
Other Public-key Cryptosystems 162................
5.1 The ElGamal Cryptosystem and 162..........

FIGURE 5.1 163...
FIGURE 5.2 163...
5.1.1 Algorithms for the Discrete Log 164..............

FIGURE 5.3 165..
FIGURE 5.4 169..
FIGURE 5.5 173..

5.1.2 Bit Security of Discrete Logs 173..................
FIGURE 5.6 175..
TABLE 5.1 176..
FIGURE 5.7 176..

5.2 Finite Field and Elliptic Curve 177...............
FIGURE 5.8 178...
FIGURE 5.9 179...
5.2.1 Galois Fields 180...
5.2.2 Elliptic Curves 184...

TABLE 5.2 186..
FIGURE 5.10 189..
FIGURE 5.11 191..

5.3 The Merkle-Hellman Knapsack 191............
FIGURE 5.12 192...
FIGURE 5.13 193...

5.4 The McEliece System 194...........................
FIGURE 5.14 197...

5.5 Notes and References 199..........................
TABLE 5.3 200...

Exercises 200..

Other Public-key Cryptosystems

In this chapter, we look at several other public-key cryptosystems. The ElGamal
Cryptosystem is based on the Discrete Logarithm problem, which we will have
occasion to use in numerous cryptographic protocols throughout the rest of the
text. Thus we devote a considerable amount of time to discussion of this important
problem. In later sections, we give relatively brief treatments of some other well-
known public-key cryptosystems. These include ElGamal-type systems based
on finite fields and elliptic curves, the (broken) Merkle-Hellman Knapsack
Cryptosystem and the McEliece Cryptosystem.

5.1 The ElGamal Cryptosystem and Discrete Logs

The ElGamal Cryptosystem is based on the Discrete Logarithm problem. We
begin by describing this problem in the setting of a finite field 5, where p is
prime, in Figure 5.1. (Recall that the multiplicative group Z,,’ is cyclic, and a
generator of ZP* is called a primitive element.)

The Discrete Logarithm problem in &, has been the object of much study. The
problem is generally regarded as being difficult if p is carefully chosen. In par-
ticular, there is no known polynomial-time algorithm for the Discrete Logarithm
problem. To thwart known attacks, p should have at least 150 digits, and p - 1
should have at at least one “large” prime factor. The utility of the Discrete Loga-
rithm problem in a cryptographic setting is that finding discrete logs is (probably)
difficult, but the inverse operation of exponentiation can be computed efficiently
by using the square-and-multiply method described earlier. Stated another way,
exponentiation modulo p is a one-way function for suitable primes p.

ElGamal has developed a public-key cryptosystem based on the Discrete Log-
arithm problem. This system is presented in Figure 5.2.

The ElGamal Cryptosystem is non-deterministic, since the ciphertext depends
on both the plaintext x and on the random value Ic chosen by Alice. So there will

I62

5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 163

FIGURE 5.1
The discrete logarithm problem in &

Problem Instance I = (p, (Y, /3), where p is prime, o E ZP is a
primitive element, and /3 E Z$ * .

Objective Find the unique integer a, 0 5 a 5 p - 2, such that

d E /3 (mod p).

We will denote this integer a by log, ,8.

FIGURE 5.2
ElGamal Public-key Cryptosystem in i&*

Let p be a prime such that the discrete log problem in Z$, is intractible,
and let (Y E iZP* be a primitive element. Let P = I&,*, C = ZP* x iI&,*,
and define

K={(p,cr,a,/3):/3~c~“(modp)}.

The values p, cr and ,f3 are public, and a is secret.

For I< = (p, o , a, /3), and for a (secret) random number k E Z$- 1, define

edx, k) = (YI, ~2)~

where

yt =ok modp

and

y2 = xpk mod p.

Foryt,y2 E Z$,*,define

MYI, ~2) = YZ(Y~“)-’ mod p.

164 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

be many ciphertexts that are encryptions of the same plaintext.
Informally, this is how the ElGamal Cryptosystem works. The plaintext z is

“masked” by multiplying it by pk, yielding ~2. The value ok is also transmitted
as part of the ciphertext. Bob, who knows the secret exponent a, can compute /3”
from ok. Then he can “remove the mask” by dividing y2 by pk to obtain x.

A small example will illustrate.

Example 5.1
Suppose p = 2519, a = 2, a = 165, and hence

p = 2765 mod 2579 = 949.

Now, suppose that Alice wishes to send the message x = 1299 to Bob. Say
Ic = 853 is the random integer she chooses. Then she computes

y1 = 2853 mod 2579

= 435

and

y2 = 1299 x 949853 mod 2579

= 2396.

When Bob receives the ciphertext y = (435,2396), he computes

x = 2396 x (435765)-’ mod 2579

= 1299,

which was plaintext that Alice encrypted. 0

5.1.1 Algorithms for the Discrete Log Problem

Throughout this section, we assume that p is prime and (Y is a primitive element
modulo p. We take p and (Y to be fixed. Hence the Discrete Logarithm problem
can be phrased in the following form: Given /3 E Z$*, find the unique exponent
a, 0 5 a 5 p - 2, such that CP - /3 (mod p),

Clearly, the Discrete Logarithm problem can be solved by exhasutive search
in O(p) time and 0(1) space (neglecting logarithmic factors). By precomputing
all possible values cr”, and sorting the ordered pairs (a, c?’ mod p) with respect to
their second coordinates, we can solve the discrete log problem in 0(1) time with
O(p) precomputation and O(p) memory (again, neglecting logarithmic factors).
The first non-trivial algorithm we describe is a time-memory trade-off due to
Shanks.

5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 165

FIGURE 5.3
Shanks’ algorithm for the discrete logarithm problem

1. ComputePj modp,O<j 5 m- 1

2. Sort the m ordered pairs (j, cr mj mod p) with respect to their second
coordinates, obtaining a list Li

3. Compute pa-” mod p, 0 5 i 5 m - 1

4. Sort the m ordered pairs (i, @TX-’ mod p) with respect to their second
coordinates, obtaining a list L2

5. Find a pair (j, y) E Li and a pair (i, y) E L2 (i.e., a pair having
identical second coordinates)

6. define log, ,f3 = mj + i mod (p - 1).

Shanks’ Algorithm

Denote m = [,/fll. Shanks’ algorithm is presented in Figure 5.3. Some
comments are in order. First, steps 1 and 2 can be precomputed, if desired (this will
not affect the asymptotic running time, however). Next, observe that if (j, y) E LI
and (i, y) E L2, then

pj = y = pa-i,

so

,mj+i - -A

as desired. Conversely, for any p, we can write

log, p = mj + i,

where 0 5 j, i 5 m - 1. Hence, the search in step 5 will be successful.
It is not difficult to implement the algorithm to run in O(m) time with O(m)

memory (neglecting logarithmic factors). Note that step 5 can be done with one
(simultaneous) pass through each of the two lists L1 and L2.

Here is a small example to illustrate.

Example 5.2
Suppose p = 809, and we wish to find log, 525. So we have o = 3, p = 525 and
m = [d@%l = 29. Then

a29 mod 809 = 99.

166 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

First, we compute the ordered pairs (j, 99 mod 809) for 0 5 j 5 28. We obtain
the list

P,l) (1,99) (2,93) (3,308) (4,559)
(5,329) (6,211) (7,664) (8,207) (9,268)

(10,644) (11,654) (12,26) (13,147) (14,800)
(15,727) (16,781) (17,464) (18,632) (19,275)
(20,528) (21,496) (22,564) (23,15) (24,676)
(25,586) (26,575) (27,295) (28,81)

which is then sorted to produce L1.
The second list contains the ordered pairs (i, 525 x (3’)-’ mod 809), 0 5 j 5

28. It is as follows:

(0,525) (1,175) (2,328) (3,379) (4,396)
(5,132) (6944) (7,554) (8,724) (9,511)

(10,440) (11,686) (12,768) (13,256) (14,355)
(15,388) (16,399) (17,133) (18,314) (19,644)
(20,754) (21,521) (22,713) (23,777) (24,259)
(25,356) (26,658) (27,489) (28,163)

After sorting this list, we get L2.
Now, if we proceed simultaneously through the two sorted lists, we find

(10,644) in L1 and (19,644) in L2. Hence, we can compute

log, 525 = 29 x 10 + 19

= 309.

As a check, it can be verified that indeed 3309 s 525 (mod 809). 0

The Pohlig-Hellman Algorithm

The next algorithm we study is the Pohlig-Hellman algorithm. Suppose

p - 1 = tipi’*,
i=l

where the pi’s are distinct primes. The value a = log, /3 is determined (uniquely)
modulo p - 1. We first observe that if we can compute a mod pien for each i,
1 5 i 5 k, then we can compute a mod (p- 1) by the Chinese remainder theorem.
So, let’s suppose that q is prime,

p-lzO(modq’)

5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 167

and

p- 1 $0 (mod q’+‘).

We will show how to compute the value

x = a mod qc,

where 0 5 x 5 qe - 1. We can express x in radix q representation as

c-1

x= c WI’,
i=O

where 0 5 ui 5 q - 1 for 0 5 i 5 c - 1. Also, observe that we can express a as

a=x+qCs

for some integer s.
The first step of the algorithm is to compute ua. The main observation is that

/$P-‘)/9 = a(P-l)ao/9 (mod p). -

To see this, note that

,&‘-l)/q = ~(P-l)(z+%‘c8)/fJ (mod p), -

so it suffices to show that

a(P-l)(r+Pc8)/‘? - a(P-l)aOlq (mod p).

This will be true if and only if

(P - ‘)tx + qcS) = (p - lb0 (mod p _ 1)
Q -q

However, we have

(P - 1)(x + PCS) _ (P - lb0
P Q

= $(x + qcs - c&o)

EO(modp- l),

168 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

which was what we wanted to prove.
Hence, we begin by computing @(P-*)/q mod p. If

p(p-‘)/q f 1 (mod p),

then a0 = 0. Otherwise, we successively compute

y = (Y(~-‘)‘~ mod p, y2 mod p, . . . ,

until

yi E $P-‘)/q (mod p)

for some i. When this happens, we have aa = i.
Now, if c = 1, we’re done. Otherwise c > 1, and we proceed to determine al.

To do this, we define

p, = pa-0

and denote

It is not hard to see that

x1 = log, pi mod qc.

c-1

2’ = c C-Lip’.
i=l

Hence, it follows that

p,(P-1)/9’ s a.(P-l)al/q (mod p)

So, we will compute /3i (p-‘)lqz mod p, and then find i such that

y’ s p,(p-l)/qz (mod p).

Then we have al = i.
If c = 2, we are now finished; otherwise, we repeat this process c - 2 more

times, obtaining ~2, . . . , a,-1.
A pseudo-code description of the Pohlig-Hellman algorithm is given in Figure

5.4. In this algorithm, (Y is a primitive element modulo p, q is prime,

p - 1 3 0 (mod q”)

and

p - 1 f 0 (mod qct’).

The algorithm calculates a~, . . . , a,-t, where

c-1

log, /I mod qc = c uiq’.
i=o

5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 169

FIGURE 5.4
Pohlig-Hellman algorithm to compute log, P mod qc

1.

2.

3.

4.

5.

6.

7.

8.

compute Ti = &‘-t)i/q mod p for 0 5 i 5 q - 1

setj=Oand&=/?

whilej 5 c - 1 do

compute S = /?~(p-‘)/qj+’ mod p

find i such that 6 = yi

C&j = i

,Bj+l = pjadajQj mod p

j=j+l

We illustrate the Pohlig-Hellman algorithm with a small example.

Example 5.3
Suppose p = 29; then

~p-1=28=2~7’.

Suppose Q = 2 and p = 18, so we want to determine a = log, 18. We proceed
by first computing a mod 4 and then computing a mod 7.

We start by setting q = 2 and c = 2. First,

70 = 1

y1 = a2’12 mod 29

= 214 mod 29

= 28.

Next,

6 = p2’f2 mod 29

= 1814 mod 29

- 28. -

170 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

Hence, ao = 1. Next, we compute

,f31 = &r-’ mod 29

= 9.

and

Since

PI 28f4 mod 29 = 97 mod 29

- 28. -

y1 G 28 mod 29,

we have al = 1. Hence, a s 3 (mod 4).
Next, we set q = 7andc= 1. Wehave

,f328/7 mod 29 = 1g4 mod 29

= 25

y1 = CY~‘/’ mod 29

= 24 mod 29

= 16.

Then we would compute

y2 = 24

Y3 = 7

-74 = 25.

Hence, a0 = 4 and a G 4 (mod 7).
Finally, solving the system

a 3 3 (mod 4)

a z 4 (mod 7)

using the Chinese remainder theorem, we get a 5 11 (mod 28). That is, we have
computed log, 18 in &s to be 11. 0

5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 171

The Index Calculus Method

The index calculus method for computing discrete logs bears considerable resem-
blence to many of the best factoring algorithms. We give a very brief overview in
this section. The method uses afactor base, which, as before, is a set B of “small”
primes. Suppose B = {pl,p2,. . . , pi}. The first step (a preprocessing step) is
to find the logarithms of the B primes in the factor base. The second step is to
compute a discrete log of a desired element p, using the knowledge of the discrete
logs of the elements in the factor base.

In the precomputation, we construct C = B + 10 congruences modulo p, as
follows:

Qj - plaGp2W . . .pBaBj (mod p),

1 5 j 5 C. Notice these congruences can be written equivalently as

“j rotjlOg,pt+... +aBjlog,pB (modp- l),

1 5 j 5 C. Given C congruences in the B “unknowns” log,pi (1 5 i 5 B), we
hope that there is a unique solution modulo p - 1. If this is the case, then we can
compute the logarithms of the elements in the factor base.

How do we generate congruences of the desired form? One elementary way
is to take a random value x, compute cr” mod p, and then determine if cP mod p
has all its factors in B (using trial division, for example).

Now, given that we have already successfully carried out the precomputation
step, we compute a desired logarithm log, p by means of a Las Vegas type
probabilistic algorithm. Choose a random integer s (1 5 s 5 p - 2) and compute

y = ,!?a’ mod p.

Now attempt to factory over the factor base B. If this can be done, then we obtain
a congruence of the form

/ICY* z plclp2cz.. .p~‘~ (mod p).

This can be written equivalently as

log,P+s=ctlog,pt+...+cBlog,pB(modp-1).

Since everything is now known except log, ,B, we can easily solve for log, p.
Here is a small, very artificial, example to illustrate the two steps in the algo-

rithm.

Example 5.4
Suppose p = 10007 and cr = 5 is the primitive element used as the base of
logarithms modulo p. Suppose we take B = {2,3,5,7} as the factor base. Of
course log, 5 = 1, so there are three logs of factor base elements to be determined.

172 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

Some examples of “lucky” exponents that might be chosen are 4063,5 136 and
9865.

With x = 4063, we compute

54M3 mod 10007 = 42 = 2 x 3 x 7.

This yields the congruence

log5 2 + log5 3 + log, 7 z 4063 (mod 10006).

Similarly, since

55’36 mod 10007 = 54 = 2 x 33

and

59865 mod 10007 = 189 = 33 x 7,

we obtain two more congruences:

log, 2 + 3 logs 3 z 5136 (mod 10006)

and

3 log, 3 + logs 7 E 9865 (mod 10006).

We now have three congruences in three unknowns, and there happens to be
a unique solution modulo 10006, namely logs 2 = 6578, log, 3 = 6190 and
log, 7 = 1301.

Now, let’s suppose that we wish to find log, 9451. Suppose we choose the
“random” exponent s = 7736, and compute

9451 x 57736 mod 10007 = 8400.

Since 8400 = 243’527’ factors over B, we obtain

log, 9451 = 4 logs 2 + log, 3 + 2 log, 5 + logs 7 - s mod 10006

= 4 x 6578 + 6190 + 2 x 1 + 1301- 7736 mod 10006

= 6057.

To verify, we can check that 56057 E 9451 (mod 10007). 0

Heuristic analyses of various versions of the algorithm have been done. Un-
der reasonable assumptions, the asymptotic running time of the precomputation
phase is 0

(
,(l+dl))dGJiG

>

>
, and the time to find an individual discrete log is

.

5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 173

FIGURE 5.5
ith bit of discrete logarithm

Problem Instance I = (p, (Y, p, i), where p is prime, cx E Zr,* is
a primitive element, /3 E ZP*, and i is an integer such that 1 < i 5

k-%*(P - 111.

Objective Compute &(/I), which (for the specified cr and p) denotes
the ith least significant bit of log, ,O.

5.1.2 Bit Security of Discrete Logs

We now look at the question of partial information about discrete logs. In partic-
ular, we consider whether individual bits of a discrete logarithm are easy or hard
to compute. To be precise, consider the problem presented in Figure 5.5, which
we call the ith Bit problem.

