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Other Public-key Cryptosystems 

In this chapter, we look at several other public-key cryptosystems. The ElGamal 
Cryptosystem is based on the Discrete Logarithm problem, which we will have 
occasion to use in numerous cryptographic protocols throughout the rest of the 
text. Thus we devote a considerable amount of time to discussion of this important 
problem. In later sections, we give relatively brief treatments of some other well- 
known public-key cryptosystems. These include ElGamal-type systems based 
on finite fields and elliptic curves, the (broken) Merkle-Hellman Knapsack 
Cryptosystem and the McEliece Cryptosystem. 

5.1 The ElGamal Cryptosystem and Discrete Logs 

The ElGamal Cryptosystem is based on the Discrete Logarithm problem. We 
begin by describing this problem in the setting of a finite field 5, where p is 
prime, in Figure 5.1. (Recall that the multiplicative group Z,,’ is cyclic, and a 
generator of ZP* is called a primitive element.) 

The Discrete Logarithm problem in &, has been the object of much study. The 
problem is generally regarded as being difficult if p is carefully chosen. In par- 
ticular, there is no known polynomial-time algorithm for the Discrete Logarithm 
problem. To thwart known attacks, p should have at least 150 digits, and p - 1 
should have at at least one “large” prime factor. The utility of the Discrete Loga- 
rithm problem in a cryptographic setting is that finding discrete logs is (probably) 
difficult, but the inverse operation of exponentiation can be computed efficiently 
by using the square-and-multiply method described earlier. Stated another way, 
exponentiation modulo p is a one-way function for suitable primes p. 

ElGamal has developed a public-key cryptosystem based on the Discrete Log- 
arithm problem. This system is presented in Figure 5.2. 

The ElGamal Cryptosystem is non-deterministic, since the ciphertext depends 
on both the plaintext x and on the random value Ic chosen by Alice. So there will 

I62 
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FIGURE 5.1 
The discrete logarithm problem in & 

Problem Instance I = (p, (Y, /3), where p is prime, o E ZP is a 
primitive element, and /3 E Z$ * . 

Objective Find the unique integer a, 0 5 a 5 p - 2, such that 

d E /3 (mod p). 

We will denote this integer a by log, ,8. 

FIGURE 5.2 
ElGamal Public-key Cryptosystem in i&* 

Let p be a prime such that the discrete log problem in Z$, is intractible, 
and let (Y E iZP* be a primitive element. Let P = I&,*, C = ZP* x iI&,*, 
and define 

K={(p,cr,a,/3):/3~c~“(modp)}. 

The values p, cr and ,f3 are public, and a is secret. 

For I< = (p, o , a, /3), and for a (secret) random number k E Z$- 1, define 

edx, k) = (YI, ~2)~ 

where 

yt =ok modp 

and 

y2 = xpk mod p. 

Foryt,y2 E Z$,*,define 

MYI, ~2) = YZ(Y~“)-’ mod p. 
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be many ciphertexts that are encryptions of the same plaintext. 
Informally, this is how the ElGamal Cryptosystem works. The plaintext z is 

“masked” by multiplying it by pk, yielding ~2. The value ok is also transmitted 
as part of the ciphertext. Bob, who knows the secret exponent a, can compute /3” 
from ok. Then he can “remove the mask” by dividing y2 by pk to obtain x. 

A small example will illustrate. 

Example 5.1 
Suppose p = 2519, a = 2, a = 165, and hence 

p = 2765 mod 2579 = 949. 

Now, suppose that Alice wishes to send the message x = 1299 to Bob. Say 
Ic = 853 is the random integer she chooses. Then she computes 

y1 = 2853 mod 2579 

= 435 

and 

y2 = 1299 x 949853 mod 2579 

= 2396. 

When Bob receives the ciphertext y = (435,2396), he computes 

x = 2396 x (435765)-’ mod 2579 

= 1299, 

which was plaintext that Alice encrypted. 0 

5.1.1 Algorithms for the Discrete Log Problem 

Throughout this section, we assume that p is prime and (Y is a primitive element 
modulo p. We take p and (Y to be fixed. Hence the Discrete Logarithm problem 
can be phrased in the following form: Given /3 E Z$*, find the unique exponent 
a, 0 5 a 5 p - 2, such that CP - /3 (mod p), 

Clearly, the Discrete Logarithm problem can be solved by exhasutive search 
in O(p) time and 0( 1) space (neglecting logarithmic factors). By precomputing 
all possible values cr”, and sorting the ordered pairs (a, c?’ mod p) with respect to 
their second coordinates, we can solve the discrete log problem in 0( 1) time with 
O(p) precomputation and O(p) memory (again, neglecting logarithmic factors). 
The first non-trivial algorithm we describe is a time-memory trade-off due to 
Shanks. 



5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 165 

FIGURE 5.3 
Shanks’ algorithm for the discrete logarithm problem 

1. ComputePj modp,O<j 5 m- 1 

2. Sort the m ordered pairs (j, cr mj mod p) with respect to their second 
coordinates, obtaining a list Li 

3. Compute pa-” mod p, 0 5 i 5 m - 1 

4. Sort the m ordered pairs (i, @TX-’ mod p) with respect to their second 
coordinates, obtaining a list L2 

5. Find a pair (j, y) E Li and a pair (i, y) E L2 (i.e., a pair having 
identical second coordinates) 

6. define log, ,f3 = mj + i mod (p - 1). 

Shanks’ Algorithm 

Denote m = [,/fll. Shanks’ algorithm is presented in Figure 5.3. Some 
comments are in order. First, steps 1 and 2 can be precomputed, if desired (this will 
not affect the asymptotic running time, however). Next, observe that if (j, y) E LI 
and (i, y) E L2, then 

pj = y = pa-i, 

so 

,mj+i - -A 

as desired. Conversely, for any p, we can write 

log, p = mj + i, 

where 0 5 j, i 5 m - 1. Hence, the search in step 5 will be successful. 
It is not difficult to implement the algorithm to run in O(m) time with O(m) 

memory (neglecting logarithmic factors). Note that step 5 can be done with one 
(simultaneous) pass through each of the two lists L1 and L2. 

Here is a small example to illustrate. 

Example 5.2 
Suppose p = 809, and we wish to find log, 525. So we have o = 3, p = 525 and 
m = [d@%l = 29. Then 

a29 mod 809 = 99. 
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First, we compute the ordered pairs (j, 99 mod 809) for 0 5 j 5 28. We obtain 
the list 

P,l) (1,99) (2,93) (3,308) (4,559) 
(5,329) (6,211) (7,664) (8,207) (9,268) 

(10,644) (11,654) (12,26) (13,147) (14,800) 
(15,727) (16,781) (17,464) (18,632) (19,275) 
(20,528) (21,496) (22,564) (23,15) (24,676) 
(25,586) (26,575) (27,295) (28,81) 

which is then sorted to produce L1. 
The second list contains the ordered pairs (i, 525 x (3’)-’ mod 809), 0 5 j 5 

28. It is as follows: 

(0,525) (1,175) (2,328) (3,379) (4,396) 
(5,132) (6944) (7,554) (8,724) (9,511) 

(10,440) (11,686) (12,768) (13,256) (14,355) 
(15,388) (16,399) (17,133) (18,314) (19,644) 
(20,754) (21,521) (22,713) (23,777) (24,259) 
(25,356) (26,658) (27,489) (28,163) 

After sorting this list, we get L2. 
Now, if we proceed simultaneously through the two sorted lists, we find 

(10,644) in L1 and (19,644) in L2. Hence, we can compute 

log, 525 = 29 x 10 + 19 

= 309. 

As a check, it can be verified that indeed 3309 s 525 (mod 809). 0 

The Pohlig-Hellman Algorithm 

The next algorithm we study is the Pohlig-Hellman algorithm. Suppose 

p - 1 = tipi’*, 
i=l 

where the pi’s are distinct primes. The value a = log, /3 is determined (uniquely) 
modulo p - 1. We first observe that if we can compute a mod pien for each i, 
1 5 i 5 k, then we can compute a mod (p- 1) by the Chinese remainder theorem. 
So, let’s suppose that q is prime, 

p-lzO(modq’) 
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and 

p- 1 $0 (mod q’+‘). 

We will show how to compute the value 

x = a mod qc, 

where 0 5 x 5 qe - 1. We can express x in radix q representation as 

c-1 

x= c WI’, 
i=O 

where 0 5 ui 5 q - 1 for 0 5 i 5 c - 1. Also, observe that we can express a as 

a=x+qCs 

for some integer s. 
The first step of the algorithm is to compute ua. The main observation is that 

/$P-‘)/9 = a(P-l)ao/9 (mod p). - 

To see this, note that 

,&‘-l)/q = ~(P-l)(z+%‘c8)/fJ (mod p), - 

so it suffices to show that 

a(P-l)(r+Pc8)/‘? - a(P-l)aOlq (mod p). 

This will be true if and only if 

(P - ‘)tx + qcS) = (p - lb0 (mod p _ 1) 
Q -q 

However, we have 

(P - 1)(x + PCS) _ (P - lb0 
P Q 

= $(x + qcs - c&o) 

EO(modp- l), 
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which was what we wanted to prove. 
Hence, we begin by computing @(P-*)/q mod p. If 

p(p-‘)/q f 1 (mod p), 

then a0 = 0. Otherwise, we successively compute 

y = (Y(~-‘)‘~ mod p, y2 mod p, . . . , 

until 

yi E $P-‘)/q (mod p) 

for some i. When this happens, we have aa = i. 
Now, if c = 1, we’re done. Otherwise c > 1, and we proceed to determine al. 

To do this, we define 

p, = pa-0 

and denote 

It is not hard to see that 

x1 = log, pi mod qc. 

c-1 

2’ = c C-Lip’. 
i=l 

Hence, it follows that 

p,(P-1)/9’ s a.(P-l)al/q (mod p) 

So, we will compute /3i (p-‘)lqz mod p, and then find i such that 

y’ s p,(p-l)/qz (mod p). 

Then we have al = i. 
If c = 2, we are now finished; otherwise, we repeat this process c - 2 more 

times, obtaining ~2, . . . , a,-1. 
A pseudo-code description of the Pohlig-Hellman algorithm is given in Figure 

5.4. In this algorithm, (Y is a primitive element modulo p, q is prime, 

p - 1 3 0 (mod q”) 

and 

p - 1 f 0 (mod qct’). 

The algorithm calculates a~, . . . , a,-t, where 

c-1 

log, /I mod qc = c uiq’. 
i=o 



5.1. THE ELGAMAL CRYPTOSYSTEM AND DISCRETE LOGS 169 

FIGURE 5.4 
Pohlig-Hellman algorithm to compute log, P mod qc 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

compute Ti = &‘-t)i/q mod p for 0 5 i 5 q - 1 

setj=Oand&=/? 

whilej 5 c - 1 do 

compute S = /?~(p-‘)/qj+’ mod p 

find i such that 6 = yi 

C&j = i 

,Bj+l = pjadajQj mod p 

j=j+l 

We illustrate the Pohlig-Hellman algorithm with a small example. 

Example 5.3 
Suppose p = 29; then 

~p-1=28=2~7’. 

Suppose Q = 2 and p = 18, so we want to determine a = log, 18. We proceed 
by first computing a mod 4 and then computing a mod 7. 

We start by setting q = 2 and c = 2. First, 

70 = 1 

y1 = a2’12 mod 29 

= 214 mod 29 

= 28. 

Next, 

6 = p2’f2 mod 29 

= 1814 mod 29 

- 28. - 
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Hence, ao = 1. Next, we compute 

,f31 = &r-’ mod 29 

= 9. 

and 

Since 

PI 28f4 mod 29 = 97 mod 29 

- 28. - 

y1 G 28 mod 29, 

we have al = 1. Hence, a s 3 (mod 4). 
Next, we set q = 7andc= 1. Wehave 

,f328/7 mod 29 = 1g4 mod 29 

= 25 

y1 = CY~‘/’ mod 29 

= 24 mod 29 

= 16. 

Then we would compute 

y2 = 24 

Y3 = 7 

-74 = 25. 

Hence, a0 = 4 and a G 4 (mod 7). 
Finally, solving the system 

a 3 3 (mod 4) 

a z 4 (mod 7) 

using the Chinese remainder theorem, we get a 5 11 (mod 28). That is, we have 
computed log, 18 in &s to be 11. 0 
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The Index Calculus Method 

The index calculus method for computing discrete logs bears considerable resem- 
blence to many of the best factoring algorithms. We give a very brief overview in 
this section. The method uses afactor base, which, as before, is a set B of “small” 
primes. Suppose B = {pl,p2,. . . , pi}. The first step (a preprocessing step) is 
to find the logarithms of the B primes in the factor base. The second step is to 
compute a discrete log of a desired element p, using the knowledge of the discrete 
logs of the elements in the factor base. 

In the precomputation, we construct C = B + 10 congruences modulo p, as 
follows: 

Qj - plaGp2W . . .pBaBj (mod p), 

1 5 j 5 C. Notice these congruences can be written equivalently as 

“j rotjlOg,pt+... +aBjlog,pB (modp- l), 

1 5 j 5 C. Given C congruences in the B “unknowns” log,pi (1 5 i 5 B), we 
hope that there is a unique solution modulo p - 1. If this is the case, then we can 
compute the logarithms of the elements in the factor base. 

How do we generate congruences of the desired form? One elementary way 
is to take a random value x, compute cr” mod p, and then determine if cP mod p 
has all its factors in B (using trial division, for example). 

Now, given that we have already successfully carried out the precomputation 
step, we compute a desired logarithm log, p by means of a Las Vegas type 
probabilistic algorithm. Choose a random integer s (1 5 s 5 p - 2) and compute 

y = ,!?a’ mod p. 

Now attempt to factory over the factor base B. If this can be done, then we obtain 
a congruence of the form 

/ICY* z plclp2cz.. .p~‘~ (mod p). 

This can be written equivalently as 

log,P+s=ctlog,pt+...+cBlog,pB(modp-1). 

Since everything is now known except log, ,B, we can easily solve for log, p. 
Here is a small, very artificial, example to illustrate the two steps in the algo- 

rithm. 

Example 5.4 
Suppose p = 10007 and cr = 5 is the primitive element used as the base of 
logarithms modulo p. Suppose we take B = {2,3,5,7} as the factor base. Of 
course log, 5 = 1, so there are three logs of factor base elements to be determined. 
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Some examples of “lucky” exponents that might be chosen are 4063,5 136 and 
9865. 

With x = 4063, we compute 

54M3 mod 10007 = 42 = 2 x 3 x 7. 

This yields the congruence 

log5 2 + log5 3 + log, 7 z 4063 (mod 10006). 

Similarly, since 

55’36 mod 10007 = 54 = 2 x 33 

and 

59865 mod 10007 = 189 = 33 x 7, 

we obtain two more congruences: 

log, 2 + 3 logs 3 z 5136 (mod 10006) 

and 

3 log, 3 + logs 7 E 9865 (mod 10006). 

We now have three congruences in three unknowns, and there happens to be 
a unique solution modulo 10006, namely logs 2 = 6578, log, 3 = 6190 and 
log, 7 = 1301. 

Now, let’s suppose that we wish to find log, 9451. Suppose we choose the 
“random” exponent s = 7736, and compute 

9451 x 57736 mod 10007 = 8400. 

Since 8400 = 243’527’ factors over B, we obtain 

log, 9451 = 4 logs 2 + log, 3 + 2 log, 5 + logs 7 - s mod 10006 

= 4 x 6578 + 6190 + 2 x 1 + 1301- 7736 mod 10006 

= 6057. 

To verify, we can check that 56057 E 9451 (mod 10007). 0 

Heuristic analyses of various versions of the algorithm have been done. Un- 
der reasonable assumptions, the asymptotic running time of the precomputation 
phase is 0 

( 
,(l+dl))dGJiG 

> 

> 
, and the time to find an individual discrete log is 

. 
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FIGURE 5.5 
ith bit of discrete logarithm 

Problem Instance I = (p, (Y, p, i), where p is prime, cx E Zr,* is 
a primitive element, /3 E ZP*, and i is an integer such that 1 < i 5 

k-%*(P - 111. 

Objective Compute &(/I), which (for the specified cr and p) denotes 
the ith least significant bit of log, ,O. 

5.1.2 Bit Security of Discrete Logs 

We now look at the question of partial information about discrete logs. In partic- 
ular, we consider whether individual bits of a discrete logarithm are easy or hard 
to compute. To be precise, consider the problem presented in Figure 5.5, which 
we call the ith Bit problem. 

We will first show that computing the least significant bit of a discrete logarithm 
is easy. In other words, if i = 1, the ith Bit problem can be solved efficiently. This 
follows from Euler’s criterion concerning quadratic residues modulo p, where p 
is prime. 

Consider the mapping j : Z,,* -+ ZPp* defined by 

j(x) = z* mod p. 

