
Signature Schemes 203.....................................
6.1 Introduction 203...

FIGURE 6.1 205..
FIGURE 6.2 206..

6.2 The ElGamal Signature Scheme 206.........
6.3 The Digital Signature Standard 210...........

FIGURE 6.3 212..
6.4 One-time Signatures 214...........................

FIGURE 6.4 215..
FIGURE 6.5 217..
FIGURE 6.6 218..

6.5 Undeniable Signatures 218........................
FIGURE 6.7 219..
FIGURE 6.8 222..

6.6 Fail-stop Signatures 225............................
FIGURE 6.9 226..

6.7 Notes and References 230........................
Exercises 231...

6
Signature Schemes

6.1 Introduction

In this chapter, we study signature schemes, which are also called digital signa-
tures. A “conventional” handwritten signature attached to a document is used to
specify the person responsible for it. A signature is used in everyday situations
such a writing a letter, withdrawing money from a bank, signing a contract, etc.

A signature scheme is a method of signing a message stored in electronic form.
As such, a signed message can be transmitted over a computer network. In
this chapter, we will study several signature schemes, but first we discuss some
fundamental differences between conventional and digital signatures.

First is the question of signing a document. With a conventional signature,
a signature is physically part of the document being signed. However, a digital
signature is not attached physically to the message that is signed, so the algorithm
that is used must somehow “bind” the signature to the message.

Second is the question of verification. A conventional signature is verified by
comparing it to other, authentic signatures. For example, when someone signs
a credit card purchase, the salesperson is supposed to compare the signature on
the sales slip to the signature on the back of the credit card in order to verify the
signature. Of course, this is not a very secure method as it is relatively easy to forge
someone else’s signature. Digital signatures, on the other hand, can be verified
using a publicly known verification algorithm. Thus, “anyone” can verify a digital
signature. The use of a secure signature scheme will prevent the possibility of
forgeries.

Another fundamental difference between conventional and digital signatures
is that a “copy” of a signed digital message is identical to the original. On the
other hand, a copy of a signed paper document can usually be distinguished from
an original. This feature means that care must be taken to prevent a signed
digital message from being reused. For example, if Bob signs a digital message
authorizing Alice to withdraw $100 from his bank account (i.e., a check), he
only wants Alice to be able to do so once. So the message itself should contain

203

204 CHAPTER 6. SIGNATURE SCHEMES

information, such as a date, that prevents it from being reused.
A signature scheme consists of two components: a signing algorithm and a

verification algorithm. Bob can sign amessage z using a (secret) signing algorithm
sig. The resulting signature &g(z) can subsequently be verified using a public
verification algorithm ver. Given a pair (z, y), the verification algorithm returns
an answer “true” or “false” depending on whether the signature is authentic.

Here is a formal defintion of a signature scheme.

DEFINITION 6.1 A signature scheme is afive-tuple (P, A, K, S, V), where the
following conditions are satisfied:

I. P is afinite set of possible messages
2. ,4 is ajnite set of possible signatures
3. K, the keyspace, is a finite set of possible keys

4. For each Ii E Kc, there is a signing algorithm sigK E S and a cor-
responding ver$cation algorithm verK E V. Each sigK : P + A and
VerK : P x A + {true, false} are functions such that thefollowing equation
is satisfiedfor every message x E P andfor every signature y E A:

ver(2, y) = 1 true ify = sig(x)
false ify # sig(x).

For every Ii’ E K, the functions sigK and UerK should be polynomial-time
functions. UerK will be a public function and siqK will be secret. It should be
computationally infeasible for Oscar to “forge” Bob’s signature on a message 2.
That is, given x, only Bob should be able to compute the signature y such that
ver(x, y) = true. A signature scheme cannot be unconditionally secure, since
Oscar can test all possible signatures y for a message x using the public algorithm
ver, until he finds the right signature. So, given sufficient time, Oscar can always
forge Bob’s signature. Thus, as was the case with public-key cryptosystems, our
goal is to find signature schemes that are computationally secure.

As our first example of a signature scheme, we observe that the RSA public-key
cryptosystem can be used to provide digital signatures. See Figure 6.1.

Thus, Bob signs a message x using the RSA decryption rule dK. Bob is the only
person that can create the signature since dK = sigK is secret. The verification
algorithm uses the RSA encryption rule eK. Anyone can verify a signature since
eK is public.

Note that anyone can forge Bob’s signature on a “random” message x by
computing x = eK(y) for some y; then y = sigK(x). One way around this
difficulty is to require that messages contain sufficient redundancy that a forged
signature of this type does not correspond to a “meaningful” message x except with
a very small probability. Alternatively, the use of hash functions in conjunction
with signature schemes will eliminate this method of forging (cryptographic hash
functions will be discussed in Chapter 7).

6.1. INTRODUCTION

FIGURE 6.1
RSA Signature Scheme

Let n = pq, where p and q are primes. Let P = A = Z,, and define

K = {(n,p, q, a, b) : n = pq,p, q prime, ab z 1 (mod 4(n))}.

The values n and b are public, and the values p, q, a are secret.

For Ii’ = (n,p, q, a, b),define

si9K cx) = xa mod rz

and

uerK(x, y) = true H 2 f yb (mod n)

205

Finally, let’s look briefly at how we would combine signing and public-key
encryption. Suppose Alice wishes to send a signed, encrypted message to Bob.
Given a plaintext x, Alice would compute her signature y = Sig,,ice(x), and
then encrypt both x and y using Bob’s public encryption function en&,, obtaining
t = e&&(x, y). The ciphertext I would be transmitted to Bob. When Bob receives
z, he first decrypts it with his decryption function da& to get (2, y). Then he uses
Alice’s public verification function to check that uer,+,lice(z, y) = true.

What if Alice first encrypted z, and then signed the result? Then she would
compute

Y = SigAlice(eBob(x)).

Alice would transmit the pair (z, y) to Bob. Bob would decrypt z, obtaining x,
and then verify the signature y on t using VerAlice. One potential problem with
this approach is that if Oscar obtains a pair (P, y) of this type, he could replace
Alice’s signature y by his own signature

yl = Sigo,car(eBob(x)).

(Note that Oscar can sign the ciphertext en&(z) even though he doesn’t know the
plaintext x.) Then, if Oscar transmits (z, y’) to Bob, Oscar’s signature will be
verified by Bob using uero,,,, and Bob may infer that the plaintext x originated
with Oscar. Because of this potential difficulty, most people recommend signing
before encrypting.

206 CHAPTER 6. SIGNATURE SCHEMES

FIGURE 6.2
ElGamal Signature Scheme

,et p be a prime such that the discrete log problem in Zr is intractible,
md let cr E Zr* be a primitive element. Let P = Zr*, A = Z$,* x &,-I,
2nd define

K: = {(p,cx,a,P) : p E a“ (mod p)}.