We will first show that computing the least significant bit of a discrete logarithm
is easy. In other words, if i = 1, the ith Bit problem can be solved efficiently. This
follows from Euler’s criterion concerning quadratic residues modulo p, where p
is prime.

Consider the mapping j : Z,,* -+ ZPp* defined by

j(x) = z* mod p.

Denote by QR(p) the set of quadratic residues modulo p; then

QR(p) = {x2 mod p : I E Z$,*}.

First, observe that j(z) = j(p - z). Next note that

w* E x2 (mod p)

if and only if

P I (w - X)(W + zh

which happens if and only if

w E ft (mod p).

It follows that

IP(= 2

for every y E QR(p), and hence

lQR(p)I = ‘$.

174 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

That is, exactly half the residues in $* are quadratic residues and half are not.
Now, suppose (Y is a primitive element of IT&,. Then oa E QR(p) if a is

even. Since the (p - 1)/2 elements o” mod p, Q* mod p, . . , cP3 mod p are all
distinct, it follows that

QR(p) = {CYST mod p : 0 5 i 5 (p - 3)/2}.

Hence, /? is a quadratic residue if and only if log, p is even, that is, if and only
if Lt(/?) = 0. But we already know, by Euler’s criterion, that p is a quadratic
residue if and only if

,&‘)/* E 1 (mod p).

So we have the following efficient formula to calculate Lt (p):

h(P) =
{

0 ifP(P-1)/2 = - 1 (mod P)
1 otherwise.

Let’s now consider the computation of Li (/3) for values of i exceeding 1.
Suppose

p - 1 = 29

where t is odd. Then it can be shown that it is easy to compute Li(@) if i 5 s.
On the other hand, computing LI+l(p) is (probably) difficult, in the sense that
any hypothetical algorithm (or oracle) to compute L,+, (/3) could be used to find
discrete logarithms in Zp.

We shall prove this result in the case s = 1. More precisely, if p - 3 (mod 4)
is prime, then we show how any oracle for computing L*(p) can be used to solve
the Discrete Log problem in Zp.

Recall that, if /? is a quadratic residue in iZp and p - 3 (mod 4), then
j--(P+l)/4 m o d pare the two square roots of @ modulop. It is also important that,
for any /3 # 0,

Ll(P) # -b(P- P)

if p = 3 (mod 4). We see this as follows. Suppose

a0 s p (mod p);

then

aQ+(P-11)/2 E -8 (mod p).

Since p z 3 (mod 4), the integer (p - 1)/2 is odd, and the result follows.
Now, suppose that @ = (Y” for some (unknown) even exponent a. Then either

p(p+W4 = &* - (mod P)

or

- ./3(P+1)/4 E a”12 (mod p).

5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 175

FIGURE 5.6
Computing discrete logs in & for p = 3 (mod 4), given an oracle for L&3)

1. 20 = h(P)
2. ,L? = ,O/axo mod p

3. i=l

4. while /3 # 1 do

5. xi = L*(P)

6. y = p(P+1)/4 mod p

7. if L,(y) = zi then

8. P=r
9. else

10. P=P-Y
11. p = ,f3/crxa mod p

12. i=i+1

We can determine which of these two possibilities is correct if we know the value
L*(p), since

L*(P) = &(a a/*).

This fact is exploited in our algorithm, which we present in Figure 5.6.
At the end of the algorithm, the Xi’s comprise the bits in the binary representation

of log, 0; that is,

log, 0 = C Xj2’.

We will work out a small example to illustrate the algorithm.

Example 5.5
Supposep = 19, o = 2 and p = 6. Since the example is so small, we can tabulate
the values of LI (y) and L*(y) for all y E Ztg*. (In general, LI can be computed
efficiently using Euler’s criterion and L2 is an oracle.) These values are given in
Table 5.1. The algorithm now proceeds as shown in Figure 5.7.

Hence, log, 6 = 11102 = 14, as can easily be verified. 0

176 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

TABLE 5.1
Values of LI and LZ for p = 19, a = 2

FIGURE 5.7
Computation of log, 6 in Z:lr

1. co = 0
2. ,B=6
3. i=l
5. XI = L*(6) = 1
6. y=5
7. Ll(5) =O#x1
10. p= 14
11. p=7
12. i=2
5. 22 = L*(7) = 1

6. y= 11
7. L,(ll)=O#x*
10. ,0=8
11. p=4
12. i=3
5. X3 = L*(4) = 1

6. y= 17
7. Ll(17) = 0 # x3
10. p=2
11. p=1
12. i=4
4. DONE

5.2. FINITE FIELD AND ELLIPTIC CURVE SYSTEMS 177

It is possible to give formal proof of the algorithm’s correctness using mathe-
matical induction. Denote

3: = log, p = C Xi2’.

For i 2 0, define

Also, define /?e to be the value of /3 in step 2 of the algorithm; and, for i 2 1,
define /3i to be the value of /? in step 11 during the ith iteration of the while loop.
It can be proved by induction that

pi E a**’ (mod p)

for all i 1 0. Now, with the observation that

2Yi = Yi-1 - xi,

it follows that

i 2 0. Since

Xi+1 = L*(b),

xi+1 = L*(P),

the algorithm is correct. The details are left to the reader.

5.2 Finite Field and Elliptic Curve Systems

We have spent a considerable amount of time looking at the Discrete Logarithm
problem and the factoring. We will see these two problems again and again,
underlying various types of cryptosystems and cryptographic protocols. So far,
we have considered the Discrete Logarithm problem in the finite field 5, but it
is also useful to consider the problem in other settings. This is the theme of this
section.

The ElGamal Cryptosystem can be implemented in any group where the
Discrete Log problem is intractible. We used the multiplicative group iZp*, but
other groups are also suitable candidates. First, we phrase the Discrete Logarithm
problem in a general (finite) group G, where we will denote the group operation
by o. This generalized version of the problem is presented in Figure 5.8.

It is easy to define an ElGamal Cryptosystem in the subgroup H in a similar
fashion as it was originally described in Z+,* . This is done in Figure 5.9. Note
that encryption requires the use of a random integer k such that 0 5 k 5 IH I - 1.
However, if Alice does not know the order of the subgroup H, she can generate

178 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

FIGURE 5.8
The discrete logarithm problem in (G, o)

Problem Instance I = (G,(Y,@), where G is a finite group with
group operation o, (Y E G and /3 E H, where H = {d : i > 0) is the
subgroup generated by (Y.

Objective Find the unique integer a such that 0 5 a 5 IHI - 1 and
CP = p, where the notation oa means

ao...ocY.
a times

We will denote this integer a by log, p.

an integer k such that 0 5 k < (G(- 1, and encryption and decryption will work
without any changes. Also note that the group G need not be an abelian group (of
course H is abelian since it is cyclic).

Let’s now turn to the “generalized” Discrete Log problem. The subgroup H
generated by any (Y E G is of course a cyclic group of order I HI. So any version of
the problem is equivalent, in some sense, to the Discrete Log problem in a cyclic
group. However, the difficulty of the Discrete Log problem seems to depend in
an essential way on the representation of the group that is used.

As an example to illustrate a representation where the problem is easy to
solve, consider the additive cyclic group Z,,, and suppose gcd(o, n) = 1, so
(Y is a generator of Zn. Since the group operation is addition modulo n, an
“exponentiation” operation, cP, corresponds to muliplication by a modulo n.
Hence, in this setting, the Discrete Log problem is to find the integer a such that

era E p (mod n).

Since gcd(o, n) = 1, Q has a multiplicative inverse modulo n, and we can
compute ff-’ mod n easily using the Euclidean algorithm. Then we can solve for
a, obtaining

log, ,0 = ,f3o-t mod n.

We previously discussed the Discrete Log problem in the multiplicative group
Zp *, where p is prime. This group is a cyclic group of order p - 1, and hence it is
isomorphic to the additive group Zr,- t . By the discussion above, we know how
to compute discrete logs efficiently in this additive group. This suggests that we
could solve the Discrete Log problem in ZP* by “reducing” the problem to the
the easily solved formulation in Z&t.

Let us think about how this could be done. The statement that (Zp*, x) is

5.2. FINITE FIELD AND ELLIPTIC CURVE SYSTEMS 179

FIGURE 5.9
Generalized ElGamal Public-key Cryptosystem

Let G be a finite group with group operation o, and let a E G be an
element such that the discrete log problem in H is intractible, where
H = {a’ : i 2 0) is the subgroup generated by LY. Let P = G.
C = G x G, and define

K={(G,a,a,~):~=d}.

The values Q and /3 are public, and a is secret.