Denote by QR(p) the set of quadratic residues modulo p; then 

QR(p) = {x2 mod p : I E Z$,*}. 

First, observe that j(z) = j(p - z). Next note that 

w* E x2 (mod p) 

if and only if 

P I (w - X)(W + zh 

which happens if and only if 

w E ft (mod p). 

It follows that 

IP( = 2 

for every y E QR(p), and hence 

lQR(p)I = ‘$. 
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That is, exactly half the residues in $* are quadratic residues and half are not. 
Now, suppose (Y is a primitive element of IT&,. Then oa E QR(p) if a is 

even. Since the (p - 1)/2 elements o” mod p, Q* mod p, . . , cP3 mod p are all 
distinct, it follows that 

QR(p) = {CYST mod p : 0 5 i 5 (p - 3)/2}. 

Hence, /? is a quadratic residue if and only if log, p is even, that is, if and only 
if Lt(/?) = 0. But we already know, by Euler’s criterion, that p is a quadratic 
residue if and only if 

,&‘)/* E 1 (mod p). 

So we have the following efficient formula to calculate Lt (p): 

h(P) = 
{ 

0 ifP(P-1)/2 = - 1 (mod P) 
1 otherwise. 

Let’s now consider the computation of Li (/3) for values of i exceeding 1. 
Suppose 

p - 1 = 29 

where t is odd. Then it can be shown that it is easy to compute Li(@) if i 5 s. 
On the other hand, computing LI+l(p) is (probably) difficult, in the sense that 
any hypothetical algorithm (or oracle) to compute L,+, (/3) could be used to find 
discrete logarithms in Zp. 

We shall prove this result in the case s = 1. More precisely, if p - 3 (mod 4) 
is prime, then we show how any oracle for computing L*(p) can be used to solve 
the Discrete Log problem in Zp. 

Recall that, if /? is a quadratic residue in iZp and p - 3 (mod 4), then 
j--(P+l)/4 m o d pare the two square roots of @ modulop. It is also important that, 
for any /3 # 0, 

Ll(P) # -b(P- P) 

if p = 3 (mod 4). We see this as follows. Suppose 

a0 s p (mod p); 

then 

aQ+(P-11)/2 E -8 (mod p). 

Since p z 3 (mod 4), the integer (p - 1)/2 is odd, and the result follows. 
Now, suppose that @ = (Y” for some (unknown) even exponent a. Then either 

p(p+W4 = &* - (mod P) 

or 

- ./3(P+1)/4 E a”12 (mod p). 
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FIGURE 5.6 
Computing discrete logs in & for p = 3 (mod 4), given an oracle for L&3) 

1. 20 = h(P) 
2. ,L? = ,O/axo mod p 

3. i=l 

4. while /3 # 1 do 

5. xi = L*(P) 

6. y = p(P+1)/4 mod p 

7. if L,(y) = zi then 

8. P=r 
9. else 

10. P=P-Y 
11. p = ,f3/crxa mod p 

12. i=i+1 

We can determine which of these two possibilities is correct if we know the value 
L*(p), since 

L*(P) = &(a a/* ). 

This fact is exploited in our algorithm, which we present in Figure 5.6. 
At the end of the algorithm, the Xi’s comprise the bits in the binary representation 

of log, 0; that is, 

log, 0 = C Xj2’. 

We will work out a small example to illustrate the algorithm. 

Example 5.5 
Supposep = 19, o = 2 and p = 6. Since the example is so small, we can tabulate 
the values of LI (y) and L*(y) for all y E Ztg*. (In general, LI can be computed 
efficiently using Euler’s criterion and L2 is an oracle.) These values are given in 
Table 5.1. The algorithm now proceeds as shown in Figure 5.7. 

Hence, log, 6 = 11102 = 14, as can easily be verified. 0 
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TABLE 5.1 
Values of LI and LZ for p = 19, a = 2 

FIGURE 5.7 
Computation of log, 6 in Z:lr 

1. co = 0 
2. ,B=6 
3. i=l 
5. XI = L*(6) = 1 
6. y=5 
7. Ll(5) =O#x1 
10. p= 14 
11. p=7 
12. i=2 
5. 22 = L*(7) = 1 

6. y= 11 
7. L,(ll)=O#x* 
10. ,0=8 
11. p=4 
12. i=3 
5. X3 = L*(4) = 1 

6. y= 17 
7. Ll(17) = 0 # x3 
10. p=2 
11. p=1 
12. i=4 
4. DONE 
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It is possible to give formal proof of the algorithm’s correctness using mathe- 
matical induction. Denote 

3: = log, p = C Xi2’. 

For i 2 0, define 

Also, define /?e to be the value of /3 in step 2 of the algorithm; and, for i 2 1, 
define /3i to be the value of /? in step 11 during the ith iteration of the while loop. 
It can be proved by induction that 

pi E a**’ (mod p) 

for all i 1 0. Now, with the observation that 

2Yi = Yi-1 - xi, 

it follows that 

i 2 0. Since 

Xi+1 = L*(b), 

xi+1 = L*(P), 

the algorithm is correct. The details are left to the reader. 

5.2 Finite Field and Elliptic Curve Systems 

We have spent a considerable amount of time looking at the Discrete Logarithm 
problem and the factoring. We will see these two problems again and again, 
underlying various types of cryptosystems and cryptographic protocols. So far, 
we have considered the Discrete Logarithm problem in the finite field 5, but it 
is also useful to consider the problem in other settings. This is the theme of this 
section. 

The ElGamal Cryptosystem can be implemented in any group where the 
Discrete Log problem is intractible. We used the multiplicative group iZp*, but 
other groups are also suitable candidates. First, we phrase the Discrete Logarithm 
problem in a general (finite) group G, where we will denote the group operation 
by o. This generalized version of the problem is presented in Figure 5.8. 

It is easy to define an ElGamal Cryptosystem in the subgroup H in a similar 
fashion as it was originally described in Z+,* . This is done in Figure 5.9. Note 
that encryption requires the use of a random integer k such that 0 5 k 5 IH I - 1. 
However, if Alice does not know the order of the subgroup H, she can generate 
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FIGURE 5.8 
The discrete logarithm problem in (G, o) 

Problem Instance I = (G,(Y,@), where G is a finite group with 
group operation o, (Y E G and /3 E H, where H = {d : i > 0) is the 
subgroup generated by (Y. 

Objective Find the unique integer a such that 0 5 a 5 IHI - 1 and 
CP = p, where the notation oa means 

ao...ocY. 
a times 

We will denote this integer a by log, p. 

an integer k such that 0 5 k < (G( - 1, and encryption and decryption will work 
without any changes. Also note that the group G need not be an abelian group (of 
course H is abelian since it is cyclic). 

Let’s now turn to the “generalized” Discrete Log problem. The subgroup H 
generated by any (Y E G is of course a cyclic group of order I HI. So any version of 
the problem is equivalent, in some sense, to the Discrete Log problem in a cyclic 
group. However, the difficulty of the Discrete Log problem seems to depend in 
an essential way on the representation of the group that is used. 

As an example to illustrate a representation where the problem is easy to 
solve, consider the additive cyclic group Z,,, and suppose gcd(o, n) = 1, so 
(Y is a generator of Zn. Since the group operation is addition modulo n, an 
“exponentiation” operation, cP, corresponds to muliplication by a modulo n. 
Hence, in this setting, the Discrete Log problem is to find the integer a such that 

era E p (mod n). 

Since gcd(o, n) = 1, Q has a multiplicative inverse modulo n, and we can 
compute ff-’ mod n easily using the Euclidean algorithm. Then we can solve for 
a, obtaining 

log, ,0 = ,f3o-t mod n. 

We previously discussed the Discrete Log problem in the multiplicative group 
Zp *, where p is prime. This group is a cyclic group of order p - 1, and hence it is 
isomorphic to the additive group Zr,- t . By the discussion above, we know how 
to compute discrete logs efficiently in this additive group. This suggests that we 
could solve the Discrete Log problem in ZP* by “reducing” the problem to the 
the easily solved formulation in Z&t. 

Let us think about how this could be done. The statement that (Zp*, x) is 
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FIGURE 5.9 
Generalized ElGamal Public-key Cryptosystem 

Let G be a finite group with group operation o, and let a E G be an 
element such that the discrete log problem in H is intractible, where 
H = {a’ : i 2 0) is the subgroup generated by LY. Let P = G. 
C = G x G, and define 

K={(G,a,a,~):~=d}. 

The values Q and /3 are public, and a is secret. 

For I< = (G, o , a, /3), and for a (secret) random number k E +I, define 

eK(x, k) = (~1, ~21, 

where 

and 

y1 = cYk 

y* =x0/3”. 

For a ciphertext y = (yt , yz), define 

k(Y) = Y2 0 (Yl”)--‘. 

isomorphic to (Zp- 1, +) means that there is a bijection 

$5 : zp* + zp,_, 

such that 

~(XY mod P) = (464 + d4~)) mod (P - 1). 

It follows easily that 

so we have that 

+(a’ mod p) = aqS(a) mod (p - l), 

/3 E ct? (mod p) w qb(cr) 3 q%(p) (mod p - 1). 

Hence, solving for a as described above, we have that 

log,P = W&W)-’ mod (P - 1). 
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Consequently, if we have an efficient method of computing the isomorphism 
4, then we would have an efficient algorithm to compute discrete logs in Z&,*. 
The catch is that there is no known general method to efficiently compute the 
isomorphism 4 for an arbitrary prime p. Even though we know the two groups 
in question are isomorphic, we do not know an efficient algorithm to explicitly 
describe the isomorphism. 

This method can be applied to the Discrete Log problem in any group G. If 
there is an efficient method of computing the isomorphism between H and Zl~l , 
then the discrete log problem in G described above can be solved efficiently. 
Conversely, it is not hard to see that an efficient method of computing discrete 
logs yields an efficient algorithm to compute the isomorphism between the two 
groups. 

This discussion has shown that the Discrete Log problem may be easy or 
(apparently) difficult, depending on the representation of the (cyclic) group that 
is used. So it may be useful to look at other groups in the hope of finding other 
settings where the Discrete Log problem seems to be intractible. 

Two such classes of groups are 

I. the multiplicative group of the Galois field GF(p”) 

2. the group of an elliptic curve defined over a finite field. 

We will discuss these two classes of groups in the next subsections. 

5.2.1 Galois Fields 

We have already discussed the fact that ZP is a field if p is prime. However, there 
are other examples of finite fields not of this form. In fact, there is a finite field 
with q elements if q = p” where p is prime and n _> 1 is an integer. We will 
now describe very briefly how to construct such a field. First, we need several 
definitions. 

DEFINITION 5.1 Suppose p is prime. Define Z$ [x] to be the set of allpolynomi- 
als in the indeterminate x. By defining addition and multiplication ofpolynomials 
in the usual way (and reducing coefficients modulo p), we construct a ring. 

Forf(x),dx) E %P[ x , we say that f(x) divides g(x) (notation: f(x) ] g(x)) 1 
ifthere exists q(x) E &,[x] such that 

For f (x) E &[x], de$ne deg(f), the degree off, to be the highest exponent in 
a term off. 

Suppose f(x), g(x), h(x) E Z$,[x], and deg(f) = n 2 1. We define 

g(x) E h(x) (mod f(x)) 
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if 

f(x) I (g(x) - h(x)). 

Notice the resemblance of the definition of congruence of polynomials to that of 
congruence of integers. 

We are now going to define a ring of polynomials “modulo f(x)” which we 
denote by Zr[x]/(f(x)). The construction of Z$,[x]/(f(x)) from Zr[x] is based 
on the idea of congruences modulo f(z) and is analogous to the construction of 
Z, from 2%. 

Suppose deg(f) = n. If we divideg(x) by f(z), we obtain a (unique) quotient 
q(x) and remainder r(x), where 

g(x) = dx)f(x) + r(x) 

deg(r) < 12. 

This can be done by usual long division of polynomials. Hence any polynomial in 
Z$, [x] is congruent modulo f(x) to a unique polynomial of degree at most n - 1. 

Now we define the elements of &,[x]/(f(x)) to be thep” polynomials in Z$, [CC] 
of degree at most n - 1. Addition and multiplication in ZP [x]/(f(z)) is defined as 
in &,[x], followed by a reduction modulo f(x). Equipped with these operations, 
%Ml(f(x)) is a ring. 

Recall that T& is a field if and only if m is prime, and multiplicative in- 
verses can be found using the Euclidean algorithm. A similar situation holds for 

UMf (~)I* Th e analog of primality for polynomials is irreducibility, which 
we define as follows: 

DEFINITIONS.2 A polynomial f(x) E 7&,[ x ] is said to be irreducible if there 
do not exist polynomials fi (x) , fi (x) E Z$ [x] such that 

f(x) = fl (x)f2(3)1 

where deg(fl) > 0 anddeg(f2) > 0. 

A very important fact is that Zr[x]/(~(x)) is a field if and only if j(x) is 
irreducible. Further, multiplicative inverses in Zr,[x]/(f(x)) can be computed 
using a straightforward modification of the (extended) Euclidean algorithm. 

Here is an example to illustrate the concepts described above. 
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Example 5.6 

Let’s attempt to construct a field having eight elements. This can be done by 
finding an irreducible polynomial of degree three in &[2]. It is sufficient to 
consider the polynomials having constant term equal to 1, since any polynomial 
with constant term 0 is divisible by x and hence is reducible. There are four such 
polynomials: 

fl(X) = x3 + 1 

f2(2) = x3 +x + 1 

f3(2) = x3 + x2 + 1 

f4(2) = x3 + x2 + 2 + 1. 

Now, ft (x) is reducible, since 

(remember that all coefficients are to be reduced modulo 2). Also, f4 is reducible 
since 

x3 + x2 + 2 + 1 = (x + 1)(x2 + 1). 

However, fi(x) and f3 (x) are both irreducible, and either one can be used to 
construct a field having eight elements. 

Let us use n(x), and thus construct the field &[z]/(x3 + x + 1). The eight 
field elements are the eight polynomials 0, 1, x, x + 1, x2, x2 + 1, x2 + x and 
x2+x+ 1. 

To compute a product of two field elements, we multiple the two polynomials 
together, and reduce modulo x3 + x + 1 (i.e., divide by x3 + z + 1 and find the 
remainder polynomial). Since we are dividing by a polynomial of degree three, 
the remainder will have degree at most two and hence is an element of the field. 

For example, to compute (x2 + l)(z2 + x + 1) in Z2[x]/(z3 + x + 1), we first 
compute the product in Zz[x], which is z4 + x3 + x + 1. Then we divide by 
x3 + x + 1, obtaining the expression 

x4 + x3 + x + 1 = (x + l)(z3 + X + 1) + x2 + 2. 

Hence, in the field &[x]/(x3 + x + l), we have that 

(x2 + 1)(x2 + x + 1) = x2 + 2. 
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Below, we present a complete multiplication table for the non-zero field elements. 
To save space, we write a polynomial a2x2+ at x + aa as the ordered triple u2ut aa. 

001 
010 
011 
100 
101 
110 
111 

Computation of inverses can be done by using a straightforward adaptation of 

001 
001 
010 
011 
100 
101 
110 
111 

010 
010 
loo 
110 
011 
001 
111 
101 

011 
011 
110 
101 
111 
100 
001 
010 

100 
100 
011 
111 
110 
010 
101 
001 

101 110 111 
101 110 111 
001 111 101 
loo 001 010 
010 101 001 
111 011 110 
011 010 100 
110 loo 011 

the extended Euclidean algorithm. 
Finally, the multiplicative group of the non-zero polynomials in the field is a 

cyclic group of order seven. Since 7 is prime, it follows that any non-zero field 
element is a generator of this group, i.e., a primitive element of the field. 

For example, if we compute the powers of x, we obtain 

x1 = 2 

x2 = x2 

x3=2+1 

x4 = x2 + x 

x5=x2+x+1 

x6 = x2 + 1 

x7 = 1 , 

which comprise all the non-zero field elements. fl 

It remains to discuss existence and uniqueness of fields of this type. It can be 
shown that there is at least one irreducible polynomial of any given degree n 2 1 
in Zr,[x]. Hence, there is a finite field with p” elements for all primes p and all 
integers 12 2 1. There are usually many irreducible polynomials of degree n in 
Zr, [xl. But the finite fields constructed from any two irreducible polynomials of 
degree n can be shown to be isomorphic. Thus there is a unique finite field of any 
size p” @ prime, n 2 l), which is denoted by GF(p”). In the case n = 1, the 
resulting field GF(p) is the same thing as Zr. Finally, it can be shown that there 
does not exist a finite field with r elements unless r = pn for some prime p and 
some integer n 2 1. 

We have already noted that the multiplicative group Zr,* @ prime) is a cyclic 
group of order p - 1. In fact, the multiplicative group of any finite field is cyclic: 
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GF(p”)\{O} is a cyclic group of order p” - 1. This provides further examples of 
cyclic groups in which the discrete log problem can be studied. 

In practice, the finite fields GF(2n) have been most studied. Both the Shanks and 
Pohlig-Hellman discrete logarithm algorithms work for fields GF(2”). The index 
calculus method can be modified to work in these fields. The precomputation time 
of the index calculus algorithm turns out to be 0 

( 
e(1.405+0(1))n”3@’ n)2’3 

> 
, and the 

time to find an individual discrete log is 0 
( 
e (1.098+0( I))~a”~(ln n)*/j ) . However, 

for large values of n (say n > 800), the discrete log problem in GF(2n) is thought 
to be intractible provided 2n has at least one “large” prime factor (in order to 
thwart a Pohlig-Hellman attack). 

5.2.2 Elliptic Curves 

We begin by defining the concept of an elliptic curve. 

DEFINITION 5.3 Let p > 3 be prime. The elliptic curve y2 = x3 + ax + b over 
ZP is the set of solutions (x, y) E ZP x I&, to the congruence 

y2=x3+ax+b(modp), (5.1) 

where a, b E Z$, are constants such that 4a3 + 27b2 $ 0 (mod p), together with a 
special point 0 called the point ai injinity. ’ 

An elliptic curve E can be made into an abelian group by defining a suitable 
operation on its points. The operation is written additively, and is defined as 
follows (where all arithmetic operations are performed in &,): Suppose 

Q = (22, ~2) 

are points on E. If 22 = x1 and y2 = -yl, then P + Q = 0; otherwise 
P + Q = (23, y3), where 

x3 = x2 -21-22 

Y3 = X(x1 - x3) - Yl, 

‘Equation 5.1 can be used to define an elliptic curve over any field GF(p”), for p > 3 prime. An 
elliptic curve over GF(2”) or GF( 3”) is defined by a slightly different equation. 
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and 

Finally, define 

I ?/z-Y1 

I 

x2 - 21’ 
ifP#Q 

A= 
3x12 + a 

&/I ’ 
ifP=Q. 

P+O=O+P=P 

for all P E E. With this definition of addition, it can be shown that E is an 
abelian group with identity element 0 (most of the verifications are tedious but 
straightforward, but proving associativity is quite difficult). 

Note that inverses are very easy to compute. The inverse of (x, y) (which 
we write as -(x, y) since the group operation is additive) is (x, -y), for all 
(2, Y) E E. 

Let us look at a small example. 

Example 5.7 
Let E be the elliptic curve y2 = x3 + x + 6 over Zt 1. Let’s first determine the 
points on E. This can be done by looking at each possible x E Zt I, computing 
x3 + x + 6 mod 11, and then trying to solve Equation 5.1 for y. For a given x 
we can test to see if z = x3 + x + 6 mod 11 is a quadratic residue by applying 
Euler’s criterion. Recall that there is an explicit formula to compute square roots 
of quadratic residues modulo p for primes p = 3 (mod 4). Applying this formula, 
we have that the square roots of a quadratic residue z are 

d”+‘)/4 mod 11 = fz3 mod 11. 

The results of these computations are tabulated in Table 5.2. 
Thus E has 13 points on it. Since any group of prime order is cyclic, it follows 

that E is isomorphic to Zt3, and any point other than the point at infinity is a 
generator of E. Suppose we take the generator (Y = (2,7). Then we can compute 
the “powers” of (Y (which we will write as multiples of o, since the group operation 
is additive). To compute 2o = (2,7) + (2,7), we first compute 

X = (3 x 22 + 1)(2 x 7)-l mod 11 

- 2 x 3-l mod 11 - 

=2x4modll 

= 8. 

Then we have 

x3 = 82 -2-2mod 11 

=5 
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TABLE 5.2 
Points on the elliptic curve y* = z3 + z + 6 over Zll 

- 
s 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 - 

c’+x+6mod 11 
6 

and 

y3=8(2-5)-7modll 

= 2, 

so 2cI = ($2). 
The next multiple would be 3a = 2a + (Y = (5,2) + (2,7). Again, we begin 

by computing A, which in this situation is done as follows: 

X= (7-2)(2-5)-‘mod11 

= 5 x 8-l mod 11 

=5x7modll 

= 2. 

Then we have 

~~=2~-5-2rnodll 

=8 

and 

y3=2(5-8)-2modll 

= 3, 

so 3c~ = (8,3). 
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Continuing in this fashion, the remaining multiples can be computed to be the 
following: 

= (2,7) 
4: = (10,2) 

2cu = (5,2) 3a = (8,3) 
5a = (3,6) 6a = (7,9) 

7cr = (7,2) 8a = (3,5) 9a = (10,9) 
1oa = (8,8) lla = ($9) 12a = (2,4) 

Hence (Y = (2,7) is indeed a primitive element. fl 

An elliptic curve E defined over Z&, (p prime, p > 3)) will have roughly p 
points on it. More precisely, a well-known theorem due to Hasse asserts that the 
number of points on E, which we denote by #E, satisfies the following inequality 

Computing the exact value of #E is more difficult, but there is an efficient algorithm 
to do this, due to &hoof. (By “efficient” we mean that it has a running time that 
is polynomial in log p. Schoof’s algorithm has a running time of O( (log p)*) bit 
operations and is practical for primes p having several hundred digits.) 

Now, given that we can compute #E, we further want to find a cyclic subgroup 
of E in which the discrete log problem is intractible. So we would like to know 
something about the structure of the group E. The following theorem gives a 
considerable amount of information on the group structure of E. 

THEOREM 5.1 
Let E be an elliptic curve defined over I&,, where p is prime, p > 3. Then there 
exist integers nl and n2 such that E is isomorphic to Z,,, x Z&. Furthel; n2 1 n1 
andnz 1 (p - 1). 

Hence, if the integers rrt and n2 can be computed, then we know that E has a 
cyclic subgroup isomorphic to i&, that can potentially be used as a setting for an 
ElGamal Cryptosystem. 

Note that if n2 = 1, then E is a cyclic group. Also, if #E is a prime, or the 
product of distinct primes, then E must be a cyclic groupindexcyclic group. 

The Shanks and Pohlig-Hellman algorithms apply to the elliptic curve logarithm 
problem, but there is no known adaptation of the index calculus method to elliptic 
curves. However, there is a method of exploiting an explicit isomorphism between 
elliptic curves and finite fields that leads to efficient algorithms for certain classes 
of elliptic curves. This technique, due to Menezes, Okamoto and Vanstone, can 
be applied to some particular examples within a special class of elliptic curves 
called supersingular curves that were suggested for use in cryptosystems. If 
the supersingular curves are avoided, however, then it appears that an elliptic 
curve having a cyclic subgroup of size 2r60 will provide a secure setting for a 
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cryptosystem, provided that the order of the subgroup is divisible by at least one 
large prime factor (again, to guard against a Pohlig-Hellman attack). 

Let’s now look an example of ElGamal encryption using the elliptic curve of 
Example 5.7. 

Example 5.8 
Suppose that (Y = (2,7) and Bob’s secret “exponent” is a = 7, so 

p = 7a = (7,2). 

Thus the encryption operaton is 

eK(x,k) = (W,?,z+W,2)), 

where x E E and 0 5 k 5 12, and the decryption operation is 

~K(YI,Y~) = M- 7~1, 

Suppose that Alice wishes to encrypt the message z = (10,9) (which is a point 
on E). If she chooses the random value k = 3, then she will compute 

y1 = 3(2,7) 

= (873) 

and 

~2 = (lO,g) -I- 3(7,2) 

= (10,9) + (3,5) 

= (10,2). 

Hence, y = ((8,3), (10,2)). N ow, if Bob receives the ciphertext y, he decrypts it 
as follows: 

x = (10,2) - 7(8,3) 

= (10,2) - (3,5) 

= (10,2) + (3,6) 

= (10,9). 

Hence, the decryption yields the correct plaintext. 0 

There are some practical difficulties in implementing an ElGamal Cryptosys- 
tern on an elliptic curve. This system, when implemented in Zr (or in GF(p”) 
with n > 1) has a message expansion factor of two, An elliptic curve implemen- 
tation has a message expansion factor of (about) four. This happens since there 
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FIGURE 5.10 
Menezes-Vanstone Elliptic Curve Cryptosystem 

Let E be an elliptic curve defined over iz, (p > 3 prime) such that 
E contains a cyclic subgroup H in which the discrete log problem is 
intractible. 
Letp=~p’X~p*,C=Ex~‘xiZp*,anddefine 

K={(E,a,a,p):P=aa}, 

where a E E. The values cr and p are public, and a is secret. 

For Ii’ = (E, Q, Q, ,f3), for a (secret) random number k E z.1~1, and for 
x = (x1, x2) E &,* x I?!$*, define 

w(+, k) = (YO, YI, YZ), 

where 

YO = ka, 

(CI, ~2) = W, 

YI = ~1x1 modp, 

312 = ~2x2 mod p. 

and 

For a ciphertext y = (~0, ye , yz), define 

h(y) = (YICI-* modp, ~2~2~’ mod P), 

where 

UYO = (Cl, c2). 
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are approximately p plaintexts, but each ciphertext consists of four field elements. 
A more serious problem is that the plaintext space consists of the points on the 
curve E, and there is no convenient method known of deterministically generating 
points on E. 

A more efficient variation has been found by Menezes and Vanstone. In this 
variation, the elliptic curve is used for “masking,” and plaintexts and ciphertexts 
are allowed to be arbitrary ordered pairs of (nonzero) field elements (i.e., they are 
not required to be points on E). This yields a message expansion factor of two, 
the same as in the original ElGamal Cryptosystem. The Menezes-Vanstone 
Cryptosystem is presented in Figure 5.10. 
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If we return to the curve y 2 = x3 + x + 6 over Zi 1, we see that the Menezes- 
Vanstone Cryptosystem allows 10 x 10 = 100 plaintexts, as compared to 13 in 
the original system. We illustrate encryption and decryption in this system using 
this same curve. 

Example 5.9 
As in the previous example, suppose that (Y = (2,7) and Bob’s secret “exponent” 
is a = 7, so 

@=7a= (7,2). 

Suppose Alice wants to encrypt the plaintext 

x = (Xl, x2) = (9,l) 

(note that x is not a point on E), and she chooses the random value k = 6. First, 
she computes 

and 

y. = ka = 6(2,7) = (7,9) 

so cl = 8 and c2 = 3. 
Next, she calculates 

k/3 = 6(7,2) = (8,3), 

and 

yZ=czxzmodp=3x lmodll=3. 

The ciphertext she sends to Bob is 

Y = (YO, YI, ~2) = ((7, 9),6,3). 

When Bob receives the cipher-text y, he first computes 

(cl, ~2) = aye = 7(7,9) = (8,3), 

and then 

x = (ylcl-’ mod p, y2c2-’ mod p) 

= (6 x 8-l mod 11,3 x 3-l mod 11) 

=(6x7mod11,3x4modll) 

= (9,1). 

Hence, the decryption yields the correct plaintext. 0 
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FIGURE 5.11 
Subset sum problem 

Problem Instance I = (q,. . . sn, T), where si,. . . s, and T are 
positive integers. The si’s are called sites and T is called the target sum. 

Question Is there a O-l vector x = (xi, . . . , x,) such that 

2 xisi = T? 
i=l 

5.3 The Merkle-Hellman Knapsack System 

The well-known Merkle-Hellman Knapsack Cryptosystem was first described 
by Merkle and Hellman in 1978. Although this cryptosystem, and several variants 
of it, were broken in the early 1980’s, it is still worth studying for its conceptual 
elegance and for the underlying design technique. 

The term “knapsack” is actually a misnomer2; the system is based on the Subset 
Sum problem which is presented in Figure 5.11. 

The Subset Sum problem, as phrased in Figure 5.11, is a decision problem 
(i.e., we are required only to answer “yes” or “no”). If we rephrase the problem 
slightly, so that in any instance where the answer is “yes” we are required to find 
the desired vector x (which may not be unique), then we have a search problem. 

The Subset Sum (decision) problem is one of the so-called NP-complete prob- 
lems. Among other things, this means that there is no known polynomial-time 
algorithm that solves it. This is also the case for the Subset Sum search problem. 
But even if a problem has no polynomial-time algorithm to solve it in general, 
this does not rule out the possibility that certain special cases can be solved in 
polynomial time. This is indeed the situation with the Subset Sum problem. 

We define a list of sizes, (q , . . . , s,,) to be superincreasing if 

j-l 

Sj > c Si 
i=l 

for 2 5 j 5 n. If the list of sizes is superincreasing, then the search version of the 
Subset Sum problem can be solved very easily in time O(n), and a solution x (if 
it exists) must be unique. The algorithm to do this is presented in Figure 5.12. 

*The Knapsack problem, as it is usually defined, is a problem involving selecting objects with 
given weights and profits in such a way that a specified capacity is not exceeded and a specified target 
profit is attained. 
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FIGURE 5.12 
Algorithm for solving a superincreasing instance of the subset sum problem 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

for i = n downto 1 do 

if T 2 si then 

T=T-si 

Xj = 1 

else 

Xj = 0 

if CT=“=, xisi = T then 

x = (Xl,..., xc,) is the solution 

else 

there is no solution. 

Supposes= (si,..., sn) is superincreasing, and consider the function 

defined by the rule 

es(xI,..., X:,) = 2 XiSi. 

i=l 

Is es a possible candidate for an encryption rule? Since s is superincreasing, es is 
an injection, and the algorithm presented in Figure 5.12 would be the correspond- 
ing decryption algorithm. However, such a system would be completely insecure 
since anyone (including Oscar) can decrypt a message that is encrypted in this 
way. 

The strategy therefore is to transform the list of sizes in such a way that it is 
no longer superincreasing. Bob will be able to apply an inverse transformation to 
restore the superincreasing list of sizes. On the other hand Oscar, who does not 
know the transformation that was applied, is faced with what looks like a general, 
apparently difficult, instance of the subset sum problem when he tries to decrypt 
a ciphertext. 

One suitable type of transformation is a modular trunsfonnation. That is, a 
prime modulus p is chosen such that 

n 
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FIGURE 5.13 
Merkle-Hellman Knapsack Cryptosystem 

Lets = (~1,. . . , s,) be a superincreasing list of integers, let p > Cy= I si 
beprime,andlet1~a<p-1.For1~i~n,define 

tj = asi mod p, 

and denote t = (t 1, . . . ,tn). Let P = (0, l}“, C = (0,. . ., n(p - l)}, 
and let 

K: = {(S>P, a, t)l, 

where s, p, a, and t are constructed as described above. t is public, and 
p, a and s are secret. 

For K = (s,p, a, t),define 

n 
eK(xl,...,x,) = c Xjtj. 

i=l 

For 0 5 y 5 n(p - l), define z = a- ’ y mod p and solve the subset 
problem (q , . . . , s,, z), obtaining dK(y) = (xl,. . . , xcn). 

as well as a multiplier a, where 1 5 a 5 p - 1. Then we define 

ti = asj mod p, 
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1 < i 5 n. The list of sizes t = (tl, . . . , t,,) will be the public key used for 
encryption. The values a, p used to define the modular transformation are secret. 
The complete description of the Merkle-Hellman Knapsack Cryptosystem is 
given in Figure 5.13. 

The following small example illustrates the encryption and decryption opera- 
tions in the Merkle-Hellman Cryptosystem. 

Example 5.10 
Suppose 

s= (2,5,9,21,45,103,215,450,946) 

is the secret superincreasing list of sizes. Suppose p = 2003 and a = 1289. Then 
the public list of sizes is 

t = (575,436,1586,1030,1921,569,721,1183,1570). 
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Now, if Alice wants to encrypt the plaintext x = (l,O, 1, l,O, 0, 1, 1, l), she 
computes 

y = 575 + 1586 + 1030+ 721+ 1183 + 1570 = 6665. 

When Bob receives the ciphertext y, he first computes 

z = a-‘y modp 

= 3 17 x 6665 mod 2003 

= 1643. 

Then Bob solves the instance I = (s, z) of the Subset Sum problem using 
the algorithm presented in Figure 5.12. The plaintext (1 , 0, 1 , 1, 0, 0, 1, I, 1) is 
obtained. 0 

By the early 1980’s, the Merkle-Hellman Knapsack Cryptosystem had been 
broken by Shamir. Shamir was able to use an integer programming algorithm 
of Lenstra to break the system. This allows Bob’s trapdoor (or an equivalent 
trapdoor) to be discovered by Oscar, the cryptanalyst. Then Oscar can decrypt 
messages exactly as Bob does. 

5.4 The McEliece System 

The McEliece Cryptosystem uses the same design principle as the Merkle- 
Hellman Cryptosystem: decryption is an easy special case of an NP-complete 
problem, disguised so that it looks like a general instance of the problem. In 
this system, the NP-complete problem that is employed is decoding a general 
linear (binary) error-correcting code. However, for many special classes of codes, 
polynomial-time algorithms are known to exist. One such class of codes, the 
Goppa codes, are used as the basis of the McEliece Cryptosystem. 

We begin with some essential definitions. 

DEFINITION 5.4 Let k, n be positive integers, k 5 n. An [n, k] code, C, is a 
k-dimensional subspace of (&)“, the vector space of all binary n-tuples. 

A generating matrix for an [n, k] code, C, is a k x n binary matrix whose rows 
form a basis for C. 

Let x,y E (ZZ)~, where x = (xl,. . .,x,,) and y = (~1,. . ., yn). Define the 
Hamming distance 

d(x, y) = I{i : 1 I i 5 n,xi # Yi}(, 

i.e., the number of coordinates in which x and y differ,: 
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Let C be an [n, k] code. Define the distance of C to be the quantity 

d(C) = min{d(x, y) : x, y E C, x # y}. 

An [n, k] code with distance d is denoted as an [n, k, dj code. 

The purpose of an error-correcting code is to correct random errors that occur 
in the transmission of (binary) data through a noisy channel. Briefly, this is done 
as follows. Let G be a generating matrix for an [n, k, d] code. Suppose x is the 
binary k-tuple we wish to transmit. Then Alice encodes x as the n-tuple y = xG, 
and transmits y through the channel. 

Now, suppose Bob receives the n-tuple r, which may not be the same as y. He 
will decode r using the strategy of nearest neighbor decoding. In nearest neighbor 
decoding, Bob finds the codeword y’ that has minimum distance to r. Then he 
decodes r to y’, and, finally, determines the k-tuple x’ such that y’ = x’G. Bob 
is hoping that y’ = y, so x’ = x (i.e., he is hoping that any transmission errors 
have been corrected). 

It is fairly easy to show that if at most (d - 1)/2 errors occurred during trans- 
mission, then nearest neighbor decoding does in fact correct all the errors. 

Let us think about how nearest neighbor decoding would be done in practice. 
ICI = 2k, so if Bob compares r to every codeword, he will have to examine 2” 
vectors, which is an exponentially large number compared to k. In other words, 
this obvious algorithm is not a polynomial-time algorithm. 

Another approach, which forms the basis for many practical decoding algo- 
rithms, is based on the idea of a syndrome. A parity-check matrix for an [n, k, dj 
code C having generating matrix G is an (n - k) x n 0 - 1 matrix, denoted by H, 
whose rows form a basis for the orthogonal complement of C, which is denoted by 
CL and called the dual code to C. Stated another way, the rows of H are linearly 
independent vectors, and GHT is a k x (n - k) matrix of zeroes. 

Given a vector r E (Z#‘, we define the syndrome of r to be HrT. A syndrome 
is a column vector with n - k components. 

The following basic results follow immediately from linear algebra. 

THEOREM 5.2 
Suppose C is an [n, k] code with generating matrix G and parity-check matrix H. 
Then x E (&)” is a codeword if and only if 

Furthel; ifx E C, e E (Z$‘, andr=x+e,thenHp=HeT. 
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Think of e_as being the vector of errors that occur during transmission of a 
codeword x. Then r represents the vector that is received. The above theorem 
is saying that the syndrome depends only on the errors, and not on the particular 
codeword that was transmitted. 

This suggests the following approach to decoding, known as syndrome decod- 
ing: First, compute s = HrT. Ifs is a vector of zeroes, then decode r as r. If 
not, then generate all possible error vectors or weight 1 in turn. For each such 
e, compute He?. If, for any of these vectors e, it happens that He? = s, then 
decode r to r - e Otherwise, continue on to generate all error vectors of weight 
2 , \(d - 1)/2]. If at any time He? = s, then we decode r to r - oand quit. 
If this equation is never satisfied, then we conclude that more than [(d - 1)/2] 
errors have occurred during transmission. 

By this approach, we can decode a received vector in at most 

1+ (3 +..*+ (,+Y),l,) 

steps. 
This method will work on any linear code. For certain specific types of codes, 

the decoding procedure can be speeded up. However, a decision version of nearest 
neighbor decoding is in fact an NP-complete problem. Thus no polynomial-time 
algorithm is known for the general problem of nearest neighbor decoding (when 
the number of errors is not bounded by [(d - 1)/2]). 

As was the case with the subset sum problem, we can identify an “easy” special 
case, and then disguise it so that it looks like a “difficult” general case of the 
problem. It would take us too long to go into the theory here, so we will just 
summarize the results. The “easy” special case that was suggested by McEliece 
is to use a code from a class of codes known as the Goppa codes. These codes 
do in fact have efficient decoding algorithms. Also, they are easy to generate, and 
there are a large number of inequivalent Goppa codes with the same parameters. 

The parameters of the Goppa codes have the form n = 2m, d = 2t + 1 and 
k = n - mt. For a practical implementation of the public-key cryptosystem, 
McEliece suggested taking m = 10 and t = 50. This gives rose to a Goppa code 
that is a [1024,524, 1011 code. Each plaintext is a binary 524-tuple, and each 
ciphertext is a binary 1024-tuple. The public key is a 524 x 1024 binary matrix. 

A description of the McEliece Cryptosystem is given in Figure 5.14. 
We presently a ridiculously small example to illustrate the encoding and decod- 

ing procedures. 
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FIGURE 5.14 
McEliece Cryptosystem 
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Rt G be a generating matrix for an [n, k, dj Goppa code C, where 
a = 2m, d = 2t + 1 and k = n - mt. Let 5’ be a k x k matrix that 
IS invertible over &, let P be an n x n permutation matrix, and let 
5” = SGP. Let P = (Qk, C = (ZZ)~, and let 

x: = {(G, S, P, G’)), 

where G, S, P, and G’ are constructed as described above. G’ is public, 
and G, S, and P are secret. 

For IC = (G, S, P, G’), define 

eK(x,e) = xG’ +e, 

where DYE (ZZ)~ is a random vector of weight t. 

Bob decrypts a ciphertext y E (ZZ)~ by means of the following opera- 
tions: 

1. Compute yt = yP-‘. 
2. Decode yt, obtaining yt = xt + Ed, where xi E C. 
3. Compute xe E (ZZ)~ such that xeG = xi. 
4. Computex = x&Y’. 

Example 5. I 1 

The matrix 

is a generating matrix for a [7,4,3] code, known as a Hamming code. Suppose 
Bob chooses the matrices 

/l 10 l\ 

“- I 1 0 0 1 

3 - 
0 1 1 1 
1100 J 
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and 

P= 

‘0100000 
0001000 
0000001 
1000000 
0010000 
0000010 

,0000100 

Then, the public generating matrix is 

Now, suppose Alice encrypts the plaintext x = (1, 1, 0,l) using as the random 
error vector of weight 1 the vector e = (0, 0, 0, 0, l,O, 0). The ciphertext is 
computed to be 

y=xG’+e 

= (O,l, *,o,o, *,q+ (O,O,O,O, 1,070) 

= (0,1,1,0,1,1,0). 

When Bob receives the ciphertext y, he first computes 

y1 = yp-’ 

0001000 
1000000 
0000100 

= (0,1,1,0,1,1,0) 0100000 
0000001 
0000010 
0010000 

= (1,0,0,0,1,1,1). 

Next, he decrypts yt to get x1 = (1, 0, 0, 0, 1, 1,O) (note that et # e due to the 
multiplication by P-l). 

Next, Bob forms ~0 = (1, 0, 0,O) (the first four components of xl). 
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Finally, Bob calculates 

x = s-1x0 

1101 

= :,: ;; (1,0,0,0) 

( i 1001 

= (1, l,O, 1). 

This is indeed the plaintext that Alice encrypted. fl 

5.5 Notes and References 

The ElGamal Cryptosystem was presented in [E~85]. The Pohlig-Hellman 
algorithm was published in [PH78], and the material concerning individual bits 
of the Discrete Logarithm problem is based on Peralta [P~86]. For further 
information on the Discrete Logarithm problem, we recommend the articles by 
LaMacchia and Odlyzko [LO911 and McCurley [Mc~O]. 

The main reference book for finite fields is Lid1 and Niederreiter [LN83]. 
McEliece [Mc87] is a good textbook on the subject, and a recent research 
monograph on applications of finite fields has been published by Menezes et al. 
[MBGMVY93]. A recent article on the Discrete Logarithm problem in GF(2”) 
is Gordon and McCurley [GM93]. 

The idea of using elliptic curves for public-key cryptosystems is due to Koblitz 
[K087~] and Miller [Mt86]. Menezes [ME931 is a monograph on elliptic curve 
cryptosystems. See also Menezes and Vanstone [MV93] and Chapter 6 of Koblitz 
[K087]. For an elementary treatment of elliptic curves, see Silverman and Tate 
[ST92]. The Menezes-Okamoto-Vanstone reduction of discrete logarithms from 
elliptic curves to finite fields is given in [MOV94] (see also [ME93]). 

The Merkle-Hellman Cryptosystem was presented in [MH78]. This system 
was broken by Shamir [S~84], and the “iterated” version of the system was broken 
by Brickell [B~85]. A different knapsack-type system, due to Chor and Rivest 
[CR88], has not been broken. For more information, see the survey article by 
Brickell and Odlyzko [B092]. 

The most important reference book for coding theory is MacWilliams and 
Sloane [MS77]. There are many good textbooks on coding theory, e.g., Hoffman 
et al. [HLLPRW91] and Vanstone and van Oorschot [VV89]. The McEliece 
Cryptosystem was first described in [Mc78]. A recent article discussing the 
security of this cryptosystem is by Chabaud [CH95]. 
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TABLE 5.3 
ElGamal Ciphertext 

(3781,14409) 
(5400,31486) 
(31590,26470) 
(16160,3129) 
(3055524611) 
(1616,14170) 
(14130,22010) 
(26004,25056) 
(29538,5408) 
(1777,8737) 
(23258,3468) 
(8836,25898) 
(10422,5552) 
(25115,10840) 
(23418,22058) 
(19886,22344) 
(21563,789l) 
(24271,848O) 
(30499,14423) 
(24875,17641) 
(3576,463O) 
(3149,740O) 
(21541,19004) 
(17561,11884) 
(26521,5803) 
(28327,19237) 

(31552,393O) 
(19936,721) 
(3781,14409) 
(301,17252) 
(20501,2922) 
(4294,2307) 
(25910,19663) 
(5400,31486) 
(3149,740O) 
(26117,14251) 
(26052,20545) 
(8794,17358) 
(1777,8737) 
(14130,220lO) 
(24139,958O) 
(21600,25505) 
(28250,21321) 
(26592,25457) 
(5839,24179) 
(1777,8737) 
(26664,27572) 
(8951,29435) 
(5865,29526) 
(2209,6107) 
(14884,14280) 
(15313,28649) 

(27214,15442) 
(27765,29284) 
(15898,30844) 
(24689,7776) 
(13659,5015) 
(2320,29174) 
(19557,10145) 
(9526,3019) 
(9396,3058) 
(7129,18195) 
(21958,5713) 
(1777,8737) 
(3780,16360) 
(16081,16414) 
(173,17075) 
(27119,19921) 
(28327,19237) 
(9660,7939) 
(12846,6598) 
(18825,19671) 
(27011,29164) 
(2059,3977) 
(10536,694l) 
(10422,5552) 
(4328,8635) 

(5809,30274) 
(29820,771O) 
(19048,12914) 
(28856,15720) 
(5740,31233) 
(3036,20132) 
( 18899,27609) 
(12962,15189) 
(27149,20535) 
(25302,10248) 
(346,31194) 
(25038,12483) 
(11685,133) 
(28580,20845) 
(2016,18131) 
(23312,16906) 
(15313,28649) 
(10267,20623) 
(9284,27858) 
(31306,11929) 
(22763,8992) 
(16258,30341) 
(1777,8737) 
(19371,21005) 
(28250,21321) 

Exercises 

5.1 Implement Shanks’ algorithm for finding discrete logarithms in 5, wherep is prime 
and a is a primitive element. Use your program to find log,, 12375 in i?,mr and 
lo& 248388 in &WI. 

5.2 Implement the Pohlig-Hellman algorithm for finding discrete logarithms in &,, 
where p is prime and CY is a primitive element. Use your program to find log, 8563 
in &703 and log,,, 12611 in &us. 

5.3 Find log, 896 in iZr103 using the algorithm presented in Figure 5.6, given that 
Lz(p) = 1 for ,B = 25, 219 and 841, and L&3) = 0 for p = 163, 532, 625 
and 656. 

5.4 Decrypt the ElGamal ciphertext presented in Table 5.3. The parameters of the 
system are p = 3 1847, cv = 5, a = 7899 and p = 18074. Each element of &, 
represents three alphabetic characters as in Exercise 4.6. 

The plaintext was taken from ‘The English Patient,” by Michael Ondaatje, Alfred 
A. Knopf, Inc., New York, 1992. 

5.5 Determine which of the following polynomials are irreducible over &[z]: c5 + 
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24+l,2s+2s+l,Is+24+22+l. 
5.6 The field GF(2’) can be constructed as &[~]/(z’+ s? + 1). Perform the following 

computations in this field. 
(a) Compute (x” +x2) x (x’ + z + 1). 
fb) Using the extended Euclidean algorithm, compute (z’ + 2*)-l. 
(c) Using the square-and-multiply algorithm, compute 2”. 

5.7 We give an example of the ElGamal Cryptosystem implemented in GF(33). The 
polynomial x3 + 2x2 + 1 is irreducible over &[x] and hence &[2]/(x3 + 2x2 + 1) is 
the field GF(33). We can associate the 26 letters of the alphabet with the 26 nonzero 
field elements, and thus encrypt ordinary text in a convenient way. We will use a 
lexicographic ordering of the (nonzero) polynomials to set up the correspondence. 
This correspondence is as follows: 

A +) 1 B t) 2 c # x 
D +) x+1 E ++ x+2 F f) 2x 
G e 2x+1 H t) 2x+2 I * x2 
J * x2+1 IC H s2+2 L t) x*+x 

M ti x*+x+1 N H x2+x+2 0 * x2 +2x 
P f) x2+2x+1 Q H x2+2x+2 R f) 2x2 
s i+ 2x2+ 1 T f) 2x2 + 2 u H 2x2 + 5 
v t) 2x2+z+1 w f) 2x2+x+2 x 4-b 2x2+ 2x 
Y f) 2x=+22+1 z H 2x=+22+2 

Suppose Bob uses (Y = x and a = 11 in an ElGamal system; then /3 = x + 2. Show 
how Bob will decrypt the following string of ciphertext: 

(K,H) (P,X) (N,K) (H,R) (T,F) (V,Y) (E,Hl (F,A) (T,W) tJ,Dl tU,J) 

5.8 Let E be the elliptic curve y* = x3 + x + 28 defined over i&r. 
(a) Determine the number of points on E. 
(b) Show that E is not a cyclic group. 
(c) What is the maximum order of an element in E? Find an element having this 

order. 
5.9 Let E be the elliptic curve y* = x3 + x + 13 defined over &i. It can be shown 

that #E = 34 and (9,lO) is an element of order 34 in E. The Menezes-Vanstone 
Cryptosystem defined on E will have as its plaintext space &* x &*. Suppose 
Bob’s secret exponent is a = 25. 

(a) Compute /3 = ao. 
(b) Decrypt the following string of ciphertext: 

((4,9), 28,7), ((19,28), 9,13), ((5,22), 20,17), ((25716) 12727). 

(c) Assuming that each plaintext represents two alphabetic characters, convert 
the plaintext into an English word. (Here we will use the correspondence 
A++1 , . . ., Z t) 26, since 0 is not allowed in a (plaintext) ordered pair.) 

5.10 Suppose the Merkle-Hellman Cryptosystem has as its public list of sizes the vector 

t = (1394,1256,1508,1987,439,650,724,339,2303,810). 

Suppose Oscar discovers that p = 2503. 
(a) By trial and error, determine the value a such that the list a-‘t mod p is a 

permutation of a superincreasing list. 
(b) Show how the ciphertext 5746 would be decrypted. 
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5.11 It can be shown that the matrix H shown below is a parity-check matrix for a 
[15,7,5] code called a BCH code. 

i 

100010011010111 
010011010111100 
001001101011110 

H= 000100110101111 
100011000110001~ 
000110001100011 
001010010100101 
011110111101111 1 

Decode, if possible, each of the following received vectors r using the syndrome 
decoding method. 

(a) r= (l,l,O,O,O,O,O,O,O,O,O,O,O,O,O). 
(b) r=(1,1,0,1,1,1,1,0,1,0,1,1,0,0,0). 
(c) r=(1,0,1,0,1,0,0,1,0,1,1,0,0,0,0). 
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