The values p, a and p are public, and a is secret.

For K = (p, cr, a, p), and for a (secret) random number k E Zpp- 1 l ,
define

where

SigK cx7 k) = (7~6))

and

y=crkmodp

6 = (x - ay)k-’ mod (p - 1).

For x,y E ZP* and 6 E q-1, define

ver(x,y,6)=true@~ay6~cr”(modp).

-

6.2 The ElGamal Signature Scheme

We now describe the ElGamal Signature Scheme, which was described in a 1985
paper. A modification of this scheme has been adopted as a digital signature stan-
dard by the National Institute of Standards and Technology (NIST). The ElGamal
Scheme is designed specifically for the purpose of signatures, as opposed to RSA,
which can be used both as a public-key cryptosystem and a signature scheme.

The ElGamal Signature Scheme is non-deterministic, as was the ElGamal
Public-key Cryptosystem. This means that there are many valid signatures for
any given message. The verification algorithm must be able to accept any of the
valid signatures as authentic. The description of the ElGamal Signature Scheme
is given in Figure 6.2.

If the signature was constructed correctly, then the verification will succeed,
since

6.2. THE ELGAMAL SIGNATURE SCHEME 207

E 2 (mod p) ,

where we use the fact that

ay+kJzz(modp-1).

Bob computes a signature using both the secret value a (which is part of the
key) and the secret random number k (which is used to sign one message, z). The
verification can be accomplished using only public information.

Let’s do a small example to illustrate the arithmetic.

Example 6.1
Suppose we take p = 467, (Y = 2, a = 127; then

,f3=cramodp

= 2’*’ mod 467

= 132.

Suppose Bob wants to sign the message x = 100 and he chooses the random value
k = 213 (note that gcd(213,466) = 1 and 213-l mod 466 = 431). Then

y = 22’3 mod 467 = 29

and

6 = (100 - 127 x 29)431 mod 466 = 51.

Anyone can verify this signature by checking that

13229295’ E 189 (mod 467)

and

2’O” z 189 (mod 467).

Hence, the signature is valid. 0

Let’s look at the security of the ElGamal Signature Scheme. Suppose Oscar
tries to forge a signature for a given message x, without knowing a. If Oscar
chooses a value y and then tries to find the corresponding 6, he must compute the
discrete logarithm lob cP/3- -I. On the other hand, if he first chooses 6 and then
tries to find y, he is trying to “solve” the equation

for the “unknown” y. This is a problem for which no feasible solution is known;
however, it does not seem to be related to any well-studied problem such as the

208 CHAPTER 6. SIGNATURE SCHEMES

Discrete Logarithm problem. There also remains the possibility that there might
be some way to compute y and 6 simultaneously in such a way that (y, S) will be
a signature. No one has discovered a way to do this, but conversely, no one has
proved that it cannot be done.

If Oscar chooses y and 6 and then tries to solve for z, he is again faced
with an instance of the Discrete Logarithm problem, namely the computation of
log, pr6. Hence, Oscar cannot sign a “random” message using this approach.
However, there is a method by which Oscar can sign a random message by
choosing y, b and x simultaneously: Suppose i and j are integers, 0 5 i 5 p - 2,
0 2 j 5 p - 2, and gcd(j, p - 1) = 1. Then perform the following computations:

y = cri@ mod p

d = -rj-’ mod(p- 1)

x = -y23 -*-’ mod (p - l),

‘-I where j is computed modulo (p- 1) (this is where we require that j be relatively
prime to p - 1).

We claim that (y, 6) is a valid signature for the message x. This is proved by
checking the verification condition:

pYr6 E pa’P’(a’pj)-“‘@jj-’ (mod p)

=(Y -Yi3-’ - (mod p)

G a2 (mod p).

We illustrate with an example.

Example 6.2
As in the previous example, suppose p = 467, Q = 2 and p = 132. Suppose
Oscar chooses i = 99 and j = 179; then j-’ mod (p - 1) = 151. He would
compute the following:

y = 299132’79 mod 467 = 117
~5 = -117 x 151 mod 466 = 41
2 = 99x41mod466 = 331.

Then (117,41) is a valid signature for the message 331, as may be verified by
checking that

132”‘l 1741 z 303 (mod 467)

6.2. THE ELGAMAL SIGNATURE SCHEME 209

and

233’ E 303 (mod 467).

Hence, the signature is valid. 0

Here is a second type of forgery, in which Oscar begins with a message previ-
ously signed by Bob. Suppose (y, 6) is a valid signature for a message x. Then it is
possible for Oscar to sign various other messages. Suppose h, i and j are integers,
0 _< h, i, j < p - 2, and gcd(hy - ja, p - 1) = 1. Compute the following:

X = yh&@ modp

p = cSX(hy - jS)-’ mod (p - 1)

x’ = X(hx + id)(hy - jS)-’ mod (p - l),

where (hy - j&)-l is computed modulo (p - 1). Then, it is tedious but straight-
forward to check the verification condition:

,@P E ~3’ (mod p).

Hence (X, p) is a valid signature for x’.
Both of these methods produce valid forged signatures, but they do not appear

to enable an opponent to forge a signature on a message of his own choosing
without first solving a discrete logarithm problem. Hence, they do not seem to
represent a threat to the security of the ElGamal Signature Scheme.

Finally, we mention a couple of ways in which the ElGamal Scheme can be
broken if it is used carelessly (these are further examples of protocol failures,
some of which were discussed in the exercises of Chapter 4). First, the random
value k used in computing a signature should not be revealed. For, if k is known,
it is a simple matter to compute

a=(x-k-y)6-‘mod(p-1).

Of course, once a is known, then the system is broken and Oscar can forge
signatures at will.

Another misuse of the system is to use the same value k in signing two different
messages. This also makes it easy for Oscar to compute a and hence break the
system. This can be done as follows. Suppose (y, 61) is a signature on xt and
(y, 62) is a signature on x2. Then we have

and

pry*’ 3 ax2 (mod p).

210 CHAPTER 6. SIGNATURE SCHEMES

Thus

(~“‘~“2 3 y6*-61 (mod p).

Writing y = ak, we obtain the following equation in the unknown k:

g142 - ak(&-&) (mod P),

which is equivalent to

xl - x2 E k(& - ~51) (mod p - I).

Nowletd=gcd(&-&,p-1). Sincedj(p-l)andd)(&-6,),itfollows
that d 1 (x1 - x2). Define

x1 -x2 I’ = -
d

6’ = 82 - 4
d

p’-P-l --.
d

Then the congruence becomes:

x’ 3 k6’ (mod p’) .

Since gcd(6’, p’) = I, we can compute

6 = (CT’)-’ mod p’.

Then value of k is determined modulo p’ to be

k = x’f mod p’.

This yields d candidate values fork:

k = X’E + ip’ mod p

for some i, 0 5 i 5 d - 1. Of these d candidate values, the (unique) correct one
can be determined by testing the condition

y~cr” (modp).

6.3 The Digital Signature Standard

The Digital Signature Standard (or DSS) is a modification of the ElGamal
Signature Scheme. It was published in the Federal Register on May 19, 1994

6.3. THE DIGITAL SIGNATURE STANDARD 211

and adopted as a standard on December 1, 1994 (however, it was first proposed in
August, 1991). First, we want to motivate the changes that are made to ElGamal,
and then we will describe how they are accomplished.

In many situations, a message might be encrypted and decrypted only once,
so it suffices to use any cryptosystem which is known to be secure at the time
the message is encypted. On the other hand, a signed message could function
as a legal document such as a contract or will, so it is very likely that it would
be necessary to verify a signature many years after the message is signed. So it
is important to take even more precautions regarding the security of a signature
scheme as opposed to a cryptosystem. Since the ElGamal Scheme is no more
secure than the Discrete Logarithm problem, this necessitates the use of a large
modulus p. Certainly p should have at least 512 bits, and many people would
argue that the length of p should be 1024 bits in order to provide security into the
forseeablefuture.

However, even a 512 bit modulus leads to a signature having 1024 bits. For
potential applications, many of which involve the use of smart cards, a shorter
signature is desirable. DSS modifies the ElGamal Scheme in an ingenious way
so that a 160-bit message is signed using a 320-bit signature, but the computations
are done using a 512-bit modulus p. The way that this done is to work in a
subgroup of ZP* of size 2 t60 . The assumed security of the scheme is based on the
belief that finding discrete logarithms in this specified subgroup of ZP* is secure.

The first change we make is to change the “-” to a “+” in the definition of 6,
so

6 = (x + ay)k-’ mod (p - 1).

This changes the verification condition to the following:

axpY s yb (mod p). (6.1)

If gcd(x + cry, p - 1) = 1, then 6-t mod (p - 1) exists, and we can modify
condition (6.1), producing the following:

@-‘/3@ G y (mod p).

Now here is the major innovation in the DSS. We suppose that q is a 160-bit
prime such that q 1 (p- I), and a is a qth root of 1 modulop. (It is easy to construct
such an a: Let era be a primitive element of i&, and define a = cra(P-t)lq mod p.)
Then ,0 and 7 will also be qth roots of 1. Hence, any exponents of cr, /3 and -y
can be reduced modulo q without affecting verification condition (6.2). The tricky
point is that y appears as an exponent on the left side of (6.2), and again - but
not as an exponent - on the right side of (6.2). So if y is reduced modulo q, then
we must also reduce the entire left side of (6.2) modulo q in order to perform the
verification. Observe that (6.1) will not work if the extra reductions modulo q are
done. The complete description of the DSS is given in Figure 6.3.

212

FIGURE 6.3
Digital Signature Standard

Let p be a 51Zbit prime such that the discrete log problem in Zp is
ntractible, and let q be a 160-bit prime that divides p - 1. Let (Y E ;Z,*
3e a qth root of 1 modulo p. Let P = Zp*, A = Zq x Zq, and define

K:={(p,q,cr,a,P):P-a’(modp)}.

lhe values p, q, CK and ,0 are public, and a is secret.

For I< = (p, q, a, a, ,f3), and for a (secret) random number k, 1 5 k 5
q - l,define

sigK(x, k) = (-Y,&

where

and

y = (crk mod p) mod q

6 = (x + ay)k-’ mod q.

For x E &,* and y,6 E iZq, verification is done by performing the
following computations:

el = XC’ mod q

e2 = -pV’ mod q

veTK(x, y, ~5) = true e (c?pe* mod p) mod q = 7.

Notice that is necessary that 6 f 0 (mod q) since the value 6- ’ mod q is needed
to verify the signature (this is analogous to the requirement that gcd(6, p - 1) = 1
when we modified (6.1) to obtain (6.2)). If Bob computes a value 6 E 0 (mod q)
in the signing algorithm, he should reject it and construct a new signature with a
new random k. We should point out that this is not likely to cause a problem in
practice: the probability that 6 G 0 (mod q) is likely to be on the order of 2-160,
so for all intents and purposes it will almost never happen.

Here is a small example to illustrate.

6.3. THE DIGITAL SIGNATURE STANDARD 213

Example 6.3
Suppose we take q = 101 and p = 78q + 1 = 7879. 3 is a primitive element in
Z7g79, so we can take

ct = 378 mod 7879 = 170.

Suppose a = 75; then

p = cd’ mod 7879 = 4567.

Now, suppose Bob wants to sign the message x = 1234 and he chooses the random
value k = 50, so

Then

k-’ mod 101 = 99.

7 = (1705’ mod 7879) mod 101

= 2518 mod 101

= 94

and

6 = (1234 + 75 x 94)99 mod 101

= 97.

The signature (94,97) on the message 1234 is verified by the following computa-
tions:

6-l = 97-l mod 101 = 25

el = 1234 x 25 mod 101 = 45

e2 = 94 x 25 mod 101 = 27

(17045456727 mod 7879) mod 101 = 2518 mod 101 = 94.

Hence, the signature is valid. 0

When the DSS was proposed in 1991, there were several criticisms put forward.
One complaint was that the selection process by NIST was not public. The
standard was developed by the National Security Agency (NSA) without the input
of U. S. industry. Regardless of the merits of the resulting scheme, many people
resented the “closed-door” approach.

Of the technical criticisms put forward, the most serious was that the size of the
modulus p was fixed at 5 12 bits. Many people would prefer that the modulus size
not be fixed, so that larger modulus sizes could be used if desired. In reponse to
these comments, NIST altered the description of the standard so that a variety of

214 CHAPTER 6. SIGNATURE SCHEMES

modulus sizes are allowed, namely, any modulus size divisible by 64, in the range
from 512 to 1024 bits.

Another complaint about the DSS was that signatures can be generated consid-
erably faster than they can be verified. In contrast, if RSA is used as a signature
scheme and the public verification exponent is very small (say 3, for example),
then verification can be performed much more quickly than signing. This leads to
a couple of considerations concerning the potential applications of the signature
scheme:

I. A message will only be signed once. On the other hand, it might be necessary
to verify the signature many times over a period of years. This suggests that
a faster verification algorithm would be desirable.

2. What types of computers are likely to be doing the signing and verifying?
Many potential applications involve smart cards, with limited processing
power, communicating with a more powerful computer. So one might try
to design a scheme so that fewer computations are likely to be done by a
card. But one can imagine situations where a smart card would generate a
signature, and other situations where a smart card would verify a signature,
so it is difficult to give a definitive answer here.

The response of NIST to the question of signature generation/verification times
is that it does not really matter which is faster, provided that both can be done
sufficiently quickly.

6.4 One-time Signatures

In this section, we describe a conceptually simple way to construct a one-time
signature scheme from any one-way function. The term “one-time” means that
only one message can be signed. (The signature can be verified an arbitrary number
of times, of course.) The description of the scheme, known as the Lamport
Signature Scheme, is given in Figure 6.4.

Informally, this is how the system works. A message to be signed is a binary
k-tuple. Each bit is signed individually: the value Zi,j corresponds to the ith bit of
the message having the value j (j = 0,l). Each Zi,j is the image of yi,j under the
one-way function f. The ith bit of the message is signed using the preimage yi,j
of the Zi,j corresponding to the ith bit of the message. The verification consists
simply of checking that the each element in the signature is the preimage of the
appropriate public key element.

We illustrate the scheme by considering one possible implementation using
the exponentiation function f(x) = a” mod p, where (Y is a primitive element
modulo p.

6.4. ONE-TIME SIGNATURES

FIGURE 6.4
Lamport Signature Scheme

Let k be a positive integer and let P = (0, l}k. Suppose f : Y + 2 is
a one-way function, and let A = Yk. Let yi,j E Y be chosen at random,
1 5 i 5 k, j = 0, I, and let .Zi,j = f(yi,j), 1 5 i 5 k, j = 0, 1. The key
Ii consists of the 2k y’s and the 2k 2’s. The y’s are secret while the z’s
are public.

For 1-C = (yi,j, .Zi,j : 1 5 i 5 k, j = 0, l),define

sigK(xl,. . . ,tk) = (?/l,r,, . . . d/k,=*)

and

~eTK(Xl,...,Xkja17. ..ak)=trUe~~(ui)=%i,,,,l<iIk.

Example 6.4
7879 is prime and 3 is a primitive element in &879. Define

f(x) = 3” mod 7879.

215

Suppose Bob wishes to sign a message of three bits, and he chooses the six (secret)
random numbers

yl,o = 5831

Yl,’ = 735

~2,o = 803

y2,, = 2467

y3,0 = 4285

y3,, = 6449.

Then he computes the images of the y’s under the function f:

%‘,O = 2009

z,,~ = 3810

z2,0 = 4672

z2,, = 4721

z3,0 = 268

216 CHAPTER 6. SIGNATURE SCHEMES

%3,’ = 5731.

These Z’S are published. Now, suppose Bob wants to sign the message

2 = (l,l,O).

The signature for x is

(YI,I,Y~,I,Y~,o) = (735,2467,4285).

To verify this signature, it suffices to compute the following:

3735 mod 7879 = 3810

32467 mod 7879 = 4721

34285 mod 7879 = 268.

Hence, the signature is valid. 0

Oscar cannot forge a signature because he is unable to invert the one-way
function f to obtain the secret y’s. However, the signature scheme can be used
to sign only one message. For, given signatures for two different messages, it
is (usually) an easy matter for Oscar to construct signatures for further messages
(different from the first two).

For example, suppose the messages (0, 1,l) and (1 , 0,l) are both signed using
the same scheme. The message (0, 1,1) would have as its signature the triple
(YI,o,Y~,I,Y~,I), and the message (I,& 1) wouldbe signed with (Y’,I,Y~,o,Y~,I).

Given these two signatures, Oscar can construct signatures for the messages
(1,1, 1) (namely, (YI,I,Y~,I,Y~,I))~~~ (O,O, 1) (n~eh (YI,o,Y~,o,Y~,‘)).

Even though this scheme is quite elegant, it is not of great practical use due
to the size of the signatures it produces. For example, if we use the modular
exponentiation function, as in the example above, then a secure implementation
would require that p be at least 512 bits in length. This means that each bit of
the message is signed using 5 12 bits. Consequently, the signature is 5 12 times as
long as the message!

We now look at a modification due to Bos and Chaum that allows the signatures
to be made somewhat shorter, with no loss of security. In the Lamport Scheme,
the reason that Oscar cannot forge a signature on a (second) message, given a
signature on one message, is that the y’s corresponding to one message are never
a subset of the y’s corresponding to another (distinct) message.

Suppose we have a set B of subsets of a set B such that Bt c BZ only if
BI = B2, for all BI , BP E a. Then L? is said to satisfy the Spemer property.
Given a set B of even cardinality n, it is known that the maximum size of a set 17
of subsets of B having the Sperner property is (2). This can easily be obtained by
taking all the n-subsets of B: clearly no n-subset is contained in another n-subset.

6.4. ONE-TIME SIGNATURES 217

FIGURE 6.5
Bos-Chaum Signature Scheme

Let k be a positive integer and let P = (0, l}k. Let n be an integer such
that 2k 5 (2,“)) let B be a set of cardinality n, and let

f$: (0, ljk + B

be an injection, where B is the set of all n-subsets of B. Suppose
f : Y -+ Z is a one-way function, and let A = Y”. Let yi E Y be
chosen at random, 1 5 i 5 2n, and let zi = f (yi), 1 L: i 5 2n. The key
I< consists of the 2n y’s and the 2n 2’s. The y’s are secret while the z’s
are public.

For Ii’ = (yi, Zi, 1 5 i 5 2n), define

and

e7K(~l, f.. , Xk) = {Yj : j E 4(X1,. . . , Xk)}

VerK(Xl, . . . , Xk,al, . . .un) = true
e {f(Q) : 1 5 i 5 n} = {zj : j E 4(x], . . ., Xk)}.

Now suppose we want to sign a k-bit message, as before, and we choose n large
enough so that

2n
23 n .

0
Let IBI = n and let B denote the set of n-subsets of B. Let q+~ : (0, I}” + B be
a publicly known injection. Then we can associate each possible message with
an n-subset in t?. We will have 2n y’s and 2n z’s, and each message will be
signed with n y’s. The complete description of the Bos-Chaum Scheme is given
in Figure 6.5.

The advantage of the Bos-Chaum Scheme is that signatures are shorter than
with the Lamport Scheme. For example, suppose we wish to sign a message of
six bits (i.e., k = 6). Since 26 = 64 and (3 = 70, we can take n = 4. This allows
a six-bit message to be signed with four y’s, as opposed to six with Lamport. As
well, the key is shorter, consisting of eight z’s as opposed to twelve with Lamport.

The Bos-Chaum Scheme requires an injective function C#J that associates an
n-subset of a 2n-set with each possible binary k-tuple x = (XI,. . . , Xk). We
present one simple algorithm to do this in Figure 6.6. Applying this algorithm
with x = (0, l,O,O, 1, l), for example, yields

4(x) = {2,4,6,g).

218 CHAPTER 6. SIGNATURE SCHEMES

FIGURE 6.6
Computation of 4 in the Bos-Chaum Scheme

1. x = c;=, zci2’-’
2. qqx) = 0
3. t = 2n
4. e=n

5. while t > 0 do

6. t=t-1
7. if GE > (5) then

8. x = x - (f)
9. e=e-1
10. 4(x) = 4(x) u it + 11.

In general, how big is n in the B_os-Chaum Scheme as compared to k? We
need to satisfy the inequality 2” _< (“,“) . If we estimate the binomial coefficient

2n

0

(2n) !
n =m

using Stirling’s formula, we obtain the quantity 2*“/&. After some simplifi-
cation, the inequality becomes

k < 2n - 1og2pn).
-

Asymptotically, n is about k/2, so we obtain an almost 50% reduction in signature
size by using the Bos-Chaum Scheme.

6.5 Undeniable Signatures

Undeniable signatures were introduced by Chaum and van Antwerpen in 1989.
They have several novel features. Primary among these is that a signature cannot
be verified without the cooperation of the signer, Bob. This protects Bob against
the possibility that documents signed by him are duplicated and distributed elec-
tronically without his approval. The verification will be accomplished by means
of a challenge-and-response protocol.

6.5. UNDENIABLE SIGNATURES

FIGURE 6.7
Chaum-van Antwerpen Undeniable Signature Scheme

Let p = 2q + 1 be a prime such that q is prime and the discrete log
problem in Z$, is intractible. Let o E Zr,* be an element of order q. Let
1 < a < q - 1 and define /I = cP mod p. Let G denote the multiplicative
mbgroup of Z,, * of order q (G consists of the quadratic residues modulo
D). Let P = A = G, and define

K={(p,c~,a,/3):~~o~(modp)}.

The values p, CY and p are public, and a is secret.

ForK = (p,cr,a,@andx E G,define

y = sigK(x) = x0 mod p.

For x, y E G, verification is done by executing the following protocol:

I. Alice chooses et, e2 at random, et, eq E Z,‘.
2. Alice computes c = ye’ p”* mod p and sends it to Bob.
3. Bob computes d = ca-lmod’J mod p and sends it to Alice.
4. Alice accepts y as a valid signature if and only if

d - xe’aez (mod p).

219

But if Bob’s cooperation is required to verify a signature, what is to prevent
Bob from disavowing a signature he made at an earlier time? Bob might claim
that a valid signature is a forgery, and either refuse to verify it, or carry out the
protocol in such a way that the signature will not be verified. To prevent this from
happening, an undeniable signature scheme incorporates a disavowal protocol by
which Bob can prove that a signature is a forgery. Thus, Bob will be able to prove
in court that a given forged signature is in fact a forgery. (If he refuses to take part
in the disavowal protocol, this would be regarded as evidence that the signature
is, in fact, genuine.)

Thus, an undeniable signature scheme consists of three components: a signing
algorithm, a verification protocol, and a disavowal protocol. First, we present
the signing algorithm and verification protocol of the Chaum-van Antwerpen
Undeniable Signature Scheme in Figure 6.7.

We should explain the roles of p and q in this scheme. The scheme lives in Z&p;
however, we need to be able to do computations in a multiplicative subgroup G of
Zr,* of prime order. In particular, we need to be able to compute inverses modulo

220 CHAPTER 6. SIGNATURE SCHEMES

[Cl, which is why IGI should be prime. It is convenient to takep = 2q + 1 where
q is prime. In this way, the subgroup G is as large as possible, which is desirable
since messages and signatures are both elements of G.

We first prove that Alice will accept a valid signature. In the following compu-
tations, all exponents are to be reduced modulo q. First, observe that

d E ca-’ (mod p)

= - Ye’”
-1

Pa -’ (mod p).

Since

we have that

Similarly,

implies that

Hence,

p E d’ (mod p),

p”-’ E a (mod p).

y = x0 (mod p)

Ya
--I

~x(modp).

as desired.

d E xelcrue2 (mod p),

Here is a small example.

Example 6.5
Suppose we take p = 467. Since 2 is a primitive element, 2* = 4 is a generator of
G, the quadratic residues modulo 467. So we can take o = 4. Suppose a = 101;
then

p = d’ mod 467 = 449.

Bob will sign the message x = 119 with the signature

y = 119’O’ mod 467 = 129.

Now, suppose Alice wants to verify the signature y. Suppose she chooses the
random values et = 38, e2 = 397. She will compute c = 13, whereupon Bob
will respond with d = 9. Alice checks the resonse by verifying that

1 19384397 - 9 (mod 467).

Hence, Alice accepts the signature as valid. 0

6.5. UNDENIABLE SIGNATURES 221

We next prove that Bob cannot fool Alice into accepting a fradulent signature
as valid, except with a very small probability. This result does not depend on any
computational assumptions, i.e., the security is unconditional.

THEOREM 6.1
If y $ xa (mod p), then Alice will accept y as a valid signature for x with
probability 1 /q.

PROOF First, we observe that each possible challenge c corresponds to exactly q
ordered pairs (e r , e2) (this is because y and ,L? are both elements of the multiplicative
group G of prime order q). Now, when Bob receives the challenge c, he has no way
of knowing which of the q possible ordered pairs (et, e2) Alice used to construct
c. We claim that, if y $ xa (mod p), then any possible response d E G that Bob
might make is consistent with exactly one of the q possible ordered pairs (et, e2).

Since Q generates G, we can write any element of G as a power of Q, where
the exponent is defined uniquely modulo q. So write c = cri, d = aj, x = c~‘,
and y = cr’, where i, j, k, -!Y E Zq and all arithmetic is modulo p. Consider the
following two congruences:

c z y”‘pe2 (mod p)

d E xe1ae2 (mod p).

This system is equivalent to the following system:

i E t?el + ae2 (mod q)

3 ’ E kel + e2 (mod q).

Now, we are assuming that

Y $ xa (mod P),

so it follows that

! $ ak (mod q).

Hence, the coefficient matrix of this system of congruences modulo q has non-
zero determinant, and thus there is a unique solution to the system. That is, every
d E G is the correct response for exactly one of the q possible ordered pairs
(et , e2). Consequently, the probability that Bob gives Ali; a response d that will
be verified is exactly l/q, and the theorem is proved.

We now turn to the disavowal protocol. This protocol consists of two runs of
the verification protocol and is presented in Figure 6.8.

Steps 14 and steps 5-8 comprise two unsuccessful runs of the verification
protocol. Step 9 is a “consistency check” that enables Alice to determine if Bob
is forming his responses in the manner specified by the protocol.