For I< = (G, o , a, /3), and for a (secret) random number k E +I, define

eK(x, k) = (~1, ~21,

where

and

y1 = cYk

y* =x0/3”.

For a ciphertext y = (yt , yz), define

k(Y) = Y2 0 (Yl”)--‘.

isomorphic to (Zp- 1, +) means that there is a bijection

$5 : zp* + zp,_,

such that

~(XY mod P) = (464 + d4~)) mod (P - 1).

It follows easily that

so we have that

+(a’ mod p) = aqS(a) mod (p - l),

/3 E ct? (mod p) w qb(cr) 3 q%(p) (mod p - 1).

Hence, solving for a as described above, we have that

log,P = W&W)-’ mod (P - 1).

180 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

Consequently, if we have an efficient method of computing the isomorphism
4, then we would have an efficient algorithm to compute discrete logs in Z&,*.
The catch is that there is no known general method to efficiently compute the
isomorphism 4 for an arbitrary prime p. Even though we know the two groups
in question are isomorphic, we do not know an efficient algorithm to explicitly
describe the isomorphism.

This method can be applied to the Discrete Log problem in any group G. If
there is an efficient method of computing the isomorphism between H and Zl~l ,
then the discrete log problem in G described above can be solved efficiently.
Conversely, it is not hard to see that an efficient method of computing discrete
logs yields an efficient algorithm to compute the isomorphism between the two
groups.

This discussion has shown that the Discrete Log problem may be easy or
(apparently) difficult, depending on the representation of the (cyclic) group that
is used. So it may be useful to look at other groups in the hope of finding other
settings where the Discrete Log problem seems to be intractible.

Two such classes of groups are

I. the multiplicative group of the Galois field GF(p”)

2. the group of an elliptic curve defined over a finite field.

We will discuss these two classes of groups in the next subsections.

5.2.1 Galois Fields

We have already discussed the fact that ZP is a field if p is prime. However, there
are other examples of finite fields not of this form. In fact, there is a finite field
with q elements if q = p” where p is prime and n _> 1 is an integer. We will
now describe very briefly how to construct such a field. First, we need several
definitions.

DEFINITION 5.1 Suppose p is prime. Define Z$ [x] to be the set of allpolynomi-
als in the indeterminate x. By defining addition and multiplication ofpolynomials
in the usual way (and reducing coefficients modulo p), we construct a ring.

Forf(x),dx) E %P[x , we say that f(x) divides g(x) (notation: f(x)] g(x)) 1
ifthere exists q(x) E &,[x] such that

For f (x) E &[x], de$ne deg(f), the degree off, to be the highest exponent in
a term off.

Suppose f(x), g(x), h(x) E Z$,[x], and deg(f) = n 2 1. We define

g(x) E h(x) (mod f(x))

5.2. FINITE FIELD AND ELLIPTIC CURVE SYSTEMS 181

if

f(x) I (g(x) - h(x)).

Notice the resemblance of the definition of congruence of polynomials to that of
congruence of integers.

We are now going to define a ring of polynomials “modulo f(x)” which we
denote by Zr[x]/(f(x)). The construction of Z$,[x]/(f(x)) from Zr[x] is based
on the idea of congruences modulo f(z) and is analogous to the construction of
Z, from 2%.

Suppose deg(f) = n. If we divideg(x) by f(z), we obtain a (unique) quotient
q(x) and remainder r(x), where

g(x) = dx)f(x) + r(x)

deg(r) < 12.

This can be done by usual long division of polynomials. Hence any polynomial in
Z$, [x] is congruent modulo f(x) to a unique polynomial of degree at most n - 1.

Now we define the elements of &,[x]/(f(x)) to be thep” polynomials in Z$, [CC]
of degree at most n - 1. Addition and multiplication in ZP [x]/(f(z)) is defined as
in &,[x], followed by a reduction modulo f(x). Equipped with these operations,
%Ml(f(x)) is a ring.

Recall that T& is a field if and only if m is prime, and multiplicative in-
verses can be found using the Euclidean algorithm. A similar situation holds for

UMf (~)I* Th e analog of primality for polynomials is irreducibility, which
we define as follows:

DEFINITIONS.2 A polynomial f(x) E 7&,[x] is said to be irreducible if there
do not exist polynomials fi (x) , fi (x) E Z$ [x] such that

f(x) = fl (x)f2(3)1

where deg(fl) > 0 anddeg(f2) > 0.

A very important fact is that Zr[x]/(~(x)) is a field if and only if j(x) is
irreducible. Further, multiplicative inverses in Zr,[x]/(f(x)) can be computed
using a straightforward modification of the (extended) Euclidean algorithm.

Here is an example to illustrate the concepts described above.

182 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

Example 5.6

Let’s attempt to construct a field having eight elements. This can be done by
finding an irreducible polynomial of degree three in &[2]. It is sufficient to
consider the polynomials having constant term equal to 1, since any polynomial
with constant term 0 is divisible by x and hence is reducible. There are four such
polynomials:

fl(X) = x3 + 1

f2(2) = x3 +x + 1

f3(2) = x3 + x2 + 1

f4(2) = x3 + x2 + 2 + 1.

Now, ft (x) is reducible, since

(remember that all coefficients are to be reduced modulo 2). Also, f4 is reducible
since

x3 + x2 + 2 + 1 = (x + 1)(x2 + 1).

However, fi(x) and f3 (x) are both irreducible, and either one can be used to
construct a field having eight elements.

Let us use n(x), and thus construct the field &[z]/(x3 + x + 1). The eight
field elements are the eight polynomials 0, 1, x, x + 1, x2, x2 + 1, x2 + x and
x2+x+ 1.

To compute a product of two field elements, we multiple the two polynomials
together, and reduce modulo x3 + x + 1 (i.e., divide by x3 + z + 1 and find the
remainder polynomial). Since we are dividing by a polynomial of degree three,
the remainder will have degree at most two and hence is an element of the field.

For example, to compute (x2 + l)(z2 + x + 1) in Z2[x]/(z3 + x + 1), we first
compute the product in Zz[x], which is z4 + x3 + x + 1. Then we divide by
x3 + x + 1, obtaining the expression

x4 + x3 + x + 1 = (x + l)(z3 + X + 1) + x2 + 2.

Hence, in the field &[x]/(x3 + x + l), we have that

(x2 + 1)(x2 + x + 1) = x2 + 2.

5.2. FINITE FIELD AND ELLIPTIC CURVE SYSTEMS 183

Below, we present a complete multiplication table for the non-zero field elements.
To save space, we write a polynomial a2x2+ at x + aa as the ordered triple u2ut aa.

001
010
011
100
101
110
111

Computation of inverses can be done by using a straightforward adaptation of

001
001
010
011
100
101
110
111

010
010
loo
110
011
001
111
101

011
011
110
101
111
100
001
010

100
100
011
111
110
010
101
001

101 110 111
101 110 111
001 111 101
loo 001 010
010 101 001
111 011 110
011 010 100
110 loo 011

the extended Euclidean algorithm.
Finally, the multiplicative group of the non-zero polynomials in the field is a

cyclic group of order seven. Since 7 is prime, it follows that any non-zero field
element is a generator of this group, i.e., a primitive element of the field.

For example, if we compute the powers of x, we obtain

x1 = 2

x2 = x2

x3=2+1

x4 = x2 + x

x5=x2+x+1

x6 = x2 + 1

x7 = 1 ,

which comprise all the non-zero field elements. fl

It remains to discuss existence and uniqueness of fields of this type. It can be
shown that there is at least one irreducible polynomial of any given degree n 2 1
in Zr,[x]. Hence, there is a finite field with p” elements for all primes p and all
integers 12 2 1. There are usually many irreducible polynomials of degree n in
Zr, [xl. But the finite fields constructed from any two irreducible polynomials of
degree n can be shown to be isomorphic. Thus there is a unique finite field of any
size p” @ prime, n 2 l), which is denoted by GF(p”). In the case n = 1, the
resulting field GF(p) is the same thing as Zr. Finally, it can be shown that there
does not exist a finite field with r elements unless r = pn for some prime p and
some integer n 2 1.

We have already noted that the multiplicative group Zr,* @ prime) is a cyclic
group of order p - 1. In fact, the multiplicative group of any finite field is cyclic:

184 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

GF(p”)\{O} is a cyclic group of order p” - 1. This provides further examples of
cyclic groups in which the discrete log problem can be studied.

In practice, the finite fields GF(2n) have been most studied. Both the Shanks and
Pohlig-Hellman discrete logarithm algorithms work for fields GF(2”). The index
calculus method can be modified to work in these fields. The precomputation time
of the index calculus algorithm turns out to be 0

(
e(1.405+0(1))n”3@’ n)2’3

>
, and the

time to find an individual discrete log is 0
(
e (1.098+0(I))~a”~(ln n)*/j) . However,

for large values of n (say n > 800), the discrete log problem in GF(2n) is thought
to be intractible provided 2n has at least one “large” prime factor (in order to
thwart a Pohlig-Hellman attack).

5.2.2 Elliptic Curves

We begin by defining the concept of an elliptic curve.

DEFINITION 5.3 Let p > 3 be prime. The elliptic curve y2 = x3 + ax + b over
ZP is the set of solutions (x, y) E ZP x I&, to the congruence

y2=x3+ax+b(modp), (5.1)

where a, b E Z$, are constants such that 4a3 + 27b2 $ 0 (mod p), together with a
special point 0 called the point ai injinity. ’

An elliptic curve E can be made into an abelian group by defining a suitable
operation on its points. The operation is written additively, and is defined as
follows (where all arithmetic operations are performed in &,): Suppose

Q = (22, ~2)

are points on E. If 22 = x1 and y2 = -yl, then P + Q = 0; otherwise
P + Q = (23, y3), where

x3 = x2 -21-22

Y3 = X(x1 - x3) - Yl,

‘Equation 5.1 can be used to define an elliptic curve over any field GF(p”), for p > 3 prime. An
elliptic curve over GF(2”) or GF(3”) is defined by a slightly different equation.

5.2. FINITE FIELD AND ELLIPTIC CURVE SYSTEMS 185

and

Finally, define

I ?/z-Y1

I

x2 - 21’
ifP#Q

A=
3x12 + a

&/I ’
ifP=Q.

P+O=O+P=P

for all P E E. With this definition of addition, it can be shown that E is an
abelian group with identity element 0 (most of the verifications are tedious but
straightforward, but proving associativity is quite difficult).

Note that inverses are very easy to compute. The inverse of (x, y) (which
we write as -(x, y) since the group operation is additive) is (x, -y), for all
(2, Y) E E.

Let us look at a small example.

Example 5.7
Let E be the elliptic curve y2 = x3 + x + 6 over Zt 1. Let’s first determine the
points on E. This can be done by looking at each possible x E Zt I, computing
x3 + x + 6 mod 11, and then trying to solve Equation 5.1 for y. For a given x
we can test to see if z = x3 + x + 6 mod 11 is a quadratic residue by applying
Euler’s criterion. Recall that there is an explicit formula to compute square roots
of quadratic residues modulo p for primes p = 3 (mod 4). Applying this formula,
we have that the square roots of a quadratic residue z are

d”+‘)/4 mod 11 = fz3 mod 11.

The results of these computations are tabulated in Table 5.2.
Thus E has 13 points on it. Since any group of prime order is cyclic, it follows

that E is isomorphic to Zt3, and any point other than the point at infinity is a
generator of E. Suppose we take the generator (Y = (2,7). Then we can compute
the “powers” of (Y (which we will write as multiples of o, since the group operation
is additive). To compute 2o = (2,7) + (2,7), we first compute

X = (3 x 22 + 1)(2 x 7)-l mod 11

- 2 x 3-l mod 11 -

=2x4modll

= 8.

Then we have

x3 = 82 -2-2mod 11

=5

186 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

TABLE 5.2
Points on the elliptic curve y* = z3 + z + 6 over Zll

-
s

1
2
3
4
5
6
7
8
9

10 -

c’+x+6mod 11
6

and

y3=8(2-5)-7modll

= 2,

so 2cI = ($2).
The next multiple would be 3a = 2a + (Y = (5,2) + (2,7). Again, we begin

by computing A, which in this situation is done as follows:

X= (7-2)(2-5)-‘mod11

= 5 x 8-l mod 11

=5x7modll

= 2.

Then we have

~~=2~-5-2rnodll

=8

and

y3=2(5-8)-2modll

= 3,

so 3c~ = (8,3).

5.2. FINITE FIELD AND ELLIPTIC CURVE SYSTEMS 187

Continuing in this fashion, the remaining multiples can be computed to be the
following:

= (2,7)
4: = (10,2)

2cu = (5,2) 3a = (8,3)
5a = (3,6) 6a = (7,9)

7cr = (7,2) 8a = (3,5) 9a = (10,9)
1oa = (8,8) lla = ($9) 12a = (2,4)

Hence (Y = (2,7) is indeed a primitive element. fl

An elliptic curve E defined over Z&, (p prime, p > 3)) will have roughly p
points on it. More precisely, a well-known theorem due to Hasse asserts that the
number of points on E, which we denote by #E, satisfies the following inequality

Computing the exact value of #E is more difficult, but there is an efficient algorithm
to do this, due to &hoof. (By “efficient” we mean that it has a running time that
is polynomial in log p. Schoof’s algorithm has a running time of O((log p)*) bit
operations and is practical for primes p having several hundred digits.)

Now, given that we can compute #E, we further want to find a cyclic subgroup
of E in which the discrete log problem is intractible. So we would like to know
something about the structure of the group E. The following theorem gives a
considerable amount of information on the group structure of E.

THEOREM 5.1
Let E be an elliptic curve defined over I&,, where p is prime, p > 3. Then there
exist integers nl and n2 such that E is isomorphic to Z,,, x Z&. Furthel; n2 1 n1
andnz 1 (p - 1).

Hence, if the integers rrt and n2 can be computed, then we know that E has a
cyclic subgroup isomorphic to i&, that can potentially be used as a setting for an
ElGamal Cryptosystem.

Note that if n2 = 1, then E is a cyclic group. Also, if #E is a prime, or the
product of distinct primes, then E must be a cyclic groupindexcyclic group.

The Shanks and Pohlig-Hellman algorithms apply to the elliptic curve logarithm
problem, but there is no known adaptation of the index calculus method to elliptic
curves. However, there is a method of exploiting an explicit isomorphism between
elliptic curves and finite fields that leads to efficient algorithms for certain classes
of elliptic curves. This technique, due to Menezes, Okamoto and Vanstone, can
be applied to some particular examples within a special class of elliptic curves
called supersingular curves that were suggested for use in cryptosystems. If
the supersingular curves are avoided, however, then it appears that an elliptic
curve having a cyclic subgroup of size 2r60 will provide a secure setting for a

188 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

cryptosystem, provided that the order of the subgroup is divisible by at least one
large prime factor (again, to guard against a Pohlig-Hellman attack).

Let’s now look an example of ElGamal encryption using the elliptic curve of
Example 5.7.

Example 5.8
Suppose that (Y = (2,7) and Bob’s secret “exponent” is a = 7, so

p = 7a = (7,2).

Thus the encryption operaton is

eK(x,k) = (W,?,z+W,2)),

where x E E and 0 5 k 5 12, and the decryption operation is

~K(YI,Y~) = M- 7~1,

Suppose that Alice wishes to encrypt the message z = (10,9) (which is a point
on E). If she chooses the random value k = 3, then she will compute

y1 = 3(2,7)

= (873)

and

~2 = (lO,g) -I- 3(7,2)

= (10,9) + (3,5)

= (10,2).

Hence, y = ((8,3), (10,2)). N ow, if Bob receives the ciphertext y, he decrypts it
as follows:

x = (10,2) - 7(8,3)

= (10,2) - (3,5)

= (10,2) + (3,6)

= (10,9).

Hence, the decryption yields the correct plaintext. 0

There are some practical difficulties in implementing an ElGamal Cryptosys-
tern on an elliptic curve. This system, when implemented in Zr (or in GF(p”)
with n > 1) has a message expansion factor of two, An elliptic curve implemen-
tation has a message expansion factor of (about) four. This happens since there

5.2. FINITE FIELD AND ELLIPTIC CURVE SYSTEMS

FIGURE 5.10
Menezes-Vanstone Elliptic Curve Cryptosystem

Let E be an elliptic curve defined over iz, (p > 3 prime) such that
E contains a cyclic subgroup H in which the discrete log problem is
intractible.
Letp=~p’X~p*,C=Ex~‘xiZp*,anddefine

K={(E,a,a,p):P=aa},

where a E E. The values cr and p are public, and a is secret.

For Ii’ = (E, Q, Q, ,f3), for a (secret) random number k E z.1~1, and for
x = (x1, x2) E &,* x I?!$*, define

w(+, k) = (YO, YI, YZ),

where

YO = ka,

(CI, ~2) = W,

YI = ~1x1 modp,

312 = ~2x2 mod p.

and

For a ciphertext y = (~0, ye , yz), define

h(y) = (YICI-* modp, ~2~2~’ mod P),

where

UYO = (Cl, c2).

