not have been
predicted before it happened. For example, such information might consist of all
the major league baseball scores from the previous day, or the values of all the
stocks listed on the New York Stock Exchange. Denote this information by pub.

Now, suppose Bob wants to timestamp his signature on a message I. We
assume that h is a publicly known hash function. Bob will proceed according
to the algorithm presented in Figure 7.11. Here is how the scheme works: The
presence of the information pub means that Bob could not have produced y before
the date in question. And the fact that y is published in the next day’s newspaper
proves that Bob did not compute y after the date in question. So Bob’s signature y
is bounded within a period of one day. Also observe that Bob does not reveal the
message x in this scheme since only z is published. If necessary, Bob can prove
that x was the message he signed and timestamped simply by revealing it.

It is also straightforward to produce timestamps if there is a trusted timestamping
service available (i.e., an electronic notary public). Bob can compute z = h(x)
and y = sigK(z) and then send (z, y) to the timestamping service, or TSS. The
TSS will then append the date D and sign the triple (z, y, D). This works perfectly
well provided that the signing algorithm of the TSS remains secure and provided
that the TSS cannot be bribed to backdate timestamps. (Note also that this method
establishes only that Bob signed a message before a certain time. If Bob also
wanted to establish that he signed it after a certain date, he could incorporate some
public information pub as in the previous method.)

7.8. TIMESTAMPING 255

FIGURE 7.11
Timestamping a signature on a message r

Bob publishes (z, pub, y) in the next day’s newspaper.

FIGURE 7.12
Timestamping (zn, yn , ID,)

1. TheTSScomputesL, = (t,-l,ID,-l,%~-1,y,-1,h(L,-,))

2. The TSS computes C,, = (n, t,, z,, yn, ID,, L,)

3. The TSS computes s, = sigTsS(h(Cn))

4. The TSS sends (C, , s,, ID,+,) to ID,.

If it is undesirable to trust the TSS unconditionally, the security can be increased
by sequentially linking the messages that are timestamped. In such a scheme, Bob
would send an ordered triple (z, y, ID(Bob)) to the TSS. Here .z is the message
digest of the message z; y is Bob’s signature on z; and ID(Bob) is Bob’s identifying
information. The TSS will be timestamping a sequence of triples of this form.
Denote by (zn, yn, ID*) the nth triple to be timestamped by the TSS, and let t,
denote the time at which the nth request is made.

The TSS will timestamp the nth triple using the algorithm in Figure 7.12. The
quantity L, is “linking information” that ties the nth request to the previous one.
(Lo will be taken to be some predetermined dummy information to get the process
started.)

Now, if challenged, Bob can reveal his message x,, and then y,, can be verified.
Next, the signature s, of the TSS can be verified. If desired, then ID,-, or
%+I can be requested to produce their timestamps, (Cn- t, s,-1, ID,,) and
(Ga+l,sn+l, ID,+*), respectively. The signatures of the TSS can be checked
in these timestamps. Of course, this process can be continued as far as desired,
backwards and/or forwards.

256 CHAPTER 7. HASH FUNCTIONS

7.9 Notes and References

The discrete log hash function described in Section 7.4 is due to Chaum, van
Heijst, and Pfitzmann [CvHP92]. A hash function that can be proved secure
provided that a composite integer n cannot be factored is given by Gibson [GIB91]
(see Exercise 7.4 for a description of this scheme).

The material on extending hash functions in Section 7.5 is based on Dimgard
[DA90]. Similar methods were discovered by Merkle [MEgO].

For infomation concerning the construction of hash functions from private-key
cryptosystems, see Preneel, Govaerts, and Vandewalle [PGV94].

The MD4 hashing algorithm was presented in Rivest [R191], and the Secure
Hash Standard is described in [NBS93]. An attack against two of the three
rounds of MD4 is given by den Boer and Bossalaers [DBB92]. Other recently
proposed hash functions include N-hash [MO1901 and Snefru [ME90A].

Timestamping is discussed in Haber and Stornetta [HS91] and Bayer, Haber,
and Stornetta [BHS93].

A thorough survey of hashing techniques can be found in Preneel, Govaerts,
and Vandewalle [PGV93].

Exercises

7.1 Suppose h : X + Y is a hash function. For any y E Y, let

h-‘(y) = {x : h(z) = y}

anddenote sy = Ih-l(y)]. Define

N = I{{~I,~z] : h(a) = h(m)}l.
Note that N counts the number of unordered pairs in X that collide under h. Answer
the following:

(a) Prove that

c SY = IXL
YEY

so the mean of the sy’s is
&E!

IYI .
(b) Prove that

N=x “2’ +sy2-$k
YCY 0

YEY

(c) Prove that

C(sy - s)2 = 2N+IXI- 1x12
YEY

IV .

Exercises 257

FIGURE 7.13
Hashing 4m hits to m bits

k
write I E (&)4m as z = EI I] EZ, where 51, xz E (2~)~“’
definehz(z) = h~(hr(z~) 1) h1(~2)).

(d) Using the result proved in part (c), prove that

Further, show that equality is attained if and only if

for every y E Y.
7.2 As in Exercise 7.1, suppose h : X + Y is a hash function, and let

h-‘(y) = {z : h(z) = y)

for any y E Y. Let e denote the probability that h(zl) = h(z2). where 21 and 22
are random (not necessarily distinct) elements of X. Prove that

with equality if and only if

lh-‘WI = +

for every y E Y.
7.3 Supposep = 15083, (Y = 154 and ,8 = 2307 in the Chaum-van Heijst-Pfitzmann

Hash Function. Given the collision

(Y’~~‘@~ E CY’~~/~‘~ (mod p),

compute log, /3.
7.4 Suppose n = PQ, where p and q are two (secret) distinct large primes such that

p = 2p1 + 1 and q = 2qt + 1, where PI and q1 are prime. Suppose that (Y is an
element of order 2plql in Z,’ (th’ ts is the largest order of any element in Z,‘).
Define a hash function h : { 1, . . . , n2} + Z,’ by the rule h(r) = CC mod n.

Now, suppose that n = 603241 and cr = 11 are used to define a hash function
h of this type. Suppose that we are given three collisions for h: h(1294755) =
h(80115359) = h(52738737). Use this information to factor n.

7.5 Supposeht : (&)2m + (z~)~ is a strongly collision-free hash function.
(a) Define h2 : (ZZ)~“‘ + (a)” as in Figure 7.13. Prove that h2 is strongly

collision-free.
(b) For an integer i 2 2, define a hash function hi : (&)2’m + (&)“‘ re-

cursively from hi-l, as indicated in Figure 7.14. Prove that hi is strongly
collision-free.

7.6 Using the (original) expansion function of the SHS, Equation 7.1, express each of
X[16], . . . , X[79] in terms ofX[O],..., X[15]. Now, for each pair X[i], X[j],

258

FIGURE 7.14
Hashing 2’m bits to m bits

CHAPTER 7. HASH FUNCTIONS

:I
write z E (Z2)2i” asz = ~1 11 22, wherezl,zz E (2&)“-‘”
define hi(z) = hl(hi-1(21) 11 hi-l(s2)).

where 1 5 i < j 5 15, use a computer program to determine Ai,, which denotes
the number of X[k]‘s (16 5 k 5 79) such that X[i] and X[j] both occur in the
expression for X[k]. What is the range of values Xij?

	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	3 The Data Encryption Standard
	4 The RSA System and Factoring
	5 Other Public-key Cryptosystems
	6 Signature Schemes
	Hash Functions
	7.1 Signatures and Hash Functions
	FIGURE 7.1

	7.2 Collision-free Hash Functions
	FIGURE 7.2

	7.3 The Birthday Attack
	FIGURE 7.3

	7.4 A Discrete Log Hash Function
	7.5 Extending Hash Functions
	FIGURE 7.4
	FIGURE 7.5

	7.6 Hash Functions From Cryptosystems
	FIGURE 7.6

	7.7 The MD4 Hash Function
	FIGURE 7.7
	FIGURE 7.8
	FIGURE 7.9
	FIGURE 7.10

	7.8 Timestamping
	FIGURE 7.11
	FIGURE 7.12

	7.9 Notes and References
	Exercises
	FIGURE 7.13
	FIGURE 7.14

	8 Key Distribution and Key Agreement
	9 Identification Schemes
	10 Authentication Codes
	11 Secret Sharing Schemes
	12 Pseudo-random Number Generation
	13 Zero-knowledge Proofs
	Bibliography
	Index

	Next Chapter:
	Next:
	Home:
	Previous:
	Previous Chapter:

