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The Data Encryption Standard

3.1 Introduction

On May 15, 1973, the National Bureau of Standards published a solicitation for
cryptosystems in the Federal Register. This lead ultimately to the development
of the Data Encryption Standard, or DES, which has become the most widely
used cryptosystem in the world. DES was developed at IBM, as a modification
of an earlier system known as LUCIFER. DES was first published in the Federal
Register of March 17, 1975. After a considerable amount of public discussion,
DES was adopted as a standard for “unclassified” applications on January 15, 1977.
DES has been reviewed by the National Bureau of Standards (approximately) every
five years since its adoption. Its most recent renewal was in January 1994, when
it was renewed until 1998. It is anticipated that it will not remain a standard past
1998.

3.2 Description of DES

A complete description of DES is given in the Federal Information Processing
Standards Publication 46, dated January 15, 1977. DES encrypts a plaintext
bitstring z of length 64 using a key K which is a bitstring of length 56, obtaining
a ciphertext bitstring which is again a bitstring of length 64. We first give a
“high-level” description of the system,

The algorithm proceeds in three stages:

L. Given a plaintext z, a bitstring z is constructed by permuting the bits of z
according to a (fixed) initial permutation IP. We write z¢ = IP(z) = LoRy,
where Lo comprises the first 32 bits of g and Ejp the last 32 bits.

2. 16 iterations of a certain function are then computed. We compute L; R;,

70
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Li.q Ri.

FIGURE 3.1
One round of DES encryption

1 < i £ 16, according to the following rule:
Li = R
R; = Li-1 ® f(Ri-1, K),

where @ denotes the exclusive-or of two bitstrings. f is a function that
we will describe later, and K, K>, .. ., K¢ are each bitstrings of length 48
computed as a function of the key K. (Actually, each K; is a permuted
selection of bits from K.) K, K3, ..., K¢ comprises the key schedule.
One round of encryption is depicted in Figure 3.1

3. Apply the inverse permutation IP~! to the bitstring Ri¢L s, obtaining the
ciphertext y. That is, y = IP"(R15L16). Note the inverted order of Lj¢
and R16.

The function f takes as input a first argument A, which is a bitstring of length
32, and a second argument J that is a bitstring of length 48, and produces as output
a bitstring of length 32. The following steps are executed.

1. The first argument A is “expanded” to a bitstring of length 48 according to
a fixed expansion function E. E(A) consists of the 32 bits from A, permuted
in a certain way, with 16 of the bits appearing twice.
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| » | | ! ]

FIGURE 3.2
The DES f function

2. Compute E(A) & J and write the result as the concatenation of eight 6-bit
strings B = B B,B3B4BsBgB;Bg.

3. The next step uses eight S-boxes S, . . ., Sg. Each S; is a fixed 4 x 16 array
whose entries come from the integers 0 — 15. Given a bitstring of length
six, say Bj = bybybsbsbsbs, we compute S;(B;) as follows. The two bits
b1bg determine the binary representation of a row r of S; (0 < r < 3), and
the four bits byb3b4b5 determine the binary representation of a column ¢ of
S5; (0 £ ¢ < 15). Then S;(B;) is defined to be the entry S;(r, c), written
in binary as a bitstring of length four. (Hence, each S; can be thought of as
a function that accepts as input a bitstring of length two and one of length
four, and produces as output a bitstring of length four.) In this fashion, we
compute C; = S;(B;),1 < j<8.

4. Thebitstring C' = C1C2C3C4CsCsC7Cs of length 32 is permuted according
to a fixed permutation P. The resulting bitstring P(C) is defined to be
f(A,J).

The f function is depicted in Figure 3.2. Basically, it consists of a substitution
{using an S-box) followed by the (fixed) permutation P. The 16 iterations of f
comprise a product cryptosystem, as described in Section 2.5.

In the remainder of this section, we present the specific functions used in DES.
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The initial permutation IP is as follows:

IP
58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

N W= o NN

This means that the 58th bit of z is the first bit of IP(z); the 50th bit of z is the
second bit of IP(z), etc.
The inverse permutation IP~! is:

p-!
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
336 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

The expansion function E is specified by the following table:

E bit-selection table
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

The eight S-boxes and the permutation P are now presented:

S

4 4 13 1 2 15 11 8 3 10 6 12 5 9 O 7
015 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 S5 O

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
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15 1 8§ 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 S 8 12 6 9 3 2 15

13 8 10 1 15 4 2 11 6 7 12 0 5 14 9

S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

i3 7 0 9 3 4 6 10 2 8 5 14 12 1t 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Sa
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 13 8 9 4 5 11 12 7 2 14

Ss
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

4 11 2 12 4 7 13 1 5 O 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Se

12 1 10 15 9 2 6 8 0 13 3 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 6 0 8 13

S7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 it 13 12 3 7 14 10 15 6 8 O 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Sg

13 2 8 4 6 15 11 1 10 9 3 14 5§ 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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Finally, we need to describe the computation of the key schedule from the key
K. Actually, K is a bitstring of length 64, of which 56 bits comprise the key and 8
bits are parity-check bits (for error-detection). The bits in positions 8, 16, . . ., 64
are defined so that each byte contains an odd number of 1’s. Hence, a single error
can be detected within each group of 8 bits. The parity-check bits are ignored in
the computation of the key schedule.

1. Given a 64-bit key K, discard the parity-check bits and permute the re-
maining bits of X according to a (fixed) permutation PC-1. We will write
PC-1(K) = CyDy, where Cy comprises the first 28 bits of PC-1(K) and

Dy the last 28 bits.

2. For i ranging from 1 to 16, compute

Ci = LS;i(Ci-1)

D; = LS;(Di-1),

and K; = PC-2(C;D;). LS; represents a cyclic shift (to the left) of either
one or two positions, depending on the value of i: shift one position if
it =1,2,9 0or 16, and shift two positions otherwise. PC-2 is another fixed

permutation.

The key schedule computation is depicted in Figure 3.3.
The permutations PC-1 and PC-2 used in the key schedule computation are as

follows:

PC-

1

57

10
19
63

14
21

49
58

11
55
62

13

41
50
59

3
47
54
61

5

33
42
51
60
39
46
53
28

25
34
43
52
31
38
45
20

17
26
35
44
23
30
37
12

18
27
36
15
22
29
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= 5]
Ls, Ls,
L c, | D, PC-2 K, 7
LS, Ls,
®
L}
®
LS,
[ Ce ] Dy PC-2 Ky ]
FIGURE 3.3
Computation of DES key schedule
PC-2

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 SO 36 29 32

We now display the resulting key schedule. As mentioned above, each round
uses a 48-bit key comprised of 48 of the bits in K. The entries in the tables below
refer to the bits in K that are used in the various rounds.

Round 1
10 51 34 60 49 17 33 57 2 9 19 42
3 35 26 25 44 58 59 1 36 27 18 41
22 28 39 54 37 4 47 30 5 53 23 29
61 21 38 63 15 20 45 14 13 62 55 31
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Round 2
2 43 26 52 41 9 25 49 59 1 11 34
60 27 18 17 36 50 51 58 57 19 10 33
14 20 31 46 29 63 39 22 28 45 15 21
53 13 30 55 7 12 37 6 5 54 47 23
Round 3
51 27 10 36 25 58 9 33 43 50 60 18
4 11 2 1 49 34 35 42 41 3 59 17
61 4 15 30 13 47 23 6 12 29 62 5
37 28 14 39 54 63 21 53 20 38 31 7
Round 4
35 11 59 49 9 42 58 17 27 34 44 2
57 60 51 50 33 18 19 26 25 52 43 1
45 55 62 14 28 31 7 53 63 13 46 20
21 12 61 23 38 47 5 37 4 22 15 54
Round 5
19 60 43 33 58 26 42 1 11 18 57 51
41 44 35 34 17 2 3 10 9 36 27 50
29 39 46 61 12 15 54 37 47 28 30 4
5 63 45 7 22 31 20 21 55 6 62 38
Round 6
3 44 27 17 42 10 26 50 60 2 41 35
25 57 19 18 1 51 52 59 58 49 11 34
13 23 30 45 63 62 38 21 31 12 14 55
20 47 29 54 6 15 4 5 39 53 46 22
Round 7
52 57 11 1 26 59 10 34 44 51 25 19
9 41 3 2 50 35 36 43 42 33 60 18
280 7 14 29 47 46 22 5 15 63 61 39
4 31 13 38 53 62 55 20 23 37 30 6
Round 8
36 41 60 50 10 43 59 18 57 35 9 3
58 25 52 51 34 19 49 27 26 17 44 2
12 54 61 13 31 30 6 20 62 47 45 23
55 15 28 22 37 46 39 4 7 21 14 53

77
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Round 9
57 33 52 42 2 35 51 10 49 27 1 60
50 17 44 43 26 11 41 19 18 9 36 59
4 46 53 5 23 22 61 12 54 39 37 15
47 7 20 14 29 38 31 63 62 13 6 45
Round 10
41 17 36 26 51 19 35 59 33 11 S0 44
34 1 57 27 10 60 25 3 2 58 49 43
55 30 37 20 7 6 45 63 38 23 21 62
31 54 4 61 13 22 15 47 46 28 53 29
Round 11
25 1 49 10 35 3 19 43 17 60 34 57
18 50 41 11 59 44 9 52 51 42 33 27
39 14 21 4 54 53 29 47 22 7 5 46
15 38 55 45 280 6 62 31 30 12 37 13
Round 12
9 50 33 59 19 52 3 27 1 44 18 41
2 34 25 60 43 57 58 36 35 26 17 11
23 61 5 55 38 37 13 31 6 54 20 30
62 22 39 29 12 53 46 15 14 63 21 28
Round 13
58 34 17 43 3 36 52 11 50 57 2 25
51 18 9 44 27 41 42 49 19 10 1 60
7 45 20 39 22 21 28 15 53 38 4 14
46 6 23 13 63 37 30 62 61 47 5 12
Round 14
42 18 1 27 52 49 36 60 34 41 51 9
35 2 58 57 11 25 26 33 3 59 50 44
54 29 4 23 6 5 12 62 37 22 55 6l
30 53 7 28 47 21 14 46 45 31 20 63
Round 15
26 2 50 11 36 33 49 44 18 25 35 58
19 51 42 41 60 9 10 17 52 43 34 57
38 13 55 7 53 20 63 46 21 6 39 45
14 37 54 12 31 5 61 30 29 15 4 47

Next Chapter
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Round 16
18 59 42 3 57 25 41 36 10 17 27 50
11 43 34 33 52 1 2 9 44 35 26 49
30 5 47 62 45 12 55 38 13 61 31 37
6 29 46 4 23 28 53 22 21 7 63 39

Decryption is done using the same algorithm as encryption, starting with y as
the input, but using the key schedule Kig, .. ., K in reverse order. The output
will be the plaintext z.

3.2.1 An Example of DES Encryption

Here is an example of encryption using the DES. Suppose we encrypt the (hex-
adecimal) plaintext

0123456789ABCDEF
using the (hexadecimal) key

133457799BBCDFF1.
The key, in binary, without parity-check bits, is

00010010011010010101101111001001101101111011011111111000.

Applying IP, we obtain Ly and Ry (in binary):

L()

Li =Ry

11001100000000001100110011111111
11110000101010101111000010101010

The 16 rounds of encryption are then performed, as indicated.

E(Rs) = 011110100001010101010101011110100001010101010101

K; = 000110110000001011101111111111000111000001110010

E(Ry)® K, = 011000010001011110111010100001100110010100100111
S-box outputs 01011100100000101011010110010111
f(Ro, K1) = 00100011010010101010100110111011
L =R = 111011110100101001 0010101000100

E(R)) = 011101011110101001010100001100001010101000001001

K, = 011110011010111011011001110110111100100111100101

E(R)®K, = 000011000100010010001101111010110110001111101100
S-box outputs 11111000110100000011101010101110
f(Ri,K2) = 00111100101010111000011110100011
Ly=R, = 11001100000000010111011100001001

E(R;) = 111001011000000000000010101110101110100001010011

K; = 010101011111110010001010010000101100111110011001

E(R:)®Ks = 101100000111110010001000111110000010011111001010
S-box outputs 00100111000100001110000101101111
f(Ro, K3) = 01001101000101100110111010110000
Ly=Rs = 10100010010111000000101111110100

Next Chapter



Previous Chapter

Previous Page

Home Next page

Next Chapter

80 CHAPTER 3. THE DATA ENCRYPTION STANDARD

E(R;) = 010100000100001011111000000001010111111110101001

K4 = 011100101010110111010110110110110011010100011101

E(R:)® K4y = 001000101110111100101110110111100100101010110100
S-box outputs 00100001111011011001111100111010
f(Rs, Ks) = 10111011001000110111011101001100
Ls = Ry = 01110111001000100000000001000101

E(R4) = 101110101110100100000100000000000000001000001010

Ks = 011111001110110000000111111010110101001110101000

E(Rg)® Ks = 110001100000010100000011111010110101000110100010
S-box outputs 01010000110010000011000111101011
f(Rs, Ks) = 00101000000100111010110111000011
L¢=Rs = 10001010010011111010011000110111

E(Rs) = 110001010100001001011111110100001100000110101111

K¢ = 011000111010010100111110010100000111101100101111

E(Rs)® Ks = 101001101110011101100001100000001011101010000000
S-box outputs 01000001111100110100110000111101
f(Rs, Ks) = 10011110010001011100110100101100
L, =R¢ = 11101001011001111100110101101001

E(Rs) = 111101010010101100001111111001011010101101010011

K; = 111011001000010010110111111101100001100010111100

E(Re)® K7 = 000110011010111110111000000100111011001111101111
S-box outputs 00010000011101010100000010101101
f(Re, K7) = 10001100000001010001110000100111
Ly = R; = 00000110010010101011101000010000

E(R;) = 000000001100001001010101010111110100000010100000

Kz = 111101111000101000111010110000010011101111111011

E(R;)@® Ky = 111101110100100001101111100111100111101101011011
S-box outputs 01101100000110000111110010101110
f(Rqy, Kg) = 00111100000011101000011011111001
Ly= Ry = 11010101011010010100101110010000

E(Rg) = 011010101010101101010010101001010111110010100001

Ky = 111000001101101111101011111011011110011110000001

E(Rs) @ Ky = 100010100111000010111001010010001001101100100000
S-box outputs 00010001000011000101011101110111
f(Rs, Ky) = 00100010001101100111110001101010
Lw=Ry = 00100100011111001100011001111010

E(Ry) = 000100001000001111111001011000001100001111110100

Kw = 101100011111001101000111101110100100011001001111

E(Ry) & Ko
S-box outputs
f(RSh Km)
Ly = Ry

W

101000010111000010111110110110101000010110111011
11011010000001000101001001110101
01100010101111001001110000100010
10110111110101011101011110110010
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E(Ru)

Kn

E(Rw) @ K
S-box outputs

010110101111111010101011111010101111110110100101
001000010101111111010011110111101101001110000110
011110111010000101111000001101000010111000100011
01110011000001011101000100000001

f(Rw, Knn) = 11100001000001001111101000000010

Ly =Ry = 11000101011110000011110001111000
E(Ry) = 011000001010101111110000000111111000001111110001
K;, = 011101010111000111110101100101000110011111101001

E(Rn) & K2
S-box outputs

000101011101101000000101100010111110010000011000
01111011100010110010011000110101

f(Ru, Ki2) = 11000010011010001100111111101010

Liy=R;; = 01110101101111010001100001011000
E(R;;) = 001110101011110111111010100011110000001011110000
K 100101111100010111010001111110101011101001000001

E(Ri) ® K3
S-box outputs

101011010111100000101011011101011011100010110001
10011010110100011000101101001111

f(R2,Ki3) = 11011101101110110010100100100010
L= Ri3 = 00011000110000110001010101011010

E(R;3) = 000011110001011000000110100010101010101011110100

Ky, = 010111110100001110110111111100101110011100111010

E(Ri3)® Kis = 010100000101010110110001011110000100110111001110
S-box outputs 01100100011110011001101011110001
f(Ri3, Ki4) = 10110111001100011000111001010101
Lis = R4 = 11000010100011001001011000001101

E(Ris) = 111000000101010001011001010010101100000001011011

K,s = 101111111001000110001101001111010011111100001010

E(Ru)® K;s = 010111111100010111010100011101111111111101010001
S-box outputs 10110010111010001000110100111100
f(R, Kis) = 01011011100000010010011101101110
L= R)s = 01000011010000100011001000110100

E(Ris) = 001000000110101000000100000110100100000110101000

K = 110010110011110110001011000011100001011111110101

E(Ris)® K\ = 111010110101011110001111000101000101011001011101
S-box outputs 10100111100000110010010000101001
f(Ris, Kis) = 11001000110000000100111110011000
Ry, = 00001010010011001101100110010101

Finally, applying IP~! to L1, B¢, we obtain the ciphertext, which (in hexadec-

imal form) is:

85E813540F0AB405.

Next Chapter
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3.3 The DES Controversy

When DES was proposed as a standard, there was considerable criticism. One
objection to DES concerned the S-boxes. All computations in DES, with the
exception of the S-boxes, are linear, e.g., computing the exclusive-or of two
outputs is the same as forming the exclusive-or of two inputs and then computing
the output. The S-boxes, being the non-linear component of the cryptosystem, are
vital to its security (We saw in Chapter 1 how linear cryptosystems, such as the
Hill Cipher, could easily be cryptanalyzed by a known plaintext attack.) However,
the design criteria of the S-boxes are not completely known. Several people have
suggested that the S-boxes might contain hidden “trapdoors” which would allow
the National Security Agency to decrypt messages while maintaining that DES is
“secure.” Itis, of course, impossible to disprove such an assertion, but no evidence
has come to light that indicates that trap-doors in DES do in fact exist.

In 1976, the National Security Agency (NSA) asserted that the following prop-
erties of the S-boxes are design criteria:

PO Each row of each S-box is a permutation of the integers 0, .. ., 15.
P1 No S-box is a linear or affine function of its inputs.
P2 Changing one input bit to an S-box causes at least two output bits to change.

P3 For any S-box and any input 2, S(z) and S(z @ 001100) differ in at least two
bits (here z is a bitstring of length 6).

Two other properties of the S-boxes were designated as “caused by design
criteria” by NSA.

P4 For any S-box, for any input z, and fore, f € {0, 1}, S(z) # S(z @ 11ef00).

PS For any S-box, if one input bit is fixed, and we look at the vatue of one fixed
output bit, the number of inputs for which this output bit equals 0 will be
“close to” the number of inputs for which the output bit equals 1. (Note that
if we fix the value of either the first or sixth input bit, then 16 inputs will
cause a particular output bit to equal 0 and 16 inputs will cause the output
to equal 1. For the second through fifth input bits, this will not be true, but
the resulting distribution will be “close to” uniform. More precisely, for any
S-box, if the value of any input bit is fixed, then the number of inputs for
which any fixed output bit has the value 0 (or 1) is always between 13 and
19)

It is not publicly known if further design criteria were used in the construction
of the S-boxes.

The most pertinent criticism of DES is that the size of the keyspace, 2%, is too
small to be really secure. Various special-purpose machines have been proposed
for a known plaintext attack, which would essentially perform an exhaustive search
for the key. That is given a 64-bit plaintext ¢ and corresponding ciphertext y, every
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possible key would be tested until a key K such that ex (z) = y is found (and
note that there may be more than one such key K).

As early as 1977, Diffie and Hellman suggested that one could build a VLSI
chip which could test 10 keys per second. A machine with 10° keys could search
the entire key space in about a day. They estimated that such a machine could be
built for about $20,000,000.

Atthe CRYPTO ’93 Rump Session, Michael Wiener gave a very detailed design
of a key search machine. The machine is based on a key search chip which is
pipelined, so that 16 encryptions take place simultaneously. This chip can test
5 x 107 keys per second, and can be built using current technology for $10.50 per
chip. A frame consisting of 5760 chips can be built for $100,000. This would
allow a DES key to be found in about 1.5 days on average. A machine using 10
frames would cost $1,000,000, but would reduce the average search time to about
3.5 hours.

3.4 DES in Practice

Even though the description of DES is quite lengthy, it can be implemented very
efficiently, either in hardware or in software. The only arithmetic operations to be
performed are exclusive-ors of bitstrings. The expansion function E, the S-boxes,

the permutations IP and P, and the computation of K;, Ky, ..., K¢ can all be
done in constant time by table look-up (in software) or by hard-wiring them into
a circuit.

Current hardware implementations can attain extremely fast encryption rates.
Digital Equipment Corporation announced at CRYPTO ’92 that they have fabri-
cated a chip with 50K transistors that can encrypt at the rate of 1 Gbit/second using
a clock rate of 250 MHz! The cost of this chip is about $300. As of 1991, there
were 45 hardware and firmware implementations of DES that had been validated
by the National Bureau of Standards.

One very important application of DES is in banking transactions, using stan-
dards developed by the American Bankers Association. DES is used to encrypt
personal identification numbers (PINs) and account transactions carried out by
automated teller machines (ATMs). DES is also used by the Clearing House
Interbank Payments System (CHIPS) to authenticate transactions involving over
$1.5 x 10'2 per week.

DES is also widely used in government organizations, such as the Department
of Energy, the Justice Department, and the Federal Reserve System.

3.4.1 DES Modes of Operation

Four modes of operation have been developed for DES: electronic codebook
mode (ECB), cipher feedback mode (CFB), cipher block chaining mode (CBC)
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FIGURE 34
CBC mode

and output feedback mode (OFB).

ECB mode corresponds to the usual use of a block cipher: given a sequence
zyxy ... of 64-bit plaintext blocks, each z; is encrypted with the same key K,
producing a string of ciphertext blocks, y1y7 . . ..

In CBC mode, each ciphertext block y; is x-ored with the next plaintext block
z;41 before being encrypted with the key K. More formally, we start with a 64-bit
initialization vector IV, and define yo = IV. Then we construct y;, v, . . . from
the rule y; = eg (yi—1 ® x;), ¢ > 1. The use of CBC mode is depicted in Figure
34.
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CFB mode

In OFB and CFB modes, a keystream is generated which is then x-ored with the
plaintext (i.e., it operates as a stream cipher, cf. Section 1.1.7). OFB is actually a
synchronous stream cipher: the keystream is produced by repeatedly encrypting a
64-bitinitialization vector, IV. We define zp = IV, and then compute the keystream
z1z2 ... from the rule z; = ex(z;—1), ¢ > 1. The plaintext sequence z123 ... is
then encrypted by computing y; = z; & 2;,1 > 1.

In CFB mode, we start with yp = IV (a 64-bit initialization vector) and we
produce the keystream element z; by encrypting the previous ciphertext block.
Thatis, z; = e (yi—1), ¢ > 1. Asin OFB mode, y; = z; @ z;, i > 1. The use of
CFB is depicted in Figure 3.5 (note that the DES encryption function ek is used
for both encryption and decryption in CFB and OFB modes).

There are also variations of OFB and CFB mode called k-bit feedback modes
(1 <€ k < 64). We have described the 64-bit feedback modes here. 1-bit and 8-bit
feedback modes are often used in practice for encrypting data one bit (or byte) at
a time.
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The four modes of operation have different advantages and disadvantages.
In ECB and OFB modes, changing one 64-bit plaintext block, z;, causes the
corresponding ciphertext block, y;, to be altered, but other ciphertext blocks are
not affected. In some situations this might be a desirable property. For example,
OFB mode is often used to encrypt satellite transmissions.

On the other hand, if a plaintext block z; is changed in CBC and CFB modes,
then y; and all subsequent ciphertext blocks will be affected. This property
means that CBC and CFB modes are useful for purposes of authentication. More
specifically, these modes can be used to produce a message authentication code,
or MAC. The MAC is appended to a sequence of plaintext blocks, and is used
to convince Bob that the given sequence of plaintext originated with Alice and
was not tampered with by Oscar. Thus the MAC guarantees the integrity (or
authenticity) of a message (but it does not provide secrecy, of course).

We will describe how CBC mode is used to produce a MAC. We begin with
the initialization vector IV consisting of all zeroes. Then construct the ciphertext
blocks yi, ...,y with key K, using CBC mode. Finally, define the MAC to be
Yn. Then Alice transmits the sequence of plaintext blocks, z; .. .x,, along with
the MAC. When Bob receives ) ...z,, he can reconstruct y;, . . ., yn using the
(secret) key K, and verify that y,, is the same as the MAC that he received.

Note that Oscar cannot produce a valid MAC since he does not know the key K
being used by Alice and Bob. Further, if Oscar intercepts a sequence of plaintext
blocks z; . .. z,,, and changes one or more of them, then it is highly unlikely that
Ocsar can change the MAC so that it will be accepted by Oscar.

It is often desirable to combine authenticity and secrecy. This could be done as
follows: Alice first uses key K to produce a MAC for z, . .. z,,. Then she defines
Zn41 to be the MAC, and she encrypts the sequence z; ...z, 41 using a second
key, K, yielding y . ..yn4+1. When Bob receives y . ..yn+1(, he first decrypts
(using K,) and then checks that z,,4 is the MAC for z; . ..z, using K;.

Alternatively, Alice could use K to encrypt ...z, obtaining y; . .. y,, and
then use K> to produce a MAC y,, 4+ for v ...y,. Bob would use K to verify
the MAC, and then use K| to decrypty; . .. yn.

3.5 A Time-memory Trade-off

In this section, we describe an interesting time-memory tradeoff for a chosen
plaintext attack. Recall that in a chosen plaintext attack, Oscar obtains a plaintext-
ciphertext pair produced using the (unknown) key K. So Oscar has z and y, where
y = ek (), and he wants to determine K.

A feature of this time-memory trade-off is that it does not depend on the
“structure” of DES in any way. The only aspects of DES that are relevant to the
attack are that plaintexts and ciphertexts have 64 bits, while keys have 56 bits.



Previous Chapter Previous Page Home Next page Next Chapter

3.5. A TIME-MEMORY TRADE-OFF 87
FIGURE 3.6
Computation of X (1, 5)

X(1,0 % x@,1) % 4 X(1,1)

X200 % x2,1) 5 4 X(2,0)

X(m,0) 5 X(@m,1) 5 4 X(m,1)

We have already discussed the idea of exhaustive search: given a plaintext-
ciphertext pair, try all 2% possible keys. This requires no memory but, on average,
255 keys will be tried before the correct one is found. On the other hand, for a
given plaintext z, Oscar could precompute yx = ex () for all 2% keys K, and
construct a table of ordered pairs (yx , /), sorted by their first coordinates. Ata
later time, when Oscar obtains the ciphertext y which is an encryption of plaintext
z, he looks up the value y in the table, immediately obtaining the key K. Now the
actual determination of the key requires only constant time, but we have a large
memory requirement and a large precomputation time. (Note that this approach
would yield no advantage in total computation time if only one key is to be found,
since constructing the table takes at least as much time as an exhaustive search.
The advantage occurs when several keys are to be found over a period of time,
since the same table can be used in each case.)

The time-memory trade-off combines provides a smaller computation time than
exhaustive search with a smaller memory requirement than table look-up. The
algorithm can be described in terms of two parameters m and ¢, which are positive
integers. The algorithm requires a reduction function R which reduces a bitstring
of length 64 to one of length 56. (R might just discard eight of the 64 bits, for
example.) Let x be a fixed plaintext string of length 64. Define the function
9(Ko) = R(ek,()) for a bitstring K of length 56. Note that g is a function that
maps 56 bits to 56 bits.

In the pre-processing stage, Oscar chooses m random bitstrings of length 56,
denoted X (¢,0), 1 < ¢ < m. Oscar computes X (¢, j) for 1 < j < t according
to the recurrence relation X (4,5) = g(X({,7 — 1)), 1 <i<m,1<j <, as
indicated in Figure 3.6.

Then Oscar constructs a table of ordered pairs T = (X(¢,t), X (¢,0)), sorted
by their first coordinate (i.e., only the first and last columns of X are stored).

Atalater time, Oscar obtains a ciphertext y which is an encryption of the chosen
plaintext x (as before). He again wants to determine K. He is going to determine
if K is in the first £ columns of the array X, but he will do this by looking only at
the table T'.

Suppose that K = X (¢,t — j) forsome j, 1 < j < (i.e., suppose that K is in
the first ¢ columns of X). Then it is clear that g7 (K) = X (i,t), where g7 denotes
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FIGURE 3.7
DES time-memory trade-off

1. compute y; = R(y)

2. forj=1totdo

3. if y; = X (4,t) for some 7 then

4, compute X (i,t — j) from X{(i,0) by iterating the g

function ¢ — j times
5. if y = ex(is~j)(z) then
set K = X (i, — j) and QUIT
7. compute ¥;+1 = g(y;)

the function obtained by iterating g, j times. Now, observe that
9 (K) = ¢ (g(K))
= ¢/ (R(ex (z))
= ¢~ (R(y)-
Suppose we compute y;, 1 < j < ¢, from the recurrence relation

- R(y) lf] =1
Y= glyj-1) if2<ji<t,

Then it follows that y; = X(,¢) if K = X(i, — j). However, note that
y; = X (i,t) is not sufficient to ensure that K = X (i,¢ — j). This is because the
reduction function R is not an injection: The domain of R has cardinality 254 and
the range of R has cardinality 2%, so, on average, there are 28 = 256 pre-images of
any given bitstring of length 56. So we need to check whether y = ex (i ;—j)(x),
to see if X(i,t — j) is indeed the key. We did not store the value X (i,t — j), but
we can easily re-compute it from X (¢, 0) by iterating the g function ¢ — j times.

Oscar proceeds according to the algorithm presented in Figure 3.7.

By analyzing the probability of success for the algorithm, it can be shown that
if mt? & N = 256, then the probability that K = X (i, ¢ — j) for some ¢, j is about
0.8mt/N. The factor 0.8 accounts for the fact that the numbers X (¢,¢) may not
all be distinct. It is suggested that one should take m ~ t &~ N!/3 and construct
about N'/3 tables, each using a different reduction function R. If this is done, the
memory requirement is 112 x N2/3 bits (since we need to store 2 x N2/? integers,
each of which has 56 bits). The precomputation time is easily seen to be O(N).

The running time is a bit more dificult to analyze. First, note that step 3 can
be implemented to run in (expected) constant time (using hash coding) or (worst-
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case) time O(logm) using a binary search. If step 3 is never satisfied (i.e., the
search fails), then the running time is O(N?/3). A more detailed analysis shows
that even when the running time of steps 4 and 5 is taken into account, the expected
running time increases by only a constant factor.

3.6 Differential Cryptanalysis

One very well-known attack on DES is the method of “differential cryptanalysis”

introduced by Biham and Shamir. This is a chosen-plaintext attack. Although
it does not provide a practical method of breaking the usual 16-round DES, it
does succeed in breaking DES if the number of rounds of encryption is reduced.
For instance, 8-round DES can be broken in only a couple of minutes on a small
personal computer.

We will now describe the basic ideas used in this technique. For the purposes
of this attack, we can ignore the initial permutation IP and its inverse (it has no
effect on cryptanalysis). As mentioned above, we consider DES restricted to n
rounds, for various values of n < 16. So, in this setting, we will regard Lo Ry as
the plaintext, and L, R, as the ciphertext, in an n-round DES. (Note also that we
are not inverting L, R,,.)

Differential cryptanalysis involves comparing the x-or (exclusive-or) of two
plaintexts to the x-or of the corresponding two ciphertexts. In general, we will
be looking at two plaintexts LoRp and L Ry with a specified x-or value Lo Ry =
LoRo @ L§R;. Throughout this discussion, we will use prime markings () to
indicate the x-or of two bitstrings.

DEFINITION3.1 Let S; be a particular S-box (1 < j < 8). Consider an
(ordered) pair of bztstrmgs of length six, say (B;, B}). We say that the input x-or
(of Sj)is B;j & Bj and the output x-or (of S;) is S (Bj) ® S;(B7).

Note that an input x-or is a bitstring of length six and an output x-or is a bitstring
of length four.

DEFINITION 3.2 For any B} € (Z,)5, define the set A(B}) to consist of the
ordered pairs (B;, B}) having input x-or B;.

It is easy to see that any set A(B}) contains 2 = 64 pairs, and that
A(B)) = {(B), B; ® Bj) : B; € (Z2)°}.

For each pair in A(B;), we can compute the output x-or of S; and tabulate the
resulting distribution. There are 64 output x-ors, which are distributed among
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2* = 16 possible values. The non-uniformity of these distributions will be the
basis for the attack.

Example 3.1
Suppose we consider the first S-box, S\, and the input x-or 110100. Then

A(110100) = {(000000, 110100), (000001, 110101), ..., (111111,001011)}.

For each ordered pair in the set A(110100), we compute output x-or of S;. For
example, 5;(000000) = Ejs = 1110 and 5;(110100) = 9;6 = 1001, so the
output x-or for the pair (000000, 110100) is 0111.

If this is done for all 64 pairs in A(110100), then the following distribution of
output x-ors is obtained:

0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111
0 ] 8 | 16| 6] 2] 0] 0] 12

1000 | 1001 | 1010 ] 1011 | 1100 | 1101 ] 1110 | 1111
6 | 0000806

In Example 3.1, only eight of the 16 possible output x-ors actually occur. This
particular example has a very non-uniform distribution. In general, if we fix an
S-box S; and an input x-or B, then on average, it turns out that about 75 — 80%
of the possible output x-ors actually occur.

It will be convenient to have some notation to describe these distributions and
how they arise, so we make the following definitions.

DEFINITION 3.3 For 1 < j < 8, and for bitstrings B; of length six and C} of
length four, define

IN;(Bj},C5) = {B; € (Z2)® : S;(B;) ® S;(B; @ B}) = C}}
and

N;(B;, C}) = |IN;(B}, C})|.

N; (B}, C}) counts the number of pairs with input x-or equal to B} which have
output x-or equal to C; for the S-box S;. The actual pairs having the specified
input x-ors and giving rise to the specified output x-ors can be obtained from the
set /N;(Bj, C7). Observe that this st can be partitioned into N;(Bj, C}) /2 pairs,
each of which has (input) x-or equal to B;.

Note that the distribution tabulated in Example 3.1 consists of the values
N(110100,C}), C} € (Z)*. The sets IN;(110100,C}) are listed in Figure
3.8.
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FIGURE 3.8

Possible inputs with input x-or 110100

output x-or

possible inputs

0000

0001

000011,001111,011110,011111
101010, 101011, 110111, 111011

0010

000100, 000101, 001110, 010001
010010,010100,011010, 011011
100000, 100101, 010110, 101110
101111, 110000, 110001, 111010

0011

000001, 000010, 010101, 100001
110101, 110110

0100

010011, 100111

0101

0110

0111

000000, 001000, 001101, 010111
011000, 011101, 100011, 101001
101100, 110100, 111001, 111100

1000

001001, 001100, 011001, 101101
111000, 111101

1001

1010

1011

1100

1101

000110, 010000, 010110,011100
100010, 100100, 101000, 110010

1110

1111

000111, 001010,001011, 110011
111110,111111
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For each of the eight S-boxes, there are 64 possible input x-ors. Thus, there
are 512 distributions which can be computed. These could easily be tabulated by

computer.

Recall that the input to the S-boxes in round i is formed as B = £ & J, where
E = E(R;_) is the expansion of R;_; and J = K; consists of the key bits for
round i. Now, the input x-or (for all eight S-boxes) can be computed as follows:

BoB =(E®J)® (E*®J)

=EFE®E*.

Itis very important to observe that the input x-or does not depend on the key bits

Next Chapter
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J. (However, the output x-or certainly does depend on these key bits.)
We will write each of B, E and J as the concatenation of eight 6-bit strings:

B = B1ByB3yB34BsB¢B;Bs
E = E\E,E3E4EsEgEEy
J= J1J2J3J4J5J6J7J3,

and we write B*, E*, J* in a similar way. Let us suppose for the moment that we
know the values E; and E7} for some j, 1 < j < 8§, and the value of the output
x-or for S, C; = S;(Bj) ® S;(Bj). Then it must be the case that

Ej ®J; € INJ’(E_;,C}),
where £} = E; © Ej.
Suppose we define a set test; as follows:
DEFINITION 3.4 Suppose E; and E; are bitstrings of length six, and Cj is a
bitstring of length four. Define
testj(Ej,E;,CJ{) ={Bj®F;:B;€ IN_,'(E;,C’;)},
where E; = E; © Ej.

That is, we take the x-or of E; with every element of the set I N; (Ej, C7).
The following result is an immediate consequence of the discussion above.

THEOREM 3.1
Suppose E; and E7 are two inputs to the S-box S;, and the output x-or for S; is Cj.
Denote E; = E; & Ej. Then the key bits J; occur in the set test;(E;, E}, C}).

Observe that there will be exactly N;(E%, C}) bitstrings of length six in the set
test;(E;, E7, C}); the correct value of J; must be one of these possibilities.

Example 3.2

Suppose £y = 000001, E} = 110101 and C| = 1101. Since N;(110100, 1101) =
8, there will be exactly eight bitstrings in the set zest; (000001, 110101, 1101).
From Figure 3.8, we see that

IN(110100,1101) =
{000110, 010000,010110, 011100, 100010, 100100, 101000, 110010} .
Hence,
test; (000001, 110101, 1101) =
{000111,010001,010111,011101, 100011, 100101, 101001, 110011}. ]
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If we have a second such triple E;, ET, {, then we can obtain a second set
test; of possible values for the keybits in J;. The true value of J; must be in
the intersection of both sets. If we have several such triples, then we can quickly
determine the key bits in J;. One straightforward way to do this is to maintain an
array of 64 counters, representing the 64 possibilities for the six key bitsin J;. A
counter is incremented every time the corresponding key bits occur in a set fest;
for a particular triple. Given ¢ triples, we hope to find a unique counter which has
the value ¢; this will correspond to the true value of the keybits in J;.

3.6.1 An Attack on a 3-round DES

Let’s now see how the ideas of the previous section can be applied in a chosen
plaintext attack of a 3-round DES. We will begin with a pair of plaintexts and
corresponding ciphertexts: LoRo, L§Rj, L3R3 and L3 R3. We can express Rj as
follows:

Ry = L, ® f(Ry, K3)
= R ® f(R2, K3)
= Lo ® f(Ro, K1) ® f(Ra, K3).
Rj can be expressed in a similar way, and hence
Ry = Ly @ f(Ro, K1) ® f(R5, K1) ® f(Rz, K3) ® f(R, K3)-
Now, suppose we have chosen the plaintexts so that Ro = Rg, i.e., so that
Ry =00...0.
Then f(Ro, K1) = f(Rg, K1) and so
Ry = Ly ® f(Ra, K3) © f(R3, K3).

At this point, R} is known since it can be computed from the two ciphertexts, and
L}, is known since it can be computed from the two plaintexts. This means that
we can compute f(R,, K3) ® f(R3, K3) from the equation

f(R2, K3) ® f(R3, K3) = Ry @ L.

Now, f(Rz, K3) = P(C) and f(R;, K3) = P(C*), where C and C*, respec-
tively, denote the two outputs of the eight S-boxes (recall that P is a fixed, publicly
known permutation). Hence,

P(C) ® P(C*) = Ry & Ly,
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FIGURE 3.9
Differential attack on 3-round DES

Input: LoRo, LyRg, L3R3 and L3 R3, where Ry = Rj
. compute C' =P~ (R} & L))
2. compute £ = E(L3) and E* = E(L3)
3. forj=1to8do
compute test;(E;, E}, C})

and consequently
C'=CaC* =P (R,® L}). (3.1)

This is the output x-or for the eight S-boxes in round three.

Now, Ry = L3 and R} = Lj are also known (they are part of the ciphertexts).
Hence, we can compute

E =E(L3) (3.2)
and
E* = E(L}) (33)

using the publicly known expansion function E. These are the inputs to the S-boxes
for round three. So, we now know E, E*, and C’ for the third round, and we
can proceed, as in the previous section, to construct the sets test,, ..., testg of
possible values for the key bitsin J, .. ., Js.

A pseudo-code description of this algorithm is given in Figure 3.9. The attack
will use several such triples E, E*, C'. We set up eight arrays of counters, and
thereby determine the 48 bits in K33, the key for the third round. The 56 bits in the
key can then be computed by an exhaustive search of the 28 = 256 possibilities
for the remaining eight key bits.

Let’s look at an example to illustrate.

Example 3.3

Suppose we have the following three pairs of plaintexts and ciphertexts, where the
plaintexts have the specified x-ors, that are encrypted using the same key. We use
a hexadecimal representation, for brevity:
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ciphertext
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748502CD38451097
3874756438451097

03C70306D8A09F10
78560A0960E6D4CB

486911026ACDFF31
375BD31F6ACDFF31

45FA285BE5SADC730
134F7915AC253457

357418DA013FEC86
12549847013FEC86

D8A31B2F28BBCS5CF
OF317AC2B23CB944

95

Next Chapter

From the first pair, we compute the S-box inputs (for round 3) from Equations
(3.2) and (3.3). They are:

E = 000000000111111000001110100000000110100000001100
E* = 101111110000001010101100000001010100000001010010.
The S-box output x-or is calculated using Equation (3.1) to be:
C’ = 10010110010111010101101101100111.
From the second pair, we compute the S-box inputs to be

E = 101000001011111111110100000101010000001011110110
E* = 100010100110101001011110101111110010100010101010

and the S-box output x-or is
C’ = 10011100100111000001111101010110.
From the third pair, the S-box inputs are

E = 111011110001010100000110100011110110100101011111
E* = 000001011110100110100010101111110101011000000100

and the S-box output x-or is
C’ = 11010101011101011101101100101011.

Next, we tabulate the values in the eight counter arrays for each of the three
pairs. We illustrate the procedure with the counter array for J; from the first pair.
In this pair, we have E| = 101111 and Cj = 1001. The set

IN;(101111, 1001) = {000000,000111,101000, 101111}.
Since E| = 000000, we have that
Ji € test; (000000, 101111, 1001) = {000000, 000111, 101000, 101111}.

Hence, we increment the values 0, 7, 40, and 47 in the counter array for J;.
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The final tabulations are now presented. If we think of a bit-string of length
six as being the binary representation of an integer between 0 and 63, then the 64

., 63. The counter arrays are as follows:

values correspond to the counts of 0, 1, . .

i
1 00000 00O

0
1 00 0 01
00
0 000O0O0O0CO0CO0OO0OO0CO0OO0OO0GO

1
1
1

0 000
00000

1

1 000

0 00O0O0O03

1

0 00

1

1

J2

1 0000

00

1 03 001
000200000O010O00

0 00

0

1

0

000001001
1 00 001

00

1

J3
1 000 0 0 O0O0O

1

00001

1

0003 00O0O0CO0OO0OO0OOOOTQ 01

02000O0O0O0OO0OO0OGO0OO0

1

1

0 0 00O00O0

J4
0000 O0O0O0OO0OCZ2720000

1

3

1

11000000
0000

1
1

00 00

1 00 0
1

1

1

0

0 0 00

0 00 O0O0O0O0O02

1

Js

000100O0O0CO

1

00 0O0O0OO

000020003 000O00O0O0T0

000 0OO0OOOOOOOOOOO

002000000

000020

1

Js
0 0 3 0 0O0TO0

1 00

000O0OOOOOTU OO

0

1

1

1

0 0

1
1

0 0 001
00 0 01
0

1 0 0

0 0000 OOTDO

1
1

000 00O0O0TO

1

1
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Jq
0021010300O011O0O00
01 00O0OGCOOOOOT1O0TGO0OOT1
0020002000O012110
0000 O0CO0O0OO0COOTI>I O0O0O0CT1 1
Js
000O0OOOOO0OO0OOOOOGOODQO
0 00O0O0OOO0OOOO0ODOO0OO0OO0OO
0 00O0OOO0OOT11 0100101
03 00001000O0OO0O0OO0OO0ODO
In each of the eight counter arrays, there is a unique counter having the value
3. The positions of these counters determine the key bits in Ji, ..., Jg. These
positions are (respectively): 47,5,19,0,24,7,7,49. Converting these integers to

binary, we obtain Ji, ..., Jg:
Ji = 101111
J2 = 000101
J3 = 010011
J4 = 000000
Js = 011000
Js = 000111
J7; = 000111
Jg = 110001.

We can now construct 48 bits of the key, by looking at the key schedule for
round 3. It follows that K has the form

0001101 0110001 01?01?20 1700100
0101001 0000720 1117117 ?100011

where parity bits are omitted and “?” denotes an unknown key bit. The complete
key (in hexadecimal, including parity bits), is:

1A624C89520DEC46.
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3.6.2 An Attack on a 6-round DES

We now describe an extension of these ideas to a probabilistic attack on a 6-round
DES. The idea is to carefully choose a pair of plaintexts with a specified x-or, and
then to determine the probabilities of a specified sequence of x-ors through the
rounds of encryption. We need to define an important concept now.

DEFINITION 3.5 Letn > 1 be an integer. An n-round characteristic is a list of
the form

L6) 6; llyR,]apl; .. "L;’R;npn)
which satisfies the following properties:

1. Li=R;_ for1<i<n.

2. Letl1 <i<mn andlet Li_y,Ri_, and L}_,, R}_, be chosen such that
Lioy®L;_, = L;_, and R;— ® R}_| = R]_,. Suppose L, R; and
L}, R} are computed by applying one round of DES encryption. Then the
probabilitythat L; ® L} = L} and R; ® R} = R} is precisely p;. (Note that
this probability is computed over all possible 48-tuples J = Jy ... Js.)

The probability of the characteristic is defined to be the product p = p; X .. . X pp.

REMARK  Suppose we choose Lg, Ry and L, Rj so that Lo & L§ = Lj and
Ry ® R = Ry and we apply n rounds of DES encryption, obtaining Ly, ..., L,
and Ry, ..., R,. Then we cannot claim that the probability that L; & LY = L
and R; @ R} = R, foralli (1 < i< mn)isp; X ...x p,. This is because the
48-tuples in the key schedule K, . . ., K,, are not mutually independent. (If these
n 48-tuples were chosen independently at random, then the assertion would be
true.) But we nevertheless expect p) x ... X p,, to be a fairly accurate estimate of
this probability.

We also need to recognize that the probabilities p; in a characteristic are defined
with respect to an arbitrary (but fixed) pair of plaintexts having a specified x-
or, where the 48 key bits for one round of DES encryption vary over all 2%
possibilities. However, a cryptanalyst is attempting to determine a fixed (but
unknown) key. He is going to choose plaintexts at random (such that they have
specified x-ors), hoping that the probabilities that the x-ors during the n rounds
of encryption agree with the x-ors specified in the characteristic are fairly close to
Pl, - - -, Pn, Tespectively.

As a simple example, we present in Figure 3.10 a 1-round characteristic which
was the basis of the attack on the 3-round DES (as before, we use hexadecimal
representations). We depict another 1-round characteristic in Figure 3.11.

Let’s look at the characteristic in Figure 3.11 in more detail. When f(Ry, K)
and f(Rg, K1) are computed, the first step is to expand Ro and Rj. The resulting
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FIGURE 3.10
A 1-round characteristic

Ly = anything R, = 00000000;6

L/] = 0000000016 I] = L6 p:l
FIGURE 3.11
Another 1-round characteristic

L{ = 00000000,¢ Ry = 6000000046

L7 = 600000006 1 = 008082004 p=14/64
x-or of the two expansions is

001100...0.

So the input x-or to S is 001100 and the input x-ors for the other seven S-boxes
are all 000000. The output x-ors for S, through Sg will all be 0000. The output
x-or for Sy will be 1110 with probability 14/64 (since it can be computed that
N1(001100, 1110) = 14). So we obtain

C’ = 11100000000000000000000000000000
with probability 14/64. Applying P, we get
P(C) @ P(C™) = 00000000100000001000001000000000,

which in hexadecimal is 008082005 When this is x-ored with Lj, we get the
specified R} with probability 14/64. Of course L} = Ry always.

The attack on the 6-round DES is based on the 3-round characteristic given
in Figure 3.12. In the 6-round attack, we will start with LoRy, Ly R, LeRs
and Lg Rg, where we have chosen the plaintexts so that Ly = 400800006 and

FIGURE 3.12
A 3-round characteristic
6 = 40080000¢ {) = 040000006
'I = 040000004¢ '1 = 0000000046 p=1/4
I2 = 0000000016 I2 = 04000000]6 p=
g = 040000006 f‘ = 40080000,¢ p=1/4
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o = 04000000,6. We can express Rg as follows:
Rs = Ls @ f(Rs, Ke)
= R4 ® f(Rs, Ks)
= L3 @ f(Rs, K4) ® f(Rs, Kg).
Rg can be expressed in a similar way, and hence we get
Ry = Ly & f(Rs, Ka) @ f(RS, Ka) ® f(Rs, Ko) ® f(RS, Ks).  (3.4)

(Note the similarity with the 3-round attack.)

g is known. From the characteristic, we estimate that L'3 = 04000000,¢ and
R’ = 400800006 with probability 1/16. If this is in fact the case, then the input
x-or for the S-boxes in round 4 can be computed by the expansion function to be:

001000000000000001010000. . .0.

The input x-ors for S, Ss, Sg, S7 and Sg are all 000000, and hence the output
x-ors are 0000 for these five S-boxes in round 4. This means that we can compute
the output x-ors of these five S-boxes in round 6 from Equation (3.4). So, suppose
we compute

CC4C}CLCLCLCCY = P~ (R, ® 04000000;)

where each Cj is a bitstring of length four. Then with probability 1/16, it will be
the case that C, Cs, C¢, C; and Cj are respectively the output x-ors of S, Ss, Se,
57 and Sg in round 6. The inputs to these S-boxes in round 6 can be computed to
be By, Es, Es, E7 and Eg, and E3, E¢, F¢, E7 and Eg, where
E\E2E3E4EsFEgE1Ey = E(Rs) = E(Lg)

and

E} B} 5 F; B3 B} B3 By = B(RS) = B(L§)
can be computed from the ciphertexts, as indicated in Figure 3.13.

We would like to determine the 30 key bits in J;, Js, Jg, J7 and Jg as we did
in the 3-round attack. The problem is that the hypothesized output x-or for round
6 is correct only with probability 1/16. So 15/16 of the time we will obtain
random garbage rather than possible key bits. We somehow need to be able to
determine the correct key from the given data, 15/16 of which is incorrect. This

might not seem very promising, but fortunately our prospects are not as bleak as
they initially appear.

DEFINITION 3.6  Suppose Lo ® L§ = Ly and Ry ® Ry = R{. We say that the
pair of plaintexts LoRo and Ly Ry is right pair with respect to a characteristic if
Li®L; = L;and R; ® R} = Rl foralli, 1 < i < n. The pair is a defined to be
wrong pair, otherwise.
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FIGURE 3.13
Differential attack on 6-round DES

Input: LoRo, Ly Ry, LeRs and Lg Rg, where Ly = 40080000, and
o = 04000000

compute C’' = P~ (R @ 40080000;¢)
. compute E = E(L¢) and E* = E(L¢)
3. forj € {2,5,6,7,8} do
compute test;(Ej, £}, C}).

We expect that about 1/16 of our pairs are right pairs and the rest are wrong
pairs with respect to our 3-round characteristic.

Our strategy is to compute Ej, EY, and CJ’-, as described above, and then to
determine test;(E;, E;,CJ’-), for j = 2,5,6,7,8. If we start with a right pair,
then the correct key bits for each J; will be included in the set test;. If the pair
is a wrong pair, then the value of C]’- will be incorrect, and it seems reasonable to
hypothesize that each set test; will be essentially random.

We can often identify a wrong pair by this method: If |test;| = 0, for any
j € {2,5,6,7,8}, then we necessarily have a wrong pair. Now, given a wrong
pair, we might expect that the probability that |test;| = O for a particular j is
approximately 1/5. This is a reasonable assumption since N;(E?, C}) = |test;]
and, as mentioned earlier, the probability that N;(E}, C}) = 0 is approximately
1/5. The probability that all five test;’s have positive cardinality is estimated
to be .85 & .33, so the probability that at least one test; has zero cardinality is
about .67. So we expect to eliminate about 2/3 of the wrong pairs by this simple
observation, which we call the filtering operation. The proportion of right pairs
that remain after filtering is approximately (1/16)/(1/3) = 3/16.

Example 3.4

Suppose we have the following plaintext-ciphertext pair:

plaintext ciphertext
86FAL1C2B1lF51D3BE 1E23ED7F2F553971
C6F21C2B1B51D3BE 296DE2B687AC6340
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Observe that Lj = 400800006 and R = 04000000;6. The S-box inputs and
outputs for round 6 are computed to be the following:

E; Ef | G

111100 | 010010 | 1101
111101 | 111100 | 0001
011010 | 000101 | 0010
101111 | 010110 | 1100
111110 ] 101100 | 1101

00 ~J N L N,

Then, the sets test; are as follows:

J test;

2 { 14,15,26,30,32,33,48,52
5

6 7,24,36,41,54,59

7

8 34,35,48,49

We see that both rests and test; are empty sets, so this pair is a wrong pair and is
discarded by the filtering operation.

Now suppose that we have a pair such that |test;| > 0 for j = 2,5,6,7,8,s0
that it survives the filtering operation. (Of course, we do not know if the pair is a
right pair or a wrong pair.) We say that the bitstring J,JsJ¢J7Jg of length 30 is
suggested by the pair if J; € test; for j = 2,5,6,7, 8. The number of suggested

bitstrings is
IT  ltest;l.
7€{2,5,6,7,8}

It is not unusual for the number of suggested bitstrings to be quite large (for
example, greater than 80000).

Suppose we were to tabulate all the suggested bitstrings obtained from the N
pairs that were not discarded by the filtering operation. For every right pair, the
correct bitstring J,JsJsJ7.Jg will be a suggested bitstring. This correct bitstring
will be counted about 3N/16 times. Incorrect bitstrings should occur much less
often, since they will occur essentially at random and there are 2°° possibilities (a
very large number).

It would get extremely unwieldy to tabulate all the suggested bitstrings, so we
use an algorithm that requires less space and time. We can encode any test; as a
vector T} of length 64, where the ith coordinate of 7} is set to 1 (for 0 < i < 63)
if the bitstring of length six that is the binary representation of ¢ is in the set test;;
and the ith coordinate is set to O otherwise (this is essentially the same as the
counter array representation that we used in the 3-round attack).
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For each remaining pair, construct these vectors as described above, and name
them T}, j = 2,5,6,7,8,1 < i < N. For I C {1,..., N}, we say that [ is
allowable if for each j € {2,5,6,7,8}, there is at least one coordinate equal to

|1} in the vector

2T

i€l
If the ith pair is a right pair for every ¢ € I, then the set ] is allowable. Hence, we
expect there to be an allowable set of size (approximately) 3N /16, which we hope

will suggest the correct key bits and no other. It is a simple matter to construct all
the allowable sets I by means of a recursive algorithm.

Example 3.5
We did some computer runs to test this approach. A random sample of 120 pairs of
plaintexts with the specified x-ors was generated, and these were encrypted using
the same (random) key. We present the 120 pairs of ciphertexts and corresponding
plaintexts in hexadecimal form in Table 3.1.

When we compute the allowable sets, we obtain n; allowable sets of cardinality
1, for the following values:

@
3

111
180
231
255
210
120

45

10

[=JAN-RNC B -V B SV

-

The unique allowable set of size 10 is
{24,29, 30, 48,50, 52,55,83,92,118}.

In fact, it does arise from the 10 right pairs. This allowable set suggests the correct
key bits for J3, Js5, Jg, J7 and Jg and no others. They are as follows:

J2 = 011001
Js = 110000
Js = 001001

J7 = 101010
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FIGURE 3.14
Another 3-round characteristic
Lf, = 002000086 (’) = 000004006
L'l = 000004006 ’, = 000000006 p=1 / 4
L’2 = 00000000;¢ '2 = 00000400;¢ p=
L§ = 000004006 Q = 00200008, p=1/4
Jg = 100011

Note that all the allowable sets of cardinality at least 6, and all but three of
the allowable sets of cardinality 5, arise from right pairs, since (') = 252 and
(*%) = n; for6 <i < 10.

This method yields 30 of the 56 key bits. By means of a different 3-round
characteristic, presented in Figure 3.14, it is possible to compute 12 further key
bits, namely those in J| and J4. Now only 14 key bits remain unknown. Since
2'4 = 16384 is quite small, an exhaustive search can be used to determine the
remaining 14 key bits.

The entire key (in hexadecimal, including parity-check bits) is:

34E9F71A20756231.

As mentioned above, the 120 pairs are given in Table 3.1. In the second
column, a * denotes that a pair is a right pair, while a ** denotes that the pair is
an identifiable wrong pair and is discarded by the filtering operation. Of the 120
pairs, 73 are identified as being wrong pairs by the filtering process, so 47 pairs
remain as “possible” right pairs.

3.6.3 Other examples of Differential Cryptanalysis

Differential cryptanalysis techniques can be used to attack DES with more than
six rounds. An 8-round DES requires 2!4 chosen plaintexts, and 10-, 12-, 14-
and 16-round DESs can be broken with 224, 23!, 239 and 2*7 chosen plaintexts,
respectively. The attacks on more than 10 rounds are probably not practical at this
time,

Several substitution-permutation product ciphers other than DES are also sus-
ceptible (to varying degrees) to differential cryptanalysis. These cryptosystems
include several substitution-premutation cryptosystems that have been proposed
in recent years, such as FEAL, REDOC-II, and LOKI.
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TABLE 3.1
Cryptanalysis of 6-round DES

pair  right pair? plaintext ciphertext
1 + BG6FAIC2BIF51D3BE  1E23ED7F2F553971
C6F21C2B1B51D3BE 296DE2B687AC6340
2 % EDC439EC935EIACD OFB47EFEJ0466568
ADCC39EC975E1ACD 93E84839F374440B
3 * 9468A0BE00166155 3D6A906A6566D0BF
D460A0BE04166155 3BC3B236398379EL
7 % DAFF2B18A5ABAACS  26B14738C2556BA4
94F72B18A1A8AACS  15753FDE86575A8F
5 09DOF2CF27TAF54F 15751FAF11308114
49D8F2CF237AF54F  6046A7CB63F066AF
6 CBC7157240D415DF  7FCDC300FBS698ES
8BCF157244D415DF 522185DD7E47D43A
7 0D4A1E84890981C1 E/COB01E32557558
4D421E848D0981C1  912C6341A69DF295
8 ¥ 6CE6B2A9B8194835  75D52E028A5C4ABA3
2CEEB2A9BC194835 6C88603B48ESASCE
9 * 799F63C3C9322C1A  A6DA322B8F2444B5
399763C3CD322C1A  6634AAIDF18307F4
10 * 1B36645E381EDF48  1F91E295D559091B
5B3E645E3CLEDF48 DO94FC12C02C17CA
11 85CA13F50B4ADBBY  ED108EE7397DDEOA
C5C213F50F4ADBBY  3F405F4A3E254714
12 ** 7963ABEFDISBCAAL  8C714399715A33BA
396BASBEFDS55BC4A1  C344C73CCY97E4ACS
13 7BCFF7BCA455E65E  475A2D0459BCCE62
3BC7F7BCAOS5E65E  S8E94334AEF359EF8
14 0C505CEDB499218C  D3C66239E89CC076
4C585CEDB099218C  9A316E801EE18EB1
15 6CSEAQ56CDC91A14 BCT7EBA159BCAS4E6
2C56A056C9C91A14  67DB935C21FF1A8D
16 + 6622A441A0D32415 35FB616FEBA62883
262AA441A4D32415 4313E1925F5B64BC
17 C0333C994AFF1C99 DA6A4CF1C0221B11
803B3C994EFF1C99 D22B42DB150E2CE8
18 9ETB297AFOOEIAGE  172D286DI606E6FE
DE732974F40E1A6E 2217A91F8C427D27
19 *x CF592897BFD70C7E FB892B59E7DCE7EC
8F512897BBD70CTE C328B765E1CC6653
20 E976CF10124A0FAL 905BF24188509FA6
A97ECF19164A9FAl  9ADDBAOC23DD724F
21 w 5C09696E7363675D 92D60E5C/1801A99
1C01696E7763675D DD9I090BAAFES168F
22 * AB145AB3C1B2C/DE  F6BFCIF80564847B
E81C5AB3C5B2C7DE 51C041B5711B8132
23 47DF6A0BB1787159 52E36C4CA22EA5A2
07D76A0BB5787159  373EAFD503F68DEA4
2 * 7CE65464329BAE6D  832A9D7032015D9F
3CEE5464369B4E6D 85E2CE665571E99C

Next Chapter
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pair  right pair? plaintext ciphertext
25 *k 421FB6AD95791BA7 DlE730BA1DBS65SE7
0217B6AD91791BA7 188E61735FA4F3CE
26 ** C58E9A361368FFD6 795EB9D30CAE6879
85869A361768FFD6 26D37AC4867ACC61
27 ** DD86B6C74C8EA4E2 CC3B6915C9A348DF
9DBEB6C7488EA4E2 104C2394555645F0
28 *k 43DBI9D2F483CAS85 E3E4DAS03D1B9396
03D39D2F4C3CA585 4EA02C0061332443
29 * 855A309F96FEASEA 85AD6E9E352AFAFA
C552309F92FEASEA 929D22370ACABSOD
30 * AB3CA25B02BD18C8 OF7D768E9203F786
EB34A25B06BD18C8 Al1313BC26A99D353
31 ** ASFTA6F4ATCO0EQ6 F26B3B8SE6BACSTED
E9FFA6F4A3C00EO06 203D8384F8F54D19
32 ** 688BI9ACD856D1312 C41D99C107B4EF76
28839ACD816D1312 6CCB817CA025ATDAC
33 ** 76BF0621C03D4CD9 BBE1F95AFC1E052A
36B70621C43D4CDY 561F4801F2EBQC63
34 ** 014CF8D1F981BBEE D27091C4314CRFES
4144F8D1FD81B8EE B7976D6AS0E3DB61
35 ** 487D66EDE0405F8C 8136325COAEB84CE
087566EDE4405F8C 8C638BC4495B63A0
36 ** DDCA47093A362521 51040CF16B600FAA
9DC247093E362521 7FC75515AC3CAAF9
37 ** 45A9D34A3996F6D9 F2004BB54AE6C46C
05A1D34A3D96F6D9 546825016B03D193
38 ** 295D2FBFB00875EA A309DF027E69C265
69552FBFB40875EA 4F633FFBISAOCLLE
39 964C8B98D590D524 1FF1D(0271D6F6C18
D6448B98D190D524 8CF2DSD401EBFCOF
40 60383D2BAF0836BC 10A82D55FC480640
20303D2BAB0836BC 602346173581EF79
41 ** 5CF8D539A22A1CAD 92685D806FBE8738
1CFOD539A62A1CAD 17006DAB2D28081C
42 F95167CAB6565609 CS52E2EB27446054E
B95967CAB2565609 (0C219F686840ES57A
43 49F1C83615874122 2680C8ECDFSES1CD
09F9C83611874122 5022A7B69B4E75EF
44 ** ACB2EC1941B03765 D6B593460098DECS
ECBAEC1945B03765 D3190A0200FC6BI9B
45 CCCC129D5CBS5ECO  3AD22B7EF59EODSE
8CC4129D58B55EC0 A48C92CBEC17E430
46 ** 917FF8E2EE6B78D5 EF847EQS58DB71724
D177FBE2EA6B78D5 F243F(0554A00E4C5
47 ** 51DBCF028E96DEO0 574897CA1EE73885
11D3CF028A96DEO0 9FOFDOASB2C2BSFD
48 * 2094942E093463CE 59F6A018C6A0D820
609C942E0D3463CE 799FE001432346C0

Next Chapter
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pair  right pair? plaintext ciphertext

49 F S0FB0723D7CD1081 16AF758395EA3ATD

10F30723D3CD1081 CDCB23392D144BED

50 * 740815A4F6CDCABB 4A84D2ED4D9351AB

340015A4F2CDCABB  5923D04CE94D6111

51 * EDA46A1AE93735DC OB302A51B7E5476A

ADAC6A1AED3735DC 5F817F0ABC770E75

52 * 08BC39B766B2C128 DFBSF3F500BC0100

48B439B762B2C128 B7BIFEDSACY3EBFA

53 ** A74E29BBA98F2312 A2B352B/F922ESDA

E74629BBAD8F2312 D6BC4B89CED2DEAC

54 * D6FSOD31EEAEGBAB  4D464847065C0938

96FDOD31EA4E68AB  7554D87AEDCES5634

55 * 06191AA594891CF5 649C1D0BAF920F9E

46111AA590891CF5 BE12A10384365E19

56 SEATEFD557946962 15E664293F4D77EE

1EAFEFD553946962 E23396A758DCICE6

57 ** 41FB7704781CC88A BABD385C441FD6CE

01F377047C1CC88A 06DE8SDS55777AB65C

58 =+ 9689B9123F7C5431 ELE63120742099EB

D681B9123B7C5431 1AF88A2CF6649A4A

59 6F25032B4A309BFE  48FES0DE/74288D7

2F2D032B4E309BFE  47950691260DSE10

60 * D8C4B02DBEBBFIE9 F34D565E6AEB5683

98CCBO2DBASBF1E9 A4D2DB548622A8ES

61 ** FG663ESCCEES6805B  51BD62CID5DOFOBB

B66BES8CCEA86805B  D2ABB03CF9D26COA

62 * 428B29BFDFA838DB  006D62A65761089F

028329BFDBA838DB 9FD73EF6124B0C11

63 * 04BE2D22D81EDC66 26D99536D99B5707

44B62D22DC1EDC66 94144EBDAOCDEB5S5

64 F 667B779123A3EF80 SDOICBF2CE/ESA69

2673779127A3EF80 SEFFS8BFCA7BAAL52

65 = BC86D401D6572438 E05572AAASF6C377

FC8ED401D2572438  3C670BC455144F61

66 ** 6FESE9547659E401 2C465BF6FS52F864C

2FEDE9547259E401 B71D106444F95F31

67 * 27D3BAC6453BE3DE  8F160E29000461CD

67DBBAC6413BE3DE  2A6660F46487F885

68 * 1D864ET642A7023A 65F91EEBFDSAICO5

SD8E4E7646A7023A 84761791B3C36661

69 * 5256CA6894707CBA 91527F9349ABCF15

125ECA6890707CBA  30F28F06A7BOA35A

70 ** CO5383BBEFCD2BD7 710B6EC61BF63E9C

805B83B8EBCD2BD7  53AC029D8E0179D5

71 SOEB21CA13F9A96E 26DISBAADEACSSCF

10E321CA17F9A96E 8F01A90F638AFFF6

72 * 60EB1229ACDI0EDC  3890EE8567782F96

20E31229A8D90EDC EE404DF7BE537589

Next Chapter
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pair  right pair? plaintext ciphertext
73 8E9A17D17B173B99 885C3933627EDEF0
CE9217D17F173B99 B7ABB6DF5835E962
74 6EC5CD0802C98817 A985ADFB1FEE(013C
2ECDCD0806C98817 (0428DE024B7E4604
75 ** 1E81712FF1145C06 417E667A99B3CFAS
S5E89712FF5145C06 5C24AA056EB1ADBA
76 ** DF3C5C13311AEC7C BF01675096F1C48A
9F345C13351AEC7C 243D9SBCE12DB864
77 *k 7C34472994127C2D 713915DA311A7CF4
3C3C472990127C2D E9733D11D787E20B
78 *x 37304DABA75EAFB3 EFB5C37FA0238ADF
77384DABA3SEAFB3 A728F7407AF958B3
79 DO3A16E4C2D8B54B 423FCQAC24CEFEDD
903216E4C6D8B54B 047D8595DB4D372E
80 *k 8CED882B5D91832E (0006E2DE3AF5C2BS
CCE5882B5991832E (00F6AA9ED614001B
81 *% 1BBOE6C79EFBEC41 E9AED4363915775A
5BBS8E6C79AFBEC41 655BC48F1FFB5165
82 D41B8346DASE2252 34F5EOBCCS5B042EA
94138346DE9E2252 702D2C48CDBE5173
83 * 02A9D0A0A%1F6304 E2F1C10E59AF07C5
42A1D0A0AD1F6304 BDEE6AAQOF25F840
84 *k 841B3E27C8F0A561 2B288E554D712C92
C4133E27CCF0AS561 FF8609C9E7301162
85 *k CDFOA8BD6EE909185 5D661834D1C76324
8DFBABD6EA909185 22034D57D21FFB56
86 *k 4C31AC854F44EA34 BD016309AEDB9BB1
O0C39AC854B44EA34 C72EEDC4FA1D9312
87 DB3FC0703C972930 296ABCFBF01DF991
9B37C07038972930 CA4700686F9F83A2
88 E4B362BFD6ATCFD1 20FDAF335F25B1DA
A4BB62BFD2A7CFD1 008C24D75E14ACBD
89 ¥234232A0EQOA4A28 90CFD699F2DECSBD
B23C232A0A0A4A28 2918D3DEOC1B689C
90 ** 71265345A5874004 3052CE3CE88710AE
312E5345A1874004 38F0FC685DF30564
91 ** 3E6364548C857110 (E8581E42C9FEC6F
7TE6B645488857110 4DD1751861EC5529
92 * 464FBEDBD78900A7 90FS5FSADEDED627A
0647BEDBD38900A7 2EFA4C540425E339B
93 *k 373B75F847480BB0 5408B964F8442D16
773375F843480BB0 805287D52599E9F0
94 *k D714E87810DE97AC 4EC4D623108FA909
971CEB7814DE97AC 0AA0725CED10D6A3
95 BI9B5932EF54B2C60 4B438B3CCF36DECY
FI9BD932EF14B2C60 054C6A337709280D
96 *x 2F283C38D2E4E1DD 83515FB6DFEA90BS
6F203C38D6E4E1DD 09BCCAFF38C78C23

Next Chapter
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pair  right pair? plaintext ciphertext

97 > 1EBBADAA43BBD575 21A1E04813616E42

S5EBOADAA47BBD575 D044BA3F25DFD02A

98 ** 3164AA5454D9F991 9382C6C1883F1038

716CAA5450D9F991  5CDFED4FF2117DEC

99 D78C1C5C6F2243D2  1CCEBO91E030E6AG

97841C5C6B2243D2 _ 4DA2CD67CC449B21

100 BBEZ12A/D3CE3D14  2917C207B4D93EOD

FBEA12A7D7CE3D14 A01D50E5A2B902D8

101 = 104917795E98D0FB  40916A71385C2803

504117795A98D0FB 413FD26EF671F46D

102 ** 4DDA114D6EFEEEB4 2E2C65E1DSCBAC31

ODD2114D6AFEEEB4 Al6FF03BC0913ED6

103 EOBED7B285BFOA77  SD9EFEFFOAD10490

AOB6D7B281BFOA77  4C6CALFAC36ABESB

104 = OAE1555FA1716214 378400BCED39EBSL

4AE9555FA5716214  AlE0C758BD8912C2

105 = 4657C26790FCB354  588BA079B2E/ED20

065FC26794FCB354 DA90827AEED7A41F

106 = 32BD719BODCIB091 F3477C7552BCBO5D

72B5719B09C1B0O91 EFF444449D66BEIE

107 = 0992FBCBC73AIBFE  9F3FFDOF158295F6

499AF8CBC33A9BFE _ C138358DCECCSFCT

108 02C3F061A237BBEB  AC28B0307127EATC

42CBF061A637BBEB 3FF1DAED9EQFCBC5

109 ** 80E529E69EDE6827 1DF1DB7B66BAlAF1

COED29E69ADE6827 15700151A5804549

110 B5S5EB4630067B8D5 88321611FF9DA421

F55684630467B8D5  90649D7EACFI1F9A

Tl 2749C2EBC603BFF2  A62B23A7348E2C3A

6741C2EBC203BFF2 __ EB760A09C7FF5153

2 i C4CSE14DACSDIFF5  ABC2312FBFDI4DF5

84CDE14D485D9FF5  D2BB5954E5062D53

113 = 1566BA21F2647ELS A247EDI8B45TCBIS

556EBA21F6647E18  SE99F231005F5249

114 = 2D093DA426D922F92  GDF62030BIF23AE9

6D013D4269922F92  5D92DA1FA3D07BAL

115 004518468E0C96C3  F28DBGFF/EB4F38F

404D18468A0C96C3  52541B0443053C57

116 = 437B70A98AE03344 04B3FBF9823BACF7

037370A98EE03344  14EBEC79DAD3093E

177 2D01F1073D3E375B F1O0BJELEE356226C

6DO9F107393E375B  6FF26DASE3525B62

118 * 66573DD7EOD7F110 F2F26204C29FES1E

265F3DD7E4DTF110 _ 083A4ECE57E429AC

119 0846DB9538155201  F120DOD2AE788057

484EDB953C155201  00CC914A33034782

120 ABB34FC195C820D1 5F17AEQ066BS50FC81

EBBB4FC191C820D1  2858DD63A2FA4B53

Next Chapter
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3.7 Notes and References

A nice article on the history DES is by Smid and Branstad [SB92]. Federal
Information Processing Standards (FIPS) publications concerning DES include the
following: description of DES [NBS77]; implementing and using DES [NBS81];
modes of operation of DES [NBS80]; and authentication using DES [NBS85].

Some properties of the S-boxes are studied by Brickell, Moore, and Purtill
[BMP87].

The DEC DES chip is described in [EB93]. Wiener’s key search machine was
described at CRYPTO ’93 [W194].

The time-memory trade-off for DES is due to Hellman [HE80]. A more general
time-memory trade-off is presented by Fiat and Naor in [FN91].

The technique of differential cryptanalysis was developed by Biham and Shamir
[BS91] (see also [BS93A] and their book [BS93], where cryptanalysis of other
cryptosystems is also discussed). Our treatment of differential cryptanalysis is
based largely on [BS93].

Another new method of cryptanalysis that can be used to attack DES and other
similar cryptosystems is the linear cryptanalysis of Matsui [MA94, MA94A].

Descriptions of other substitution-permutation cryptosystems can be found in
the following sources: LUCIFER [FE73]; FEAL [M191]; REDOC-II [CW91];
and LOKI [BKPS90].

Exercises

3.1 Prove that DES decryption can be done by applying the DES encryption algorithm
to the plaintext with the key schedule reversed.

3.2 Let DES(z, K) represent the encryption of plaintext z with key K using the DES
cryptosystem. Suppose y = DES(x, K') and y' = DES(c(z),c(K)), where c(-)
denotes the bitwise complement of its argument. Prove that y' = c(y) (i.e., if we
complement the plaintext and the key, then the ciphertext is also complemented).
Note that this can be proved using only the “high-level” description of DES — the
actual structure of S-boxes and other components of the system are irrelevant.

3.3 One way to strengthen DES is by double encryption: Given two keys, K and I3,
define y = ek, (ex, («)) (of course, this is just the product of DES with itself). If it
happened that the encryption function e i, was the same as the decryption function
dg,, then K and K are said to be dual keys. (This is very undesirable for double
encryption, since the resulting ciphertext is identical to the plaintext) A key is
self-dual if it is its own dual key.

(a) Prove that if Cy is either all O’s or all 1’s and Dy is either all 0’s or all 1’s,
then K is self-dual.
(b) Prove that the following keys (given in hexadecimal notation) are self-dual:
0101010101010101
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34

35

3.6

FEFEFEFEFEFEFEFE
1F1F1F1FOEOEOEQE
EOEOEQOEOF1F1F1F1l
(¢) Prove thatif Cy = 0101...01 or 1010. .. 10 (in binary), then the x-or of the
bitstrings C; and Cy7—; is 1111...11, for 1 < ¢ < 16 (a similar statement
holds for the D;’s).
(d) Prove that the following pairs of keys (given in hexadecimal notation) are
dual:

EQO1lEO01F101F101 O01E00l1E001F101F1
FELIFFE1FFEOEFEQE 1FFElFFEQEFEQEFE
EO1FFO1FFF10FF10 1FEO1FEQOOEF10EF1l

A message authentication code (MAC) can be produced by using CFB mode, as well
as by using CBC mode. Given a sequence of plaintext blocks z, . . . zn, suppose we
define the initialization vector IV to be z,. Then encrypt z; ...z, using key K in
CFB mode, obtaining yi . . . y,—1 (note that there are only n — 1 ciphertext blocks).
Finally, define the MAC to be e (yn-1). Prove that this MAC is identical to the
MAC produced in Section 3.4.1 using CBC mode.
Suppose a sequence of plaintext blocks, ...z, is encrypted using DES, pro-
ducing ciphertext blocks yi ...yn. Suppose that one ciphertext block, say v, is
transmitted incorrectly (i.e., some 1’s are changed to 0’s and vice versa). Show that
the number of plaintext blocks that will be decrypted incorrectly is equal to one if
ECB or OFB modes were used for encryption; and equal to two if CBC or CFB
modes were used.
The purpose of this question is to investigate a simplified time-memory trade-off for
a chosen plaintext attack. Suppose we have a cryptosystem in which P = € = K,
which attains perfect secrecy. Then it must be the case that e x () = ek, (z) implies
K =K,. Denote P =Y = {y1,...,yn}. Let z be a fixed plaintext. Define the
function g : Y — Y by the rule g(y) = ey(x). Define a directed graph G having
vertex set Y, in which the edge set consists of all the directed edges of the form
(yi,9(y:)), 1 <i < N.
(a) Prove that G consists of the union of disjoint directed cycles.
(b) Let T" be a desired time parameter. Suppose we have a set of elements
Z = {z1,...,2m} C Y such that, for every element y; € Y, cither y; is
contained in a cycle of length at most T, or there exists an element z; # yi
such that the distance from y; to z; (in G) is at most T. Prove that there
exists such a set Z such that
2N
1Z] < T
so |Z]|is O(N/T).
(c) Foreachz; € Z,defineg™T (z5) to be the element y; such that 9% (yi) = 25,
where g7 is the function that consists of T" iterations of g. Construct a table
X consisting of the ordered pairs (z;,9~ 7 (z;)), sorted with respect to their
first coordinates.
A pseudo-code description of an algorithm to find K, given y = ex(x),
is presented in Figure 3.15. Prove that this algorithm finds I in at most T'
steps. (Hence the time-memory trade-off is O(N).)

Next Chapter
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FIGURE 3.15
Time-memory trade-off
1. Ystart = Y
2. backup = false
3. while g(y) # ystar: do
4. if y = z; for some 5 and not backup then
5. y=g""(z)
6. backup = true
else
7. y=9(y)
8. K=y
FIGURE 3.16

Differential attack on 4-round DES

Input: LoRo, Ly Ry, L3Rs and L R}, where Ly = 20000000, and R =
000000006
1. compute C' = P~'(R))
. compute E = E(L4) and E* = E(L})
3. forj=2to8do
compute test; (E;, E}, C})

(d) Describe a pseudo-code algorithm to construct the desired set Z in time
O(NT) without using an array of size N.
3.7 Compute the probabilities of the following 3-round characteristic:

Li = 00200008 Ry = 000004004

1 = 00000400, R} = 00000000 p="?
Ly = 00000000;s R, = 00000400 p="?
L, = 00000400 R, = 002000086 p="1

3.8 Here is a differential attack on a 4-round DES. It uses the following characteristic,
which is a special case of the characteristic presented in Figure 3.10:

Ly
Li

2000000046 R}
0000000046 R}

00000000;¢
200000006 p=1

I

(a) Suppose that the following algorithm presented in Figure 3.16 is used to
compute sets festy, .. . tests. Show that J; € test; for2 < 7 < 8.

(b) Given the following plaintext-ciphertext pairs, determine the key bits in
Jay .oy Js.
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(c) Compute the entire key (14 key bits remain to be determined, which can be
done by exhaustive search).

Home Next page
113
plaintext ciphertext
18493AC485B8D9A0 E332151312A18B4F
38493AC485B8D9A0 87391C27ES5282161
482765pDD7009123 BSDDD8339D82D1D1
682765DDD7009123 81F4B92BDI94B6FD8
ABCD098733731FF1 93A4B42F62EA5SE4
8BCD098733731FF1 ABA494072BF411ES5
13578642AAFFEDCB FDEB526275FBSD94
33578642AAFFEDCB CC8F72AAE685FDB1

Next Chapter
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