
The RSA System and Factoring 116...............
4.1 Introduction to Public-key 116...................
4.2 More Number Theory 116.........................

4.2.1 The Euclidean Algorithm 116.....................
FIGURE 4.1 119.............................................

4.2.2 The Chinese Remainder Theorem 119......
4.2.3 Other Useful Facts 122...............................

FIGURE 4.2 124.............................................
4.3 The RSA Cryptosystem 124.....................
4.4 Implementing RSA 125.............................

FIGURE 4.3 126..................................................
FIGURE 4.4 127..................................................

4.5 Probabilistic Primality Testing 129............
FIGURE 4.5 130..................................................
FIGURE 4.6 130..................................................
FIGURE 4.7 133..................................................
FIGURE 4.8 136..................................................
FIGURE 4.9 137..................................................

4.6 Attacks On RSA 138.................................
4.6.1 The Decryption Exponent 139....................

FIGURE 4.10 141...........................................
4.6.2 Partial Information Concerning 144............

FIGURE 4.11 145...........................................
4.7 The Rabin Cryptosystem 145...................

FIGURE 4.12 146................................................
FIGURE 4.13 146................................................
FIGURE 4.14 149................................................

4.8 Factoring Algorithms 150..........................
FIGURE 4.15 151................................................
4.8.1 The p - 1 Method 151.................................
4.8.2 Dixon�s Algorithm and the 153...................
4.8.3 Factoring Algorithms in Practice 155..........

4.9 Note-s and References 156......................
Exercises 157.................................................

TABLE 4.1 158....................................................
TABLE 4.2 159....................................................



FIGURE 4.16 160................................................



The RSA System and Factoring 

4.1 Introduction to Public-key Cryptography 

In the classical model of cryptography that we have been studying up until now, 
Alice and Bob secretly choose the key I<. I< then gives rise to an encryption rule 
eK and a decryption rule dK. In the cryptosystems we have seen so far, dK is 
either the same as eK, or easily derived from it (for example, DES decryption is 
identical to encryption, but the key schedule is reversed). Cryptosystems of this 
type are known as private-key systems, since exposure of eK renders the system 
insecure. 

One drawback of a private-key system is that it requires the prior communication 
of the key I( between Alice and Bob, using a secure channel, before any ciphertext 
is transmitted. In practice, this may be very difficult to achieve. For example, 
suppose Alice and Bob live far away from each other and they decide that they 
want to communicate electronically, using e-mail. In a situation such as this, Alice 
and Bob may not have access to a reasonable secure channel. 

The idea behind a public-key system is that it might be possible to find a 
cryptosystem where it is computationally infeasible to determine dK given eK. If 
so, then the encryption rule eK could by made public by publishing it in a directory 
(hence the term public-key system). The advantage of a public-key system is that 
Alice (or anyone else) can send an encrypted message to Bob (without the prior 
communication of a secret key) by using the public encryption rule eK. Bob will 
be the only person that can decrypt the ciphertext, using his secret decryption rule 
dK. 

Consider the following analogy: Alice places an object in a metal box, and then 
locks it with a combination lock left there by Bob. Bob is the only person who 
can open the box since only he knows the combination. 

The idea of a public-key system was due to Diffie and Hellman in 1976. The 
first realization of a public-key system came in 1977 by Rivest, Shamir, and 
Adleman, who invented the well-known RSA Cryptosystem which we study in 
this chapter. Since then, several public-key systems have been proposed, whose 

I14 



4.1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 115 

security rests on different computational problems. Of these, the most important 
are the following: 

RSA 

The security of RSA is based on the difficulty of factoring large integers. 
This system is described in Section 4.3. 

Merkle-Hellman Knapsack 

This and related systems are based on the difficulty of the subset sum 
problem (which is NP-complete’); however, all of the various knapsack 
systems have been shown to be insecure (with the exception of the Chor- 
Rivest Cryptosystem mentioned below). See Chapter 5 for a discussion of 
this cryptosystem. 

McEliece 

The McEliece Cryptosystem is based on algebraic coding theory and is still 
regarded as being secure. It is based on the problem of decoding a linear 
code (which is also NP-complete). (See Chapter 5.) 

ElGamal 

The ElGamal Cryptosystem is based on the difficulty of the discrete loga- 
rithm problem for finite fields. (See Chapter 5.) 

Chor-Rivest 

This is also referred to as a “knapsack” type system, but it is still regarded 
as being secure. 

Elliptic Curve 

The Elliptic Curve Cryptosystems are modifications of other systems (such 
as the ElGamal Cryptosystem, for example) that work in the domain of el- 
liptic curves rather than finite fields. The Elliptic Curve Cryptosystems 
appear to remain secure for smaller keys than other public-key cryptosys- 
terns. (See Chapter 5.) 

One very important observation is that a public-key cryptosystem can never 
provide unconditional security. This is because an opponent, on observing a 
ciphertext y, can encrypt each possible plaintext in turn using the public encryption 
rule eK until he finds the unique 2: such that y = eK (z). This a! is the decryption 
of y. Consequently, we study the computational security of public-key systems. 

It is helpful conceptually to think of a public-key system in terms of an ab- 
straction called a trapdoor one-way function. We informally define this notion 
now. 

Bob’s public encryption function, eK, should be easy to compute. We have just 
noted that computing the inverse function (i.e., decrypting) should be hard (for 

‘The NP-complete problems are a large class of problems for which no polynomial-time algorithms 
are known. 



116 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

anyone other than Bob). This property of being easy to compute but hard to invert 
is often called the one-way property . Thus, we desire that eK be an (injective) 
one-way function. 

One-way functions play a central role in cryptography; they are important for 
constructing public-key cryptosystems and in various other contexts. Unfortu- 
nately, although there are many functions that are believed to be one-way, there 
currently do not exist functions that can be proved to be one-way. 

Here is an example of a function which is believed to be one-way. Suppose n 
is the the product of two large primes p and q, and let b be a positive integer. Then 
define f : Z,, + Z,, to be 

f(x) = xb mod n. 

(For a suitable choice of b and n, this is in fact the RSA encryption function; we 
will have much more to say about it later.) 

If we are to construct a public-key cryptosystem, then it is not sufficient to find 
a one-way function. We do not want eK to be a one-way function from Bob’s 
point of view, since he wants to be able to decrypt messages that he receives in an 
efficient way. Thus, it is necessary that Bob possesses a trapdoor, which consists 
of secret information that permits easy inversion of eK. That is, Bob can decrypt 
efficiently because he has some extra secret knowledge about K. So, we say that a 
function is a trapdoorone-way function if it is a one-way function, but it becomes 
easy to invert with the knowledge of a certain trapdoor. 

We will see in Section 4.3 how to find a trapdoor for the function f defined 
above. This will lead to the RSA Cryptosystem. 

4.2 More Number Theory 

Before describing how RSA works, we need to discuss some more facts concerning 
modular arithmetic and number theory. Two fundamental results that we require 
are the Euclidean algorithm and the Chinese remainder theorem. 

4.2.1 The Euclidean Algorithm 

We already observed in Chapter 1 that Z, is a ring for any positive integer n. 
We also proved there that b E Z,, has a multiplicative inverse if and only if 
gcd(b, n) = 1, and that the number of positive integers less than n and relatively 
prime ton is d(n). 

The set of residues modulo n that are relatively prime to n is denoted Z,* . It is 
not hard to see that Z, * forms an abelian group under multiplication. We already 
have stated that multiplication modulo n is associative and commutative, and that 
1 is the multiplicative identity. Any element in Z,,* will have a multiplicative 



4.2. MORE NUMBER THEORY 117 

inverse (which is also in &*). Finally, Zn * is closed under multiplication since 
xy is relatively prime to n whenever x and y are relatively prime to n (prove this!). 

At this point, we know that any b E Zn* has a multiplicative inverse, b- t, but 
we do not yet have an efficient algorithm to compute b-‘. Such an algorithm 
exists; it is called the extended Euclidean algorithm. 

First, we describe the Euclidean algorithm, in its basic form, which is used 
to compute the greatest common divisor of two positive integers, say ra and rt, 
where ra > rt. The Euclidean algorithm consists of performing the following 
sequence of divisions: 

r0 = qtrt + 7-2, 0 < r2 < 73 
r1 = q2r2+r3, 0 < rg < r2 

r,-2 = qm-lrm-l + r,, 0 < r, < r,-I 
rm-t = qmrm. 

Then it is not hard to show that 

gcd(re, r1) = gcd(rr , r2) = . . . = gcd(r,- 1, rm) = r,. 

Hence, it follows that gcd(re, rl) = r,,,. 
Since the Euclidean algorithm computes greatest common divisors, it can be 

used to determine if a positive integer b < n has a multiplicative inverse modulo 
n, by starting with ro = n and r1 = b. However, it does not compute the value of 
the multiplicative inverse (if it exists). 

Now, suppose we define a sequence of numbers to, tl , . . . , t, according to the 
following recurrence (where the qj’s are defined as above): 

to = 0 
t1 = 1 
tj = tj-2 - qj-ltj-1 mod re, if j 2 2. 

Then we have the following useful result. 

THEOREM 4.1 
For 0 5 j 5 m, we have that rj f tjrl (mod ro), where the qj ‘S and rj ‘S 
are deJined as in the Euclidean algorithm, and the tj ‘s are defined in the above 
recurrence. 

PROOF The proof is by induction on j. The assertion is trivially true for j = 0 
and j = 1. Assume the assertion is true for j = i - 1 and i - 2, where i 2 2; we 
will prove the assertion is true for j = i. By induction, we have that 

T;-2 E ti-zrl (mod TO) 

and 

ri-1 E ti-lrl (mod ra). 



118 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

Now, we compute: 

ri = rj-2 - pi-lri-1 

E ti-zrl - qi-lti-lrl (mod t-0) 

q (ti-2 - qi-lti-I)rI (mod ra) 

E tirl (mod r-0). 

Hence, the result is true by induction. 

The next corollary is an immediate consequence. 

COROLLARY 4.2 
Suppose gcd(re, r-1) = 1. Then t, = r1-l mod TO. 

Now, the sequence of numbers to, t 1, . . . t, can be calculated in the Euclidean 
algorithm at the same time as the qj’s and the rj’s. In Figure 4.1, we present the 
extended Euclidean algorithm to compute the inverse of b modulo n, if it exists. 
In this version of the algorithm, we do not use an array to keep track of the qj’s, 
rj’s and tj’s, since it suffices to remember only the “last” two terms in each of 
these sequences at any point in the algorithm. 

In step 10 of the algorithm, we have written the expression for temp in such a 
way that the reduction modulo n is done with a positive argument. (We mentioned 
earlier that modular reductions of negative numbers yield negative results in many 
computer languages; of course, we want to end up with a positive result here.) We 
also mention that at step 12, it is always the case that tb - r (mod n) (this is the 
result proved in Theorem 4.1). 

Here is a small example to illustrate: 

Example 4.1 
Suppose we wish to compute 28-i mod 75. The Extended Euclidean algorithm 
proceeds as follows: 

75 = 2 x 28 + 19 step 6 
73 x 28 mod 75 = 19 step 12 
28=1x19+9 step 16 
3 x 28 mod 75 = 9 step 12 
19=2x9+1 step 16 
67 x 28 mod 75 = 1 step 12 
9=9x 1 steo 16 

Hence, 28-l mod 75 = 67. 0 



4.2. MORE NUMBER THEORY 119 

FIGURE 4.1 
Extended Euclidean algorithm 

1. no = n 
P d. b. = b 

3. to = 0 

t. t=1 

5. r = no -qxbo 
7. while r > 0 do 

8. temp=to-qxt 

a. if temp >_ 0 then temp = temp mod n 

10. if temp < 0 then temp = n - ((-temp) mod n) 

11. to = t 

12. t = temp 

13. no = bo 

14. bo = r 

15. Q = l$y 
16. 

17. 

r=no-qxbo 

if bo # 1 then 

b has no inverse modulo n 

else 

b-‘=tmodn 

4.2.2 The Chinese Remainder Theorem 

The Chinese remainder theorem is really a method of solving certain systems 
of congruences. Suppose ml, . . . , m, are pairwise relatively prime (that is, 
gcd(mi, mj) = 1 if i # j). Suppose at,. . . , a, are integers, and consider 
the following system of congruences: 

x~al (modml) 

x G a2 (mod mz) 

x E a, (mod m,). 



120 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

The Chinese remainder theorem asserts that this system has a unique solution 
moduloM = mt x m2 x . . . x m,.. We will prove this result in this section, 
and also describe an efficient algorithm for solving systems of congruences of this 
type. 

It is convenient to study the function A : ZM + Z!,, x . . . x &,, which we 
define as follows: 

Example 4.2 
Suppose r = 2, ml = 5 and rn2 = 3, so M = 15. Then the function T has the 
following values: 

40) = (O,O) r(l) = (171) n(2) = (2,4 
n(3) = (3,O) 44) = (471) r(5) = (0,2) 
~(6) = (l,O) r(7) = (2,l) 48) = (3,~) 
r(9) = (470) n(l0) = (0,l) ?r(ll) = (1,2) 

7r(12) = (2,O) 7r(13) = (3,l) n(14) = (4,2). 

0 

Proving the Chinese remainder theorem amounts to proving that this function 
?r we have defined is a bijection. In Example 4.2 this is easily seen to be the case. 
In fact, we will be able to give an explicit general formula for the inverse function 
7r-‘. 

For 1 5 i 5 r, define 

Mj=E. 
mi 

Then it is not difficult to see that 

gcd(Mi, mi) = 1 

for 1 5 i 5 r. Next, for 1 5 i 5 r, define 

yi = Mi-’ mod mi. 

(This inverse exists since gcd(Mi , mi) = 1, and it can be found using the Euclidean 
algorithm .) Note that 

Miyi E 1 (mod mi) 

for 1 5 i 5 r. 



4.2. MORE NUMBER THEORY 121 

Now, define a function p : Z,, x . . . x L!&, -+ ZM as follows: 

p(al, . . . , a,.) = c aiMiyi mod M. 
i=l 

We will show that the function p = r-t , i.e., it provides an explicit formula for 
solving the original system of congruences. 

DenoteX = ~(a,,..., a,.), and let 1 5 j 5 r. Consider a term a;M;yi in the 
above summation, reduced modulo mj : If i = j, then 

UiMiyi E ai (mod mi) 

since 

Miyj s 1 (mod mi). 

On the other hand, if i # j, then 

UiMiyi E 0 (mod mj) 

since mj 1 Mi in this case. Thus, we have that 

X E ka;Mjyi (mod mj) 
i=l 

E aj (mod mj). 

Since this is true for all j, 1 5 j 5 r, X is a solution to the system of congruences. 
At this point, we need to show that the solution X is unique modulo M. But 

this can be done by simple counting. The function ?r is a function from a domain 
of cardinality M to a range of cardinality M. We have just proved that rr is a 
surjective (i.e., onto) function. Hence, T must also be injective (i.e., one-to-one), 
since the domain and range have the same cardinality. It follows that ?r is a 
bijection and n-’ = p. Note also that rr-t is a linear function of its arguments 
Ul,...,U,. 

Here is a bigger example to illustrate. 

Example 4.3 
Suppose r = 3, ml = 7, m2 = 11 and ml = 13. Then M = 1001. We compute 
MI = 143, M2 = 91 and M3 = 77, and then yt = 5, y2 = 4 and ys = 12. Then 
the function IT’ : Z& x Ztt x Zi3 + Ztmt is the following: 

A-‘(al, ~2, ~3) = 715~1 + 364~2 + 924~3 mod 1001. 

For example, if 2: = 5 (mod 7), 2 E 3 (mod 11) and c z 10 (mod 13), then this 
formula tells us that 

2 = 715 x 5 + 364 x 3 + 924 x 10 mod 1001 



122 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

= 13907 mod 1001 

= 894 mod 1001. 

This can be verified by reducing 894 modulo 7, 11 and 13. i] 

For future reference, we record the results of this section as a theorem. 

THEOREM 4.3 (Chinese Remainder Theorem) 
Suppose ml, . . . , m, are pairwise relatively pn’me positive integers, and let 

a, be integers. Then, the system of r congruences x c ai (mod mi) 
(4’ ‘<‘i ‘5 r) has a unique solution module M = ml x . . . x m,, which is given by 

r 
x= c aiMiyi mod M, 

i=l 

where Mi = M/mi and yi = Mi-’ mod mi, for 1 2 i 2 r. 

4.2.3 Other Useful Facts 

We next mention another result from elementary group theory, called Lagrange’s 
Theorem, that will be relevant in our treatment of the RSA Cryptosystem. For 
a (finite) multiplicative group G, define the order of an element g E G to be 
the smallest positive integer m such that g”’ = 1. The following result is fairly 
simple, but we will not prove it here. 

THEOREM 4.4 (Lagrange) 
Suppose G is a multiplicative group of order n, and g E G. Then the order of g 
divides n. 

For our purposes, the following corollaries are essential. 

COROLLARY 4.5 
Ifb E Z&z*, then b+(“) 3 1 (mod n). 

PROOF ;Z, * is a multiplicative group of order 4(n). 

COROLLARY 4.6 (Fermat) 
Suppose p is prime and b E Zr. Then bp E b (mod p). 

PROOF If p is prime, then 4(p) = p - 1. So, for b $ 0 (mod p), the result 
follows from Corollary 4.5. For b E 0 (mod p), the result is also true since 
0” E 0 (mod p). 1 



4.2. MORE NUMBER THEORY 123 

At this point, we know that if p is prime, then Z$,* is a group of order p - 1, 
and any element in Z$,* has order dividing p - 1. However, if p is prime, then the 
group Zr* is in fact cyclic: there exists an element cr E ZP* having order equal 
to p - 1. We will not prove this very important fact, but we do record it for future 
reference: 

THEOREM 4.7 
If p is prime, then &,* is a cyclic group. 

An element (Y having order p- 1 is called aprimitive element modulo p. Observe 
that (Y is a primitive element if and only if 

{d : 0 5 i 5 p - 2) = ;Z,*. 

Now, suppose p is prime and (Y is a primitive element modulo p. Any element 
p E i&* can be written as p = cryi, where 0 5 i 5 p - 2, in a unique way. It is 
not difficult to prove that the order of /3 = (~j is 

P-1 
gcd(p- 1,i)’ 

Thus p is itself a primitive element if and only if gcd(p - 1, i) = 1. It follows that 
the number of primitive elements modulo p is 4(p - 1). 

Example 4.4 
Suppose p = 13. By computing successive powers of 2, we can verify that 2 is a 
primitive element modulo 13: 

2’mod13= 1 

2’ mod 13 = 2 

22 mod 13 = 4 

23 mod 13 = 8 

24 mod 13 = 3 

2’ mod 13 = 6 

26 mod 13 = 12 

27mod13= 11 

2’ mod 13 = 9 

29 mod 13 = 5 

2” mod 13 = 10 

2” mod 13 = 7. 



124 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

FIGURE 4.2 
RSA Cryptosystem 

Let n = pq, where p and q are primes. Let P = C = Z,,, and define 

K = {(n,p, q,u, b) : n = pq,p, q prime, ub s 1 (mod 4(n))}. 

For Ii = (n, p, q, a, b), define 

eK(x) = xb mod n 

and 

dK(y) = ya mod n 

(x, y E &). The values n and b are public, and the values p, q, a are 
secret. 

The element 2i is primitive if and only if gcd(i, 12) = 1; i.e., if and only if 
i = 1,5,7 or 11. Hence, the primitive elements modulo 13 are 2,6,7 and 11. 0 

4.3 The RSA Cryptosystem 

We can now describe the RSA Cryptosystem. This cryptosystem uses computa- 
tions in &, where n is the product of two distinct odd primes p and q. For such 
n, note that d(n) = (p - l)(q - 1). 

The formal description of the cryptosystem is given in Figure 4.2. Let’s verify 
that encryption and decryption are inverse operations. Since 

we have that 

ub f 1 (mod d(n)), 

ub = t+(n) + 1 

for some integer t 2 1. Suppose that x E Z,’ ; then we have 

(xb)” E x@(~)+’ (mod n) 

E (x~(~))~x (mod n) 

3 ltx (mod n) 

E x (mod n), 



4.4. IMPLEMENTING RSA 125 

as desired. We leave it as an exercise for the reader to show that (xb)” - x 
(mod n) if x E a,\&*. 

Here is a small (insecure) example of the RSA Cryptosystem. 

Example 4.5 
Suppose Bob chooses p = 101 and q = 113. Then n = 11413 and 4(n) = 
100 x 112 = 11200. Since 11200 = 26527, an integer b can be used as an 
encryption exponent if and only if b is not divisible by 2,5 or 7. (In practice, 
however, Bob will not factor 4(n). He will verify that gcd(4(n), b) = 1 using 
the Euclidean algorithm.) Suppose Bob chooses b = 3533. Then the Extended 
Euclidean algorithm will yield 

b-’ = 6597 mod 11200. 

Hence, Bob’s secret decryption exponent is a = 6597. 
Bob publishes n = 11413 and b = 3533 in a directory. Now, suppose Alice 

wants to send the plaintext 9726 to Bob. She will compute 

97263533 mod 11413 = 5761 

and send the ciphertext 5761 over the channel. When Bob receives the ciphertext 
5761, he uses his secret decryption exponent to compute 

57616597 mod 11413 = 9726. 

(At this point, the encryption and decryption operations might appear to be very 
complicated, but we will discuss efficient algorithms for these operations in the 
next section.) 0 

The security of RSA is based on the hope that the encryption function eK (x) = 
xb mod n is one-way, so it will be computationally infeasible for an opponent to 
decrypt a ciphertext. The trapdoor that allows Bob to decrypt is the knowledge 
of the factorization n = pq. Since Bob knows this factorization, he can compute 
$(n) = (p - l)(q - 1) and then compute the decryption exponent a using the 
Extended Euclidean algorithm. We will say more about the security of RSA later 
on. 

4.4 Implementing RSA 

There are many aspects of the RSA Cryptosystem to discuss, including the details 
of setting up the cryptosystem, the efficiency of encrypting and decrypting, and 
security issues. In order to set up the system, Bob follows the steps indicated in 



126 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

FIGURE 4.3 
Setting up RSA 

1. Bob generates two large primes, p and q 

2. Bob computes n = pq and 4(n) = (p - l)(q - 1) 

3. Bob chooses a random b (0 < b < 4(n)) such that gcd(b, 4(n)) = 1 

4. Bob computes a = b-’ mod 4(n) using the Euclidean algorithm 

5. Bob publishes n and b in a directory as his public key. 

Figure 4.3. How Bob carries out these steps will be discussed later in this chapter. 

One obvious attack on the cryptosystem is for a cryptanalyst to attempt to factor 
n. If this can be done, it is a simple manner to compute 4(n) = (p - l)(q - 1) 
and then compute the decryption exponent a from b exactly as Bob did. (It has 
been conjectured that breaking RSA is polynomially equivalent2 to factoring n, 
but this remains unproved.) 

Hence, if the RSA Cryptosystem is to be secure, it is certainly necessary 
that n = pq must be large enough that factoring it will be computationally 
infeasible. Current factoring algorithms are able to factor numbers having up 
to 130 decimal digits (for more information on factoring, see Section 4.8). Hence, 
it is recommended that, to be on the safe side, one should choose p and q to each 
be primes having about 100 digits; then n will have 200 digits. Several hardware 
implementations of RSA use a modulus which is 512 bits in length. However, a 
512-bit modulus corresponds to about 154 decimal digits (since the number of bits 
in the binary representation of an integer is log, 10 times the number of decimal 
digits), and hence it does not offer good long-term security. 

Leaving aside for the moment the question of how to find 100 digit primes, let us 
look now at the arithmetic operations of encryption and decryption. An encryption 
(or decryption) involves performing one exponentiation modulo n. Since n is very 
large, we must use multiprecision arithmetic to perform computations in ZZ&, and 
the time required will depend on the number of bits in the binary representation 
ofn. 

Suppose n has k bits in its binary representation; i.e., k = [log, n] + 1. Using 
standard “grade-school” arithmetic techniques, it is not difficult to see that an 
addition of two k-bit integers can be done in time O(k), and a multiplication can 
be done in time O(k2). Also, a reduction modulo n of an integer having at most 

*Two problems are. said to be. polynomially equivalent if the existence of a polynomial-time 
algorithm for either problem implies the existence of a polynomial-time algorithm for the other 
problem. 



4.4. IMPLEMENTING RSA 127 

FIGURE 4.4 
The square-and-multiply algorithm to compute xb mod n 

1. %=I 

2. fori = !- 1 downtoOdo 

3. z = .z2 mod n 

4. ifbi=lthenz=zxxmodn 

2k bits can be performed in time 0( k2) (this amounts to doing long division and 
retaining the remainder). Now, suppose that x, y E Z,, (where we are assuming 
that 0 5 x, y 5 n - 1). Then xy mod n can be computed by first calculating 
the product xy (which is a 2k-bit integer), and then reducing it modulo n. These 
two steps can be peformed in time O(k2). We call this computation modular 
multiplication. 

We now consider modular exponentiation, i.e., computation of a function of 
the form xc mod n. As noted above, both the encryption and the decryption 
operations in RSA are modular exponentiations. Computation of xc mod n can 
be done using c - 1 modular multiplications; however, this is very inefficient if 
c is large. Note that c might be as big as 4(n) - 1, which is exponentially large 
compared to k. 

The well-known “square-and-multiply” approach reduces the number of mod- 
ular multiplications required to compute xc mod n to at most 2& where !Y is the 
number of bits in the binary representation of c. Since e 5 k, it follows that 
2’ mod n can be computed in time O(k3). Hence, RSA encryption and decryp- 
tion can both be done in polynomial time (as a function of k, which is the number 
of bits in one plaintext (or ciphertext) character). 

Square-and-multiply assumes that the exponent, b say, is represented in binary 
notation, say 

t-1 
b = Cbi2’, 

i=O 

where bi = 0 or 1, 0 5 i < C - 1. The algorithm to compute z = x6 mod n is 
presented in Figure 4.4. It is easy to count the number of modular multiplications 
performed by the square-and-multiply algorithm. There are always e squarings 
performed (step 3). The number of modular multiplcations in step 4 is equal to 
the number of l’s in the binary representation of b, which is an integer between 0 
and -!?. Thus, the total number of modular multiplications is at least e and at most 
2c 

We will illustrate the use of square-and-multiply by returning to Example 4.5. 



128 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

Example 4.5 (Cont.) 
Recall that n = 11413, and the public encryption exponent is b = 3533. Alice 
encrypts the plaintext 9726 by computing 97263533 mod 11413, using the square- 
and multiply-algorithm, as follows: 

i lb;1 z 

11 1 l2 x 9726 = 9726 
10 1 97262 x 9726 = 2659 
9 0 26592 = 5634 
8 1 56342 x 9726 = 9167 
7 1 91672 x 9726 = 4958 
6 1 495g2 x 9726 = 7783 
5 0 77832 = 6298 
4 0 62982 = 4629 
3 1 46292 x 9726 = 10185 
2 1 1O1852 x 9726 = 105 
1 0 1O52 = 11025 
0 1 110252 x 9726 = 5761 

Hence, as stated earlier, the ciphertext is 5761. 0 

It should be emphasized that the most efficient current hardware implementa- 
tions of RSA achieve encryption rates of about 600 Kbits per second (using a 512 
bit modulus n), as compared to 1 Gbit per second for DES. Stated another way, 
RSA is roughly 1500 times slower than DES. 

At this point we have discussed the encryption and decryption operations for 
RSA. In terms of setting up RSA, the generation of the primes p and q (Step 1) 
will be discussed in the next section. Step 2 is straightforward and can be done in 
time 0( (log n)2). Steps 3 and 4 involve the Euclidean algorithm, so let’s briefly 
consider its complexity. 

Suppose we compute the greatest common divisor of r-0 and r-1, where PO > ~1. 
In each iteration of the algorithm, we compute a quotient and remainder, which 
can be done in time O((log ~0)~). If we can obtain an upper bound on the number 
of iterations, then we will have a bound on the complexity of the algorithm. There 
is a well-known result, known as Lame’s Theorem, that provides such a bound. It 
asserts that ifs is the number of iterations, then fs+2 5 TO, where fi denotes the 
ith Fibonacci number. Since 

1+Js i 
fi= -y-- , 

( ) 
it follows that s is O(logr0). 

This shows that the running time of the Euclidean algorithm is O((logn)3). 
(Actually, a more careful analysis can be used to show that the running time is, in 
fact, O((logn)2).) 



4.5. PROBABILISTIC PRIMALITY TESTING 129 

4.5 Probabilistic Primality Testing 

In setting up the RSA Cryptosystem, it is necessary to generate large (e.g., 80 
digit) “random primes.” In practice, the way this is done is to generate large random 
numbers, and then test them for primality using a probabilistic polynomial-time 
Monte Carlo algorithm such as the Solovay-Strassen or Miller-Rabin algorithm , 
both of which we will present in this section. These algorithms are fast (i.e., an 
integer n can be tested in time that is polynomial in log, n, the number of bits in 
the binary representation of n), but there is a possibility that the algorithm may 
claim that n is prime when it is not. However, by running the algorithm enough 
times, the error probability can be reduced below any desired threshold. (We will 
discuss this in more detail a bit later.) 

The other pertinent question is how many random integers (of a specified size) 
will need to be tested until we find one that is prime. A famous result in number 
theory, called the Prime number theorem, states that the number of primes not 
exceeding N is approximately N/In N. Hence, if p is chosen at random, the 
probability that it is prime is about l/lnp. For a 512 bit modulus, we have 
l/lnp x 1/ 177. That is, on average, of 177 random integers p of the appropriate 
size, one will be prime (of course, if we restrict our attention to odd integers, 
the probability doubles, to about 2/177). So it is indeed practical to generate 
sufficiently large random numbers that are “probably prime,” and hence it is 
practical to set up the RSA Cryptosystem. We proceed to describe how this is 
done. 

A decision problem is a problem in which a question is to be answered “yes” 
or “no.” A probabilistic algorithm is any algorithm that uses random numbers 
(in contrast, an algorithm that does not use random numbers is called a determin- 
istic algorithm). The following definitions pertain to probabilistic algorithms for 
decision problems. 

DEFINITION4.1 A yes-biased Monte Carlo algorithm is a probabilistic algo- 
rithm for a decision problem in which a “‘yes” answer is (always) correct, but a 
“no” answer may be incorrect. A no-biased Monte Carlo algorithm is defined in 
the obvious way. We say that a yes-biased Monte Carlo algorithm has errorprob- 
ability equal to e if for any instance in which the answer is “yes,” the algorithm 
will give the (incorrect) answer “no” with probability at most e. (This probability 
is computed over all possible random choices made by the algorithm when it is 
run with a given input.) 

The decision problem called Composites is described in Figure 4.5. 
Note that an algorithm for a decision problem only has to answer “yes” or 

“no.” In particular, in the case of the problem Composites, we do not require the 
algorithm to find a factorization in the case that n is composite. 

We will first describe the Solovay-Strassen algorithm, which is a yes-biased 



130 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

FIGURE 4.5 
Composites 

Problem Instance A positive integer n > 2. 

Question Is n composite? 

FIGURE 4.6 
Quadratic Residues 

Problem Instance An odd prime p, and an integer x such that 0 5 
x:Ip-1. 

Question Is x a quadratic residue modulo p? 

Monte Carlo algorithm for Composites with error probability l/2. Hence, if the 
algorithm answers “yes,” then n is composite; conversely, if n is composite, then 
the algorithm answers “yes” with probability at least l/2. 

Although the Miller-Rabin algorithm (which we will discuss later) is faster than 
Solovay-Strassen, we begin by looking at the Solovay-Strassen algorithm because 
it is easier to understand conceptually and because it involves some number- 
theoretic concepts that will be useful in later chapters of the book. We begin by 
developing some further background from number theory before describing the 
algorithm. 

DEFINITION 4.2 Suppose p is an odd prime and x is an integel; 1 5 x 5 p - 1. 
x is dejined to be a quadratic residue modulo p if the congruence y2 q x (mod p) 
has a solution y E i&,. x is dejined to be a quadratic non-residue modulo p if 
x $0 (mod p) and x is not a quadratic residue modulo p. 

Example 4.6 
The quadratic residues modulo 11 are 1,3,4,5 and 9. Note that (j~l)~ = 1, 
(*4)2 =03, (zl~2)~ = 4, (~k4)~ = 5 and (&3)2 = 9 (where all arithmetic is in 
&I). 

The decision problem Quadratic Residues is defined in Figure 4.6 in the 
obvious way: 

We prove a result, known as Euler’s criterion, that will give rise to a polynomial- 
time deterministic algorithm for Quadratic Residues. 



4.5. PROBABILISTIC PRIMALITY TESTING 131 

THEOREM 4.8 (Euler’s Criterion) 
Let p be prime. Then x is a quadratic residue modulo p if and only if 

x(~-‘)/~ E 1 (mod p). 

PROOF First, suppose x - y2 (mod p). Recall from Corollary 4.6 that if p is 
prime, then xp-i E 1 (mod p) for any x $0 (mod p). Thus we have 

x(P-1)/2 E (y2)(P-‘)/2 (mod p) 

E Yp-’ (mod p) 

= 1 (modp). 

Conversely, suppose x(P-I)/~ E 1 (mod p). Let b be a primitive element modulo 
p. Then x = b’ (mod p) for some i. Then we have 

x(P-1)/2 E (b’)(P-‘)/2 (mod p) 

E bi(P-‘)/2 (mod p). 

Since b has order p - 1, it must be the case that p - 1 divides i(p - 1)/2. Hence, 
i is even, and then the square roots of x are fb’i2. 1 

Theorem 4.8 yields a polynomial-time algorithm for Quadratic Residues, by 
using the “square-and-multiply” technique for exponentiation modulo p. The 
complexity of the algorithm will be O((logp)3). 

We now need to give some further definitions from number theory. 

DEFINITION 4.3 Sup ose p is an odd prime. For any integer a 2 0, we define 
the Legendre symbol % as follows: 

Q, 

0 ifaEO(modp) 
1 if a is a quadratic residue modulo p 

- 1 if a is a quadratic non-residue modulo p. 

We have already seen that a(P-1)/2 E 1 (mod p) if and only if a is a quadratic 
residue modulo p. If a is a multiple of p, then it is clear that a(P-1)/2 E 0 (mod p). 
Finally, if a is a quadratic non-residue modulo p, then a(P-1)/2 E -1 (mod p) 
since ap-’ E 1 (mod p), Hence, we have the following result, which provides an 
efficient algorithm to evaluate Legendre symbols: 

THEOREM 4.9 
Suppose p is prime. Then 

a 0 i 
q a(P-‘)/2 (mod p). 



132 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

Next, we define a generalization of the Legendre symbol. 

DEFINITION4.4 Suppose n is an odd positive integet; and the prime power 
factorization of n is pie’ . . .pkek. Let a > 0 be an integer The Jacobi symbol 
(a) is defined to be 

Example 4.7 
Consider the Jacobi symbol (H). Th e p rime power factorization of 9975 is 
9975 = 3 x 5* x 7 x 19. Thus we have 

(z2) = (yt) (y!)*(!y) (!g!) 

= ($ (g)‘(t) (+I) 

= (-1)(-1)2(-1)(-l) 

= -1. 

0 

Suppose n > 1 is odd. If n is prime then (i) E a(“-‘)/* (mod n) for any 
a. On the other hand, if n is composite, it may or may not be the case that 
(Ll) G aCnwl)/* (mod n). If this equation holds, then a is called an Euferpseudo- 
prime to the base n. For example, 10 is an Euler pseudo-prime to the base 91, 
since 

= -1 = 104’ mod91. 

However, it can be shown that, for any odd composite n, at most half of the integers 
a such that 1 5 a 5 n - 1 are Euler pseudo-primes to base n (see the exercises). 
This fact shows that the Solovay-Strassen primality test, which we present in 
Figure 4.7, is a yes-biased Monte Carlo algorithm with error probability at most 
l/2. At this point it is not clear that the algorithm is a polynomial-timealgorithm. 
We already know how to evaluate a(“-‘)/* mod n in time O((logn)3), but how 
do we compute Jacobi symbols efficiently? It might appear to be necessary to first 
factor n, since the Jacobi symbol (t) is defined in terms of the factorization of n. 
But, if we could factor n, we would already know if it is prime, so this approach 
ends up in a vicious circle. 

Fortunately, we can evaluate a Jacobi symbol without factoring n by using some 
results from number theory, the most important of which is a generalization of 



4.5. PROBABILISTIC PRIMALITY TESTING 133 

FIGURE 4.7 
The Solovay-Strassen primality test for an odd integer n 

1. choose a random integer a, 1 5 a 5 n - 1 

2. if (b) = a(n-‘)/2 (mod n) then 

answer “n is prime” 

else 

answer “n is composite” 

the law of quadratic reciprocity (property 4 below). We now enumerate these 
properties without proof: 

I. If n is an odd integer and mt G rn2 (mod n), then 

(T) = (?). 

2. If n is an odd integer, then 

1 ifnsfl (mod8) 
-1 ifnEf3(mod8). 

3. If n is an odd integer then 

(y2) = (X) (?). 

In particular, if m = 2kt, where t is odd, then 

(3 = (:)” (t). 

4. Suppose m and n are odd integers. Then 

Example 4.8 
As an illustration of the application of these properties, we evaluate the Jacobi 



134 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

symbol (z) as follows: 

by property 4 

by property 1 

= - (k)*(g) bypropefiy3 
117 

= - 0 7411 

7411 

= - (3 117 

40 

= - ( - > 117 

by property 2 

by property 4 

by property 1 

= - (&)‘(A) byproperty 

by property 2 

by property 4 

by property 1 

= -1 by property 2 

Notice that we successively apply properties 4, 1, 3, and 2 in this computation. 
II 

In general, by applying these four properties, it is possible to compute a Jacobi 
symbol (z) in polynomial time. The only arithmetic operations that are required 
are modular reductions and factoring out powers of two. Note that if an integer 
is represented in binary notation, then factoring out powers of two amounts to 
determining the number of trailing zeroes. So, the complexity of the algorithm 
is determined by the number of modular reductions that must be done. It is not 
difficult to show that at most O(logn) modular reductions are performed, each 
of which can be done in time O((logn)*). This shows that the complexity is 
0( (log n)3), which is polynomial in log n. (In fact, the complexity can be shown 
to be 0( (log n)‘) by more precise analysis.) 



4.5. PROBABILISTIC PRIMALITY TESTING 135 

Suppose that we have generated a random number n and tested it for primality 
using the Solovay-Strassen algorithm. If we have run the algorithm m times, what 
is our confidence that n is prime? It is tempting to conclude that the probability 
that such an integer n is prime is 1 - 2-m. This conclusion is often stated in both 
textbooks and technical articles, but it cannot be inferred from the given data. 

We need to be careful about our use of probabilities. We will define the 
following random variables: a denotes the event 

“a random odd integer n of a specified size is composite,” 

and h denotes the event 

“the algorithm answers ‘n is prime’ m times in succession.” 

It is certainly the case that prob(bla) 5 2-“. However, the probability that we 
are really interested is prob(alb), which is usually not the same as prob(bla). 

We can compute prob(alb) using Bayes’ theorem (Theorem 2.1). In order to 
do this, we need to know prob(a). Suppose N 5 n < 2N. Applying the Prime 
number theorem, the number of (odd) primes between N and 2N is approximately 

2N N N 
m--= 1nN 1nN 

n 
%--l. 

Since there are N/2 M n/2 odd integers between N and 2N, we will use the 
estimate 

2 
prob(a) e 1 - -. 

Inn 
Then we can compute as follows: 

prob(a,,,) = prob(bia)prob(a) 
ProO) 

prob(bla)prob(a) 
= prob(bla)prob(a) + prob(bIZ)prob(Z) 

proWa) (I- &) a prob(bla) (I- &) + & 
prob(bja)(lnn - 2) 

= prob(bla)(lnn - 2) + 2 

< 2-m(lnn - 2) 
- 2-m(lnn-2)+2 

Inn-2 
= lnn-2+2m+t’ 

Note that in this computation, Z denotes the event 



136 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

FIGURE 4.8 
Error probabilities for the Solovay-Strassen test 

m 

1 
2 
5 

10 
20 
30 
50 

100 

2-m 
1’/5 

175 + 2m+t 
.500 .978 
.250 .956 

.312 x lo-’ .732 

.977 x 10-s .787 x 10-l 

.954x 10-6 .834 x lO-4 

.931 x lo-9 .815 x lO-7 
.888 x lo-‘5 .777 x 10-13 
.789 x lO-3o .690 x lO-28 

“a random odd integer n is prime.” 

It is interesting to compare the two quantities (Inn - 2)/(lnn - 2 + 2m+‘) 
and 2-m as a function of m. Suppose that n M 2256 = e’77, since these are the 
sizes of primes that we seek for use in RSA. Then the first function is roughly 
175/( 175 + 2mt’). We tabulate the two functions for some values of m in Figure 
4.8. 

Although 175/( 175 + 2”+’ ) approaches zero exponentially quickly, it does not 
do so as quickly as 2-“. In practice, however, one would take m to be something 
like 50 or 100, which will reduce the probability of error to a very small quantity. 

We conclude this section with another Monte Carlo algorithm for Composites 
which is known as the Miller-Rabin algorithm (it is also known as the “strong 
pseudo-prime test”). This algorithm is presented in Figure 4.9. It is clearly a 
polynomial-time algorithm: its complexity is O((logn)3), which is the same as 
the Solovay-Strassen test. In fact, the Miller-Rabin algorithm performs better in 
practice than the Solovay-Strassen algorithm. 

We show now that this algorithm cannot answer “n is composite” if n is prime, 
i.e., the algorithm is yes-biased. 

THEOREM 4.10 
The Miller-Rabin algorithm for Composites is a yes-biased Monte Carlo algo- 
rithm. 

PROOF We will prove this by assuming the algorithm answers “n is composite” 
for some prime integer n, and obtain a contradiction. Since the algorithm answers 
“n is composite,” it must be the case that urn $ 1 (mod n). Now consider the 
sequence of values b tested in step 2 of the algorithm. Since b is squared in each 
iteration of the for loop, we are testing the values urn, a2m, . . . , a 2k-‘m. Since the 



4.5. PROBABILISTIC PRIMALITY TESTING 137 

FIGURE 4.9 
The Miller-Rabin primality test for an odd integer n 

1. write n - 1 = 2”m, where m is odd 

2. choose a random integer a, 1 5 a 5 n - 1 

3. compute b = a”’ mod n 

4. if b E 1 (mod n) then 

answer “n is prime” and quit 

5. fori=Otok- ldo 

6. if b E - 1 (mod n) then 

answer “n is prime” and quit 

else 

b = b2 mod n 

7. answer “n is composite” 

algorithm answers “n is composite,” we conclude that 

u21m $ -1 (mod n) 

forO<is k- 1. 
Now, using the assumption that n is prime, Fermat’s theorem (Corollary 4.6) 

tells us that 

u2km z 1 (mod n) 

since n - 1 = 2km. Then u2*-lm is a square root of 1 modulo n. Since n is 
prime, there are only two square roots of 1 modulo n, namely, f 1 mod n. This 
can be seen as follows: z is a square root of 1 modulo n if and only if 

n 1 (2 - l)(z + 1). 

Since n is prime, either n 1 (z - 1) (i.e., t G 1 (mod n)) or n \ (z + 1) (i.e., 
2 s -1 (mod n)). 

We have that 

so it follows that 

u~*-‘~ $ -1 (mod n), 

u2*-lm G 1 (mod n). 



138 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

Then u~“-‘~ must be a square root of 1. By the same argument, 

u~“-*~ s 1 (mod n). 

Repeating this argument, we eventually obtain 

urn z 1 (mod n), 

which is a contradiction, since the algorithm would have answered “n is prime” 
in this case. 1 

It remains to consider the error probability of the Miller-Rabin algorithm. Al- 
though we will not prove it here, the error probability can be shown to be, at most, 
l/4. 

4.6 Attacks On RSA 

In this section, we address the question: are there possible attacks on RSA other 
than factoring n? Let us first observe that it is sufficient for the cryptanalyst to 
compute 4(n). For, if n and $( ) n are known, and n is the product of two primes 
p, q, then n can be easily factored, by solving the two equations 

n = m 
4(n) = (P - I)(9 - 1) 

for the two “unknowns”p and q. If we substitute9 = n/p into the second equation, 
we obtain a quadratic equation in the unknown value p: 

p*-(n-$(n)+l)p+n=O. 

The two roots of this equation will be p and q, the factors of n. Hence, if a 
cryptanalyst can learn the value of 4(n), then he can factor n and break the 
system. In other words, computing 4(n) is no easier than factoring n. 

Here is an example to illustrate. 

Example 4.9 
Suppose the cryptanalyst has learned that n = 84773093 and 4(n) = 84754668. 
This information gives rise to the following quadratic equation: 

p2 - 18426~ + 84773093 = 0. 

This can be solved by the quadratic formula, yielding the two roots 9539 and 8887. 
These are the two factors of n. 0 



4.6. ATTACKS ON RSA 139 

4.6.1 The Decryption Exponent 

We will now prove the very interesting result that any algorithm which computes 
the decryption exponent a can be used as a subroutine (or oracle) in a probabilistic 
algorithm that factors n. So we can say that computing a is no easier than factoring 
n. However, this does not rule out the possibility of breaking the cryptosystem 
without computing a. 

Notice that this result is of much more than theoretical interest. It tells us that 
if a is revealed, then the value n is also compromised. If this happens, it is not 
sufficient for Bob to choose a new encryption exponent; he must also choose a 
new modulus n. 

The algorithm we are going to describe is a probabilistic algorithm of the Las 
Vegas type. Here is the definition: 

DEFZNZTZON4.5 Suppose 0 5 c < 1 is a real number A Las Vegas algorithm 
is a probabilistic algorithm such that, for any problem instance I, the algorithm 
may fail to give an answer with some probability E (i.e., it can terminate with the 
message “no answer”). However; if the algorithm does return an answec then the 
answer must be correct. 

REMARK A Las Vegas algorithm may not give an answer, but any answer it 
gives is correct. In contrast, a Monte Carlo algorithm always gives an answer, but 
the answer may be incorrect. 1 

If we have a Las Vegas algorithm to solve a problem, then we simply run the 
algorithm over and over again until it finds an answer. The probability that the 
algorithm will return “no answer” m times in succession is em. The average (i.e., 
expected) number of times the algorithm must be run in order to obtain an answer 
is in fact 1 /e (see the exercises). 

Suppose that A is a hypothetical algorithm that computes the decryption expo- 
nent a from b. We will describe a Las Vegas algorithm that uses A as an oracle. 
This algorithm will factor n with probability at least l/2. Hence, if the algorithm 
is run m times, then n will be factored with probability at least 1 - l/2m. 

The algorithm is based on certain facts concerning square roots of 1 modulo n, 
where n = pq is the product of two distinct odd primes. Recall that the congruence 
x2 E 1 (mod p) has two solutions modulo p, namely 2 = fl mod p. Similarly, 
the congruence x2 E 1 (mod q) has two solutions, namely x = fl mod q. 

Now, since x2 G 1 (mod n) if and only if x2 E 1 (mod p) and x2 G 1 (mod q), 
it follows that x2 E 1 (mod n) if and only if x = fl mod p and x = f 1 mod q. 
Hence, there are four square roots of 1 modulo n, and they can be found using 
the Chinese remainder theorem. ‘Iwo of these solutions are x = f 1 mod n; these 
are called the trivial square roots of 1 modulo p. The other two square roots are 
called non-trivial, and they are negatives of each other modulo n. 



140 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

Here is a small example to illustrate. 

Example 4.10 
Suppose n = 403 = 13 x 3 1. The four square roots of 1 modulo 403 are 1,92,3 11 
and 402. The square root 92 is obtained by solving the system x = 1 (mod 13), 
x c - 1 (mod 3 1) using the Chinese remainder theorem. Having found this non- 
trivial square root, the other non-trivial square root must be 403 - 92 = 3 11. It is 
the solution to the system x - -1 (mod 13), x - 1 (mod 31). 0 

Suppose x is a non-trivial square root of 1 modulo n. Then we have 

n I (x - 1)(x + 11, 

but n divides neither factor on the right side. It follows that gcd(x + 1, n) = p or q 
(and similarly, gcd(x - 1, n) = p or q). Of course, a greatest common divisor can 
be computed using the Euclidean algorithm, without knowing the factorization 
of n. Hence, knowledge of a non-trivial square root of 1 modulo n yields the 
factorization of n with only a polynomial amount of computation. This important 
fact is the basis of many results in cryptography. 

In Example 4.10 above, gcd(93,403) = 31 and gcd(312,403) = 13. 
In Figure 4.10, we present an algorithm which, using the hypothetical algorithm 

A as a subroutine, attempts to factor n by finding a non-trivial square root of 1 
modulo n. (Recall that A computes the decryption exponent a corresponding to 
the encryption exponent b.) We first do an example to illustrate the application 
of this algorithm. 

Example 4.11 
Suppose n = 89855713, b = 34986517 and a = 82330933, and the random value 
w = 5. We have 

ub - 1 = 23 x 360059073378795. 

In step 6, TJ = 85877701, and in step 10, v = 1. In step 12, we compute 

gcd(85877702, n) = 9103. 

This is one factor of n; the other is n/9103 = 9871. [I 

Let’s now proceed to the analysis of the algorithm. First, observe that if we 
are lucky enough to choose w to be a multiple of p or q, then we can factor n 
immediately. This is detected in step 2. If w is relatively prime to n, then we 
compute wr, w2’, w4r, . . ., by successive squaring, until 

w2” E 1 (mod n) 



4.6. ATTACKS ON RSA 141 

FIGURE 4.10 
Factoring algorithm, given the decryption exponent a 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

choose w at random such that 1 5 w 5 n - 1 

compute x = gcd(w, n) 

if 1 < x < n then quit (success: x = p or x = q) 

compute a = A(b) 

write ab - 1 = 2’r, T odd 

compute v = 20’ mod n 

if v E 1 (mod n) then quit (failure) 

while v $ 1 (mod n) do 

V’J = v 

v = v2 mod n 

if vo s - 1 (mod n) then 

quit (failure) 

else 

compute x = gcd( ve + 1, n) (success: x = p or x = q) 

for some t. Since 

a6 - 1 = 2’~ E 0 (mod 4(n)), 

we know that w2*’ E 1 (mod n). Hence, the while loop terminates after at most 
s iterations. At the end of the while loop, we have found a value va such that 
vi G 1 (mod n) but va $ 1 (mod n). If ve 3 -1 (mod n), then the algorithm 
fails; otherwise, va is a non-trivial square root of 1 modulo n and we are able to 
factor n (step 12). 

The main task facing us now is to prove that the algorithm succeeds with 
probability at least l/2. There are two ways in which the algorithm can fail to 
factor 12: 

1. wp E 1 (mod n) (step 7) 

2 . W”~E-1 (modn)forsomet,O<t<s-l(stepl1) 

We have s + 1 congruences to consider. If a random value w is a solution 
to at least one of these s + 1 congruences, then it is a “bad” choice, and the 
algorithm fails. So we proceed by counting the number of solutions to each of 
these congruences. 



142 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

First, consider the congruence w’ E 1 (mod n). The way to analyze a congru- 
ence such as this is to consider solutions modulo p and modulo q separately, and 
then combine them using the Chinese remainder theorem. Observe that x E 1 
(mod n) if and only if x E 1 (mod p) and x E 1 (mod q). 

So, we first consider wp E 1 (mod p). Since p is prime, Z&,* is a cyclic group 
by Theorem 4.7. Let g be a primitive element modulo p. We can write w = g” 
for a unique integer u, 0 5 u 2 p - 2. Then we have 

wr E 1 (mod p) 

9 “r E 1 (mod p) 

(P- 1) I ur. 

Let us write 

where pl is odd, and 

where q1 is odd. Since 

p - 1 = 2’p, 

q - 1 = 2jq1 

4(n) = (p - l)(q - 1) 1 (ub - 1) = 2’r, 

we have that 

Hence 

and 

Now, the condition (p - 1) I ur becomes 2’pl I ur. Since pl I T and r is odd, it 
is necessary and sufficient that 2’ 1 u. Hence, u = k2’, 0 5 k 5 pl - 1, and the 
number of solutions to the congruence w’ E 1 (mod p) is pl . 

By an identical argument, the congruence w’ E 1 (mod q) has exactly q1 
solutions. We can combine any solution modulo p with any solution modulo 
q to obtain a unique solution modulo n, using the Chinese remainder theorem. 
Consequently, the number of solutions to the congruence wp E 1 (mod n) is plql. 

The next step is to consider a congruence w”’ E - 1 (mod n) for a fixed value 
t (where 0 5 t 5 s - 1). Again, we first look at the congruence modulo p and 
then modulo q (note that w”’ E -1 (mod n) if and only if w2” - -1 (mod p) 
and w2’? = -1 (mod q)). First, consider w2 ’ E -1 (mod p). Writing w = gU, 
as above, we get 

9 u2’r G - 1 (mod p). 



4.6. ATTACKS ON RSA 143 

Since g(P-1)/2 f - 1 (mod p), we have that 

dr f 9 (mod p- 1) 

(P-1) I ( 
u2tr - p-l 

2 ) 

2(p - 1) 1 (u2t+‘r - (p - 1)). 

Since p - 1 = 2ipl, we get 

2’+‘pl 1 (u2t+‘r - 2’Pl). 

Taking out a common factor of pl, this becomes 

2’+’ 1 (“2;” 2’) . 

Now, if t 2 i, then there can be no solutions since 2’+’ 1 2t+’ but 2’+’ X2’. On 
the other hand, if t 5 i - 1, then u is a solution if and only if u is an odd multiple 
of 2”-t-’ (note that r/p, is an odd integer). So, the number of solutions in this 
case is 

p-l 1 
,i-t-1 x 5 =2tp1. 

By similar reasoning, the congruence w2’r E -1 (mod q) has no solutions if 
t >_ j, and 2tqt solutions if t 5 j - 1. Using the Chinese remainder theorem, we 
see that the number of solutions of w2’r E - 1 (mod n) is 

0 if t >_ min{i, j} 
22tp1q1 if t 5 min{i, j} - 1. 

Now, t can range from 0 to s - 1. Without loss of generality, suppose i 5 j; 
then the number of solutions is 0 if t > i. The total number of “bad” choices for 
w is at most 

p,ql+plg,(l+22+24+...+22i-2)=plq1 1+ 
( 3 

2 22’ 
= PI91 ( > 7+3 . 

Recall that p - 1 = 2”pl and q - 1 = 2jql. Now, j > i 2 1, so plql < n/4. We 
also have that 

22iplql 2 2’+jplql = (p- l)(q - 1) < 12. 

Hence, we obtain 

2 22’ 
PI91 ( > 5+3 <:+; 



144 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

n 
= -. 

2 

Since at most (n - 1)/2 choices for w are “bad,” it follows that at least (n - I)/2 
choices are “good” and hence the probability of success of the algorithm is at least 
l/2. 

4.6.2 Partial Information Concerning Plaintext Bits 

The other result we will discuss concerns partial information about the plaintext 
that might be “leaked” by an RSA encryption. Two examples of partial information 
that we consider are the following: 

I. given y = eK(x), computepariry(y), whereparizy(y) denotes thelow-order 
bit of x 

2. given y = eK(X), compute half(y), where half(y) = 0 if 0 5 2 < n/2 and 
half(y) = 1 if n/2 < 2 5 n - 1. 

We will prove that, given y = eK (x), any algorithm that computes purify(y) 
or half(y) can be used as an oracle to construct an algorithm that computes the 
plaintext x. What this means is that, given a ciphertext, computing the low-order 
bit of the plaintext is polynomially equivalent to determining the whole plaintext! 

First, we prove that computingpurity is polynomially equivalent to comput- 
ing half(y). This follows from the following two easily proved identities (see the 
exercises): 

half(y) = parity(y X eK(2) mod n) (4.1) 

parity(y) = hdf(y X eK(2-‘) mod n) (4.2) 

and from the multiplicativerule eK(xt)eK(E*) = eK(xtx2). 
We will show how to compute x = dK(y), given a hypothetical algorithm 

(oracle) which computes half(y). The algorithm is presented in Figure 4.11. In 
steps 2-4, we compute 

yj = hdfy x (eK(2))‘) = hdfleK(X x 2’)), 

for 0 < i 5 log, n. We observe that 

hCdf(eK(x)) = 0 @ x E [o, 5> 

hdf(eK(h)) = 0 e x E [o, a) u [f, $) 

hdf(eK(4x)) = 0 ($ x E 0 ’ u ’ it!! u ’ ’ u 3” E 
[ ‘8) [4’ 8) [27 8) [ 4’ 8)’ 

and so on. Hence, we can find x by a binary search technique, which is done in 
steps 7-l 1. Here is a small example to illustrate. 



4.7. THE RABIN CRYPTOSYSTEM 145 

FIGURE 4.11 
Decrypting RSA ciphertext, given an oracle for computing hafly) 

1. denote k = [log, n] 

2. fori=Otokdo 

3. yi = W(y) 
4. y = (y X eK(2)) mod 72 

5. lo = 0 

6. hi = n 

7. fori=Otokdo 

8. mid = (hi + Zo)/2 

9. if = 1 then yi 
lo = mid 

else 
hi = mid 

10. 2 = [hij 

Example 4.12 
Suppose n = 1457, b = 779, and we have a ciphertext y = 722. eK(2) is 
computed to be 946. Suppose, using our oracle for half, that we obtain the 
following values yi in step 3 of the algorithm: 

i 0 1 2 3 4 5 6 7 8 9 10 
yi 1 0 1 0 1 1 1 1 1 0 0 

Then the binary search proceeds as shown in Figure 4.12. Hence, the plaintext is 
2 = 1999.551 = 999. II 

4.7 The Rabin Cryptosystem 

In this section, we describe the Rabin Cryptosystem, which is computationally 
secure against a chosen-plaintext attack provided that the modulus n = pq cannot 
be factored. The system is described in Figure 4.13. 

We will show that the encryption function eK is not an injection, so decryption 
cannot be done in an unambiguous fashion. In fact, there are four possible 



146 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

FIGURE 4.12 
Binary search for RSA decryption 

% 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

lo mid hi 
0.00 728.50 1457.00 

728.50 1092.75 1457.00 
728.50 910.62 1092.75 
910.62 1001.69 1092.75 
910.62 956.16 1001.69 
956.16 978.92 1001.69 
978.92 990.30 1001.69 
990.30 996.00 1001.69 
996.00 998.84 1001.69 
998.84 1000.26 1001.69 
998.84 999.55 1000.26 
998.84 999.55 999.55 

FIGURE 4.13 
Rabin Cryptosystem 

Let n be the product of two distinct primes p and q, p, q E 3 (mod 4) 
Let P = C = &, and define 

K={(n,p,q,B):O<B<n-1). 

For Ii = (n, p, q, B), define 

eK(x) = x(x + B) mod n 

md 

k(Y) = 

l%e values n and B are public, while p and q are secret. 



4.7. THE RABIN CRYPTOSYSTEM 147 

plaintexts that could be the encryption of any given cipher-text. More precisely, 
let w be one of the four square roots of 1 modulo n. Let x E i&. Then, we can 
verify the following equations: 

=w2(x+f)2- (f)’ 
B2 B2 

=x~+Bx+~-~ 

=x2+Bx 

= eK(X). 

(Note that all arithmetic is being done in Z&, and division by 2 and 4 is the same 
as multiplication by 2-t and 4-l modulo n, respectively.) 

The four plaintexts that encrypt to eK(x) are x, --I - B, w(x + B/2) and 
-w(x + B/2), where w is a non-trivial square root of 1 modulo n. In general, 
there will be no way for Bob to distinguish which of these four possible plaintexts 
is the “right” plaintext, unless the plaintext contains sufficient redundancy to 
eliminate three of these four possible values. 

Let us look at the decryption problem from Bob’s point of view. He is given a 
ciphertext y and wants to determine z such that 

x2 + bx E y (mod n). 

This is a quadratic equation in the unknown x. We can eliminate the linear term 
by making the substitution xt = x + B/2, or equivalently, x = xt - B/2. Then 
the equation becomes 

B2 
xf-Bx,+-+BxI--- 

4 
B2 yEO(modn), 
2 

or 

xi G 
B2 
4 + y (mod n). 

If we define C = B2/4 + y, then we can rewrite the congruence as 

xi E C (mod n). 

So, decryption reduces to extracting square roots modulo n. This is equivalent to 
solving the two congruences 

xf 3 C (mod p) 

and 

xf E C (mod q). 



148 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

(There are two square roots of C modulo p and two square roots modulo q. Using 
the Chinese remainder theorem, these can be combined to yield four solutions 
modulo n.) We can use Euler’s criterion to determine if C is a quadratic residue 
modulo p (and modulo q). In fact, C will be a quadratic residue modulo p and 
modulo q if encryption was performed correctly. But Euler’s criterion does not 
help us find the square roots of C; it yields only an answer “yes” or “no.” 

When p E 3 (mod 4), there is a simple formula to compute square roots of 
quadratic residues modulop. Suppose C is aquadratic residue andp = 3 (mod 4). 
Then we have that 

(kC(P+')/4)2 G C(P+'w (mod p) 

E C(P-‘)12C (mod p) 

E C (mod p). 

Here we again make use of Euler’s criterion, which says that if C is a quadratic 
residue modulo p, then C(P-t)/2 G 1 (mod p). Hence, the two square roots of 
C modulo p are IIIC(P+‘)/~ mod p. In a similar fashion, the two square roots of 
C modulo q are HY(q+1)/4 mod q. It is then straightforward to obtain the four 
square roots x t of C modulo n using the Chinese remainder theorem. 

REMARK It is interesting that for p 3 1 (mod 4) there is no known polynomial- 
time deterministic algorithm to compute square roots of quadratic residues modulo 
p. There is a polynomial-time Las Vegas algorithm, however. 1 

Once we have determined the four possible values for xt , we compute 2 from 
the equation I = zt - B/2 to get the four possible plaintexts. This yields the 
decryption formula 

&c(Y) = J 
;+y+ 

Example 4.13 
Let’s illustrate the encryption and decryption procedures for the Rabin Gyp- 
tosystem with a toy example. Suppose n = 77 = 7 x 11 and B = 9. Then the 
encryption function is 

eK (x) = x2 + 9x mod 77 

and the decryption function is 

dK(y) = m - 43 mod 77. 

Suppose Bob wants to decrypt the ciphertext y = 22. It is first necessary to find 
the square roots of 23 modulo 7 and modulo 11. Since 7 and 11 are both congruent 



4.7. THE RABIN CRYPTOSYSTEM 149 

FIGURE 4.14 
Factoring a Rabin modulus, given a decryption oracle 

1. choosearandomr,l<r<n-1 

2. compute y = r2 - B2/4 mod n 

3. call A(y), obtaining a decryption x 

4. compute 21 = x + B/2 

5. if x1 E fr (mod n) then 

quit (failure) 

else 

gcd(zt + r, n) = p or q (success) 

to 3 modulo 4, we use our formula: 

23(7+‘)/“ = 22 E 4 mod 7 - 

and 

23(“+‘)/4 = 13 f 1 mod 11, - 

Using the Chinese remainder theorem, we compute the four square roots of 23 
modulo 77 to be f 10, f32 mod 77. Finally, the four possible plaintexts are: 

lo-43mod77=44 

67 - 43 mod 77 = 24 

32-43mod77=66 

45 - 43 mod 77 = 2. 

It can be verified that each of these plaintexts encrypts to the ciphertext 22. 0 

We now discuss the security of the Rabin Cryptosystem. We will prove that 
any hypothetical decryption algorithm A can be used as an oracle in a Las Vegas 
algorithm that factors the modulus n with probability at least l/2. This algorithm 
is depicted in Figure 4.14. 

There are several points of explanation needed. First, observe that 



150 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

so a value x will be returned in step 3. Next, we look at step 4 and note that 
XT E r2 (mod n). It follows that xt E fr (mod n) or xt E *wr (mod n), 
where w is one of the non-trivial square roots of 1 modulo n. In the second case, 
we have 

n I (21 - ~)(xI + ~1, 

but n does not divide either factor on the right side. Hence, computation of 
gcd(xt + r, n) (or gcd(xt - r, n)) must yield either p or q, and the factorization 
of n is accomplished. 

Let’s compute the probability of success of this algorithm, over all n - 1 choices 
for the random value r. For two non-zero residues r1 and r2, define 

rt -r2~r~~r~(modn). 

It is easy to see that r - r for all r; rI - r2 implies r2 - r1; and r1 - r2 and r:! - 
rs together imply r1 - r3. This says that the relation - is an equivalence relation. 
The equivalence classes of Z,, \{ 0) all have cardinality four: the equivalence class 
containing r is the set 

[r] = {hr, fwr mod n}, 

where w is a non-trivial square root of 1 modulo n. 
In the algorithm presented in Figure 4.14, any two values r in the same equiva- 

lence class will yield the same value y. Now consider the value x returned by the 
oracle A when given y. We have 

[Yl = {fY>fwYl. 

If r = fy, then the algorithm fails; while it succeeds if r = fwy. Since r is 
chosen at random, it is equally likely to be any of these four possible values. We 
conclude that the probability of success of the algorithm is l/2. 

It is interesting that the Rabin Cryptosystem is provably secure against a 
chosen plaintext attack. However, the system is completely insecure against a 
chosen ciphertext attack. In fact the algorithm in Figure 4.14, that we used to 
prove security against a chosen plaintext attack, also can be used to break the 
Rabin Cryptosystem in a chosen ciphertext attack! In the chosen ciphertext 
attack, the oracle A is replaced by Bob’s decryption algorithm. 

4.8 Factoring Algorithms 

There is a huge amount of literature on factoring algorithms, and a careful treatment 
would require more pages than we have in this book. We will just try to give a 
brief overview here, including an informal discussion of the best current factoring 
algorithms and their use in practice. The three algorithms that are most effective 



4.8. FACTORING ALGORITHMS 151 

FIGURE 4.15 
The p - 1 factoring algorithm 

Input: n and B 

a=2 

forj = 2toBdo 

a = aj mod n 

d= gcd(a- 1,n) 

1 < d < n then 

d is a factor of n (success) 

else 

no factor of n is found (failure) 

on very large numbers are the quadratic sieve, the elliptic curve algorithm and the 
number field sieve. Other well-known algorithms that were precursors include 
Pollard’s rho-method and p- 1 algorithm, Williams’ p+ 1 algorithm, the continued 
fraction algorithm, and of course, trial division. 

Throughout this section, we suppose that the integer n that we wish to factor 
is odd. Trial division consists of dividing n by every odd integer up to [fi]. If 
n < IO’*, say, this is a perfectly reasonable factorization method, but for larger n 
we generally need to use more sophisticated techniques. 

4.8.1 The p - 1 Method 

As an example of a simple algorithm that can sometimes be applied to larger 
integers, we describe Pollard’s p - 1 algorithm, which dates from 1974. This 
algorithm, presented in Figure 4.15, has two inputs: the (odd) integer n to be 
factored, and a “bound” B. Here is what is taking place in the p - 1 algorithm: 
Suppose p is a prime divisor of n, and q 5 B for every prime power q 1 (p - 1). 
Then it must be the case that 

b-1) IB! 

At the end of the for loop (step 2), 

a E 2B! (mod n), 

so 

a G 2B! (mod p) 



152 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

sincep 1 n. Now, 

2p-’ = 1 (mod p) 

by Fermat’s theorem. Since (p - 1) 1 B!, we have that 

a s 1 (mod p) 

(in step 3). Thus, in step 4, 

and 

P I (a - 1) 

P I 12, 
so 

pId=gcd(a-l,n). 

The integer d will be a non-trivial divisor of n (unless a = 1 in step 3). Having 
found a non-trivial factor d, we would then proceed to attempt to factor d and n/d 
if they are composite. 

Here is an example to illustrate. 

Example 4.14 
Suppose n = 15770708441. If we apply the p - 1 algorithm with B = 180, then 
we find that a = 11620221425 in step 3, and d is computed to be 135979. In fact, 
the complete factorization of n into primes is 

15770708441= 135979 x 115979. 

in this case, the factorization succeeds because 135978 has only “small” prime 
factors: 

135978 = 2 x 3 x 131 x 173. 

Hence, by taking B 2 173, it will be the case that 135978 I B!, as desired. 0 

In the algorithm, there are B - 1 modular exponentiations, each requring 
at most 2 log, B modular multiplications using square-and-multiply. The gcd 
computation can be done in time O((logn)3) using the Euclidean algorithm. 
Hence, the complexity of the algorithm is O(B log B(log n)* + (log n)3). If B is 
0( (log n)i) for some fixed integer i, then the algorithm is indeed a polynomial- 
time algorithm; however, for such a choice of B the probability of success will be 
very small. On the other hand, if we increase the size of B drastically, say to fi, 
then the algorithm will be successful, but it will be no faster than trial division. 

Thus, the drawback of this method is that it requires n to have a prime factor p 
such that p - 1 has only “small” prime factors. It would be very easy to construct 



4.8. FACTORING ALGORITHMS 153 

an RSA modulus n = pq which would resist factorization by this method. One 
would start by finding a large prime pl such that p = 2~1 + 1 is also prime, and a 
large prime q1 such that q = 2ql + 1 is also prime (using one of the Monte Carlo 
primality testing algorithms discussed in Section 4.5). Then the RSA modulus 
n = pq will be resistant to factorization using the p - 1 method. 

The more powerful elliptic curve algorithm, developed by Lenstra in the mid- 
1980’s, is in fact a generalization of the p - 1 method. We will not discuss the 
theory at all here, but we do mention that the success of the elliptic curve method 
depends on the more likely situation that an integer “close to” p has only “small” 
prime factors. Whereas the p - 1 method depends on a relation that holds in 
the group ZP, the elliptic curve method involves groups defined on elliptic curves 
modulo p. 

4.8.2 Dixon’s Algorithm and the Quadratic Sieve 

Dixon’s algorithm is based on a very simple idea that we already saw in connection 
with the Rabin Cryptosystem. Namely, if we can find z $ fy (mod n) such 
that x2 q y* (mod n), then gcd(z - y, n) is a non-trivial factor of n. 

The method uses a factor base, which is a set f3 of “small” primes. We first 
obtain several integers x such that all the prime factors of z2 mod n occur in the 
factor base B. (How this is done will be discussed a bit later.) The idea is to then 
take the product of several of these x’s in such a way that every prime in the factor 
base is used an even number of times. This then gives us a congruence of the 
desired type x2 q y* (mod n), which (we hope) will lead to a factorization of n. 

We illustrate with a carefully contrived example. 

Example 4.15 

Suppose n = 15770708441 (this was the same n that we used in Example 4.14). 
Let f3 = {2,3,5,7,11, 13). Consider the three congruences: 

8340934156* G 3 x 7 (mod n) 

12044942944* E 2 x 7 x 13 (mod n) 

2773700011* E 2 x 3 x 13 (mod n). 

If we take the product of these three congruences, then we have 

(8340934156 x 12044942944 x 2773700011)* s (2 x 3 x 7 x 13)* (mod n). 

Reducing the expressions inside the parentheses modulo n, we have 

9503435785* = 546* (mod n), 

Then we compute 

gcd(9503435785 - 546,15770708441) = 115759, 



154 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

finding the factor 115759 of n. 0 

Suppose f? = (~1, . . . , pi} is the factor base. Let C be slightly larger than B 

(say C = B + lo), and suppose we have obtained C congruences: 

xj* z plalj x p2a2j . . . x pBasj (mod n), 

for 1 5 j 5 C. For each j, consider the vector 

aj = (‘Ylj mod 2,. . . , 'YBj mod 2) E (ZZ)~. 

If we can find a subset of the aj’s that sum modulo 2 to the vector (0, . . . , 0), then 
the product of the corresponding xj’s will use each factor in B an even number of 
times. 

We illustrate by returning to Example 4.15, where there exists a dependence 
even though C < B in this case. 

Example 4.15 (Cont.) 
The three vectors al, a*, a3 are as follows: 

al = (O,l,O, 1,&O) 

a2 = (l,O,O, l,O, 1) 

aj = (1, l,O,O,O, 1). 

It is easy to see that 

al + a2 + ag = (0, 0, O,O,O, 0) mod 2. 

This gives rise to the congruence we saw earlier that successfully factored n. 

Observe that finding a subset of the C vectors al, . . . , ac that sums modulo 2 to 
the all-zero vector is nothing more than finding a linear dependence (over Z2) of 
these vectors. Provided C > B, such a linear dependence must exist, and it can be 
found easily using the standard method of Gaussian elimination. The reason why 
we take C > B + 1 is that there is no guarantee that any given congruence will 
yield the factorization of n. Approximately 50% of the time it will turn out that 
x E fy (mod n). But if C > B + 1, then we can obtain several such congruences 
(arising from different linear dependencies among the aj’s). Hopefully, at least 
one of the resulting congruences will yield the factorization. 

It remains to discuss how we obtain integers xj such that the values xj* mod n 
factor completely over the factor base B. There are several methods of doing 
this. One common approach is the Quadratic Sieve due to Pomerance, which uses 
integers of the form xj = j + LfiJ, j = 1,2, . . . . The name “quadratic sieve” 
comes from a sieving procedure (which we will not describe here) that is used to 
determine those zj ‘s that factor over f3. 



4.8. FACTORING ALGORITHMS 155 

There is, of course, a trade-off here: if B = IBI is large, then it is more likely 
that an integer zj factors over B. But the larger B is, the more congruences we 
need to accumulate before we are able to find a dependence relation. The optimal 
choice for B is approximately 

and this leads to an expected running time of 

OCe 
(I+o(l))~lnnlnlnn 

>. 

The number field sieve is a more recent factoring algorithm from the late 1980’s. 
It also factors n by constructing a congruence x2 E y* (mod n), but it does so by 
means of computations in rings of algebraic integers. 

4.8.3 Factoring Algorithms in Practice 

The asymptotic running times of the quadratic sieve, elliptic curve and number 
field sieve are as follows: 

quadratic sieve 0 (et 1+o(l))~iaaiG 
> 

elliptic curve 

number field sieve 0 (e(1.92+o(l))(lnn)““(lnInn)“3) 1 

The notation o( 1) denotes a function of n that approaches 0 as n -+ co, and p 
denotes the smallest prime factor of n. 

In the worst case, p M ,/ii and the asymptotic running times of the quadratic 
sieve and elliptic curve algorithms are essentially the same. But in such a situation, 
quadratic sieve generally outperforms elliptic curve. The elliptic curve method is 
more useful if the prime factors of n are of differing size. One very large number 
that was factored using the elliptic curve method was the Fermat number 2*” - 1 
in 1988 by Brent. 

For factoring RSA moduli (where n = pq, p, q are prime, andp and q are roughly 
the same size), the quadratic sieve is currently the most successful algorithm. 
Some notable milestones have included the following factorizations. In 1983, 
the quadratic sieve successfully factored a 69-digit number that was a (composite) 
factor of 225’ - 1 (this computation was done by Davis, Holdredge, and Simmons). 
Progress continued throughout the 1980’s, and by 1989, numbers having up to 
106 digits were factored by this method by Lenstra and Manasse, by distributing 
the computations to hundreds of widely separated workstations (they called this 
approach “factoring by electronic mail” ). 



156 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

More recently, in April 1994, a 129-digit number known as RSA-129 was 
factored by Atkins, Graff, Lenstra, and Leyland using the quadratic sieve. (The 
numbers RSA-100, RSA-110, . . ., RSA-500 are a list of RSA moduli publicized 
on the Internet as “challenge” numbers for factoring algorithms. Each number 
RSA-d is a d-digit number that is the product of two primes of approximately 
the same length.) The factorization of RSA-129 required 5000 MIPS-years of 
computing time donated by over 600 researchers around the world. 

The number field sieve is the most recent of the three algorithms. It seems 
to have great potential since its asymptotic running time is faster than either 
quadratic sieve or the elliptic curve. It is still in developmental stages, but people 
have speculated that number field sieve might prove to be faster for numbers 
having more than about 125-130 digits. In 1990, the number field sieve was 
used by Lenstra, Lenstra, Manasse, and Pollard to factor 229 - 1 into three primes 
having 7,49 and 99 digits. 

4.9 Note-s and References 

The idea of public-key cryptography was introduced by Diffie and Hellman in 
1976. Although [DH~~A] is the most cited reference, the conference paper 
[DH76] actually appeared a bit earlier. The RSA Cryptosystem was discov- 
ered by Rivest, Shamir and Adleman [RSA78]. The Rabin Cryptosystem was 
described in Rabin [RA79]; a similar provably secure system in which decryption 
is unambiguous was found by Williams [WISO]. For a general survey article on 
public-key cryptography, we recommend Diffie [D192]. 

The Solovay-Strassen test was first described in [SS77]. The Miller-Rabin test 
was given in [M176] and [RA~O]. Our discussion of error probabilities is motivated 
by observations of Brassard and Bratley [BB~~A, $8.61 (see also [BBCGPSS]). 
The best current bounds on the error probability of the Miller-Rabin algorithm can 
be found in [DLP93]. 

The material in Section 4.6 is based on the treatment by Salomaa [SA90, pp. 
143-1541. The factorization of n given the decryption exponent was proved in 
[DE84]; the results on partial information revealed by RSA is from [GMT82]. 

As mentioned earlier, there are many sources of information on factoring al- 
gorithms. Pomerance [P090] is a good survey on factoring, and Lenstra and 
Lenstra [LL90] is a good article on number-theoretic algorithms in general. Bres- 
soud [BR89] is an elementary textbook devoted to factoring and primality testing. 
Cryptography textbooks that emphasize number theory include Koblitz [Ko87] 
and Kranakis [KRS~]. Lenstra and Lenstra [LL93] is a monograph on the number 
field sieve. 

Exercises 4.7-4.9 give some examples of protocol failures. For a nice article 
on this subject, see Moore [Mo92]. 



Exercises 157 

Exercises 

4.1 Use the Extended Euclidean algorithm to compute the following multiplicative 
inverses: 

(a) 17-l mod 101 
(b) 357-l mod 1234 
(c) 3 125-l mod 9987. 

4.2 Solve the following system of congruences: 

2~ 12(mod25) 

x E 9 (mod 26) 

x z 23 (mod 27). 

4.3 Solve the following system of congruences: 

132 = 4 (mod 99) 

1% G 56 (mod 101). 

HINT First use the Extended Euclidean algorithm, and then apply the Chinese 
remainder theorem. 

4.4 Here we investigate some properties of primitive roots. 
(a) The integer 97 is prime. Prove that z # 0 is a primitive root modulo 97 if 

andonly ifx3* f 1 (mod 97) andza $ 1 (mod 97). 
(b) Use this method to find the smallest primitive root modulo 97. 
(c) Suppose p is prime, and p - 1 has prime power factorization 

n 
p- 1 = rI pie’, 

i=l 

where thepi’s are distinct primes. Prove that x # 0 is a primitive root modulo 
p if and only if xtp-‘l/p* $ 1 (mod p) for 1 5 i 5 n. 

4.5 Suppose that n = pq, where p and q are distinct odd primes and ab I 1 (mod (p - 

l)(q - 1)). The RSA encryption operation is e(x) = xb mod n and the decryption 
operation is d(y) = ya mod n. We proved that d(e(x)) = x if z E Z,,*. Prove 
that the same statement is true for any x E Z,. 

HINT Use the fact that ZI = x2 (mod pq) if and only if xi ss 22 (mod p) and 
xi = 22 (mod q). This follows from the Chinese remainder theorem. 

4.6 ‘Iwo samples of RSA ciphertext are presented in Tables 4.1 and 4.2. Your task 
is to decrypt them. The public parameters of the system are n = 18923 and 
b = 1261 (for Table 4.1) and n = 31313 and b = 4913 (for Table 4.2). This can 
be accomplished as follows. First, factor n (which is easy because it is so small). 
Then compute the exponent a from 4( n , and, finally, decrypt the ciphertext. Use ) 
the square-and-multiply algorithm to exponentiate modulo n. 

In order to translate the plaintext back into ordinary English text, you need to 
know how alphabetic characters are “encoded’as elements in &. Each element of 



158 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

TABLE 4.1 
RSA Ciphertext 

12423 11524 7243 7459 14303 6127 10964 16399 
9792 13629 14407 18817 18830 13556 3159 16647 
5300 13951 81 8986 8007 13167 10022 17213 
2264 961 17459 4101 2999 14569 17183 15827 

12693 9553 18194 3830 2664 13998 12501 18873 
12161 13071 16900 7233 8270 17086 9792 14266 
13236 5300 13951 8850 12129 6091 18110 3332 
15061 12347 7817 7946 11675 13924 13892 18031 
2620 6276 8500 201 8850 11178 16477 10161 
3533 13842 7537 12259 18110 44 2364 15570 
3460 9886 8687 4481 11231 7547 11383 17910 

12867 13203 5102 4742 5053 15407 2976 9330 
12192 56 2471 15334 841 13995 17592 13297 
2430 9741 11675 424 6686 738 13874 8168 
7913 6246 14301 1144 9056 15967 7328 13203 

796 195 9872 16979 15404 14130 9105 2001 
9792 14251 1498 11296 1105 4502 16979 1105 

56 4118 11302 5988 3363 15827 6928 4191 
4277 10617 874 13211 11821 3090 18110 44 
2364 15570 3460 9886 9988 3798 1158 9872 

16979 15404 6127 9872 3652 14838 7437 2540 
1367 2512 14407 5053 1521 297 10935 17137 
2186 9433 13293 7555 13618 13000 6490 5310 

18676 4782 11374 446 4165 11634 3846 14611 
2364 6789 11634 4493 4063 4576 17955 7965 

11748 14616 11453 17666 925 56 4118 18031 
9522 14838 7437 3880 11476 8305 5102 2999 

18628 14326 9175 9061 650 18110 8720 15404 
2951 722 15334 841 15610 2443 11056 2186 

&, represents three alphabetic characters as in the following examples: 

DOG + 3x26*+14x26+6 = 2398 
CAT + 2x26*+0x26+19 1371 
ZZZ + 25 x26*+25x26+25 1 17575. 

You will have to invert this process as the final step in your program. 
The first plaintext was taken from ‘The Diary of Samuel Marchbanks,” by Robert- 

son Davies, 1947, and the second was taken from “Lake Wobegon Days,” by Garrison 
Keillor, 1985. 

4.7 This exercise exhibits what is called a protocol failure. It provides an example 
where ciphertext can be decrypted by an opponent, without determining the key, if a 
cryptosystem is used in a careless way. (Since the opponent does not determine the 
key, it is not accurate to call it cryptanalysis.) The moral is that it is not sufficient to 
use a “secure” cryptosystem in order to guarantee “secure” communication. 

Suppose Bob has an RSA Cryptosystem with a large modulus n for which the 
factorization cannot be found in a reasonable amount of time. Suppose Alice sends 



Exercises 159 

TABLE 4.2 
RSA Ciphertext 

6340 8309 14010 
23614 7135 24996 
27584 14999 4517 
25774 7647 23901 
7908 8635 2149 
4082 11803 5314 

15698 30317 4685 
1417 26905 25809 

12437 1108 27106 
23005 8267 9917 
15930 29748 8635 
27486 9741 2149 
18154 22319 27705 
2149 16975 16087 

19554 23614 7553 
3183 17347 25234 
6000 31280 29413 

25973 4477 30989 

8936 27358 25023 16481 25809 
30590 27570 26486 30388 9395 
12146 29421 26439 1606 17881 
7372 25774 18436 12056 13547 
1908 22076 7372 8686 1304 
107 7359 22470 7372 22827 

14696 30388 8671 29956 15705 
28347 26277 7897 20240 21519 
18743 24144 10685 25234 30155 
7994 9694 2149 10042 27705 

23645 11738 24591 20240 27212 
29329 2149 5501 14015 30155 
20321 23254 13624 3249 5443 
14600 27705 19386 7325 26277 
4734 8091 23973 14015 107 
4595 21498 6360 19837 8463 
2066 369 23204 8425 7792 

a message to Bob by representing each alphabetic character as an integer between 0 
and 25 (i.e., A t) 0, J3 +) 1, etc.), and then encrypting each residue modulo 26 as 
a separate plaintext character. 

(a) Describe how Oscar can easily decrypt a message which is encrypted in this 
way. 

(b) Illustrate this attack by decrypting the following ciphertext (which was en- 
crypted using an RSA Cryptosystem with n = 18721 and b = 25) without 
factoring the modulus: 

365,0,4845,14930,2608,2608,0. 

4.8 This exercise illustrates another example of a protocol failure (due to Simmons) 
involving RSA; it is called the common modulus protocol failure. Suppose Bob has 
an RSA Crpyotsystem with modulus n and encryption exponent bi, and Charlie 
has an RSA Cryptosystem with (the same) modulus n and decryption exponent 
b2. Suppose also that gcd(bi, b2) = 1. Now, consider the situation that arises if 
Alice encrypts the same plaintext x to send to both Bob and Charlie. Thus, she 
computes yi = x’r mod n and y2 = x62 mod n, and then she sends yt to Bob and 
yz to Charlie. Suppose Oscar intercepts yi and yz, and performs the computations 
indicated in Figure 4.16. 

(a) Prove that the value x I computed in step 3 of Figure 4.16 is in fact Alice’s 
plaintext, z. Thus, Oscar can decrypt the message Alice sent, even though 
the cryptosystem may be “secure.” 

(b) Illustrate the attack by computing x by this method if n = 18721, bt = 945, 
b2 = 7717, yt = 12677 and yr = 14702. 

4.9 We give yet another protocol failure involving RSA. Suppose that three users in 
a network, say Bob, Bart and Bert, all have public encryption exponents b = 3. 



160 CHAPTER 4. THE RSA SYSTEM AND FACTORING 

FIGURE 4.16 
RSA common modulus protocol failure 

Input: n, h, b2, YI, ~2 
1. compute ct = bt -’ mod b2 
2. computec2 = (ctbt - 1)/b* 
3. compute 21 = ytcl (~2~~)~' mod n 

4.10 

4.11 

4.12 

4.13 

4.14 

Let their moduli be denoted by nt, n2, na. Now suppose Alice encrypts the same 
plaintext 2 to send to Bob, Bart and Bert. That is, Alice computes yi = x3 mod ni, 
1 5 i 5 3. Describe how Oscar can compute x, given yt,y2 and ys, without 
factoring any of the moduli. 
A plaintext I is said to beJiredif eK(z) = x. Show that, for the RSA Cryptosystem, 
the number of fixed plaintexts z E Z n*isequaltogcd(b-l,p-l)xgcd(b-l,q-l). 

HINT ConsiderthesystemoftwocongruenceseK(z) =x (modp),eK(z) 3 x 
(mod 4. 

Suppose A is a deterministic algorithm which is given as input an BSA modulus n 
and a ciphertext y. A will either decrypt y or return no answer. Supposing that there 
are e x n ciphertexts which A is able to decrypt, show how to use A as an oracle in 
a Las Vegas decryption algorithm having failure probability e. 

HINT Use the multiplicative property of RSA that eK(xt)eK(x2) = eK(ztz2). 
where all arithmetic operations are modulo n. 

Write a program to evaluate Jacobi symbols using the four properties presented 
in Section 4.5. The program should not do any factoring, other than dividing out 
powers of two. Test your program by computing the following Jacobi symbols: 

(3 ’ GG%? 1 (:::p:lTl> . 
Write a program that computes the number of Euler pseudo-primes to the bases 837, 
851,and 1189. 
The purpose of this question is to prove that the error probability of the Solovay- 
Strassen primality test is at most l/2. Let z,* denote the group of units modulo n. 
Define 

G(n) = { a : a E &‘, ; E &4/* 
0 

(mod n)} . 

(a) Prove that G(n) is a subgroup of z,‘. Hence, by Lagrange’s theorem, if 
G(n) # &*, then 

IG(n)I 5 v 5 q. 

(b) Suppose n = pkq, wherep and q are odd, p is prime, k 2 2, and gcd(p, q) = 

1. Let 0 = 1 +pk--Iq. Prove that 

0 
z $ a(“-‘)‘* (mod n). 

HINT Use the binomial theorem to compute o(R-1)/2. 



Exercises 161 

(c) Suppose n = p1 . . .ps, where the pi’s are distinct odd primes. Suppose 
a = u (modpt) ando = 1 (modmm . . . p,), where u is a quadratic non- 
residue modulo p1 (note that such an a exists by the Chinese remainder 
theorem). Prove that 

a 
0 

- 
n 

z -1 (mod n), 

but 
a (n-‘)‘2 z 1 (mod ~2~3.. .pd), 

so 
a(n-‘)‘2 f -1 (mod n). 

(d) If n is odd and composite, prove that IG(n)I <_ (n - 1)/2. 
(e) Summarize the above: prove that the error probability of the Solovay-Strassen 

primality test is at most l/2. 
4.15 Suppose we have a Las Vegas algorithm with failure probability e. 

(a) Prove that the probability of first achieving success on the nth trial is pn = 

en-y 1 - e). 
(b) The average (expected) number of trials to achieve success is 

m 

C( n x p,). 
VI=1 

Show that this average is equal to l/( 1 - e). 
(c) Let 6 be a positive real number less than 1. Show that the number of iterations 

required in order to reduce the probaility of failure to at most 6 is 

log2 6 
L I G’ 

4.16 Suppose Bob has carelessly revealed his decryption exponent to be a = 14039 in 
an RSA Cryptosystem with public key n = 36581 and b = 4679. Implement the 
probablistic algorithm to factor n given this information. Test your algorithm with 
the “random” choices w = 9983 and w = 13461. Show all computations. 

4.17 Prove Equations 4.1 and 4.2 relating the functions half and parity. 
4.18 Supposep = 199, q = 211 and B = 1357 in the Rabin Cryptosystem. Perform 

the following computations. 
(a) Determine the four square roots of 1 modulo n, where n = pq. 
(b) Compute the encryption y = eK(32767). 
(c) Determine the four possible decryptions of this given ciphertext y. 

4.19 Factor 262063 and 9420457 using the p - 1 method. How big does B have to be in 
each case to be successful? 


	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	3 The Data Encryption Standard
	The RSA System and Factoring
	4.1 Introduction to Public-key Cryptography
	4.2 More Number Theory
	4.2.1 The Euclidean Algorithm
	FIGURE 4.1

	4.2.2 The Chinese Remainder Theorem
	4.2.3 Other Useful Facts
	FIGURE 4.2


	4.3 The RSA Cryptosystem
	4.4 Implementing RSA
	FIGURE 4.3
	FIGURE 4.4

	4.5 Probabilistic Primality Testing
	FIGURE 4.5
	FIGURE 4.6
	FIGURE 4.7
	FIGURE 4.8
	FIGURE 4.9

	4.6 Attacks On RSA
	4.6.1 The Decryption Exponent
	FIGURE 4.10

	4.6.2 Partial Information Concerning Plaintext Bits
	FIGURE 4.11


	4.7 The Rabin Cryptosystem
	FIGURE 4.12
	FIGURE 4.13
	FIGURE 4.14

	4.8 Factoring Algorithms
	FIGURE 4.15
	4.8.1 The p - 1 Method
	4.8.2 Dixon’s Algorithm and the Quadratic Sieve
	4.8.3 Factoring Algorithms in Practice

	4.9 Note-s and References
	Exercises
	TABLE 4.1
	TABLE 4.2
	FIGURE 4.16


	5 Other Public-key Cryptosystems
	6 Signature Schemes
	7 Hash Functions
	8 Key Distribution and Key Agreement
	9 Identification Schemes
	10 Authentication Codes
	11 Secret Sharing Schemes
	12 Pseudo-random Number Generation
	13 Zero-knowledge Proofs
	Bibliography
	Index


	Next Chapter: 
	Next: 
	Home: 
	Previous: 
	Previous Chapter: 