222 CHAPTER 6. SIGNATURE SCHEMES

FIGURE 6.8
Disavowal protocol

1. Alice chooses et, e2 at random, et, e2 E Z,*
2. Alice computes c = y”‘p* mod p and sends it to Bob
3. Bob computes d = c” -Imodq mod p and sends it to Alice
4. Alice verifies that d $ xelae2 (mod p)
5. Alice chooses ft , f2 at random, ft , f2 E Zq*
6. Alice computes C = yfl pf2 mod p and sends it to Bob
7. Bob computes D = C” -lmodq mod p and sends it to Alice
8. Alice verifies that D $ xfl af2 (mod p)
9. Alice concludes that y is a forgery if and only if

(da-e2)f1 E (Dc~-f~)~l (mod p).

The following example illustrates the disavowal protocol.

Example 6.6
As before, suppose p = 467, o = 4, a = 101 and p = 449. Suppose the message
x = 286 is signed with the (bogus) signature y = 83, and Bob wants to convince
Alice that the signature is invalid.

Suppose Alice begins by choosing the random values et = 45, e2 = 237. Alice
computes c = 305 and Bob responds with d = 109. Then Alice computes

286454237 mod 467 = 149.

Since 149 # 109, Alice proceeds to step 5 of the protocol.
Now suppose Alice chooses the random values ft = 125, f2 = 9. Alice

computes C = 270 and Bob responds with D = 68. Alice computes

28612549 mod 467 = 25.

Since 25 # 68, Alice proceeds to step 9 of the protocol and performs the consis-
tency check. This check succeeds, since

(109 x 4-237)‘25 G 188 (mod 467)

and

(68 x 4-9)45 E 188 (mod 467).

6.5. UNDENIABLE SIGNATURES 223

Hence, Alice is convinced that the signature is invalid.

We have to prove two things at this point:

I. Bob can convince Alice that an invalid signature is a forgery.
2. Bob cannot make Alice believe that a valid signature is a forgery except

with a very small probability.

THEOREM 6.2
If y q! x” (mod p), and Alice and Bob follow the disavowal protocol, then

(dcx-ez)fl = (Dc~-~~)~l (mod p).

PROOF Using the facts that

d zz ca-’ (mod p),

and

we have that

c 3 ye1 p”’ (mod p)

p E aa (mod p),

(damez)fl E ((yeipe2)‘-’ CK+~)~ (mod p)

G yelflpe2a -‘fl a-=Zfl (mod p)

= _ y=~f~ a=~f~ a-=2fl (mod P)

E yeIf (mod p).

A similar computation, using the facts that D E C”-’ (mod p), C 3 yflj3f2
(mod p) and /? = era (mod p), establishes that

(ll~-f~)~ E yeIf (mod p),

so the consistency check in step 9 succeeds. 1

Now we look that the possibility that Bob might attempt to disavow a valid
signature. In this situation, we do not assume that Bob follows the protocol. That
is, Bob might not construct d and D as specified by the protocol. Hence, in the
following theorem, we assume only that Bob is able to produce values d and D
which satisfy the conditions in steps 4,8, and 9 of the protocol presented in Figure
6.8.

224 CHAPTER 6. SIGNATURE SCHEMES

THEOREM 6.3
Suppose y E xa (mod p) and Alice follows the disavowal protocol. If

d f xe’ae2 (mod p)

and

D f xflcrf2 (mod p),

then the probability that

(dame2)jl $ (Dcrmf2)=l (mod p)

is 1 - l/q.

PROOF Suppose that the following congruences are satisfied:

y E xa (mod p)

d $ xe’ae2 (mod p)

D $ zf1af2 (mod p)

(dase2)f1 G (Day-f2)el (mod p).

We will derive a contradiction.
The consistency check (step 9) can be rewritten in the following form:

D z don af2 (mod p) ,

where
do = dll=lQ-=2/=l mod p

is a value that depends only on steps l-4 of the protocol.
Applying Theorem 6.1, we conclude that y is a valid signature for do with

probability 1 - l/q. But we are assuming that y is a valid signature for x. That
is, with high probability we have

xa E do” (mod p),

which implies that x = do.
However, the fact that

d f xe’ae2 (mod p)

means that

x $ d’l=la-- e2/e1 (mod p).

Since

do - d’le1cx-e2/e1 (mod p),

we conclude that x # do and we have a contradiction.

6.6. FAIL&TOP SIGNATURES

Hence, Bob can fool Alice in this way with probability l/q. 1

225

6.6 Fail-stop Signatures

A fail-stop signature scheme provides enhanced security against the possibility
that a very powerful adversary might be able to forge a signature. In the event
that Oscar is able to forge Bob’s signature on a message, Bob will (with high
probability) subsequently be able to prove that Oscar’s signature is a forgery.

In this section, we describe a fail-stop signature scheme constructed by van
Heyst and Pedersen in 1992. This is a one-time scheme (only one message can
be signed with a given key). The system consists of signing and verification
algorithms, as well as a “proof of forgery” algorithm. The description of the
signing and verification algorithms of the van Heyst and Pedersen Fail-stop
Signature Scheme is presented in Figure 6.9.

It is straightforward to see that a signature produced by Bob will satisfy the
verification condition, so let’s turn to the security aspects of this scheme and how
the fail-safe property works. First we establish some important facts relating to the
keys of the scheme. We begin with a definition. Two keys (~i,y2, ai, ~2, bi, b2)
and (7; , $, u’, , ai, b’, , b!& are said to be equivalent if yi = 7; and 72 = -y$. It is
easy to see that there are exactly q2 keys in any equivalence class.

We establish several lemmas.

LEMMA 6.4
Suppose K and I<’ are equivalent keys and suppose that VerK (2, y) = true. Then
verf(j (2, y) = true.

PROOF Suppose I(= (-n,wvdO2) and K’ = (rm,~:,&b:,b~)~

where

-y2 = crb1pb2 mod p = abipbi mod p.

Suppose I is signed using I<, producing the signature y = (yi , y2), where

YI = al + xbl mod q,

y2 = a2 + zb2 mod q.

Now suppose that we verify y using K’:

Q~~/3y2 f aa;+rb;pa;++ (mod p)

226 CHAPTER 6. SIGNATURE SCHEMES

FIGURE 6.9
van Heyst and Pedersen Fail-stop Signature Scheme

Let p = 2q + 1 be a prime such that q is prime and the discrete log
problem in Zr is intractible, Let (Y E Zr* be an element of order q. Let
1 5 au 5 q - 1 and define p = oao mod p. The values p, q, (Y, /?, and ao
are chosen by a central (trusted) authority. p, q, CY, and /3 are public and
will be regarded as fixed. The value of aa is kept secret from everyone
(even Bob).

LetP=Zqandd=iZqxZq.Akeyhastheform

Ii’ = (wr2,wdda),

where at, a2, bl, b2 E Z,,

y1 = CC”@“* mod p,

and

72 = ablpbz modp.

For Ii = (n,32, at, a~, bl, b2) and 2 E ;Z,, define

SigK(x) = (?/I 9 ?/2),

where

and

y1 = al + zbl mod q

y2 = a2 + xb2 mod q.

For y = (yt , ~2) E Z, x Z,, we have

uerK(x, y) = true e y1^/2~ E aY’pY2 (mod p).

6.6. FAIL-STOP SIGNATURES 227

3 d~jY~(c~~~pb~)~ (mod p)

= YI 72” (mod ~1.

Thus, y will also be verified using K’. 1

LEMMA 6.5
Suppose Ii’ is a key and y = sigK (x). Then there are exactly q keys I<’ equivalent
to I< such that y = sigK! (x).

PROOF Suppose 71 and 72 are the public components of K. We want to determine
the number of 4-tuples (at, a~, bl, b2) such that the following congruences are
satisfied:

y1 E aa1 p”* (mod p)

72 E abl@ (mod p)

yt 3 al + xh (mod q)

Y2 E a2 + xb2 (mod q).

Since (Y generates G, there exist unique exponents cl, ~2, ao E Zr such that

-yl E ~2’ (mod p),

and

72 = crc2 (mod p)

j3 3 aa0 (mod p).

Hence, it is necessary and sufficient that the following system of congruences be
satisfied:

Cl E al + ~002 (mod q)

c2 E bl + aobz (mod q)

E ~1 + xbl (mod q)

y2 tt a2 + xb2 (mod q).

This system can, in turn, be written as a matrix equation in Z&, as follows:

;::_:_)() ()

000 a1 Cl

0 a2 c2

bl
=

Yl *

b2 Y2

Now, the coefficient matrix of this system can be seen to have rank ’ three: Clearly,

‘the rank of a matrix is the maximum number of linearly independent rows it contains

228 CHAPTER 6. SIGNATURE SCHEMES

the rank is at least three since rows 1,2 and 4 are linearly independent over &.
And the rank is at most three since

7-1 + x7-2 - ~3 - ~0~4 = (0, 0, 0, 0),

where ri denotes the ith row of the matrix.
Now, this system of equations has at least one solution, obtained by using

the key IT. Since the rank of the coefficient matrix is three, it follows that the
dimension of the solution space is 4 - 3 = 1, and there are exactly q solutions.
The result follows. I

By similar reasoning, the following result can be proved. We omit the proof.

LEMMA 6.6

Suppose I< is a key, y = sigK(x), and VerK(x’, y’) = true, where 2’ # 2.
Then there is at most one key K’ equivalent to I(such that y = sigK! (x) and
y’ = sigK#(xt).

Let’s interpret what the preceding two lemmas say about the security of the
scheme. Given that y is a valid signature for message x, there are q possible keys
that would have signed x with y. But for any message x’ # x, these q keys will
produce q different signatures on x’. Thus, the following theorem results.

THEOREM 6.7

Given that sigK (x) = y and a? # x, Oscar can compute sigK (x’) with probablity
l/q.

Note that this theorem does not depend on the computational power of Oscar:
the stated level of security is obtained because Oscar cannot tell which of q possible
keys is being used by Bob. So the security is unconditional.

We now go on to look at the fail-stop concept. What we have said so far is
that, given a signature y on message x, Oscar cannot compute Bob’s signature y’
on a different message x’. It is still conceivable that Oscar can compute a forged
signature y” # sigK(x’) which will still be verified. However, if Bob is given a
valid forged signature, then with probability 1 - l/q he can produce a “proof of
forgery.” The proof of forgery is the value 00 = log, /3, which is known only to
the central authority.

So we assume that Bob possesses a pair (x’, y”) such that uer(x’, y”) = true
and y” # sigK (2’). That is,

Y1Y2f’ = crY;‘/3Y~ (mod p),

6.6. FAIL.-STOP SIGNATURES 229

where y” = (~7, y:). Now, Bob can compute his own signature on x’, namely
y’ = (y{ , y!J , and it will be the case that

7172”’ - ayi/3y; (mod p).

Hence,
,Y:'pY: E $~pY: (mod p).

Writing /3 = crao mod p, we have that

aY;'+OOY;' - aY;+WY; (mod p),

or

yy + a~& - ~‘1 + QOY$ (mod q).

This simplifies to give

Now, y’2 $ y$’ (mod q) since y’ is a forgery. Hence, (y’2 - yg)-’ mod q exists,
and

a0 = log, ,L3 = (yy - d)(yi - y;)-’ mod q.

Of course, by accepting such a proof of forgery, we assume that Bob can-
not compute the discrete logarithm log, /3 by himself. This is a computational
assumption.

Finally, we remark that the scheme is a one-time scheme since Bob’s key I<
can easily be computed if two messages are signed using Ii.

We close with an example illustrating how Bob can produce a proof of forgery.

Example 6.7
Supposep = 3467 = 2 x 1733 + 1. ‘Ihe element Q = 4 has order 1733 in Z&467*.
Suppose that a0 = 1567, so

p = 41567 mod 3467 = 514.

(Recall that Bob knows the values of o and @, but not a~.) Suppose Bob forms
his key using al = 888, u2 = 1024, bl = 786 and b2 = 999, so

y, = 4*ss514’024 mod 3467 = 3405

and

y2 = 47865 14999 mod 3461= 2281.

Now, suppose Bob is presented with the forged signature (822,55) on the
message 3383. This is a valid signature since the verification condition is satisfied:

3405 x 22813383 f 2282 (mod 3467)

230 CHAPTER 6. SIGNATURE SCHEMES

and

48225 1455 G 2282 (mod 3467).

On the other hand, this is not the signature Bob would have constructed. Bob can
compute his own signature to be

(888 + 3383 x 786 mod 1733,1024+ 3383 x 999 mod 1733) = (1504,129l).

Then, he proceeds to calculate the secret discrete log

a0 = (822 - 1504)(1291- 55)-i mod 1733 = 1567.

This is the proof of forgery. 0

6.7 Notes and References

For a nice survey of signature schemes, we recommend Mitchell, Piper, and
Wild [MPW92]. This paper also contains the two methods of forging ElGamal
signatures that we presented in Section 6.2.

The ElGamal Signature Scheme was presented in ElGamal [E~85]. The
Digital Signature Standard was first published by NIST in August 1991, and
it was adopted as a standard in December 1994 [NBS94]. There is a lengthy
discussion of DSS and the controversy surrounding it in the July 1992 issue of the
Communications of the ACM. For a response by NIST to some of the questions
raised, see [SB93].

The Lamport Scheme is described in the 1976 paper by Diffie and Hellman
[DH76]; the modification by Bos and Chaum is in [BC93]. The undeniable
signature scheme presented in Section 6.5 is due to Chaum and van Antwerpen
[CvA90]. The fail-stop signature scheme from Section 6.6 is due to van Heyst
and Pedersen [vHP93].

Some examples well-known “broken” signature schemes include the Ong-
SchnorrShamir Scheme [OSS85] (broken by Estes et al. [EAKMM86]); and
the Birational Permutation Scheme of Shamir [sH94] (broken by Coppersmith,
Stern, and Vaudenay [CSV94]). Finally, ESIGN is a signature scheme due to
Fujioka, Okamoto, and Miyaguchi [FOM91]. Some versions of the scheme were
broken, but the variation in [FOM91] has not been broken.

Exercises 231

Exercises

6.1 Suppose Bob is using the ElGamal Signature Scheme, and he signs two messages
zi and 22 with signatures (y, ai) and (y, Jr), respectively. (The same value for 7
occurs in both signatures.) Suppose also that gcd(6i - 62, p - 1) = 1.

(a) Describe how k can be computed efficiently given this information.
(b) Describe how the signature scheme can then be broken.
(c) Supposep = 31847, cr = 5 and p = 25703. Perform the computation of k

and a, given the signature (23972,3 1396) for the message 2 = 8990 and the
signature (23972,20481) for the message% = 31415.

6.2 Suppose I implement the ElGamal Signature Scheme with p = 3 1847, (Y = 5 and
p = 26379. Write a computer program which does the following.

(a) Verify the signature (20679,11082) on the message I = 20543.
(b) Determine my secret exponent, a, using the Shanks time-memory tradeoff.

Then determine the random value k used in signing the message I.
6.3 Suppose Bob is using the ElGamal Signature Scheme as implemented in Example

6.1: p = 467, a = 2 and /3 = 132. Suppose Bob has signed the messages = 100
with the signature (29,Sl). Compute the forged signature that Oscar can then form
by using h = 102, i = 45 and j = 293. Check that the resulting signature satisfies
the verification condition.

6.4 Prove that the second method of forgery on the ElGamal Signature Scheme, de-
scribed in Section 6.2, also yields a signature that satisfies the verification condition.

6.5 Here is a variation of the ElGamal Signature Scheme. The key is constructed in a
similar manner as before: Bob chooses cr E &,* to be a primitive element, a is a
secret exponent (0 < a 5 p - 2) such that gcd(a, p - 1) = 1, and /3 = (Ye mod p.
The key I< = (a, a, /3), where cr and p are public and a is secret. Let E E &, be a
message to be signed. Bob computes the signature s@(z) = (7, a), where

7=akmodp
and

6 = (x - ky)o-’ mod (p - 1).

The only difference from the original ElGamal Scheme is in the computation of 6.
Answer the following questions concerning this modified scheme.

(a) Describe how a signature (7,a) on a messages would be verified using Bob’s
public key.

(b) Describe a computational advantage of the modified scheme over the original
scheme.

(c) Briefly compare the security of the original and modified scheme.
6.6 Suppose Bob uses the DSS with q = 101, p = 7879, o = 170, a = 75 and

/3 = 4567, as in Example 6.3. Determine Bob’s signature on the message z = 5001
using the random value k = 49, and show how the resulting signature is verified.

6.7 In the Lamport Scheme, suppose that two k-tuples, z and z’, are signed by Bob.
Let e = d(z, x’) denote the number of coordinates in which z and 2’ differ. Show
that Oscar can now sign 2’ - 2 new messages.

6.8 In the Bos-Chaum Scheme with k = 6 and n = 4, suppose that the messages
z = (0, l,O, 0, 1,1) and I’ = (1, l,O, 1, 1, 1) are signed. Determine the new
messages that be signed by Oscar, knowing the signatures on G and z’.

232 CHAPTER 6. SIGNATURE SCHEMES

6.9 In the Bos-Chaum Scheme, suppose that two k-tuples x and E’ are signed by Bob.
Let e = Id(z) U d(z’)I. Show that Oscar can now sign (f) - 2 new messages.

6.10 Suppose Bob is using the Chaum-van Antwerpen Undeniable Signature Scheme
as in Example 6.5. That is, p = 467, (Y = 4, a = 101 and p = 449. Suppose Bob is
presented with a signature y = 25 on the message z = 157 and he wishes to prove
it is a forgery. Suppose Alice’s random numbers are ei = 46, e2 = 123, fi = 198
and A = 11 in the disavowal protocol. Compute Alice’s challenges, c and d, and
Bob’s responses, C and D, and show that Alice’s consistency check will succeed.

6.11 Prove that each equivalence class of keys in the Pedersen-van Heyst Fail-stop
Signature Scheme contains q* keys.

6.12 Suppose Bob is using the Pedersen-vanHeyst Fail-stop Signature Scheme, where
p = 3467, cr = 4, a0 = 1567 and p = 514 (of course, the value of aa is not known
to Bob).

(a) Using the fact that aa = 1567, determine all possible keys

K = (71r72,ai,a2,h,b2)

such that sig,(42) = (1118,1449).
(b) Suppose that sigK(42) = (1118,1449) and sig,(969) = (899,471). With-

out using the fact that ari = 1567, determine the value of IC (this shows that
the scheme is a one-time scheme).

6.13 Suppose Bob is using the Pedersen-van Heyst Fail-stop Signature Scheme with
p = 5087, LY = 25 and /3 = 1866. Suppose the key is

I< = (5065,5076,144,874,1873,2345).

Now, suppose Bob finds the signature (2219,458) has been forged on the message
4785.

(a) Prove that this forgery satisfies the verification condition, so it is a valid
signature.

(b) Show how Bob will compute the proof of forgery, aa, given this forged
signature.

	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	3 The Data Encryption Standard
	4 The RSA System and Factoring
	5 Other Public-key Cryptosystems
	Signature Schemes
	6.1 Introduction
	FIGURE 6.1
	FIGURE 6.2

	6.2 The ElGamal Signature Scheme
	6.3 The Digital Signature Standard
	FIGURE 6.3

	6.4 One-time Signatures
	FIGURE 6.4
	FIGURE 6.5
	FIGURE 6.6

	6.5 Undeniable Signatures
	FIGURE 6.7
	FIGURE 6.8

	6.6 Fail-stop Signatures
	FIGURE 6.9

	6.7 Notes and References
	Exercises

	7 Hash Functions
	8 Key Distribution and Key Agreement
	9 Identification Schemes
	10 Authentication Codes
	11 Secret Sharing Schemes
	12 Pseudo-random Number Generation
	13 Zero-knowledge Proofs
	Bibliography
	Index

	Next Chapter:
	Next:
	Home:
	Previous:
	Previous Chapter:

