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6 
Signature Schemes 

6.1 Introduction 

In this chapter, we study signature schemes, which are also called digital signa- 
tures. A “conventional” handwritten signature attached to a document is used to 
specify the person responsible for it. A signature is used in everyday situations 
such a writing a letter, withdrawing money from a bank, signing a contract, etc. 

A signature scheme is a method of signing a message stored in electronic form. 
As such, a signed message can be transmitted over a computer network. In 
this chapter, we will study several signature schemes, but first we discuss some 
fundamental differences between conventional and digital signatures. 

First is the question of signing a document. With a conventional signature, 
a signature is physically part of the document being signed. However, a digital 
signature is not attached physically to the message that is signed, so the algorithm 
that is used must somehow “bind” the signature to the message. 

Second is the question of verification. A conventional signature is verified by 
comparing it to other, authentic signatures. For example, when someone signs 
a credit card purchase, the salesperson is supposed to compare the signature on 
the sales slip to the signature on the back of the credit card in order to verify the 
signature. Of course, this is not a very secure method as it is relatively easy to forge 
someone else’s signature. Digital signatures, on the other hand, can be verified 
using a publicly known verification algorithm. Thus, “anyone” can verify a digital 
signature. The use of a secure signature scheme will prevent the possibility of 
forgeries. 

Another fundamental difference between conventional and digital signatures 
is that a “copy” of a signed digital message is identical to the original. On the 
other hand, a copy of a signed paper document can usually be distinguished from 
an original. This feature means that care must be taken to prevent a signed 
digital message from being reused. For example, if Bob signs a digital message 
authorizing Alice to withdraw $100 from his bank account (i.e., a check), he 
only wants Alice to be able to do so once. So the message itself should contain 
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204 CHAPTER 6. SIGNATURE SCHEMES 

information, such as a date, that prevents it from being reused. 
A signature scheme consists of two components: a signing algorithm and a 

verification algorithm. Bob can sign amessage z using a (secret) signing algorithm 
sig. The resulting signature &g(z) can subsequently be verified using a public 
verification algorithm ver. Given a pair (z, y), the verification algorithm returns 
an answer “true” or “false” depending on whether the signature is authentic. 

Here is a formal defintion of a signature scheme. 

DEFINITION 6.1 A signature scheme is afive-tuple (P, A, K, S, V), where the 
following conditions are satisfied: 

I. P is afinite set of possible messages 
2. ,4 is ajnite set of possible signatures 
3. K, the keyspace, is a finite set of possible keys 

4. For each Ii E Kc, there is a signing algorithm sigK E S and a cor- 
responding ver$cation algorithm verK E V. Each sigK : P + A and 
VerK : P x A + {true, false} are functions such that thefollowing equation 
is satisfiedfor every message x E P andfor every signature y E A: 

ver(2, y) = 1 true ify = sig(x) 
false ify # sig(x). 

For every Ii’ E K, the functions sigK and UerK should be polynomial-time 
functions. UerK will be a public function and siqK will be secret. It should be 
computationally infeasible for Oscar to “forge” Bob’s signature on a message 2. 
That is, given x, only Bob should be able to compute the signature y such that 
ver(x, y) = true. A signature scheme cannot be unconditionally secure, since 
Oscar can test all possible signatures y for a message x using the public algorithm 
ver, until he finds the right signature. So, given sufficient time, Oscar can always 
forge Bob’s signature. Thus, as was the case with public-key cryptosystems, our 
goal is to find signature schemes that are computationally secure. 

As our first example of a signature scheme, we observe that the RSA public-key 
cryptosystem can be used to provide digital signatures. See Figure 6.1. 

Thus, Bob signs a message x using the RSA decryption rule dK. Bob is the only 
person that can create the signature since dK = sigK is secret. The verification 
algorithm uses the RSA encryption rule eK. Anyone can verify a signature since 
eK is public. 

Note that anyone can forge Bob’s signature on a “random” message x by 
computing x = eK(y) for some y; then y = sigK(x). One way around this 
difficulty is to require that messages contain sufficient redundancy that a forged 
signature of this type does not correspond to a “meaningful” message x except with 
a very small probability. Alternatively, the use of hash functions in conjunction 
with signature schemes will eliminate this method of forging (cryptographic hash 
functions will be discussed in Chapter 7). 
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FIGURE 6.1 
RSA Signature Scheme 

Let n = pq, where p and q are primes. Let P = A = Z,, and define 

K = {(n,p, q, a, b) : n = pq,p, q prime, ab z 1 (mod 4(n))}. 

The values n and b are public, and the values p, q, a are secret. 

For Ii’ = (n,p, q, a, b),define 

si9K cx) = xa mod rz 

and 

uerK(x, y) = true H 2 f yb (mod n) 
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Finally, let’s look briefly at how we would combine signing and public-key 
encryption. Suppose Alice wishes to send a signed, encrypted message to Bob. 
Given a plaintext x, Alice would compute her signature y = Sig,,ice(x), and 
then encrypt both x and y using Bob’s public encryption function en&,, obtaining 
t = e&&(x, y). The ciphertext I would be transmitted to Bob. When Bob receives 
z, he first decrypts it with his decryption function da& to get (2, y). Then he uses 
Alice’s public verification function to check that uer,+,lice(z, y) = true. 

What if Alice first encrypted z, and then signed the result? Then she would 
compute 

Y = SigAlice(eBob(x)). 

Alice would transmit the pair (z, y) to Bob. Bob would decrypt z, obtaining x, 
and then verify the signature y on t using VerAlice. One potential problem with 
this approach is that if Oscar obtains a pair (P, y) of this type, he could replace 
Alice’s signature y by his own signature 

yl = Sigo,car(eBob(x)). 

(Note that Oscar can sign the ciphertext en&(z) even though he doesn’t know the 
plaintext x.) Then, if Oscar transmits (z, y’) to Bob, Oscar’s signature will be 
verified by Bob using uero,,,, and Bob may infer that the plaintext x originated 
with Oscar. Because of this potential difficulty, most people recommend signing 
before encrypting. 
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FIGURE 6.2 
ElGamal Signature Scheme 

,et p be a prime such that the discrete log problem in Zr is intractible, 
md let cr E Zr* be a primitive element. Let P = Zr*, A = Z$,* x &,-I, 
2nd define 

K: = {(p,cx,a,P) : p E a“ (mod p)}. 

The values p, a and p are public, and a is secret. 

For K = (p, cr, a, p), and for a (secret) random number k E Zpp- 1 l , 
define 

where 

SigK cx7 k) = (7~6)) 

and 

y=crkmodp 

6 = (x - ay)k-’ mod (p - 1). 

For x,y E ZP* and 6 E q-1, define 

ver(x,y,6)=true@~ay6~cr”(modp). 

- 

6.2 The ElGamal Signature Scheme 

We now describe the ElGamal Signature Scheme, which was described in a 1985 
paper. A modification of this scheme has been adopted as a digital signature stan- 
dard by the National Institute of Standards and Technology (NIST). The ElGamal 
Scheme is designed specifically for the purpose of signatures, as opposed to RSA, 
which can be used both as a public-key cryptosystem and a signature scheme. 

The ElGamal Signature Scheme is non-deterministic, as was the ElGamal 
Public-key Cryptosystem. This means that there are many valid signatures for 
any given message. The verification algorithm must be able to accept any of the 
valid signatures as authentic. The description of the ElGamal Signature Scheme 
is given in Figure 6.2. 

If the signature was constructed correctly, then the verification will succeed, 
since 
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E 2 (mod p) , 

where we use the fact that 

ay+kJzz(modp-1). 

Bob computes a signature using both the secret value a (which is part of the 
key) and the secret random number k (which is used to sign one message, z). The 
verification can be accomplished using only public information. 

Let’s do a small example to illustrate the arithmetic. 

Example 6.1 
Suppose we take p = 467, (Y = 2, a = 127; then 

,f3=cramodp 

= 2’*’ mod 467 

= 132. 

Suppose Bob wants to sign the message x = 100 and he chooses the random value 
k = 213 (note that gcd(213,466) = 1 and 213-l mod 466 = 431). Then 

y = 22’3 mod 467 = 29 

and 

6 = (100 - 127 x 29)431 mod 466 = 51. 

Anyone can verify this signature by checking that 

13229295’ E 189 (mod 467) 

and 

2’O” z 189 (mod 467). 

Hence, the signature is valid. 0 

Let’s look at the security of the ElGamal Signature Scheme. Suppose Oscar 
tries to forge a signature for a given message x, without knowing a. If Oscar 
chooses a value y and then tries to find the corresponding 6, he must compute the 
discrete logarithm lob cP/3- -I. On the other hand, if he first chooses 6 and then 
tries to find y, he is trying to “solve” the equation 

for the “unknown” y. This is a problem for which no feasible solution is known; 
however, it does not seem to be related to any well-studied problem such as the 
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Discrete Logarithm problem. There also remains the possibility that there might 
be some way to compute y and 6 simultaneously in such a way that (y, S) will be 
a signature. No one has discovered a way to do this, but conversely, no one has 
proved that it cannot be done. 

If Oscar chooses y and 6 and then tries to solve for z, he is again faced 
with an instance of the Discrete Logarithm problem, namely the computation of 
log, pr6. Hence, Oscar cannot sign a “random” message using this approach. 
However, there is a method by which Oscar can sign a random message by 
choosing y, b and x simultaneously: Suppose i and j are integers, 0 5 i 5 p - 2, 
0 2 j 5 p - 2, and gcd( j, p - 1) = 1. Then perform the following computations: 

y = cri@ mod p 

d = -rj-’ mod(p- 1) 

x = -y23 -*-’ mod (p - l), 

‘-I where j is computed modulo (p- 1) (this is where we require that j be relatively 
prime to p - 1). 

We claim that (y, 6) is a valid signature for the message x. This is proved by 
checking the verification condition: 

pYr6 E pa’P’(a’pj)-“‘@jj-’ (mod p) 

=(Y -Yi3-’ - (mod p) 

G a2 (mod p). 

We illustrate with an example. 

Example 6.2 
As in the previous example, suppose p = 467, Q = 2 and p = 132. Suppose 
Oscar chooses i = 99 and j = 179; then j-’ mod (p - 1) = 151. He would 
compute the following: 

y = 299132’79 mod 467 = 117 
~5 = -117 x 151 mod 466 = 41 
2 = 99x41mod466 = 331. 

Then (117,41) is a valid signature for the message 331, as may be verified by 
checking that 

132”‘l 1741 z 303 (mod 467) 



6.2. THE ELGAMAL SIGNATURE SCHEME 209 

and 

233’ E 303 (mod 467). 

Hence, the signature is valid. 0 

Here is a second type of forgery, in which Oscar begins with a message previ- 
ously signed by Bob. Suppose (y, 6) is a valid signature for a message x. Then it is 
possible for Oscar to sign various other messages. Suppose h, i and j are integers, 
0 _< h, i, j < p - 2, and gcd(hy - ja, p - 1) = 1. Compute the following: 

X = yh&@ modp 

p = cSX(hy - jS)-’ mod (p - 1) 

x’ = X(hx + id)(hy - jS)-’ mod (p - l), 

where (hy - j&)-l is computed modulo (p - 1). Then, it is tedious but straight- 
forward to check the verification condition: 

,@P E ~3’ (mod p). 

Hence (X, p) is a valid signature for x’. 
Both of these methods produce valid forged signatures, but they do not appear 

to enable an opponent to forge a signature on a message of his own choosing 
without first solving a discrete logarithm problem. Hence, they do not seem to 
represent a threat to the security of the ElGamal Signature Scheme. 

Finally, we mention a couple of ways in which the ElGamal Scheme can be 
broken if it is used carelessly (these are further examples of protocol failures, 
some of which were discussed in the exercises of Chapter 4). First, the random 
value k used in computing a signature should not be revealed. For, if k is known, 
it is a simple matter to compute 

a=(x-k-y)6-‘mod(p-1). 

Of course, once a is known, then the system is broken and Oscar can forge 
signatures at will. 

Another misuse of the system is to use the same value k in signing two different 
messages. This also makes it easy for Oscar to compute a and hence break the 
system. This can be done as follows. Suppose (y, 61) is a signature on xt and 
(y, 62) is a signature on x2. Then we have 

and 

pry*’ 3 ax2 (mod p). 
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Thus 

(~“‘~“2 3 y6*-61 (mod p). 

Writing y = ak, we obtain the following equation in the unknown k: 

g142 - ak(&-&) (mod P), 

which is equivalent to 

xl - x2 E k(& - ~51) (mod p - I). 

Nowletd=gcd(&-&,p-1). Sincedj(p-l)andd)(&-6,),itfollows 
that d 1 (x1 - x2). Define 

x1 -x2 I’ = - 
d 

6’ = 82 - 4 
d 

p’-P-l --. 
d 

Then the congruence becomes: 

x’ 3 k6’ (mod p’) . 

Since gcd(6’, p’) = I, we can compute 

6 = (CT’)-’ mod p’. 

Then value of k is determined modulo p’ to be 

k = x’f mod p’. 

This yields d candidate values fork: 

k = X’E + ip’ mod p 

for some i, 0 5 i 5 d - 1. Of these d candidate values, the (unique) correct one 
can be determined by testing the condition 

y~cr” (modp). 

6.3 The Digital Signature Standard 

The Digital Signature Standard (or DSS) is a modification of the ElGamal 
Signature Scheme. It was published in the Federal Register on May 19, 1994 
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and adopted as a standard on December 1, 1994 (however, it was first proposed in 
August, 1991). First, we want to motivate the changes that are made to ElGamal, 
and then we will describe how they are accomplished. 

In many situations, a message might be encrypted and decrypted only once, 
so it suffices to use any cryptosystem which is known to be secure at the time 
the message is encypted. On the other hand, a signed message could function 
as a legal document such as a contract or will, so it is very likely that it would 
be necessary to verify a signature many years after the message is signed. So it 
is important to take even more precautions regarding the security of a signature 
scheme as opposed to a cryptosystem. Since the ElGamal Scheme is no more 
secure than the Discrete Logarithm problem, this necessitates the use of a large 
modulus p. Certainly p should have at least 512 bits, and many people would 
argue that the length of p should be 1024 bits in order to provide security into the 
forseeablefuture. 

However, even a 512 bit modulus leads to a signature having 1024 bits. For 
potential applications, many of which involve the use of smart cards, a shorter 
signature is desirable. DSS modifies the ElGamal Scheme in an ingenious way 
so that a 160-bit message is signed using a 320-bit signature, but the computations 
are done using a 512-bit modulus p. The way that this done is to work in a 
subgroup of ZP* of size 2 t60 . The assumed security of the scheme is based on the 
belief that finding discrete logarithms in this specified subgroup of ZP* is secure. 

The first change we make is to change the “-” to a “+” in the definition of 6, 
so 

6 = (x + ay)k-’ mod (p - 1). 

This changes the verification condition to the following: 

axpY s yb (mod p). (6.1) 

If gcd(x + cry, p - 1) = 1, then 6-t mod (p - 1) exists, and we can modify 
condition (6.1), producing the following: 

@-‘/3@ G y (mod p). 

Now here is the major innovation in the DSS. We suppose that q is a 160-bit 
prime such that q 1 (p- I), and a is a qth root of 1 modulop. (It is easy to construct 
such an a: Let era be a primitive element of i&, and define a = cra(P-t)lq mod p.) 
Then ,0 and 7 will also be qth roots of 1. Hence, any exponents of cr, /3 and -y 
can be reduced modulo q without affecting verification condition (6.2). The tricky 
point is that y appears as an exponent on the left side of (6.2), and again - but 
not as an exponent - on the right side of (6.2). So if y is reduced modulo q, then 
we must also reduce the entire left side of (6.2) modulo q in order to perform the 
verification. Observe that (6.1) will not work if the extra reductions modulo q are 
done. The complete description of the DSS is given in Figure 6.3. 
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FIGURE 6.3 
Digital Signature Standard 

Let p be a 51Zbit prime such that the discrete log problem in Zp is 
ntractible, and let q be a 160-bit prime that divides p - 1. Let (Y E ;Z,* 
3e a qth root of 1 modulo p. Let P = Zp*, A = Zq x Zq, and define 

K:={(p,q,cr,a,P):P-a’(modp)}. 

lhe values p, q, CK and ,0 are public, and a is secret. 

For I< = (p, q, a, a, ,f3), and for a (secret) random number k, 1 5 k 5 
q - l,define 

sigK(x, k) = (-Y,& 

where 

and 

y = (crk mod p) mod q 

6 = (x + ay)k-’ mod q. 

For x E &,* and y,6 E iZq, verification is done by performing the 
following computations: 

el = XC’ mod q 

e2 = -pV’ mod q 

veTK(x, y, ~5) = true e (c?pe* mod p) mod q = 7. 

Notice that is necessary that 6 f 0 (mod q) since the value 6- ’ mod q is needed 
to verify the signature (this is analogous to the requirement that gcd(6, p - 1) = 1 
when we modified (6.1) to obtain (6.2)). If Bob computes a value 6 E 0 (mod q) 
in the signing algorithm, he should reject it and construct a new signature with a 
new random k. We should point out that this is not likely to cause a problem in 
practice: the probability that 6 G 0 (mod q) is likely to be on the order of 2-160, 
so for all intents and purposes it will almost never happen. 

Here is a small example to illustrate. 
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Example 6.3 
Suppose we take q = 101 and p = 78q + 1 = 7879. 3 is a primitive element in 
Z7g79, so we can take 

ct = 378 mod 7879 = 170. 

Suppose a = 75; then 

p = cd’ mod 7879 = 4567. 

Now, suppose Bob wants to sign the message x = 1234 and he chooses the random 
value k = 50, so 

Then 

k-’ mod 101 = 99. 

7 = (1705’ mod 7879) mod 101 

= 2518 mod 101 

= 94 

and 

6 = (1234 + 75 x 94)99 mod 101 

= 97. 

The signature (94,97) on the message 1234 is verified by the following computa- 
tions: 

6-l = 97-l mod 101 = 25 

el = 1234 x 25 mod 101 = 45 

e2 = 94 x 25 mod 101 = 27 

(17045456727 mod 7879) mod 101 = 2518 mod 101 = 94. 

Hence, the signature is valid. 0 

When the DSS was proposed in 1991, there were several criticisms put forward. 
One complaint was that the selection process by NIST was not public. The 
standard was developed by the National Security Agency (NSA) without the input 
of U. S. industry. Regardless of the merits of the resulting scheme, many people 
resented the “closed-door” approach. 

Of the technical criticisms put forward, the most serious was that the size of the 
modulus p was fixed at 5 12 bits. Many people would prefer that the modulus size 
not be fixed, so that larger modulus sizes could be used if desired. In reponse to 
these comments, NIST altered the description of the standard so that a variety of 
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modulus sizes are allowed, namely, any modulus size divisible by 64, in the range 
from 512 to 1024 bits. 

Another complaint about the DSS was that signatures can be generated consid- 
erably faster than they can be verified. In contrast, if RSA is used as a signature 
scheme and the public verification exponent is very small (say 3, for example), 
then verification can be performed much more quickly than signing. This leads to 
a couple of considerations concerning the potential applications of the signature 
scheme: 

I. A message will only be signed once. On the other hand, it might be necessary 
to verify the signature many times over a period of years. This suggests that 
a faster verification algorithm would be desirable. 

2. What types of computers are likely to be doing the signing and verifying? 
Many potential applications involve smart cards, with limited processing 
power, communicating with a more powerful computer. So one might try 
to design a scheme so that fewer computations are likely to be done by a 
card. But one can imagine situations where a smart card would generate a 
signature, and other situations where a smart card would verify a signature, 
so it is difficult to give a definitive answer here. 

The response of NIST to the question of signature generation/verification times 
is that it does not really matter which is faster, provided that both can be done 
sufficiently quickly. 

6.4 One-time Signatures 

In this section, we describe a conceptually simple way to construct a one-time 
signature scheme from any one-way function. The term “one-time” means that 
only one message can be signed. (The signature can be verified an arbitrary number 
of times, of course.) The description of the scheme, known as the Lamport 
Signature Scheme, is given in Figure 6.4. 

Informally, this is how the system works. A message to be signed is a binary 
k-tuple. Each bit is signed individually: the value Zi,j corresponds to the ith bit of 
the message having the value j (j = 0,l). Each Zi,j is the image of yi,j under the 
one-way function f. The ith bit of the message is signed using the preimage yi,j 
of the Zi,j corresponding to the ith bit of the message. The verification consists 
simply of checking that the each element in the signature is the preimage of the 
appropriate public key element. 

We illustrate the scheme by considering one possible implementation using 
the exponentiation function f(x) = a” mod p, where (Y is a primitive element 
modulo p. 
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FIGURE 6.4 
Lamport Signature Scheme 

Let k be a positive integer and let P = (0, l}k. Suppose f : Y + 2 is 
a one-way function, and let A = Yk. Let yi,j E Y be chosen at random, 
1 5 i 5 k, j = 0, I, and let .Zi,j = f(yi,j), 1 5 i 5 k, j = 0, 1. The key 
Ii consists of the 2k y’s and the 2k 2’s. The y’s are secret while the z’s 
are public. 

For 1-C = (yi,j, .Zi,j : 1 5 i 5 k, j = 0, l),define 

sigK(xl,. . . ,tk) = (?/l,r,, . . . d/k,=*) 

and 

~eTK(Xl,...,Xkja17. ..ak)=trUe~~(ui)=%i,,,,l<iIk. 

Example 6.4 
7879 is prime and 3 is a primitive element in &879. Define 

f(x) = 3” mod 7879. 

215 

Suppose Bob wishes to sign a message of three bits, and he chooses the six (secret) 
random numbers 

yl,o = 5831 

Yl,’ = 735 

~2,o = 803 

y2,, = 2467 

y3,0 = 4285 

y3,, = 6449. 

Then he computes the images of the y’s under the function f: 

%‘,O = 2009 

z,,~ = 3810 

z2,0 = 4672 

z2,, = 4721 

z3,0 = 268 
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%3,’ = 5731. 

These Z’S are published. Now, suppose Bob wants to sign the message 

2 = (l,l,O). 

The signature for x is 

(YI,I,Y~,I,Y~,o) = (735,2467,4285). 

To verify this signature, it suffices to compute the following: 

3735 mod 7879 = 3810 

32467 mod 7879 = 4721 

34285 mod 7879 = 268. 

Hence, the signature is valid. 0 

Oscar cannot forge a signature because he is unable to invert the one-way 
function f to obtain the secret y’s. However, the signature scheme can be used 
to sign only one message. For, given signatures for two different messages, it 
is (usually) an easy matter for Oscar to construct signatures for further messages 
(different from the first two). 

For example, suppose the messages (0, 1,l) and (1 , 0,l) are both signed using 
the same scheme. The message (0, 1,1) would have as its signature the triple 
(YI,o,Y~,I,Y~,I), and the message (I,& 1) wouldbe signed with (Y’,I,Y~,o,Y~,I). 

Given these two signatures, Oscar can construct signatures for the messages 
(1,1, 1) (namely, (YI,I,Y~,I,Y~,I))~~~ (O,O, 1) (n~eh (YI,o,Y~,o,Y~,‘)). 

Even though this scheme is quite elegant, it is not of great practical use due 
to the size of the signatures it produces. For example, if we use the modular 
exponentiation function, as in the example above, then a secure implementation 
would require that p be at least 512 bits in length. This means that each bit of 
the message is signed using 5 12 bits. Consequently, the signature is 5 12 times as 
long as the message! 

We now look at a modification due to Bos and Chaum that allows the signatures 
to be made somewhat shorter, with no loss of security. In the Lamport Scheme, 
the reason that Oscar cannot forge a signature on a (second) message, given a 
signature on one message, is that the y’s corresponding to one message are never 
a subset of the y’s corresponding to another (distinct) message. 

Suppose we have a set B of subsets of a set B such that Bt c BZ only if 
BI = B2, for all BI , BP E a. Then L? is said to satisfy the Spemer property. 
Given a set B of even cardinality n, it is known that the maximum size of a set 17 
of subsets of B having the Sperner property is (2). This can easily be obtained by 
taking all the n-subsets of B: clearly no n-subset is contained in another n-subset. 
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FIGURE 6.5 
Bos-Chaum Signature Scheme 

Let k be a positive integer and let P = (0, l}k. Let n be an integer such 
that 2k 5 (2,“)) let B be a set of cardinality n, and let 

f$ : (0, ljk + B 

be an injection, where B is the set of all n-subsets of B. Suppose 
f : Y -+ Z is a one-way function, and let A = Y”. Let yi E Y be 
chosen at random, 1 5 i 5 2n, and let zi = f (yi), 1 L: i 5 2n. The key 
I< consists of the 2n y’s and the 2n 2’s. The y’s are secret while the z’s 
are public. 

For Ii’ = (yi, Zi, 1 5 i 5 2n), define 

and 

e7K(~l, f.. , Xk) = {Yj : j E 4(X1,. . . , Xk)} 

VerK(Xl, . . . , Xk,al, . . .un) = true 
e {f(Q) : 1 5 i 5 n} = {zj : j E 4(x], . . ., Xk)}. 

Now suppose we want to sign a k-bit message, as before, and we choose n large 
enough so that 

2n 
23 n . 

0 
Let IBI = n and let B denote the set of n-subsets of B. Let q+~ : (0, I}” + B be 
a publicly known injection. Then we can associate each possible message with 
an n-subset in t?. We will have 2n y’s and 2n z’s, and each message will be 
signed with n y’s. The complete description of the Bos-Chaum Scheme is given 
in Figure 6.5. 

The advantage of the Bos-Chaum Scheme is that signatures are shorter than 
with the Lamport Scheme. For example, suppose we wish to sign a message of 
six bits (i.e., k = 6). Since 26 = 64 and (3 = 70, we can take n = 4. This allows 
a six-bit message to be signed with four y’s, as opposed to six with Lamport. As 
well, the key is shorter, consisting of eight z’s as opposed to twelve with Lamport. 

The Bos-Chaum Scheme requires an injective function C#J that associates an 
n-subset of a 2n-set with each possible binary k-tuple x = (XI,. . . , Xk). We 
present one simple algorithm to do this in Figure 6.6. Applying this algorithm 
with x = (0, l,O,O, 1, l), for example, yields 

4(x) = {2,4,6,g). 
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FIGURE 6.6 
Computation of 4 in the Bos-Chaum Scheme 

1. x = c;=, zci2’-’ 
2. qqx) = 0 
3. t = 2n 
4. e=n 

5. while t > 0 do 

6. t=t-1 
7. if GE > (5) then 

8. x = x - (f) 
9. e=e-1 
10. 4(x) = 4(x) u it + 11. 

In general, how big is n in the B_os-Chaum Scheme as compared to k? We 
need to satisfy the inequality 2” _< (“,“) . If we estimate the binomial coefficient 

2n 

0 

(2n) ! 
n =m 

using Stirling’s formula, we obtain the quantity 2*“/&. After some simplifi- 
cation, the inequality becomes 

k < 2n - 1og2pn). 
- 

Asymptotically, n is about k/2, so we obtain an almost 50% reduction in signature 
size by using the Bos-Chaum Scheme. 

6.5 Undeniable Signatures 

Undeniable signatures were introduced by Chaum and van Antwerpen in 1989. 
They have several novel features. Primary among these is that a signature cannot 
be verified without the cooperation of the signer, Bob. This protects Bob against 
the possibility that documents signed by him are duplicated and distributed elec- 
tronically without his approval. The verification will be accomplished by means 
of a challenge-and-response protocol. 
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FIGURE 6.7 
Chaum-van Antwerpen Undeniable Signature Scheme 

Let p = 2q + 1 be a prime such that q is prime and the discrete log 
problem in Z$, is intractible. Let o E Zr,* be an element of order q. Let 
1 < a < q - 1 and define /I = cP mod p. Let G denote the multiplicative 
mbgroup of Z,, * of order q (G consists of the quadratic residues modulo 
D). Let P = A = G, and define 

K={(p,c~,a,/3):~~o~(modp)}. 

The values p, CY and p are public, and a is secret. 

ForK = (p,cr,a,@andx E G,define 

y = sigK(x) = x0 mod p. 

For x, y E G, verification is done by executing the following protocol: 

I. Alice chooses et, e2 at random, et, eq E Z,‘. 
2. Alice computes c = ye’ p”* mod p and sends it to Bob. 
3. Bob computes d = ca-lmod’J mod p and sends it to Alice. 
4. Alice accepts y as a valid signature if and only if 

d - xe’aez (mod p). 
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But if Bob’s cooperation is required to verify a signature, what is to prevent 
Bob from disavowing a signature he made at an earlier time? Bob might claim 
that a valid signature is a forgery, and either refuse to verify it, or carry out the 
protocol in such a way that the signature will not be verified. To prevent this from 
happening, an undeniable signature scheme incorporates a disavowal protocol by 
which Bob can prove that a signature is a forgery. Thus, Bob will be able to prove 
in court that a given forged signature is in fact a forgery. (If he refuses to take part 
in the disavowal protocol, this would be regarded as evidence that the signature 
is, in fact, genuine.) 

Thus, an undeniable signature scheme consists of three components: a signing 
algorithm, a verification protocol, and a disavowal protocol. First, we present 
the signing algorithm and verification protocol of the Chaum-van Antwerpen 
Undeniable Signature Scheme in Figure 6.7. 

We should explain the roles of p and q in this scheme. The scheme lives in Z&p; 
however, we need to be able to do computations in a multiplicative subgroup G of 
Zr,* of prime order. In particular, we need to be able to compute inverses modulo 
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[Cl, which is why IGI should be prime. It is convenient to takep = 2q + 1 where 
q is prime. In this way, the subgroup G is as large as possible, which is desirable 
since messages and signatures are both elements of G. 

We first prove that Alice will accept a valid signature. In the following compu- 
tations, all exponents are to be reduced modulo q. First, observe that 

d E ca-’ (mod p) 

= - Ye’” 
-1 

Pa -’ (mod p). 

Since 

we have that 

Similarly, 

implies that 

Hence, 

p E d’ (mod p), 

p”-’ E a (mod p). 

y = x0 (mod p) 

Ya 
--I 

~x(modp). 

as desired. 

d E xelcrue2 (mod p), 

Here is a small example. 

Example 6.5 
Suppose we take p = 467. Since 2 is a primitive element, 2* = 4 is a generator of 
G, the quadratic residues modulo 467. So we can take o = 4. Suppose a = 101; 
then 

p = d’ mod 467 = 449. 

Bob will sign the message x = 119 with the signature 

y = 119’O’ mod 467 = 129. 

Now, suppose Alice wants to verify the signature y. Suppose she chooses the 
random values et = 38, e2 = 397. She will compute c = 13, whereupon Bob 
will respond with d = 9. Alice checks the resonse by verifying that 

1 19384397 - 9 (mod 467). 

Hence, Alice accepts the signature as valid. 0 
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We next prove that Bob cannot fool Alice into accepting a fradulent signature 
as valid, except with a very small probability. This result does not depend on any 
computational assumptions, i.e., the security is unconditional. 

THEOREM 6.1 
If y $ xa (mod p), then Alice will accept y as a valid signature for x with 
probability 1 /q. 

PROOF First, we observe that each possible challenge c corresponds to exactly q 
ordered pairs (e r , e2) (this is because y and ,L? are both elements of the multiplicative 
group G of prime order q). Now, when Bob receives the challenge c, he has no way 
of knowing which of the q possible ordered pairs (et, e2) Alice used to construct 
c. We claim that, if y $ xa (mod p), then any possible response d E G that Bob 
might make is consistent with exactly one of the q possible ordered pairs (et, e2). 

Since Q generates G, we can write any element of G as a power of Q, where 
the exponent is defined uniquely modulo q. So write c = cri, d = aj, x = c~‘, 
and y = cr’, where i, j, k, -!Y E Zq and all arithmetic is modulo p. Consider the 
following two congruences: 

c z y”‘pe2 (mod p) 

d E xe1ae2 (mod p). 

This system is equivalent to the following system: 

i E t?el + ae2 (mod q) 

3 ’ E kel + e2 (mod q). 

Now, we are assuming that 

Y $ xa (mod P), 

so it follows that 

! $ ak (mod q). 

Hence, the coefficient matrix of this system of congruences modulo q has non- 
zero determinant, and thus there is a unique solution to the system. That is, every 
d E G is the correct response for exactly one of the q possible ordered pairs 
(et , e2). Consequently, the probability that Bob gives Ali; a response d that will 
be verified is exactly l/q, and the theorem is proved. 

We now turn to the disavowal protocol. This protocol consists of two runs of 
the verification protocol and is presented in Figure 6.8. 

Steps 14 and steps 5-8 comprise two unsuccessful runs of the verification 
protocol. Step 9 is a “consistency check” that enables Alice to determine if Bob 
is forming his responses in the manner specified by the protocol. 
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FIGURE 6.8 
Disavowal protocol 

1. Alice chooses et, e2 at random, et, e2 E Z,* 
2. Alice computes c = y”‘p* mod p and sends it to Bob 
3. Bob computes d = c” -Imodq mod p and sends it to Alice 
4. Alice verifies that d $ xelae2 (mod p) 
5. Alice chooses ft , f2 at random, ft , f2 E Zq* 
6. Alice computes C = yfl pf2 mod p and sends it to Bob 
7. Bob computes D = C” -lmodq mod p and sends it to Alice 
8. Alice verifies that D $ xfl af2 (mod p) 
9. Alice concludes that y is a forgery if and only if 

(da-e2)f1 E (Dc~-f~)~l (mod p). 

The following example illustrates the disavowal protocol. 

Example 6.6 
As before, suppose p = 467, o = 4, a = 101 and p = 449. Suppose the message 
x = 286 is signed with the (bogus) signature y = 83, and Bob wants to convince 
Alice that the signature is invalid. 

Suppose Alice begins by choosing the random values et = 45, e2 = 237. Alice 
computes c = 305 and Bob responds with d = 109. Then Alice computes 

286454237 mod 467 = 149. 

Since 149 # 109, Alice proceeds to step 5 of the protocol. 
Now suppose Alice chooses the random values ft = 125, f2 = 9. Alice 

computes C = 270 and Bob responds with D = 68. Alice computes 

28612549 mod 467 = 25. 

Since 25 # 68, Alice proceeds to step 9 of the protocol and performs the consis- 
tency check. This check succeeds, since 

(109 x 4-237)‘25 G 188 (mod 467) 

and 

(68 x 4-9)45 E 188 (mod 467). 
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Hence, Alice is convinced that the signature is invalid. 

We have to prove two things at this point: 

I. Bob can convince Alice that an invalid signature is a forgery. 
2. Bob cannot make Alice believe that a valid signature is a forgery except 

with a very small probability. 

THEOREM 6.2 
If y q! x” (mod p), and Alice and Bob follow the disavowal protocol, then 

(dcx-ez)fl = (Dc~-~~)~l (mod p). 

PROOF Using the facts that 

d zz ca-’ (mod p), 

and 

we have that 

c 3 ye1 p”’ (mod p) 

p E aa (mod p), 

(damez)fl E ((yeipe2)‘-’ CK+~)~ (mod p) 

G yelflpe2a -‘fl a-=Zfl (mod p) 

= _ y=~f~ a=~f~ a-=2fl (mod P) 

E yeIf (mod p). 

A similar computation, using the facts that D E C”-’ (mod p), C 3 yflj3f2 
(mod p) and /? = era (mod p), establishes that 

(ll~-f~)~ E yeIf (mod p), 

so the consistency check in step 9 succeeds. 1 

Now we look that the possibility that Bob might attempt to disavow a valid 
signature. In this situation, we do not assume that Bob follows the protocol. That 
is, Bob might not construct d and D as specified by the protocol. Hence, in the 
following theorem, we assume only that Bob is able to produce values d and D 
which satisfy the conditions in steps 4,8, and 9 of the protocol presented in Figure 
6.8. 
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THEOREM 6.3 
Suppose y E xa (mod p) and Alice follows the disavowal protocol. If 

d f xe’ae2 (mod p) 

and 

D f xflcrf2 (mod p), 

then the probability that 

(dame2)jl $ (Dcrmf2)=l (mod p) 

is 1 - l/q. 

PROOF Suppose that the following congruences are satisfied: 

y E xa (mod p) 

d $ xe’ae2 (mod p) 

D $ zf1af2 (mod p) 

(dase2)f1 G (Day-f2)el (mod p). 

We will derive a contradiction. 
The consistency check (step 9) can be rewritten in the following form: 

D z don af2 (mod p) , 

where 
do = dll=lQ-=2/=l mod p 

is a value that depends only on steps l-4 of the protocol. 
Applying Theorem 6.1, we conclude that y is a valid signature for do with 

probability 1 - l/q. But we are assuming that y is a valid signature for x. That 
is, with high probability we have 

xa E do” (mod p), 

which implies that x = do. 
However, the fact that 

d f xe’ae2 (mod p) 

means that 

x $ d’l=la-- e2/e1 (mod p). 

Since 

do - d’le1cx-e2/e1 (mod p), 

we conclude that x # do and we have a contradiction. 
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Hence, Bob can fool Alice in this way with probability l/q. 1 
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6.6 Fail-stop Signatures 

A fail-stop signature scheme provides enhanced security against the possibility 
that a very powerful adversary might be able to forge a signature. In the event 
that Oscar is able to forge Bob’s signature on a message, Bob will (with high 
probability) subsequently be able to prove that Oscar’s signature is a forgery. 

In this section, we describe a fail-stop signature scheme constructed by van 
Heyst and Pedersen in 1992. This is a one-time scheme (only one message can 
be signed with a given key). The system consists of signing and verification 
algorithms, as well as a “proof of forgery” algorithm. The description of the 
signing and verification algorithms of the van Heyst and Pedersen Fail-stop 
Signature Scheme is presented in Figure 6.9. 

It is straightforward to see that a signature produced by Bob will satisfy the 
verification condition, so let’s turn to the security aspects of this scheme and how 
the fail-safe property works. First we establish some important facts relating to the 
keys of the scheme. We begin with a definition. Two keys (~i,y2, ai, ~2, bi, b2) 
and (7; , $, u’, , ai, b’, , b!& are said to be equivalent if yi = 7; and 72 = -y$. It is 
easy to see that there are exactly q2 keys in any equivalence class. 

We establish several lemmas. 

LEMMA 6.4 
Suppose K and I<’ are equivalent keys and suppose that VerK (2, y) = true. Then 
verf(j (2, y) = true. 

PROOF Suppose I( = (-n,wvdO2) and K’ = (rm,~:,&b:,b~)~ 

where 

-y2 = crb1pb2 mod p = abipbi mod p. 

Suppose I is signed using I<, producing the signature y = (yi , y2), where 

YI = al + xbl mod q, 

y2 = a2 + zb2 mod q. 

Now suppose that we verify y using K’: 

Q~~/3y2 f aa;+rb;pa;++ (mod p) 
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FIGURE 6.9 
van Heyst and Pedersen Fail-stop Signature Scheme 

Let p = 2q + 1 be a prime such that q is prime and the discrete log 
problem in Zr is intractible, Let (Y E Zr* be an element of order q. Let 
1 5 au 5 q - 1 and define p = oao mod p. The values p, q, (Y, /?, and ao 
are chosen by a central (trusted) authority. p, q, CY, and /3 are public and 
will be regarded as fixed. The value of aa is kept secret from everyone 
(even Bob). 

LetP=Zqandd=iZqxZq.Akeyhastheform 

Ii’ = (wr2,wdda), 

where at, a2, bl, b2 E Z,, 

y1 = CC”@“* mod p, 

and 

72 = ablpbz modp. 

For Ii = (n,32, at, a~, bl, b2) and 2 E ;Z,, define 

SigK(x) = (?/I 9 ?/2), 

where 

and 

y1 = al + zbl mod q 

y2 = a2 + xb2 mod q. 

For y = (yt , ~2) E Z, x Z,, we have 

uerK(x, y) = true e y1^/2~ E aY’pY2 (mod p). 
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3 d~jY~(c~~~pb~)~ (mod p) 

= YI 72” (mod ~1. 

Thus, y will also be verified using K’. 1 

LEMMA 6.5 
Suppose Ii’ is a key and y = sigK (x). Then there are exactly q keys I<’ equivalent 
to I< such that y = sigK! (x). 

PROOF Suppose 71 and 72 are the public components of K. We want to determine 
the number of 4-tuples (at, a~, bl, b2) such that the following congruences are 
satisfied: 

y1 E aa1 p”* (mod p) 

72 E abl@ (mod p) 

yt 3 al + xh (mod q) 

Y2 E a2 + xb2 (mod q). 

Since (Y generates G, there exist unique exponents cl, ~2, ao E Zr such that 

-yl E ~2’ (mod p), 

and 

72 = crc2 (mod p) 

j3 3 aa0 (mod p). 

Hence, it is necessary and sufficient that the following system of congruences be 
satisfied: 

Cl E al + ~002 (mod q) 

c2 E bl + aobz (mod q) 

E ~1 + xbl (mod q) 

y2 tt a2 + xb2 (mod q). 

This system can, in turn, be written as a matrix equation in Z&, as follows: 

;::_:_)( ) ( ) 

000 a1 Cl 

0 a2 c2 

bl 
= 

Yl * 

b2 Y2 

Now, the coefficient matrix of this system can be seen to have rank ’ three: Clearly, 

‘the rank of a matrix is the maximum number of linearly independent rows it contains 



228 CHAPTER 6. SIGNATURE SCHEMES 

the rank is at least three since rows 1,2 and 4 are linearly independent over &. 
And the rank is at most three since 

7-1 + x7-2 - ~3 - ~0~4 = (0, 0, 0, 0), 

where ri denotes the ith row of the matrix. 
Now, this system of equations has at least one solution, obtained by using 

the key IT. Since the rank of the coefficient matrix is three, it follows that the 
dimension of the solution space is 4 - 3 = 1, and there are exactly q solutions. 
The result follows. I 

By similar reasoning, the following result can be proved. We omit the proof. 

LEMMA 6.6 

Suppose I< is a key, y = sigK(x), and VerK(x’, y’) = true, where 2’ # 2. 
Then there is at most one key K’ equivalent to I( such that y = sigK! (x) and 
y’ = sigK#(xt). 

Let’s interpret what the preceding two lemmas say about the security of the 
scheme. Given that y is a valid signature for message x, there are q possible keys 
that would have signed x with y. But for any message x’ # x, these q keys will 
produce q different signatures on x’. Thus, the following theorem results. 

THEOREM 6.7 

Given that sigK (x) = y and a? # x, Oscar can compute sigK (x’) with probablity 
l/q. 

Note that this theorem does not depend on the computational power of Oscar: 
the stated level of security is obtained because Oscar cannot tell which of q possible 
keys is being used by Bob. So the security is unconditional. 

We now go on to look at the fail-stop concept. What we have said so far is 
that, given a signature y on message x, Oscar cannot compute Bob’s signature y’ 
on a different message x’. It is still conceivable that Oscar can compute a forged 
signature y” # sigK(x’) which will still be verified. However, if Bob is given a 
valid forged signature, then with probability 1 - l/q he can produce a “proof of 
forgery.” The proof of forgery is the value 00 = log, /3, which is known only to 
the central authority. 

So we assume that Bob possesses a pair (x’, y”) such that uer(x’, y”) = true 
and y” # sigK (2’). That is, 

Y1Y2f’ = crY;‘/3Y~ (mod p), 
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where y” = (~7, y:). Now, Bob can compute his own signature on x’, namely 
y’ = ( y{ , y!J , and it will be the case that 

7172”’ - ayi/3y; (mod p). 

Hence, 
,Y:'pY: E $~pY: (mod p). 

Writing /3 = crao mod p, we have that 

aY;'+OOY;' - aY;+WY; (mod p), 

or 

yy + a~& - ~‘1 + QOY$ (mod q). 

This simplifies to give 

Now, y’2 $ y$’ (mod q) since y’ is a forgery. Hence, (y’2 - yg)-’ mod q exists, 
and 

a0 = log, ,L3 = (yy - d)(yi - y;)-’ mod q. 

Of course, by accepting such a proof of forgery, we assume that Bob can- 
not compute the discrete logarithm log, /3 by himself. This is a computational 
assumption. 

Finally, we remark that the scheme is a one-time scheme since Bob’s key I< 
can easily be computed if two messages are signed using Ii. 

We close with an example illustrating how Bob can produce a proof of forgery. 

Example 6.7 
Supposep = 3467 = 2 x 1733 + 1. ‘Ihe element Q = 4 has order 1733 in Z&467*. 
Suppose that a0 = 1567, so 

p = 41567 mod 3467 = 514. 

(Recall that Bob knows the values of o and @, but not a~.) Suppose Bob forms 
his key using al = 888, u2 = 1024, bl = 786 and b2 = 999, so 

y, = 4*ss514’024 mod 3467 = 3405 

and 

y2 = 47865 14999 mod 3461= 2281. 

Now, suppose Bob is presented with the forged signature (822,55) on the 
message 3383. This is a valid signature since the verification condition is satisfied: 

3405 x 22813383 f 2282 (mod 3467) 
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and 

48225 1455 G 2282 (mod 3467). 

On the other hand, this is not the signature Bob would have constructed. Bob can 
compute his own signature to be 

(888 + 3383 x 786 mod 1733,1024+ 3383 x 999 mod 1733) = (1504,129l). 

Then, he proceeds to calculate the secret discrete log 

a0 = (822 - 1504)(1291- 55)-i mod 1733 = 1567. 

This is the proof of forgery. 0 

6.7 Notes and References 

For a nice survey of signature schemes, we recommend Mitchell, Piper, and 
Wild [MPW92]. This paper also contains the two methods of forging ElGamal 
signatures that we presented in Section 6.2. 

The ElGamal Signature Scheme was presented in ElGamal [E~85]. The 
Digital Signature Standard was first published by NIST in August 1991, and 
it was adopted as a standard in December 1994 [NBS94]. There is a lengthy 
discussion of DSS and the controversy surrounding it in the July 1992 issue of the 
Communications of the ACM. For a response by NIST to some of the questions 
raised, see [SB93]. 

The Lamport Scheme is described in the 1976 paper by Diffie and Hellman 
[DH76]; the modification by Bos and Chaum is in [BC93]. The undeniable 
signature scheme presented in Section 6.5 is due to Chaum and van Antwerpen 
[CvA90]. The fail-stop signature scheme from Section 6.6 is due to van Heyst 
and Pedersen [vHP93]. 

Some examples well-known “broken” signature schemes include the Ong- 
SchnorrShamir Scheme [OSS85] (broken by Estes et al. [EAKMM86]); and 
the Birational Permutation Scheme of Shamir [sH94] (broken by Coppersmith, 
Stern, and Vaudenay [CSV94]). Finally, ESIGN is a signature scheme due to 
Fujioka, Okamoto, and Miyaguchi [FOM91]. Some versions of the scheme were 
broken, but the variation in [FOM91] has not been broken. 
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Exercises 

6.1 Suppose Bob is using the ElGamal Signature Scheme, and he signs two messages 
zi and 22 with signatures (y, ai) and (y, Jr), respectively. (The same value for 7 
occurs in both signatures.) Suppose also that gcd(6i - 62, p - 1) = 1. 

(a) Describe how k can be computed efficiently given this information. 
(b) Describe how the signature scheme can then be broken. 
(c) Supposep = 31847, cr = 5 and p = 25703. Perform the computation of k 

and a, given the signature (23972,3 1396) for the message 2 = 8990 and the 
signature (23972,20481) for the message% = 31415. 

6.2 Suppose I implement the ElGamal Signature Scheme with p = 3 1847, (Y = 5 and 
p = 26379. Write a computer program which does the following. 

(a) Verify the signature (20679,11082) on the message I = 20543. 
(b) Determine my secret exponent, a, using the Shanks time-memory tradeoff. 

Then determine the random value k used in signing the message I. 
6.3 Suppose Bob is using the ElGamal Signature Scheme as implemented in Example 

6.1: p = 467, a = 2 and /3 = 132. Suppose Bob has signed the messages = 100 
with the signature (29,Sl). Compute the forged signature that Oscar can then form 
by using h = 102, i = 45 and j = 293. Check that the resulting signature satisfies 
the verification condition. 

6.4 Prove that the second method of forgery on the ElGamal Signature Scheme, de- 
scribed in Section 6.2, also yields a signature that satisfies the verification condition. 

6.5 Here is a variation of the ElGamal Signature Scheme. The key is constructed in a 
similar manner as before: Bob chooses cr E &,* to be a primitive element, a is a 
secret exponent (0 < a 5 p - 2) such that gcd(a, p - 1) = 1, and /3 = (Ye mod p. 
The key I< = (a, a, /3), where cr and p are public and a is secret. Let E E &, be a 
message to be signed. Bob computes the signature s@(z) = (7, a), where 

7=akmodp 
and 

6 = (x - ky)o-’ mod (p - 1). 

The only difference from the original ElGamal Scheme is in the computation of 6. 
Answer the following questions concerning this modified scheme. 

(a) Describe how a signature (7,a) on a messages would be verified using Bob’s 
public key. 

(b) Describe a computational advantage of the modified scheme over the original 
scheme. 

(c) Briefly compare the security of the original and modified scheme. 
6.6 Suppose Bob uses the DSS with q = 101, p = 7879, o = 170, a = 75 and 

/3 = 4567, as in Example 6.3. Determine Bob’s signature on the message z = 5001 
using the random value k = 49, and show how the resulting signature is verified. 

6.7 In the Lamport Scheme, suppose that two k-tuples, z and z’, are signed by Bob. 
Let e = d(z, x’) denote the number of coordinates in which z and 2’ differ. Show 
that Oscar can now sign 2’ - 2 new messages. 

6.8 In the Bos-Chaum Scheme with k = 6 and n = 4, suppose that the messages 
z = (0, l,O, 0, 1,1) and I’ = (1, l,O, 1, 1, 1) are signed. Determine the new 
messages that be signed by Oscar, knowing the signatures on G and z’. 
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6.9 In the Bos-Chaum Scheme, suppose that two k-tuples x and E’ are signed by Bob. 
Let e = Id(z) U d(z’)I. Show that Oscar can now sign (f) - 2 new messages. 

6.10 Suppose Bob is using the Chaum-van Antwerpen Undeniable Signature Scheme 
as in Example 6.5. That is, p = 467, (Y = 4, a = 101 and p = 449. Suppose Bob is 
presented with a signature y = 25 on the message z = 157 and he wishes to prove 
it is a forgery. Suppose Alice’s random numbers are ei = 46, e2 = 123, fi = 198 
and A = 11 in the disavowal protocol. Compute Alice’s challenges, c and d, and 
Bob’s responses, C and D, and show that Alice’s consistency check will succeed. 

6.11 Prove that each equivalence class of keys in the Pedersen-van Heyst Fail-stop 
Signature Scheme contains q* keys. 

6.12 Suppose Bob is using the Pedersen-vanHeyst Fail-stop Signature Scheme, where 
p = 3467, cr = 4, a0 = 1567 and p = 514 (of course, the value of aa is not known 
to Bob). 

(a) Using the fact that aa = 1567, determine all possible keys 

K = (71r72,ai,a2,h,b2) 

such that sig,(42) = (1118,1449). 
(b) Suppose that sigK(42) = (1118,1449) and sig,(969) = (899,471). With- 

out using the fact that ari = 1567, determine the value of IC (this shows that 
the scheme is a one-time scheme). 

6.13 Suppose Bob is using the Pedersen-van Heyst Fail-stop Signature Scheme with 
p = 5087, LY = 25 and /3 = 1866. Suppose the key is 

I< = (5065,5076,144,874,1873,2345). 

Now, suppose Bob finds the signature (2219,458) has been forged on the message 
4785. 

(a) Prove that this forgery satisfies the verification condition, so it is a valid 
signature. 

(b) Show how Bob will compute the proof of forgery, aa, given this forged 
signature. 
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