189

are approximately p plaintexts, but each ciphertext consists of four field elements.
A more serious problem is that the plaintext space consists of the points on the
curve E, and there is no convenient method known of deterministically generating
points on E.

A more efficient variation has been found by Menezes and Vanstone. In this
variation, the elliptic curve is used for “masking,” and plaintexts and ciphertexts
are allowed to be arbitrary ordered pairs of (nonzero) field elements (i.e., they are
not required to be points on E). This yields a message expansion factor of two,
the same as in the original ElGamal Cryptosystem. The Menezes-Vanstone
Cryptosystem is presented in Figure 5.10.

190 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

If we return to the curve y 2 = x3 + x + 6 over Zi 1, we see that the Menezes-
Vanstone Cryptosystem allows 10 x 10 = 100 plaintexts, as compared to 13 in
the original system. We illustrate encryption and decryption in this system using
this same curve.

Example 5.9
As in the previous example, suppose that (Y = (2,7) and Bob’s secret “exponent”
is a = 7, so

@=7a= (7,2).

Suppose Alice wants to encrypt the plaintext

x = (Xl, x2) = (9,l)

(note that x is not a point on E), and she chooses the random value k = 6. First,
she computes

and

y. = ka = 6(2,7) = (7,9)

so cl = 8 and c2 = 3.
Next, she calculates

k/3 = 6(7,2) = (8,3),

and

yZ=czxzmodp=3x lmodll=3.

The ciphertext she sends to Bob is

Y = (YO, YI, ~2) = ((7, 9),6,3).

When Bob receives the cipher-text y, he first computes

(cl, ~2) = aye = 7(7,9) = (8,3),

and then

x = (ylcl-’ mod p, y2c2-’ mod p)

= (6 x 8-l mod 11,3 x 3-l mod 11)

=(6x7mod11,3x4modll)

= (9,1).

Hence, the decryption yields the correct plaintext. 0

5.3. THE MERKLE-HELLMAN KNAPSACK SYSTEM 191

FIGURE 5.11
Subset sum problem

Problem Instance I = (q,. . . sn, T), where si,. . . s, and T are
positive integers. The si’s are called sites and T is called the target sum.

Question Is there a O-l vector x = (xi, . . . , x,) such that

2 xisi = T?
i=l

5.3 The Merkle-Hellman Knapsack System

The well-known Merkle-Hellman Knapsack Cryptosystem was first described
by Merkle and Hellman in 1978. Although this cryptosystem, and several variants
of it, were broken in the early 1980’s, it is still worth studying for its conceptual
elegance and for the underlying design technique.

The term “knapsack” is actually a misnomer2; the system is based on the Subset
Sum problem which is presented in Figure 5.11.

The Subset Sum problem, as phrased in Figure 5.11, is a decision problem
(i.e., we are required only to answer “yes” or “no”). If we rephrase the problem
slightly, so that in any instance where the answer is “yes” we are required to find
the desired vector x (which may not be unique), then we have a search problem.

The Subset Sum (decision) problem is one of the so-called NP-complete prob-
lems. Among other things, this means that there is no known polynomial-time
algorithm that solves it. This is also the case for the Subset Sum search problem.
But even if a problem has no polynomial-time algorithm to solve it in general,
this does not rule out the possibility that certain special cases can be solved in
polynomial time. This is indeed the situation with the Subset Sum problem.

We define a list of sizes, (q , . . . , s,,) to be superincreasing if

j-l

Sj > c Si
i=l

for 2 5 j 5 n. If the list of sizes is superincreasing, then the search version of the
Subset Sum problem can be solved very easily in time O(n), and a solution x (if
it exists) must be unique. The algorithm to do this is presented in Figure 5.12.

*The Knapsack problem, as it is usually defined, is a problem involving selecting objects with
given weights and profits in such a way that a specified capacity is not exceeded and a specified target
profit is attained.

192 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

FIGURE 5.12
Algorithm for solving a superincreasing instance of the subset sum problem

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

for i = n downto 1 do

if T 2 si then

T=T-si

Xj = 1

else

Xj = 0

if CT=“=, xisi = T then

x = (Xl,..., xc,) is the solution

else

there is no solution.

Supposes= (si,..., sn) is superincreasing, and consider the function

defined by the rule

es(xI,..., X:,) = 2 XiSi.

i=l

Is es a possible candidate for an encryption rule? Since s is superincreasing, es is
an injection, and the algorithm presented in Figure 5.12 would be the correspond-
ing decryption algorithm. However, such a system would be completely insecure
since anyone (including Oscar) can decrypt a message that is encrypted in this
way.

The strategy therefore is to transform the list of sizes in such a way that it is
no longer superincreasing. Bob will be able to apply an inverse transformation to
restore the superincreasing list of sizes. On the other hand Oscar, who does not
know the transformation that was applied, is faced with what looks like a general,
apparently difficult, instance of the subset sum problem when he tries to decrypt
a ciphertext.

One suitable type of transformation is a modular trunsfonnation. That is, a
prime modulus p is chosen such that

n

5.3. THE MERKLE-HELLMAN KNAPSACK SYSTEM

FIGURE 5.13
Merkle-Hellman Knapsack Cryptosystem

Lets = (~1,. . . , s,) be a superincreasing list of integers, let p > Cy= I si
beprime,andlet1~a<p-1.For1~i~n,define

tj = asi mod p,

and denote t = (t 1, . . . ,tn). Let P = (0, l}“, C = (0,. . ., n(p - l)},
and let

K: = {(S>P, a, t)l,

where s, p, a, and t are constructed as described above. t is public, and
p, a and s are secret.

For K = (s,p, a, t),define

n
eK(xl,...,x,) = c Xjtj.

i=l

For 0 5 y 5 n(p - l), define z = a- ’ y mod p and solve the subset
problem (q , . . . , s,, z), obtaining dK(y) = (xl,. . . , xcn).

as well as a multiplier a, where 1 5 a 5 p - 1. Then we define

ti = asj mod p,

193

1 < i 5 n. The list of sizes t = (tl, . . . , t,,) will be the public key used for
encryption. The values a, p used to define the modular transformation are secret.
The complete description of the Merkle-Hellman Knapsack Cryptosystem is
given in Figure 5.13.

The following small example illustrates the encryption and decryption opera-
tions in the Merkle-Hellman Cryptosystem.

Example 5.10
Suppose

s= (2,5,9,21,45,103,215,450,946)

is the secret superincreasing list of sizes. Suppose p = 2003 and a = 1289. Then
the public list of sizes is

t = (575,436,1586,1030,1921,569,721,1183,1570).

194 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

Now, if Alice wants to encrypt the plaintext x = (l,O, 1, l,O, 0, 1, 1, l), she
computes

y = 575 + 1586 + 1030+ 721+ 1183 + 1570 = 6665.

When Bob receives the ciphertext y, he first computes

z = a-‘y modp

= 3 17 x 6665 mod 2003

= 1643.

Then Bob solves the instance I = (s, z) of the Subset Sum problem using
the algorithm presented in Figure 5.12. The plaintext (1 , 0, 1 , 1, 0, 0, 1, I, 1) is
obtained. 0

By the early 1980’s, the Merkle-Hellman Knapsack Cryptosystem had been
broken by Shamir. Shamir was able to use an integer programming algorithm
of Lenstra to break the system. This allows Bob’s trapdoor (or an equivalent
trapdoor) to be discovered by Oscar, the cryptanalyst. Then Oscar can decrypt
messages exactly as Bob does.

5.4 The McEliece System

The McEliece Cryptosystem uses the same design principle as the Merkle-
Hellman Cryptosystem: decryption is an easy special case of an NP-complete
problem, disguised so that it looks like a general instance of the problem. In
this system, the NP-complete problem that is employed is decoding a general
linear (binary) error-correcting code. However, for many special classes of codes,
polynomial-time algorithms are known to exist. One such class of codes, the
Goppa codes, are used as the basis of the McEliece Cryptosystem.

We begin with some essential definitions.

DEFINITION 5.4 Let k, n be positive integers, k 5 n. An [n, k] code, C, is a
k-dimensional subspace of (&)“, the vector space of all binary n-tuples.

A generating matrix for an [n, k] code, C, is a k x n binary matrix whose rows
form a basis for C.

Let x,y E (ZZ)~, where x = (xl,. . .,x,,) and y = (~1,. . ., yn). Define the
Hamming distance

d(x, y) = I{i : 1 I i 5 n,xi # Yi}(,

i.e., the number of coordinates in which x and y differ,:

5.4. THE MCELIECE SYSTEM 195

Let C be an [n, k] code. Define the distance of C to be the quantity

d(C) = min{d(x, y) : x, y E C, x # y}.

An [n, k] code with distance d is denoted as an [n, k, dj code.

The purpose of an error-correcting code is to correct random errors that occur
in the transmission of (binary) data through a noisy channel. Briefly, this is done
as follows. Let G be a generating matrix for an [n, k, d] code. Suppose x is the
binary k-tuple we wish to transmit. Then Alice encodes x as the n-tuple y = xG,
and transmits y through the channel.

Now, suppose Bob receives the n-tuple r, which may not be the same as y. He
will decode r using the strategy of nearest neighbor decoding. In nearest neighbor
decoding, Bob finds the codeword y’ that has minimum distance to r. Then he
decodes r to y’, and, finally, determines the k-tuple x’ such that y’ = x’G. Bob
is hoping that y’ = y, so x’ = x (i.e., he is hoping that any transmission errors
have been corrected).

It is fairly easy to show that if at most (d - 1)/2 errors occurred during trans-
mission, then nearest neighbor decoding does in fact correct all the errors.

Let us think about how nearest neighbor decoding would be done in practice.
ICI = 2k, so if Bob compares r to every codeword, he will have to examine 2”
vectors, which is an exponentially large number compared to k. In other words,
this obvious algorithm is not a polynomial-time algorithm.

Another approach, which forms the basis for many practical decoding algo-
rithms, is based on the idea of a syndrome. A parity-check matrix for an [n, k, dj
code C having generating matrix G is an (n - k) x n 0 - 1 matrix, denoted by H,
whose rows form a basis for the orthogonal complement of C, which is denoted by
CL and called the dual code to C. Stated another way, the rows of H are linearly
independent vectors, and GHT is a k x (n - k) matrix of zeroes.

Given a vector r E (Z#‘, we define the syndrome of r to be HrT. A syndrome
is a column vector with n - k components.

The following basic results follow immediately from linear algebra.

THEOREM 5.2
Suppose C is an [n, k] code with generating matrix G and parity-check matrix H.
Then x E (&)” is a codeword if and only if

Furthel; ifx E C, e E (Z$‘, andr=x+e,thenHp=HeT.

196 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

Think of e_as being the vector of errors that occur during transmission of a
codeword x. Then r represents the vector that is received. The above theorem
is saying that the syndrome depends only on the errors, and not on the particular
codeword that was transmitted.

This suggests the following approach to decoding, known as syndrome decod-
ing: First, compute s = HrT. Ifs is a vector of zeroes, then decode r as r. If
not, then generate all possible error vectors or weight 1 in turn. For each such
e, compute He?. If, for any of these vectors e, it happens that He? = s, then
decode r to r - e Otherwise, continue on to generate all error vectors of weight
2 , \(d - 1)/2]. If at any time He? = s, then we decode r to r - oand quit.
If this equation is never satisfied, then we conclude that more than [(d - 1)/2]
errors have occurred during transmission.

By this approach, we can decode a received vector in at most

1+ (3 +..*+ (,+Y),l,)

steps.
This method will work on any linear code. For certain specific types of codes,

the decoding procedure can be speeded up. However, a decision version of nearest
neighbor decoding is in fact an NP-complete problem. Thus no polynomial-time
algorithm is known for the general problem of nearest neighbor decoding (when
the number of errors is not bounded by [(d - 1)/2]).

As was the case with the subset sum problem, we can identify an “easy” special
case, and then disguise it so that it looks like a “difficult” general case of the
problem. It would take us too long to go into the theory here, so we will just
summarize the results. The “easy” special case that was suggested by McEliece
is to use a code from a class of codes known as the Goppa codes. These codes
do in fact have efficient decoding algorithms. Also, they are easy to generate, and
there are a large number of inequivalent Goppa codes with the same parameters.

The parameters of the Goppa codes have the form n = 2m, d = 2t + 1 and
k = n - mt. For a practical implementation of the public-key cryptosystem,
McEliece suggested taking m = 10 and t = 50. This gives rose to a Goppa code
that is a [1024,524, 1011 code. Each plaintext is a binary 524-tuple, and each
ciphertext is a binary 1024-tuple. The public key is a 524 x 1024 binary matrix.

A description of the McEliece Cryptosystem is given in Figure 5.14.
We presently a ridiculously small example to illustrate the encoding and decod-

ing procedures.

5.4. THE MCELIECE SYSTEM

FIGURE 5.14
McEliece Cryptosystem

197

Rt G be a generating matrix for an [n, k, dj Goppa code C, where
a = 2m, d = 2t + 1 and k = n - mt. Let 5’ be a k x k matrix that
IS invertible over &, let P be an n x n permutation matrix, and let
5” = SGP. Let P = (Qk, C = (ZZ)~, and let

x: = {(G, S, P, G’)),

where G, S, P, and G’ are constructed as described above. G’ is public,
and G, S, and P are secret.

For IC = (G, S, P, G’), define

eK(x,e) = xG’ +e,

where DYE (ZZ)~ is a random vector of weight t.

Bob decrypts a ciphertext y E (ZZ)~ by means of the following opera-
tions:

1. Compute yt = yP-‘.
2. Decode yt, obtaining yt = xt + Ed, where xi E C.
3. Compute xe E (ZZ)~ such that xeG = xi.
4. Computex = x&Y’.

Example 5. I 1

The matrix

is a generating matrix for a [7,4,3] code, known as a Hamming code. Suppose
Bob chooses the matrices

/l 10 l\

“- I 1 0 0 1

3 -
0 1 1 1
1100 J

198 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

and

P=

‘0100000
0001000
0000001
1000000
0010000
0000010

,0000100

Then, the public generating matrix is

Now, suppose Alice encrypts the plaintext x = (1, 1, 0,l) using as the random
error vector of weight 1 the vector e = (0, 0, 0, 0, l,O, 0). The ciphertext is
computed to be

y=xG’+e

= (O,l, *,o,o, *,q+ (O,O,O,O, 1,070)

= (0,1,1,0,1,1,0).

When Bob receives the ciphertext y, he first computes

y1 = yp-’

0001000
1000000
0000100

= (0,1,1,0,1,1,0) 0100000
0000001
0000010
0010000

= (1,0,0,0,1,1,1).

Next, he decrypts yt to get x1 = (1, 0, 0, 0, 1, 1,O) (note that et # e due to the
multiplication by P-l).

Next, Bob forms ~0 = (1, 0, 0,O) (the first four components of xl).

5.5. NOTES AND REFERENCES 199

Finally, Bob calculates

x = s-1x0

1101

= :,: ;; (1,0,0,0)

(i 1001

= (1, l,O, 1).

This is indeed the plaintext that Alice encrypted. fl

5.5 Notes and References

The ElGamal Cryptosystem was presented in [E~85]. The Pohlig-Hellman
algorithm was published in [PH78], and the material concerning individual bits
of the Discrete Logarithm problem is based on Peralta [P~86]. For further
information on the Discrete Logarithm problem, we recommend the articles by
LaMacchia and Odlyzko [LO911 and McCurley [Mc~O].

The main reference book for finite fields is Lid1 and Niederreiter [LN83].
McEliece [Mc87] is a good textbook on the subject, and a recent research
monograph on applications of finite fields has been published by Menezes et al.
[MBGMVY93]. A recent article on the Discrete Logarithm problem in GF(2”)
is Gordon and McCurley [GM93].

The idea of using elliptic curves for public-key cryptosystems is due to Koblitz
[K087~] and Miller [Mt86]. Menezes [ME931 is a monograph on elliptic curve
cryptosystems. See also Menezes and Vanstone [MV93] and Chapter 6 of Koblitz
[K087]. For an elementary treatment of elliptic curves, see Silverman and Tate
[ST92]. The Menezes-Okamoto-Vanstone reduction of discrete logarithms from
elliptic curves to finite fields is given in [MOV94] (see also [ME93]).

The Merkle-Hellman Cryptosystem was presented in [MH78]. This system
was broken by Shamir [S~84], and the “iterated” version of the system was broken
by Brickell [B~85]. A different knapsack-type system, due to Chor and Rivest
[CR88], has not been broken. For more information, see the survey article by
Brickell and Odlyzko [B092].

The most important reference book for coding theory is MacWilliams and
Sloane [MS77]. There are many good textbooks on coding theory, e.g., Hoffman
et al. [HLLPRW91] and Vanstone and van Oorschot [VV89]. The McEliece
Cryptosystem was first described in [Mc78]. A recent article discussing the
security of this cryptosystem is by Chabaud [CH95].

200 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

TABLE 5.3
ElGamal Ciphertext

(3781,14409)
(5400,31486)
(31590,26470)
(16160,3129)
(3055524611)
(1616,14170)
(14130,22010)
(26004,25056)
(29538,5408)
(1777,8737)
(23258,3468)
(8836,25898)
(10422,5552)
(25115,10840)
(23418,22058)
(19886,22344)
(21563,789l)
(24271,848O)
(30499,14423)
(24875,17641)
(3576,463O)
(3149,740O)
(21541,19004)
(17561,11884)
(26521,5803)
(28327,19237)

(31552,393O)
(19936,721)
(3781,14409)
(301,17252)
(20501,2922)
(4294,2307)
(25910,19663)
(5400,31486)
(3149,740O)
(26117,14251)
(26052,20545)
(8794,17358)
(1777,8737)
(14130,220lO)
(24139,958O)
(21600,25505)
(28250,21321)
(26592,25457)
(5839,24179)
(1777,8737)
(26664,27572)
(8951,29435)
(5865,29526)
(2209,6107)
(14884,14280)
(15313,28649)

(27214,15442)
(27765,29284)
(15898,30844)
(24689,7776)
(13659,5015)
(2320,29174)
(19557,10145)
(9526,3019)
(9396,3058)
(7129,18195)
(21958,5713)
(1777,8737)
(3780,16360)
(16081,16414)
(173,17075)
(27119,19921)
(28327,19237)
(9660,7939)
(12846,6598)
(18825,19671)
(27011,29164)
(2059,3977)
(10536,694l)
(10422,5552)
(4328,8635)

(5809,30274)
(29820,771O)
(19048,12914)
(28856,15720)
(5740,31233)
(3036,20132)
(18899,27609)
(12962,15189)
(27149,20535)
(25302,10248)
(346,31194)
(25038,12483)
(11685,133)
(28580,20845)
(2016,18131)
(23312,16906)
(15313,28649)
(10267,20623)
(9284,27858)
(31306,11929)
(22763,8992)
(16258,30341)
(1777,8737)
(19371,21005)
(28250,21321)

Exercises

5.1 Implement Shanks’ algorithm for finding discrete logarithms in 5, wherep is prime
and a is a primitive element. Use your program to find log,, 12375 in i?,mr and
lo& 248388 in &WI.

5.2 Implement the Pohlig-Hellman algorithm for finding discrete logarithms in &,,
where p is prime and CY is a primitive element. Use your program to find log, 8563
in &703 and log,,, 12611 in &us.

5.3 Find log, 896 in iZr103 using the algorithm presented in Figure 5.6, given that
Lz(p) = 1 for ,B = 25, 219 and 841, and L&3) = 0 for p = 163, 532, 625
and 656.

5.4 Decrypt the ElGamal ciphertext presented in Table 5.3. The parameters of the
system are p = 3 1847, cv = 5, a = 7899 and p = 18074. Each element of &,
represents three alphabetic characters as in Exercise 4.6.

The plaintext was taken from ‘The English Patient,” by Michael Ondaatje, Alfred
A. Knopf, Inc., New York, 1992.

5.5 Determine which of the following polynomials are irreducible over &[z]: c5 +

Exercises 201

24+l,2s+2s+l,Is+24+22+l.
5.6 The field GF(2’) can be constructed as &[~]/(z’+ s? + 1). Perform the following

computations in this field.
(a) Compute (x” +x2) x (x’ + z + 1).
fb) Using the extended Euclidean algorithm, compute (z’ + 2*)-l.
(c) Using the square-and-multiply algorithm, compute 2”.

5.7 We give an example of the ElGamal Cryptosystem implemented in GF(33). The
polynomial x3 + 2x2 + 1 is irreducible over &[x] and hence &[2]/(x3 + 2x2 + 1) is
the field GF(33). We can associate the 26 letters of the alphabet with the 26 nonzero
field elements, and thus encrypt ordinary text in a convenient way. We will use a
lexicographic ordering of the (nonzero) polynomials to set up the correspondence.
This correspondence is as follows:

A +) 1 B t) 2 c # x
D +) x+1 E ++ x+2 F f) 2x
G e 2x+1 H t) 2x+2 I * x2
J * x2+1 IC H s2+2 L t) x*+x

M ti x*+x+1 N H x2+x+2 0 * x2 +2x
P f) x2+2x+1 Q H x2+2x+2 R f) 2x2
s i+ 2x2+ 1 T f) 2x2 + 2 u H 2x2 + 5
v t) 2x2+z+1 w f) 2x2+x+2 x 4-b 2x2+ 2x
Y f) 2x=+22+1 z H 2x=+22+2

Suppose Bob uses (Y = x and a = 11 in an ElGamal system; then /3 = x + 2. Show
how Bob will decrypt the following string of ciphertext:

(K,H) (P,X) (N,K) (H,R) (T,F) (V,Y) (E,Hl (F,A) (T,W) tJ,Dl tU,J)

5.8 Let E be the elliptic curve y* = x3 + x + 28 defined over i&r.
(a) Determine the number of points on E.
(b) Show that E is not a cyclic group.
(c) What is the maximum order of an element in E? Find an element having this

order.
5.9 Let E be the elliptic curve y* = x3 + x + 13 defined over &i. It can be shown

that #E = 34 and (9,lO) is an element of order 34 in E. The Menezes-Vanstone
Cryptosystem defined on E will have as its plaintext space &* x &*. Suppose
Bob’s secret exponent is a = 25.

(a) Compute /3 = ao.
(b) Decrypt the following string of ciphertext:

((4,9), 28,7), ((19,28), 9,13), ((5,22), 20,17), ((25716) 12727).

(c) Assuming that each plaintext represents two alphabetic characters, convert
the plaintext into an English word. (Here we will use the correspondence
A++1 , . . ., Z t) 26, since 0 is not allowed in a (plaintext) ordered pair.)

5.10 Suppose the Merkle-Hellman Cryptosystem has as its public list of sizes the vector

t = (1394,1256,1508,1987,439,650,724,339,2303,810).

Suppose Oscar discovers that p = 2503.
(a) By trial and error, determine the value a such that the list a-‘t mod p is a

permutation of a superincreasing list.
(b) Show how the ciphertext 5746 would be decrypted.

202 CHAPTER 5. OTHER PUBLIC-KEY CRYPTOSYSTEMS

5.11 It can be shown that the matrix H shown below is a parity-check matrix for a
[15,7,5] code called a BCH code.

i

100010011010111
010011010111100
001001101011110

H= 000100110101111
100011000110001~
000110001100011
001010010100101
011110111101111 1

Decode, if possible, each of the following received vectors r using the syndrome
decoding method.

(a) r= (l,l,O,O,O,O,O,O,O,O,O,O,O,O,O).
(b) r=(1,1,0,1,1,1,1,0,1,0,1,1,0,0,0).
(c) r=(1,0,1,0,1,0,0,1,0,1,1,0,0,0,0).

	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	3 The Data Encryption Standard
	4 The RSA System and Factoring
	Other Public-key Cryptosystems
	5.1 The ElGamal Cryptosystem and Discrete Logs
	FIGURE 5.1
	FIGURE 5.2
	5.1.1 Algorithms for the Discrete Log Problem
	FIGURE 5.3
	FIGURE 5.4
	FIGURE 5.5

	5.1.2 Bit Security of Discrete Logs
	FIGURE 5.6
	TABLE 5.1
	FIGURE 5.7

	5.2 Finite Field and Elliptic Curve Systems
	FIGURE 5.8
	FIGURE 5.9
	5.2.1 Galois Fields
	5.2.2 Elliptic Curves
	TABLE 5.2
	FIGURE 5.10
	FIGURE 5.11

	5.3 The Merkle-Hellman Knapsack System
	FIGURE 5.12
	FIGURE 5.13

	5.4 The McEliece System
	FIGURE 5.14

	5.5 Notes and References
	TABLE 5.3

	Exercises

	6 Signature Schemes
	7 Hash Functions
	8 Key Distribution and Key Agreement
	9 Identification Schemes
	10 Authentication Codes
	11 Secret Sharing Schemes
	12 Pseudo-random Number Generation
	13 Zero-knowledge Proofs
	Bibliography
	Index

	Next Chapter:
	Next:
	Home:
	Previous:
	Previous Chapter:

