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7 
Hash Functions 

7.1 Signatures and Hash Functions 

The reader might have noticed that the signature schemes described in Chapter 
6 allow only “small” messages to be signed. For example, when using the DSS, 
a 160-bit message is signed with a 320-bit signature. In general, we will want 
to sign much longer messages. A legal document, for example, might be many 
megabytes in size. 

A naive attempt to solve this problem would be to break a long message into 
160-bit chunks, and then to sign each chunk independently. This is analogous 
to encrypting a long string of plaintext by encrypting each plaintext character 
independently using the same key (e.g., ECB mode in the DES). 

But there are several problems with this approach in creating digital signatures. 
First of all, for a long message, we will end up with an enormous signature (twice 
as long as the original message in the case of the DSS). Another disadvantage is 
that most “secure” signature schemes are slow since they typically use complicated 
arithmetic operations such as modular exponentiation. But an even more serious 
problem with this approach is that the various chunks of a signed message could 
be rearranged, or some of them removed, and the resulting message would still be 
verified. We need to protect the integrity of the entire message, and this cannot be 
accomplished by independently signing little pieces of it. 

The solution to all of these problems is to use a very fast public cryptographic 
hashfunction, which will take a message of arbitrary length and produce a message 
digest of a specified size (160 bits if the DSS is to be used). The message digest 
will then be signed. For the DSS, the use of a hash function h is depicted 
diagramatically in Figure 7.1 

When Bob wants to sign a message 2, he first constructs the message digest 
z = h (2) , and then computes the signature y = sigK (z) . He transmits the ordered 
pair (x, y) over the channel. Now the verification can be performed (by anyone) 
by first reconstructing the message digest z = h(z) using the public hash function 
h, and then checking that VerK (z, y) = true. 

233 
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FIGURE 7.1 
Signing a message digest 

7.2 Collision-free Hash Functions 

We have to be careful that the use of a hash function h does not weaken the 
security of the signature scheme, for it is the message digest that is signed, not the 
message. It will be necessary for h to satisfy certain properties in order to prevent 
various forgeries. 

The most obvious type of attack is for an opponent, Oscar, to start with a valid 
signed message (z, y), where y = SigK(h(x)). (The pair (2, y) could be any 
message previously signed by Bob.) Then he computes z = h(z) and attempts to 
find 2’ # z such that h(z’) = h(z). If 0 scar can do this, (z’, y) would be a valid 
signed message, i.e., a forgery. In order to prevent this type of attack, we require 
that h satisfy the following collision-free property: 

DEFINITION 7.1 A hash function h is weakly collision-free ii given a message 
x, it iscomputationally infeasible tojindamessage I’ # x such that h(x’) = h(x). 

Another possible attack is the following: Oscar first finds two messages 3: # x’ 
such that h(x) = h(x’). 0 scar then gives x to Bob and persuades him to sign the 
message digest h(x), obtaining y. Then (x’, y) is a valid forgery. 

This motivates a different collision-free property: 

DEFINITION 7.2 A hash function h is strongly collision-free if it is computa- 
tionally infeasible tofind messages x and x’ such that x’ # x and h(x’) = h(x). 

Observe that strongly collision-free implies weakly collision-free. 
Here is a third variety of attack. As we mentioned in Section 6.2, it is often 

possible with certain signature schemes to forge signatures on random message 
digests z. Suppose Oscar computes a signature on such a random z, and then he 
finds a message x such that z = h(x). If he can do this, then (x, y) is a valid 
forgery. To prevent this attack, we desire that h satisfy the same one-way property 
that was mentioned previously in the context of public-key cryptosystems and the 
Lamport Signature Scheme: 
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FIGURE 7.2 
Using an inversion algorithm A to find collisions for a hash function h 

1. choose a random x E X 

~ 2. compute .z = h(x) 

3. compute xr = A(z) 

4. if q # 2: then 

x t and x collide under h (success) 

else 

QUIT (failure). 

DEFINITION 7.3 A hash function h is one-way if; given a message digest z, it is 
computationally infeasible tofind a message x such that h(x) = z. 

We are now going to prove that the strongly collision-free property implies the 
one-way property. This is done by proving the contrapositive statement. More 
specifically, we will prove that an arbitrary inversion algorithm for a hash function 
can be used as an oracle in a Las Vegas probabilisticalgorithm that finds collisions. 

This reduction can be accomplished with a fairly weak assumption on the 
relative sizes of the domain and range of the hash function. We will assume for 
the time being that the hash function h : X + 2, where X and Z are finite sets 
and 1x1 > 2121. Th is is a reasonable assumption: If we think of an element of X 
as being encoded as a bitstring of length log, 1x1 and an element of Z as being 
encoded as a bitstring of length log, 121, then the message digest r = h(x) is at 
least one bit shorter than the message x. (Eventually, we will be interested in the 
situation where the message domain X is infinite, since we want to be able to deal 
with messages of arbitrary length. Our argument also applies in this situation.) 

We are assuming that we have an inversion algorithm for h. That is, we have an 
algorithm A which accepts as input a message digest z E Z, and finds an element 
A(z) E X such that h(A(z)) = 2. 

We prove the following theorem. 

THEOREM 7.1 
Suppose h : X -+ Z is a hush function where 1x1 and lZ\ arejnite and 1x1 2 
2121. Suppose A is an inversion algorithmfor h. Then there exists a probabilistic 
Las Vegas algorithm whichfinds a collision for h with probability at least l/2. 

PROOF Consider the algorithm B presented in Figure 7.2. Clearly B is a 
probabilistic algorithm of the Las Vegas type, since it either finds a collision or 
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returns no answer. Thus our main task is to compute the probability of success. 
For any x E X, define x - xi if h(z) = h(zl). It is easy to see that - is an 
equivalence relation. Define 

[x] = (2, E x : x - 2,). 

Each equivalence class [x] consists of the inverse image of an element of Z, so 
the number of equivalence classes is at most IZ]. Denote the set of equivalence 
classes by C. 

Now, suppose x is the element of X chosen in step 1. For this x, there are ][x] I 
possible XI ‘s that could be returned in step 3. ][z]] - 1 of these xt ‘s are different 
from x and thus lead to success in step 4. (Note that the algorithm A does not 
know the representative of the equivalence class [x] that was chosen in step 1.) 
So, given a particular choice z E X, the probability of success is (I [x] I - l)/ I [x] I. 

The probability of success of the algorithm B is computed by averaging over 
all possible choices for x: 

lb11 - 1 P(success) = hsFx l[x]l 

+Qy 
CEC ZEC 

= h C(lcl - 1) 
CEC 

= +I (p-g 

> IXI- I4 
- 1x1 
> PI- IXIP - 1x1 

1 = -. 
2 

Hence we have constructed a Las Vegas algorithm with success probability at least 
l/2. I 

Hence, it is sufficient that a hash function satisfy the strongly collision-free prop- 
erty, since it implies the other two properties. So in the remainder of this chapter 
we restrict our attention to strongly collision-free hash functions. 
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7.3 The Birthday Attack 

In this section, we determine a necessary security condition for hash functions 
that depends only on the cardinality of the set Z (equivalently, on the size of the 
message digest). This necessary condition results from a simple method of finding 
collisions which is informally known as the birthday attack. This terminology 
arises from the so-called birthday paradox, which says that in a group of 23 
random people, at least two will share a birthday with probability at least l/2. (Of 
course this is not a paradox, but it is probably counter-intuitive). The reason for 
the terminology “birthday attack” will become clear as we progress. 

As before, let us suppose that h : X + Z is a hash function, X and Z are finite, 
and 1x1 2 2121. Denote 1x1 = m and IZI = 12. It is not hard to see that there are 
at least IZ collisions - the question is how to find them. A very naive approach 
is to choose Ic random distinct elements xl, . . . , xk E X, compute %; = h(z;), 
1 5 i 5 Ic, and then determine if a collision has taken place (by sorting the zi’s, 
for example). 

This process is analogous to throwing k balls randomly into n bins and then 
checking to see if some bin contains at least two balls. (The k balls correspond to 
the k random xi’s, and the n bins correspond to the n possible elements of Z.) 

We will compute a lower bound on the probability of finding a collision by 
this method. This lower bound will depend on k and n, but not on m. Since 
we are interested in a lower bound on the collision probability, we will make the 
assumption that 1 h- ’ (z) I M m/n for all % E Z. (This is a reasonable assumption: 
if the inverse images are not approximately equal, then the probability of finding 
a collision will increase.) 

Since the inverse images are all (roughly) the same size and the xi’s are chosen 
at random, the resulting %i’s can be thought of as random (not necessarily distinct) 
elements of Z. But it is a simple matter to compute the probability that k random 
elements 21, . . . , %k E Z are distinct. Consider the ri’s in the order %I, . . . , %k. 
The first choice %r is arbitrary; the probability that %2 # %I is 1 - l/n; the 
probability that %s is distinct from %r and %2 is 1 - 2/n, etc. 

Hence, we estimate the probability of no collisions to be 

If x is a small real number, then 1 - x w e-“. This estimate is derived by taking 
the first two terms of the series expansion 

e-” = 1 - 2 + g - $. . . . 
. . 
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Then our estimated probability of no collisions is 

So we estimate the probability of at least one collision to be 
-k(k--l) 

l-e = . 

If we denote this probability by 6, then we can solve for k as a function of n and c 

e* Ml--E 
-k(k - 1) 

n 
w ln(1 - 6) 

k2-kknln&. 

If we ignore the term -k, then we estimate 

If we take c = .5, then our estimate is 

k M 1.176. 

So this says that hashing just over fi random elements of X yields a collision 
with a probability of 50%. Note that a different choice of e leads to a different 
constant factor, but k will still be proportional to fi. 

If X is the set of all human beings, Y is the set of 365 days in a non-leap year 
(i.e., excluding February 29), and h(z) denotes the birthday of person z, then 
we are dealing with the birthday paradox. Taking n = 365 in our estimate, we 
get /C M 22.3. Hence, as mentioned earlier, there will be at least one duplicated 
birthday among 23 random people with probability at least l/2. 

This birthday attack imposes a lower bound on the sizes of message digests. A 
40-bit message digest would be very insecure, since a collision could be found 
with probability l/2 with just over 220 (about a million) random hashes. It is 
usually suggested that the minimum acceptable size of a message digest is 128 
bits (the birthday attack will require over 2 &Q hashes in this case). The choice of 
a 160-bit message digest for use in the DSS was undoubtedly motivated by these 
considerations. 
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FIGURE 7.3 
Chaum-van Heijst-Pfitzmann Hash Function 

Suppose p is a large prime and q = (p - 1)/2 is also prime. Let Q and p 
be two primitive elements of 5. The value log, /3 is not public, and we 
assume that it is computationally infeasible to compute its value. 
The hash function 

h : (0,. . . , Q- 11 x (0,. .*9!7- w+~\~o~ 

is defined as follows: 

h(z,, 22) = a”‘/3”* mod p. 

7.4 A Discrete Log Hash Function 

In this section, we describe a hash function, due to Chaum, van Heijst, and 
Pfitzmann, that will be secure provided a particular discrete logarithm cannot be 
computed. This hash function is not fast enough to be of practical use, but it is 
conceptually simple and provides a nice example of a hash function that can be 
proved secure under a reasonable computational assumption. The Chaum-van 
Heijst-Pkmann Hash Function is presented in Figure 7.3. We now prove a 
theorem concerning the security of this hash function. 

THEOREM 7.2 
Given one collision for the Chaum-van Heijst-Pfdzmann Hash Function h, the 
discrete logarithm log, p can be computed eficiently. 

PROOF SUppOSe we are given a COlliSiOn 

~(zI, ~2) = h(n, 241, 

where ($1 , 22) # (23,~). So we have the following congruence: 

#p=z E cr23/3x4 (mod p), 

or 

Denote 

(p--23 = - j3x4-x2 (mod p). 

d=gcd(zd-zz,p--1). 

Since p - 1 = 2q and q is prime, it must be the case that d E { 1,2, q, p - 1). 
Hence, we have four possibilities for d, which we will consider in turn. 
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First, suppose that d = 1. Then let 

y = (24 - ~2)~’ mod (p - 1). 

We have that 

/3 E /l(x4-x2)Y (mod p) 

E CY(“~-“~)Y (mod p), 

so we can compute the discrete logarithm log, ,0 as follows: 

log, p = (zt - 23)(24 - 2~)~’ mod (p - 1). 

Next, suppose that d = 2. Since p - 1 = 2q where q is odd, we must have 
gcd(z4 - x2, q) = 1. Let 

y = (24 - x2)-’ mod q. 

Now 

(x4 - 22)~ = kq + 1 

for some integer k, so we have 

p(24-22)Y E pk’?+’ (mod p) 

G (-l)kp (mod p) 

E 3$3 (mod p), 

since 

So we have 

pq E -1 (mod p). 

It follows that 

(gy(“4-“Z)Y q /3(“-“3)Y (mod p) 

z *tp (mod p). 

log, P = (XI - 33)~ mod (P - 1) 

or 

log, P = (XI - x3)y + q mod (p - 1). 

We can easily test which of these two possibilities is the correct one. Hence, as in 
the case d = 1, we have calculated the discrete logarithm log, ,L3. 

The next possibility is that d = q. But 

o<xt<q-1 
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and 

so 

-(q - 1) 5 x4 - x2 5 q - 1. 

So it is impossible that gcd(x4 - x2,p - 1) = q; in other words, this case does 
not arise. 

The final possibility is that d = p - 1. This happens only if 22 = x4. But then 
we have 

&lpzz E ax3pC2 (mod p), 

so 

azl z ax3 (mod p), 

and xt = x3. Thus (x1,x2) = (x3,24), a contradiction. So this case is not 
possible, either. 

Since we have considered all possible values for d, we conclude that the hash 
function h is strongly collision-free provided that it is infeasible to compute the 
discrete logarithm log, /3 in I?&,. 1 

We illustrate the result of the above theorem with an example. 

Example 7.1 
Suppose p = 12347 (so q = 6173), Q = 2 and p = 8461. Suppose we are given 
the collision 

a5692p’44 E CY~‘~@“~ (mod 12347). 

Thusxt =5692,x2 = 144,x3 = 212andx4 = 4214. Now,gcd(xd-xz,p-1) = 
2, so we begin by computing 

y = (x4 - x2)-’ mod q 

= (4214 - 144)-l mod 6173 

= 4312. 

Next, we compute 

y’ = (x1 - 23)~ mod (p - 1) 

= (5692 - 212)4312 mod 12346 

= 11862. 
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Now it is the case that log, /3 E {y’, y’ + q mod (p - 1)). Since 

ay’ mod p = 21’862 mod 12346 = 9998, 

we conclude that 

log,P=y’+qmod(p-1) 

= 11862 + 6173 mod 12346 

= 5689. 

As a check, we can verify that 

25689 G 8461 (mod 12347). 

Hence, we have determined log, /3. 0 

7.5 Extending Hash Functions 

So far, we have considered hash functions with a finite domain. We now study 
how a strongly collision-free hash function with a finite domain can be extended 
to a strongly collision-free hash function with an infinite domain. This will enable 
us to sign messages of arbitrary length. 

Suppose h : (&)m + (&) t is a strongly collision-free hash function, where 
m 2 t + 1. We will use h to construct a strongly collision-free hash function 
h* : X + (Z#, where 

x = fi (z#. 
i=m 

We first consider the situation where m 2 t + 2. 
We will think of elements of X as bit-strings. 1x1 denotes the length of x (i.e., 

the number of bits in x), and x 11 y denotes the concatenation of the bit-strings x 
and y. Suppose (xl = n > m. We can express x as the concatenation 

2 = Xl II x2 II . . . II Xkr 

where 

and 

1x11 = (221 = . . . = (xk-t(=m-t-l 

)xkl=m-t-l-d, 
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FIGURE 7.4 
Extending a hash function h to h’ (m 2 t + 2) 

1. fori=ltok-ldo 
yi = Xj 

2. yk = xk 11 od 

3. let yk+l be the binary representation of d 

4. 91 = Not+’ II Yl) 
5. fori= ltokdo 

9i+l = h(gi II 1 II Yi+l) 
6. h*(x) = gk+l. 

where 0 5 d 5 m - t - 2. Hence, we have that 

We define h*(x) by the algorithm presented in Figure 7.4. 
Denote 

Y(X) = Yl II Y2 II . . . II Yk+l* 

Observe that yk is formed from Xk by padding on the right with d zeroes, so that 
all the blocks yi (1 5 i 5 k) are of length m - t - 1. Also, in step 3, yk+l should 
be padded on the left with zeroes so that Iyk+l I = m - t - 1. 

In order to hash x, we first construct y(x), and then “process” the blocks 
YI,Y2,. . ., yk+l in apaxticularfashion. It is importantthat y(x) # y(x’) whenever 
x # x’. In fact, yk+l is defined in such a way that the mapping x I+ y(x) will be 
an injection. 

The following theorem proves that h* is secure provided that h is secure. 

THEOREM 7.3 
Suppose h : (Q” + (&) t is a strongly collision-free hash function, where 
m 2 t + 2. Then thefunction h’ : U&(&)’ + (&)t, as constructed in Figure 
7.4, is a strongly collision-free hash function. 

PROOF Suppose that we can find x # x’ such that h’ (x) = h’ (2’). Given such 
a pair, we will show how we can find a collision for h in polynomial time. Since 
h is assumed to be strongly collision-free, we will obtain a contradiction, and thus 
h* will be proved to be strongly collision-free.. 
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Denote 

and 

Y(X) = Yl II YZ II . . * II Yk+l 

Y(4 = ?A II & II . . . II ?A+,, 
where 2 and x’ are padded with d and d’ O’s, respectively, in step 2. Denote the 
values computed in steps 4 and 5 by gt, . . . , gk+t and g{, . . . , gi+,, respectively. 

We identify two cases, depending on whether or not 12 I f lx’/ (mod m - t - 1). 

case 1: 121 ye! IdI (mod m - t - 1). 

Here d # d’ and yk+t # d+,. We have 

%k 11 1 11 Yk+l) = Qk+l 

= h*(x) 

= h*(x’) 

= d+1 

= h(d II 1 II Yi+A 

which is a collision for h since yk+t # dl+, . 

case 2: 1x1 E lx’1 (mod m - t - 1). 

It is convenient to split this into two subcases: 

case2a: 1x1 = (2’1. 

Here we have k = ! and yk+t = dk+,. We begin as in case 1: 

h(gk 11 1 11 Yk+l) = gk+l 

= h*(x) 

= h*(x’) 

= !A+, 

= WC II 1 II YL+d. 

If gk # g$, then we fmd a collision for h, so assume gk = gi. Then we have 

hk-I 11 1 11 Yk) = Sk 

= s;, 

= h(dc-1 II 1 II Yi). 

Either we find a collision for h, or gk-t = gL_, and yk = dk. Assuming 
we do not find a collision, we continuing working backwards, until finally 
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we obtain 

= s’l 
= wt+’ II Yi). 

If yr # y{, then we find a collision for h, so we assume yr = y{ . But then 
yi = yi for 1 5 i 5 k + 1, so y(x) = y(x’). But this implies x = 2’ since 
the mapping 2 I+ y(z) is an injection. Since we assumed x # x’, we have 
a contradiction. 

case2b: 1x1 # 11’1. 

Without loss of generality, assume lx’1 > 1x1, so e > k. This case proceeds 
in a similar fashion as case 2a. Assuming we find no collisions for h, we 
eventually reach the situation where 

h(@+’ II YI) = 91 

= d-k+1 

= h&c 11 1 11 d-k+& 

But the (t + 1)st bit of Ot+’ II yt is a 0 and the (t + 1)st bit of gi-k II 1 II 
yimk+, is a 1. So we find a collision for h. 

Since we have considered all possible cases, we have the desired conclusion. 

The construction of Figure 7.4 can be used only when m > t + 2. Let’s now 
look at the situation where m = t + 1. We need to use a different construction for 
h*. As before, suppose 1x1 = n > m. We first encode x in a special way. This 
will be done using the function f defined as follows: 

f(O) = 0 

f(1) = 01. 

The algorithm to construct h*(x) is presented in Figure 7.5. 
The encoding x c) y = y(x), defined in step 1, satisfies two important proper- 

ties: 

I. If x # x’, then y(x) # y(x’) (i.e., x I+ y(x) is an injection). 

2. There do not exist two strings x # I’ and a string z such that y(x) = z II 
y(x’). (In other words, no encoding is apostfi of another encoding. This is 
easily seen because each string y(x) begins with 11, and there do not exist 
two consecutive l’s in the remainder of the string.) 
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FIGURE 7.5 
Extending a hash function h to h’ (m = t + 1) 

l. let Y = YIYZ . . . Yk = 11 II f(a) 11 f(X2) 11 . . . 11 f(Xn) 

2. 91 = h(@ II YI) 
3. fori= 1 tok-ldo 

si+l = h(gi II Y~+I) 
4. h*(x) = gk. 

THEOREM 7.4 
Suppose h : (Z#+’ + (762)” is a strongly collision-free hash function. Then the 
function h’ : U~o=t+l(Z2)’ + (Qt, as constructed in Figure 7.5, is a strongly 
collision-free hash function. 

PROOF Suppose that we can find x # x’ such that h’ (x) = h* (x’). Denote 

Y(x) = YlY2.. . ?/k 

and 

y(x’) = y’ly;. . .y;. 

We consider two cases. 

easel: k=P. 

As in Theorem 7.3, either we find a collision for h, or we obtain y = y’. 
But this implies x = x’, a contradiction. 

case 2: k # e. 

Without loss of generality, assume e > k. This case proceeds in a similar 
fashion. Assuming we find no collisions for h, we have the following 
sequence of equalities: 

Yk = d 

Yk-I = Y;-, 

. . . . . . 

Y1 = Y;-k+l* 

But this contradicts the “postfix-free” property stated above. 

We conclude that h* is collision-free. 1 
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We summarize the two constructions of in this section, and the number of 
applications of h needed to compute h*, in the following theorem. 

THEOREM 7.5 
Suppose h : (ZZ)~ + (a) t is a strongly collision-free hash function, where 
m 2 t + 1. Then there exists a strongly collision-free hash function 

h’ : fi (ZZ$ + (iZ#. 
iZ7l 

The number of times h is computed in the evaluation of h* is at most 

l+ I*1 ifm>t+2 

2n+2 ifm=t+l, 

where 1x1 = 12. 

7.6 Hash Functions From Cryptosystems 

So far, the methods we have described lead to hash functions that are probably too 
slow to be useful in practice. Another approach is to use an existing private-key 
cryptosystem to construct a hash function. Let us suppose that (P, C, K, E, D) is 
a computationally secure cryptosystem. For convenience, let us assume also that 
‘P = C = K = (ZZ)~. Here we should have n 2 128, say, in order to prevent 
birthday attacks. This precludes using DES (as does the fact that the key length 
of DES is different from the plaintext length). 

Suppose we are given a bitstring 

2: = xl 11 22 11 . . . 11 xk, 

where xi E (iZ$, 1 5 i 5 k. (If the number of bits in x is not a multiple of 12, 
then it will be necessary to pad x in some way, such as was done in Section 7.5. 
For simplicity, we will ignore this now.) 

The basic idea is to begin with a fixed “initial value” go = IV, and then construct 
Qlt**., gk in order by a rule of the form 

gi = f(Xi,%l), 

where f is a function that incorporates the encryption function of our cryptosystem. 
Finally, define the message digest h(x) = gk. 

Several hash functions of this type have been proposed, and many of them 
have been shown to be insecure (independent of whether or not the underlying 
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FIGURE 7.6 
Constructing M in MD4 

1. d=447-(jclmod512) 

2. let !T denote the binary representation of 1x1 mod 264, I!] = 64 

3. M=x]]l])Od]Je 

cryptosystem is secure). However, four variations of this theme that appear to be 
secure are as follows: 

9i = egi-1 (Xi) 63 Xi 

gi =eg,-,(xi)fBx:i@gi-~ 

si = es,-,(xi @a-l) @xi 

gi = eg,-,(xi $9~1) @xi @SC-I. 

7.7 The MD4 Hash Function 

The MD4 Hash Function was proposed in 1990 by Rivest, and a strengthened 
version, called MDS, was presented in 1991. The Secure Hash Standard (or 
SHS) is more complicated, but it is based on the same underlying methods. It was 
published in the Federal Register on January 3 1, 1992, and adopted as a standard 
on May 11, 1993. (A proposed revision was put forward on July 11, 1994, to 
correct a “technical flaw” in the SHS.) All of the above hash functions are very 
fast, so they are practical for signing very long messages. 

In this section, we will describe MD4 in detail, and discuss some of the modi- 
fications that are employed in MD5 and the SHS. 

Given a bitstring x, we will first produce an array 

M = M[O]M[l] . . . M[N - 11, 

where each M [i] is a bitstring of length 32 and N E 0 mod 16. We will call each 
M[i] a word. M is constructed from t using the algorithm presented in Figure 
7.6. 

In the construction of M, we append a single 1 to x, then we concatenate 
enough O’s so that the length becomes congruent to 448 modulo 512, and finally 
we concatenate 64 bits that contain the binary representation of the (original) 
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length of x (reduced modulo 2 64, if necessary). The resulting string M has length 
divisible by 512. So when we break M up into 32-bit words, the resulting number 
of words, denoted by N, will be divisible by 16. 

Now we proceed to construct a 128-bit message digest. A high-level description 
of the algorithm is presented in Figure 7.7. The message digest is constructed as 
the concatenation of the four words A, B, C and D, which we refer to as registers. 
The four registers are initialized in step 1. Now we process the array M 16 words 
at a time. In each iteration of the loop in step 2, we first take the “next” 16 words of 
M and store them in an array X (step 3). The values of the four registers are then 
stored (step 4). Then we perform three “rounds” of hashing. Each round consists 
of one operation on each of the 16 words in X (we will describe these operations 
in more detail shortly). The operations done in the three rounds produce new 
values in the four registers. Finally, the four registers are updated in step 8 by 
adding back the values that were stored in step 4. This addition is defined to be 
addition of positive integers, reduced modulo 232. 

The three rounds in MD4 are different (unlike DES, say, where the 16 rounds 
are identical). We first describe several different operations that are employed in 
these three rounds. In the following description, X and Y denote input words, 
and each operation produces a word as output. Here are the operations employed: 

X A Y bitwise “and” of X and Y 
X V Y bitwise “or” of X and Y 
X @ Y bitwise “xor” of X and Y 
TX bitwise complement of X 
X + Y integer addition modulo 232 
X < s circular left shift of X by s positions (0 5 s 5 3 1) 

Note that all of these operations are very fast, and the only arithmetic operation 
that is used is addition modulo 2 32 . If MD4 is actually implemented, it will be 
necessary to take into account the underlying architecture of the computer it is run 
on in order to perform addition correctly. SUppOSe ai e2esU4 are the four bytes in a 
word. We think of each ai as being an integer in the range 0, . . . ,255, represented 
in binary. In a big-endiun architecture (such as a Sun SPARCstation), this word 
represents the integer 

~312~~ + ~322’~ + ~~32~ + ~4. 

In a little-endiun architecture (such as the Intel 8Oxxx line), this word represents 
the integer 

~42~~ + ~32’~ + ~22~ + al. 

MD4 assumes a little-endian architecture. It is important that the message 
digest is independent of the underlying architecture. So if we wish to run MD4 
on a big-end&t computer, it will be necessary to perform the addition operation 
x + Y as follows: 
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FIGURE 7.7 
The MD4 hash function 

1. A = 67452301 (hex) 

B = efcdub89 (hex) 

C = 98budcfe (hex) 

D = 10325476 (hex) 

2. fori=OtoN/16-ldo 

3. forj=Oto15do 

X[j] = M[16i + j] 

4. AA=A 

BB=B 

cc=c 

DD=D 

5. Round1 

6. Round2 

7. Round3 

8. A=A+AA 

B=B+BB 

c=c-?-cc 

D=D+DD 

1. Interchange xt and x4; 22 and x3; yt and ~4; and y2 and y3. 

2. Compute 2 = X + Y mod 232 

3. Interchange zt and ~4; and z2 and 23. 

Rounds 1, 2, and 3 of MD4 respectively use three functions f, g and h. Each 
of f, g and h is a bitwise boolean function that takes two words as input and 
produces a word as output. They are defined as follows: 

f (X, Y, 2) = (X A Y) v ((TX) A 2) 

g(X,Y,Z) = (XAY)V(XAZ)V(YAZ) 

h(X,Y,Z) =X@Y@Z. 

The complete description of Rounds 1,2 and 3 of MD4 are presented in Figures 
7.8-7.10. 
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FIGURE 7.8 
Round 1 of MD4 

1. A=(A+f(B,C,D)+X[0])<3 

2. D=(D+f(A,B,C)+X[1])<7 

3. C= (C+ f(D,A,B) +X[2]) < 11 

4. B = (B + f (C, D, A) + X[3]) << 19 

5. A=(A+f(B,C,D)+X[4])<<3 

6. D=(D+f(A,B,C)+X[5])<7 

7. C=(C+f(D,A,B)+X[6])<11 

8. B = (B + f (C, D, A) + X[7]) < 19 

9. A = (A + f (B, C, D) + X[8]) << 3 

10. D = (D + f (A, B, C) + X[9]) < 7 

11. C=(C+f(D,A,B)+X[lO])<<ll 

12. B = (B + f(C, D,A) + X[ll]) < 19 

13. A = (A + f (B, C, D) + X1121) @I 3 

14. D = (D + f (A, B, C) + X[13]) < 7 

15. C = (C-t f(D,A, B) +X[14]) << 11 

16. B = (B + f (C, D, A) + X[lS]) < 19 

251 

MD4 was designed to be very fast, and indeed, software implementations on 
Sun SPARCstations attain speeds of 1.4 MbytesIsec. On the other hand, it is 
difficult to say something concrete about the security of a hash function such as 
MD4 since it is not “based” on a well-studied problem such as factoring or the 
Discrete Log problem. So, as is the case with DES, confidence in the security 
of the system can only be attained over time, as the system is studied and (one 
hopes) not found to be insecure. 

Although MD4 has not been broken, weakened versions that omit either the 
first or the third round can be broken without much difficulty. That is, it is easy to 
find collisions for these two-round versions of MD4. A strengthened version of 
MD4, called MD5, was proposed in 1991. MD5 uses four rounds instead of three, 
and runs about 30% slower than MD4 (about .9 Mbyte&x on a SPARCstation). 

The Secure Hash Standard is yet more complicated, and slower (about .2 
Mbytes/set on a SPARCstation). We will not give a complete description, but we 
will indicate a few of the modifications employed in the SHS. 
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FIGURE 7.9 
Round 2 of MD4 

1. A = (A + g(B, C, D) + X[O] + 5A827999) << 3 

2. D = (D + g(A, B, C) + X[4] + 5A827999) < 5 

3. C = (C + g(D, A, B) + X[8] + 5A827999) < 9 

4. B = (B + g(C, D, A) + X[12] + 5A827999) < 13 

5. A = (A + g(B, C, D) + X[l] + 5A827999) < 3 

6. D = (D + g(A, B, C) + X[5] + 5A827999) < 5 

7. C = (C + g(D, A, B) + X[9] + 5A827999) < 9 

8. B = (B + g(C, D, A) + X[13] + 5A827999) << 13 

9. A = (A + g(B, C, D) + X[2] + 5A827999) < 3 

10. D = (D + g(A, B, C) + X[6] + 5A827999) << 5 

11. C = (C+g(D,A, B) +X[10]+5A827999) <9 

12. B = (B + g(C, D, A) + X[14] + 5A827999) << 13 

13. A = (A + g(B, C, D) + X[3] + 5A827999) << 3 

14. D = (D + g(A, B, C) + X[7] + 5A827999) < 5 

15. C = (C + g(D, A, B) + X[ll] + 5A827999) < 9 

16. B = (B + g(C, D, A) + X[15] + 5A827999) < 13 

2. SHS is designed to run on a big-endian architecture, rather than a little- 
endian architecture. 

2. SHS produces a 5-register (160-bit) message digest. 

3. SHS processes the message 16 words at a time, as does MD4. However, 
the 16 words are first “expanded” into 80 words. Then a sequence of 80 
operations is performed, one on each word. 

The following “expansion function” is used. Given the 16 words X[O], . . . , 
X [ 151, we compute 64 more words by the recurrence relation 

X~]=X~-3]$X~-8]$Xlj-l4]$X[j--16],16<j<79. (7.1) 

The result of Equation 7.1 is that each of the words X[ 161, . . . , X[79] is formed 
as the exclusive-or of a predetermined subset of the words X [0], . . . , X [ 151. 

For example, we have 

X[16] = X[O] @ X[2] @ X[8] @ X[13] 
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FIGURE 7.10 
Round 3 of MD4 

1. A = (A + h(B, C, D) + X[O] + 6ED9EBAl) < 3 

2. D = (D + h(A, B, C) + X[8] + 6ED9EBAl) << 9 

3. C = (C + h(D, A, B) + X[4] + 6ED9EBAl) << 11 

4. B = (B + h(C, D,A) + X[12] + 6ED9EBAl) < 15 

5. A=(A+h(B,C,D)+X[2]+6ED9EBA1)(<3 

6. D = (D + h(A, B, C) + X[lO] + 6EDBEBAl) < 9 

7. C = (C + h(D, A, B) + X[6] + 6ED9EBAl) < 11 

8. B = (B + h(C, D, A) + X[14] + 6ED9EBAl) < 15 

9. A = (A + h(B, C, D) + X[l] + 6ED9EBAl) < 3 

10. D = (D + h(A, B, C) + X[9] + 6ED9EBAI) < 9 

11. C= (C+h(D,A,B)+X[5]+6EDBEBAl) < 11 

12. B = (B + h(C, D, A) + X[13] + 6ED9EBAl) < 15 

13. A=(A+h(B,C,D)+X[3]+6ED9EBA1)<3 

14. D = (D + h(A, B,C) + X[ll] + 6ED9EBAl) < 9 

15. C = (C + h(D, A, B) + X[7] + 6ED9EBAl) < 11 

16. B = B + h(C, D, A) + X[15] + 6ED9EBAl) < 15 

X[17] = X[l] @ X[3] @ X[9] @ X[l4] 

X[18] = X[2] @ X[4] @ X[lO] $ X[15] 

X[19] = X[O] $ X[2] $ X[3] $ X[5] $ X[8] $ X[ll] $ X[l3] 

X[79] = X[l] $ X[4] $ X[5] $ X[8] $ X[9] $ X[12] $ X[13]. 

The proposed revision of the SHS concerns the expansion function. It is 
proposed that Equation 7.1 be replaced by the following: 

X[j] = (X~-3]@X~-8]@X[j--14]@X~-16]) < 1,16 < j 5 79. (7.2) 

As before, the operation “<< 1” means a circular left shift of one position. 
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7.8 Timestamping 

One difficulty with signature schemes is that a signing algorithm may be compro- 
mised. For example, suppose that Oscar is able to determine Bob’s secret exponent 
a in the DSS. Then, of course, Oscar can forge Bob’s signature on any message 
he likes. But another (perhaps even more serious) problem is that the compromise 
of a signing algorithm calls in to question the authenticity of all messages signed 
by Bob, including those he signed before Oscar stole the signing algorithm. 

Here is yet another undesirable situation that could arise: Suppose Bob signs a 
message and later wishes to disavow it. Bob might publish his signing algorithm 
and then claim that his signature on the message in question is a forgery. 

The reason these types of events can occur is that there is no way to determine 
when a message was signed. This suggests that we consider ways of timestumping 
a (signed) message. A timestamp should provide proof that a message was signed 
at a particular time. Then, if Bob’s signing algorithm is compromised, it would 
not invalidate any signatures he made previously. This is similar conceptually to 
the way credit cards work: if someone loses a credit card and notifies the bank 
that isssued it, it becomes invalid. But purchases made prior to the loss of the card 
are not affected. 

In this section, we will describe a few methods of timestamping. First, we 
observe that Bob can produce a convincing timestamp on his own. First, Bob 
obtains some “current” publicly available information which could not have been 
predicted before it happened. For example, such information might consist of all 
the major league baseball scores from the previous day, or the values of all the 
stocks listed on the New York Stock Exchange. Denote this information by pub. 

Now, suppose Bob wants to timestamp his signature on a message I. We 
assume that h is a publicly known hash function. Bob will proceed according 
to the algorithm presented in Figure 7.11. Here is how the scheme works: The 
presence of the information pub means that Bob could not have produced y before 
the date in question. And the fact that y is published in the next day’s newspaper 
proves that Bob did not compute y after the date in question. So Bob’s signature y 
is bounded within a period of one day. Also observe that Bob does not reveal the 
message x in this scheme since only z is published. If necessary, Bob can prove 
that x was the message he signed and timestamped simply by revealing it. 

It is also straightforward to produce timestamps if there is a trusted timestamping 
service available (i.e., an electronic notary public). Bob can compute z = h(x) 
and y = sigK(z) and then send (z, y) to the timestamping service, or TSS. The 
TSS will then append the date D and sign the triple (z, y, D). This works perfectly 
well provided that the signing algorithm of the TSS remains secure and provided 
that the TSS cannot be bribed to backdate timestamps. (Note also that this method 
establishes only that Bob signed a message before a certain time. If Bob also 
wanted to establish that he signed it after a certain date, he could incorporate some 
public information pub as in the previous method.) 
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FIGURE 7.11 
Timestamping a signature on a message r 

Bob publishes (z, pub, y) in the next day’s newspaper. 

FIGURE 7.12 
Timestamping ( zn, yn , ID,) 

1. TheTSScomputesL, = (t,-l,ID,-l,%~-1,y,-1,h(L,-,)) 

2. The TSS computes C,, = (n, t,, z,, yn, ID,, L,) 

3. The TSS computes s, = sigTsS(h(Cn)) 

4. The TSS sends (C, , s,, ID,+,) to ID,. 

If it is undesirable to trust the TSS unconditionally, the security can be increased 
by sequentially linking the messages that are timestamped. In such a scheme, Bob 
would send an ordered triple (z, y, ID(Bob)) to the TSS. Here .z is the message 
digest of the message z; y is Bob’s signature on z; and ID(Bob) is Bob’s identifying 
information. The TSS will be timestamping a sequence of triples of this form. 
Denote by ( zn, yn, ID*) the nth triple to be timestamped by the TSS, and let t, 
denote the time at which the nth request is made. 

The TSS will timestamp the nth triple using the algorithm in Figure 7.12. The 
quantity L, is “linking information” that ties the nth request to the previous one. 
(Lo will be taken to be some predetermined dummy information to get the process 
started.) 

Now, if challenged, Bob can reveal his message x,, and then y,, can be verified. 
Next, the signature s, of the TSS can be verified. If desired, then ID,-, or 
%+I can be requested to produce their timestamps, (Cn- t, s,-1, ID,,) and 
(Ga+l,sn+l, ID,+*), respectively. The signatures of the TSS can be checked 
in these timestamps. Of course, this process can be continued as far as desired, 
backwards and/or forwards. 
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7.9 Notes and References 

The discrete log hash function described in Section 7.4 is due to Chaum, van 
Heijst, and Pfitzmann [CvHP92]. A hash function that can be proved secure 
provided that a composite integer n cannot be factored is given by Gibson [GIB91] 
(see Exercise 7.4 for a description of this scheme). 

The material on extending hash functions in Section 7.5 is based on Dimgard 
[DA90]. Similar methods were discovered by Merkle [MEgO]. 

For infomation concerning the construction of hash functions from private-key 
cryptosystems, see Preneel, Govaerts, and Vandewalle [PGV94]. 

The MD4 hashing algorithm was presented in Rivest [R191], and the Secure 
Hash Standard is described in [NBS93]. An attack against two of the three 
rounds of MD4 is given by den Boer and Bossalaers [DBB92]. Other recently 
proposed hash functions include N-hash [MO1901 and Snefru [ME90A]. 

Timestamping is discussed in Haber and Stornetta [HS91] and Bayer, Haber, 
and Stornetta [BHS93]. 

A thorough survey of hashing techniques can be found in Preneel, Govaerts, 
and Vandewalle [PGV93]. 

Exercises 

7.1 Suppose h : X + Y is a hash function. For any y E Y, let 

h-‘(y) = {x : h(z) = y} 

anddenote sy = Ih-l(y)]. Define 

N = I{{~I,~z] : h(a) = h(m)}l. 
Note that N counts the number of unordered pairs in X that collide under h. Answer 
the following: 

(a) Prove that 

c SY = IXL 
YEY 

so the mean of the sy’s is 
&E! 

IYI . 
(b) Prove that 

N=x “2’ +sy2-$k 
YCY 0 

YEY 

(c) Prove that 

C(sy - s)2 = 2N+IXI- 1x12 
YEY 

IV . 
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FIGURE 7.13 
Hashing 4m hits to m bits 

k 
write I E (&)4m as z = EI I] EZ, where 51, xz E (2~)~“’ 
definehz(z) = h~(hr(z~) 1) h1(~2)). 

(d) Using the result proved in part (c), prove that 

Further, show that equality is attained if and only if 

for every y E Y. 
7.2 As in Exercise 7.1, suppose h : X + Y is a hash function, and let 

h-‘(y) = {z : h(z) = y) 

for any y E Y. Let e denote the probability that h(zl) = h(z2). where 21 and 22 
are random (not necessarily distinct) elements of X. Prove that 

with equality if and only if 

lh-‘WI = + 

for every y E Y. 
7.3 Supposep = 15083, (Y = 154 and ,8 = 2307 in the Chaum-van Heijst-Pfitzmann 

Hash Function. Given the collision 

(Y’~~‘@~ E CY’~~/~‘~ (mod p), 

compute log, /3. 
7.4 Suppose n = PQ, where p and q are two (secret) distinct large primes such that 

p = 2p1 + 1 and q = 2qt + 1, where PI and q1 are prime. Suppose that (Y is an 
element of order 2plql in Z,’ (th’ ts is the largest order of any element in Z,‘). 
Define a hash function h : { 1, . . . , n2} + Z,’ by the rule h(r) = CC mod n. 

Now, suppose that n = 603241 and cr = 11 are used to define a hash function 
h of this type. Suppose that we are given three collisions for h: h( 1294755) = 
h(80115359) = h(52738737). Use this information to factor n. 

7.5 Supposeht : (&)2m + (z~)~ is a strongly collision-free hash function. 
(a) Define h2 : (ZZ)~“‘ + (a)” as in Figure 7.13. Prove that h2 is strongly 

collision-free. 
(b) For an integer i 2 2, define a hash function hi : (&)2’m + (&)“‘ re- 

cursively from hi-l, as indicated in Figure 7.14. Prove that hi is strongly 
collision-free. 

7.6 Using the (original) expansion function of the SHS, Equation 7.1, express each of 
X[16], . . . , X[79] in terms ofX[O],..., X[15]. Now, for each pair X[i], X[j], 
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FIGURE 7.14 
Hashing 2’m bits to m bits 

CHAPTER 7. HASH FUNCTIONS 

:I 
write z E (Z2)2i” asz = ~1 11 22, wherezl,zz E (2&)“-‘” 
define hi(z) = hl(hi-1(21) 11 hi-l(s2)). 

where 1 5 i < j 5 15, use a computer program to determine Ai,, which denotes 
the number of X[k]‘s (16 5 k 5 79) such that X[i] and X[j] both occur in the 
expression for X[k]. What is the range of values Xij? 
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