
The Data Encryption Standard 70........................
3.1 Introduction 70...
3.2 Description of DES 70...................................

FIGURE 3.1 71..
FIGURE 3.2 72..
FIGURE 3.3 29..

3.2.1 An Example of DES Encryption 79.............
3.3 The DES Controversy 82..............................
3.4 DES in Practice 83..

3.4.1 DES Modes of Operation 83............................
FIGURE 3.4 84...
FIGURE 3.5 85...

3.5 A Time-memory Trade-off 86........................
FIGURE 3.6 87..
FIGURE 3.7 88..

3.6 Differential Cryptanalysis 89..........................
FIGURE 3.8 91..
3.6.1 An Attack on a 3-round DES 93.......................

FIGURE 3.9 94...
3.6.2 An Attack on a 6-round DES 98.......................

FIGURE 3.10 99...
FIGURE 3.12 99...
FIGURE 3.13 101...
FIGURE 3.14 104...

3.6.3 Other examples of Differential 104...............
TABLE 3.1 105..

3.7 Notes and References 110..............................
Exercises 110..

FIGURE 3.15 112..
FIGURE 3.16 112..

3
The Data Encryption Standard

3.1 Introduction

On May 15, 1973, the National Bureau of Standards published a solicitation for
cryptosystems in the Federal Register. This lead ultimately to the development
of the Data Encryption Standard, or DES, which has become the most widely
used cryptosystem in the world. DES was developed at IBM, as a modification
of an earlier system known as LUCIFER. DES was first published in the Federal
Register of March 17, 1975. After a considerable amount of public discussion,
DES was adopted as a standard for “unclassified” applications on January 15,1977.
DES has been reviewed by theNational Bureau of Standards (approximately) every
five years since its adoption. Its most recent renewal was in January 1994, when
it was renewed until 1998. It is anticipated that it will not remain a standard past
1998.

3.2 Description of DES

A complete description of DES is given in the Federal Information Processing
Standards Publication 46, dated January 15, 1977. DES encrypts a plaintext
bitstring z of length 64 using a key I< which is a bitstring of length 56, obtaining
a ciphertext bitstring which is again a bitstring of length 64. We first give a
“high-level” description of the system,

The algorithm proceeds in three stages:

1. Given a plaintext 2, a bitstring IO is constructed by permuting the bits of 2
according to a (fixed) initialpermutation IP. We write 20 = IP(z) = Lo&
where LO comprises the first 32 bits of 20 and & the last 32 bits.

2. 16 iterations of a certain function are then computed. We compute LiRi,

70

3.2. DESCRIPTION OF DES 71

FIGURE 3.1
One round of DES encryption

1 5 i 5 16, according to the following rule:

Ri = &-I 6~ f(&-1, Ki),

where $ denotes the exclusive-or of two bitstrings. f is a function that
we will describe later, and Ii’1 ,1(2, . . . , Kr6 are each bitstrings of length 48
computed as a function of the key Ii. (Actually, each Ki is a permuted
selection of bits from K.) Ii’1 , K2, . . . , Kr6 comprises the key schedule.
One round of encryption is depicted in Figure 3.1

3. Apply the inverse permutation IP-’ to the bitstring Rl,jL,h, obtaining the
ciphertext y. That is, y = IP-‘(RreLth). Note the inverted order of Lr6
and R16.

The function f takes as input a first argument A, which is a bitstring of length
32, and a second argument J that is a bitstring of length 48, and produces as output
a bitstring of length 32. The following steps are executed.

1. The first argument A is “expanded” to a bitstring of length 48 according to
a fixed expansionfunction E. E(A) consists of the 32 bits from A, permuted
in a certain way, with 16 of the bits appearing twice.

72 CHAPTER 3. THE DATA ENCRYPTION STANDARD

FIGURE 3.2
The DES f function

2. Compute E(A) @ J and write the result as the concatenation of eight 6-bit
strings B = B1 B~B~B~B~B~BTB~.

3. The next step uses eight S-boxes 5’1, . . . , Ss. Each Si is a fixed 4 x 16 array
whose entries come from the integers 0 - 15. Given a bitstring of length
six, say Bj = blb2bjb~bsb6, we compute Sj(Bj) as follows. The two bits
bl bg determine the binary representation of a row f of Sj (0 5 T 5 3), and
the four bits b2b3babs determine the binary representation of a column c of
Sj (0 5 c 5 15). Then Sj (Bj) is defined to be the entry S~(T, c), written
in binary as a bitstring of length four. (Hence, each Sj can be thought of as
a function that accepts as input a bitstring of length two and one of length
four, and produces as output a bitstring of length four.) In this fashion, we
computecj = Sj(Bj), 1 < j 5 8.

4. The bitstring c = Ct c2C3c&5c&$cs of length 32 is permuted according
to a fixed permutation P. The resulting bitstring P(C) is defined to be
f(A, J).

The f function is depicted in Figure 3.2. Basically, it consists of a substitution
(using an S-box) followed by the (fixed) permutation P. The 16 iterations of f
comprise a product cryptosystem, as described in Section 2.5.

In the remainder of this section, we present the specific functions used in DES.

3.2. DESCRIPTION OF DES 73

The initial permutation IP is as follows:

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

This means that the 58th bit of 2 is the first bit of IP(c); the 50th bit of 2 is the
second bit of IP(;c), etc.

The inverse permutation IP-’ is:

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

IP-’

The expansion function E is specified by the following table:

E bit-selection table
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

The eight S-boxes and the permutation P are now presented:

Sl
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

74 CHAPTER 3. THE DATA ENCRYPTION STANDARD

s2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

s3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

s4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

s5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

s6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

1 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Sl i
’ 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

&
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

3.2. DESCRIPTION OF DES 75

29 12 28 17
1 15 23 26
5 18 31 10

32 27 3 9
19 13 30 6
22 11 4 25

Finally, we need to describe the computation of the key schedule from the key
I<. Actually, K is a bitstring of length 64, of which 56 bits comprise the key and 8
bits are parity-check bits (for error-detection). The bits in positions 8,16, . . . ,64
are defined so that each byte contains an odd number of 1’s. Hence, a single error
can be detected within each group of 8 bits. The parity-check bits are ignored in
the computation of the key schedule.

2. Given a 64-bit key I<, discard the parity-check bits and permute the re-
maining bits of Ii’ according to a (fixed) permutation PC-l. We will write
PC-l(K) = c D 0 0, where CO comprises the first 28 bits of PC-l(K) and
DO the last 28 bits.

2. For i ranging from 1 to 16, compute

cj = LSi(Ci-1)

Di = LSi(&,),

and Ii’; = PC-2(CiQ). LSi represents a cyclic shift (to the left) of either
one or two positions, depending on the value of i: shift one position if
i = 1,2,9 or 16, and shift two positions otherwise. PC-2 is another fixed
permutation.

The key schedule computation is depicted in Figure 3.3.
The permutations PC- 1 and PC-2 used in the key schedule computation are as

follows:

PC- 1
57 49 41 33 25 17 9

1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

CHAPTER 3. THE DATA ENCRYPTION STANDARD

FIGURE 3.3
Computation of DES key schedule

PC-2
14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

We now display the resulting key schedule. As mentioned above, each round
uses a 4X-bit key comprised of 48 of the bits in I<. The entries in the tables below
refer to the bits in I< that are used in the various rounds.

3.2. DESCRIPTION OF DES 77

Round 2
2 43 26 52 41 9 25 49 59 1 11 34

60 27 18 17 36 50 51 58 57 19 10 33
14 20 31 46 29 63 39 22 28 45 15 21

1 53 13 30 55 7 12 37 6 5 54 47 23

Round 6

Round 8
36 41 60 50 10 43 59 18 57 35 9 3
58 25 52 51 34 19 49 27 26 17 44 2
12 54 61 13 31 30 6 20 62 47 45 23
55 15 28 22 37 46 39 4 7 21 14 53

78 CHAPTER 3. THE DATA ENCRYPTION STANDARD

Round 14

3.2. DESCRIPTION OF DES 79

Decryption is done using the same algorithm as encryption, starting with y as
the input, but using the key schedule Kt6, . . . , Kt in reverse order. The output
will be the plaintext 2.

3.2.1 An Example of DES Encryption

Here is an example of encryption using the DES. Suppose we encrypt the (hex-
adecimal) plaintext

0123456789ABCDEF

using the (hexadecimal) key

133457799BBCDFFl.

The key, in binary, without parity-check bits, is

00010010011010010101101111001001101101111011011111111000.

Applying IP, we obtain La and & (in binary):

11001100000000001100110011111111
L, = Ro = 11110000101010101111000010101010

The 16 rounds of encryption are then performed, as indicated.

I<, = 00011011OOOOGO1011101111111111000111OOOOO1110010
= 011000010001011110111010100001100110010100100111

010111001OOOOO101011010110010111
f(&, ICI) = 00100011010010101010100110111011

= 11101111010010100110010101000100

E(R,) = 0111010111101010010101000011OOOO1010101OOOOO1001
K2 = 011110011010111011011001110110111100100111100101

E(RI) a3 I(z = 000011000100010010001101111010110110001111101100
S-box outputs 111110001101OOOOOO11101010101110

f(R,, 1;) = 00111100101010111000011110100011
L3=& = llot,ll OOOOOOOOO10111011100001001

E(R4 = 111001011OOOOOOOOOOOOO 10101110101110100001010011
K3 = 010101011111110010001010010000101100111110011001

E(R2) @ K3 = 1011OOOoO11111001000100011111OOoOO10011111001010
S-box outputs 0010011100010000111OOOo101101111

f(R2, I(3) = 01001101000101100110111010110000
L4 = R3 = 10100010010111OOOOOO101111110100

80 CHAPTER 3. THE DATA ENCRYPTION STANDARD

Ii4 = 011100101010110111010110110110110011010100011101
001ooo101110111100101110110111100100101010110100
001oooo1111011011001111100111010

f(R3,1<4) = 10111011001OOO110111011101001100

E(R4) = 1011101011101001OOOOO1OOOOOO -01ooooo1010
r(s = 011111001110110ooooo0111111010110101001110101oo0

E(R4) $ Z(s = 1100011ooo000101ooo00011111010110101000110100010
S-box outputs 01010ooo11001ooooo11000111101011

f(R4, I&) = 001010OOOOO1OO111010110111000011
Le = Rs = 1ooo1010010011111010011000110111

= 011ooo1110100101001111100101ooooo111101100101111
1010011011100111011oooo11oooooo0101110101oo00oo0

f(R5,ZQ = 1001111001OOO1011100110100101100
= 11101001011001111100110101101001

E(Re) = 1111010100101011OOW1111111001011010101101010011
Ii7 = 111011001oOoo100101101111111011oooo11ooo10111100

E(Re) $ k-7 = ooo110011010111110111oooooo100111011001111101111
S-box outputs 0001ooooo111010101oooooo10101101

f(Rb,ZC,) = 1OOO11ooOOOOO1010001110000100111
Lu = R7 = OOO0011001001010101110100001OOOO

E(R7) = OOOOOOOO11oooo1oo10101010101111101oooooo101oooo0
ZCR = 111101111ooo101ooo11101011ooooo10011101111111011

E(R7) @ Z(R = 1111011101001oooo1101111100111100111101101011011
S-box outputs 011011ooooo110000111110010101110

f(R7,ZG) = 001111oOOOOO11101000011011111001
Ly = RR = 1101010101101001010010111001oooo

E(RR) = 0110101010101011010100101010010101111100101OOOO1
Is-y = 11100ooo110110111110101111101101111001111oooooo1

E(Rs) $ It-9 = 1ooo10100111oooo1011100101001ooo10011011oo1oooo0
S-box outputs ooo1ooo1oooo11ooo101011101110111

f(Rx,Zb) = 001OOO1OOO110110011111OOo1101010
LIO = Rs = 001001ooo111110011ooo11001111010

= 1011ooo11111001101ooo1111011101001ooo11001001111
1010ooo10111oooo10111110110110101oooo10110111011

3.2. DESCRIPTION OF DES 81

= 001OOoO1010111111101001111011110110100111OOOo110
01111011101OOoO101111OOOOo1101000010111000100011

= 100101111100010111010001111110101011101001OOOOO1
1010110101111OOOOO101011011101011011100010110001
10011010110100011000101101001111

f(R,z, K,3) = 11011101101110110010100100100010

= 010111110100001110110111111100101110011100111010
0101OOOOO10101011011000101111OOOo100110111001110

E(R,4) = 111000000101010001011OO101OO10101 lOOOOOOOlOllOLl~
zip,5 = 101111111001000110001101001111010011111100001010

E(R14)@ K,s = 010111111100010111010100011101111111111101010001
S-box outputs 10110010111010001ooo110100111100

f(R,4,ZC,5) = 010110111OOOOOO10010011101101110
Lwi = R,r = 0100001101m100011001000110100

E(RIS) = 001OOOOOO110101OOOOOO1OOOOO1101001OOOOO110101000
Z-c,6 = 110010110011110110001011000011100001011111110101

E(R,s) $ ZCM = 111010110101011110001111000101000101011001011101
S-box outputs 101001111OOOOo110010010000101001

f(R,SrZC,e) = 1100100011OOOOOOO100111110011000
RM = 00001010010011001101100110010101

Finally, applying IP-’ to L16, R16, we obtain the ciphertext, which (in hexadec-
imal form) is:

85E813540FOAB405.

82 CHAPTER 3. THE DATA ENCRYPTION STANDARD

3.3 The DES Controversy

When DES was proposed as a standard, there was considerable criticism. One
objection to DES concerned the S-boxes. All computations in DES, with the
exception of the S-boxes, are linear, e.g., computing the exclusive-or of two
outputs is the same as forming the exclusive-or of two inputs and then computing
the output. The S-boxes, being the non-linear component of the cryptosystem, are
vital to its security (We saw in Chapter 1 how linear cryptosystems, such as the
Hill Cipher, could easily be cryptanalyzed by a known plaintext attack.) However,
the design criteria of the S-boxes are not completely known. Several people have
suggested that the S-boxes might contain hidden “trapdoors” which would allow
the National Security Agency to decrypt messages while maintaining that DES is
“secure.” It is, of course, impossible to disprove such an assertion, but no evidence
has come to light that indicates that trap-doors in DES do in fact exist.

In 1976, the National Security Agency (NSA) asserted that the following prop-
erties of the S-boxes are design criteria:

PO Each row of each S-box is a permutation of the integers 0, . . . ,15.
Pl No S-box is a linear or affine function of its inputs.
P2 Changing one input bit to an S-box causes at least two output bits to change.
P3 For any S-box and any input z, S(z) and S(z $001100) differ in at least two

bits (here 2 is a bitstringof length 6).

Two other properties of the S-boxes were designated as “caused by design
criteria” by NSA.

P4 For any S-box, for any input z, and fore, f E (0, I}, S(t) # S(z$ 1 lefO0).
P5 For any S-box, if one input bit is fixed, and we look at the value of one fixed

output bit, the number of inputs for which this output bit equals 0 will be
“close to” the number of inputs for which the output bit equals 1. (Note that
if we fix the value of either the first or sixth input bit, then 16 inputs will
cause a particular output bit to equal 0 and 16 inputs will cause the output
to equal 1. For the second through fifth input bits, this will not be true, but
the resulting distribution will be “close to” uniform. More precisely, for any
S-box, if the value of any input bit is fixed, then the number of inputs for
which any fixed output bit has the value 0 (or 1) is always between 13 and
19.)

It is not publicly known if further design criteria were used in the construction
of the S-boxes.

The most pertinent criticism of DES is that the size of the keyspace, 256, is too
small to be really secure. Various special-purpose machines have been proposed
for a known plaintext attack, which would essentially perform an exhaustive search
for the key. That is given a 64bit plaintext t and corresponding ciphertext y, every

3.4. DES IN PRACTICE 83

possible key would be tested until a key I< such that eK (z) = y is found (and
note that there may be more than one such key I<).

As early as 1977, Diffie and Hellman suggested that one could build a VLSI
chip which could test lo6 keys per second. A machine with lo6 keys could search
the entire key space in about a day. They estimated that such a machine could be
built for about $20,000,000.

At the CRYPTO ‘93 Rump Session, Michael Wiener gave a very detailed design
of a key search machine. The machine is based on a key search chip which is
pipelined, so that 16 encryptions take place simultaneously. This chip can test
5 x lo7 keys per second, and can be built using current technology for $10.50 per
chip. A frame consisting of 5760 chips can be built for $100,000. This would
allow a DES key to be found in about 1.5 days on average. A machine using 10
frames would cost $1 ,OOO,OOO, but would reduce the average search time to about
3.5 hours.

3.4 DES in Practice

Even though the description of DES is quite lengthy, it can be implemented very
efficiently, either in hardware or in software. The only arithmetic operations to be
performed are exclusive-ors of bitstrings. The expansion function E, the S-boxes,
the permutations IP and P, and the computation of 1(1, Kz, . . . , I<16 can all be
done in constant time by table look-up (in software) or by hard-wiring them into
a circuit.

Current hardware implementations can attain extremely fast encryption rates.
Digital Equipment Corporation announced at CRYPTO ‘92 that they have fabri-
cated a chip with 50K transistors that can encrypt at the rate of 1 Gbit/second using
a clock rate of 250 MHz! The cost of this chip is about $300. As of 1991, there
were 45 hardware and firmware implementations of DES that had been validated
by the National Bureau of Standards.

One very important application of DES is in banking transactions, using stan-
dards developed by the American Bankers Association. DES is used to encrypt
personal identification numbers (PINS) and account transactions carried out by
automated teller machines (ATMs). DES is also used by the Clearing House
Interbank Payments System (CHIPS) to authenticate transactions involving over
$1.5 x lOI per week.

DES is also widely used in government organizations, such as the Department
of Energy, the Justice Department, and the Federal Reserve System.

3.4.1 DES Modes of Operation

Four modes of operation have been developed for DES: electronic codebook
mode (ECB), cipherfeedback mode (CFB), cipher block chaining mode (CBC)

84 CHAPTER 3. THE DATA ENCRYPTION STANDARD

encrypt

Yi y2

decrypt

i1:
dK dK

I I
[IV=Yo p@ @

A i!l X1 X2

FIGURE 3.4
CBC mode

f 0.0

+ 0.0

and outputfeedback mode (OFB).
ECB mode corresponds to the usual use of a block cipher: given a sequence

2122.. . of 64-bit plaintext blocks, each ti is encrypted with the same key I<,
producing a string of ciphertext blocks, yi y2 , . . .

In CBC mode, each ciphertext block yi is x-ored with the next plaintext block
Zi+i before being encrypted with the key I<. More formally, we start with a 64-bit
initialization vector IV, and define ya = IV. Then we construct yt , ~2, . . . from
the rule yi = eJc(yi-i 69 xi), i 2 1. The use of CBC mode is depicted in Figure
3.4.

3.4. DES IN PRACTICE 85

I lv=yo HeK+++~J . . .

encrypt

decrypt

y2 7
eK 0 +

nIlJ

0.0

X2

FIGURE 3.5
CFB mode

In OFB and CFB modes, a keystream is generated which is then x-ored with the
plaintext (i.e., it operates as a stream cipher, cf. Section 1.1.7). OFB is actually a
synchronous stream cipher: the keystream is produced by repeatedly encrypting a
64-bit initializationvector, IV. We define zo = IV, and then compute the keystream
ZlZ2.. . from the rule zi = Ed (zi- i), i 1 1. The plaintext sequence 2 i 22 . . . is
then encrypted by computing yi = xi $ zi, i 2 1.

In CFB mode, we start with ya = IV (a 64-bit initialization vector) and we
produce the keystream element zi by encrypting the previous ciphertext block.
Thatis,z~=e~(y~_~),i~l.AsinOFBmode,y~=x~~z~,i>l.Theuseof
CFB is depicted in Figure 3.5 (note that the DES encryption function eK is used
for both encryption and decryption in CFB and OFB modes).

There are also variations of OFB and CFB mode called k-bit feedback modes
(1 5 k 5 64). We have described the 64-bit feedback modes here. l-bit and g-bit
feedback modes are often used in practice for encrypting data one bit (or byte) at
a time.

86 CHAPTER 3. THE DATA ENCRYPTION STANDARD

The four modes of operation have different advantages and disadvantages.
In ECB and OFB modes, changing one 64-bit plaintext block, x;, causes the
corresponding ciphertext block, yi, to be altered, but other ciphertext blocks are
not affected. In some situations this might be a desirable property. For example,
OFB mode is often used to encrypt satellite transmissions.

On the other hand, if a plaintext block zi is changed in CBC and CFB modes,
then yi and all subsequent ciphertext blocks will be affected. This property
means that CBC and CFB modes are useful for purposes of authentication. More
specifically, these modes can be used to produce a message authentication code,
or MAC. The MAC is appended to a sequence of plaintext blocks, and is used
to convince Bob that the given sequence of plaintext originated with Alice and
was not tampered with by Oscar. Thus the MAC guarantees the integrity (or
authenticity) of a message (but it does not provide secrecy, of course).

We will describe how CBC mode is used to produce a MAC. We begin with
the initialization vector IV consisting of all zeroes. Then construct the ciphertext
blocks yl, . . . , y,, with key I<, using CBC mode. Finally, define the MAC to be
yn. Then Alice transmits the sequence of plaintext blocks, xi . . . xn, along with
the MAC, When Bob receives $1 . . .x,, he can reconstruct yi, . . , yn using the
(secret) key K, and verify that y,, is the same as the MAC that he received.

Note that Oscar cannot produce a valid MAC since he does not know the key K
being used by Alice and Bob. Further, if Oscar intercepts a sequence of plaintext
blocksx, . ..x., and changes one or more of them, then it is highly unlikely that
Ocsar can change the MAC so that it will be accepted by Oscar.

It is often desirable to combine authenticity and secrecy. This could be done as
follows: Alice first uses key Iii to produce a MAC for ~1 . . . 2,. Then she defines
xn+r to be the MAC, and she encrypts the sequence x1 . . . x,+1 using a second
key, Kz, yielding yt . . . y,,n+t . When Bob receives yt . . . ynt t, he first decrypts
(using K2) and then checks that x,,+t is the MAC for ~1 . . . Z~ using Kt .

Alternatively, Alice could use Iii to encrypt xi . . . xnr obtaining y1 . . . yn , and
then use K2 to produce a MAC y,,+t for yt . . . yn. Bob would use K2 to verify
the MAC, and then use Xi to decrypt yt . . . yO.

3.5 A Time-memory Trade-off

In this section, we describe an interesting time-memory tradeoff for a chosen
plaintext attack. Recall that in a chosen plaintext attack, Oscar obtains a plaintext-
ciphertext pair produced using the (unknown) key K. So Oscar has x and y, where
y = eK (I), and he wants to determine I<.

A feature of this time-memory trade-off is that it does not depend on the
“structure” of DES in any way. The only aspects of DES that are relevant to the
attack are that plaintexts and ciphertexts have 64 bits, while keys have 56 bits.

3.5. A TIME-MEMORY TRADE-OFF 87

FIGURE 3.6
Computation of X(;, j)

We have already discussed the idea of exhaustive search: given a plaintext-
ciphertext pair, try all 256 possible keys. This requires no memory but, on average,
255 keys will be tried before the correct one is found. On the other hand, for a
given plaintext x, Oscar could precompute yK = eK (x) for all 256 keys I<, and
construct a table of ordered pairs (yK , I<), sorted by their first coordinates. At a
later time, when Oscar obtains the ciphertext y which is an encryption of plaintext
x, he looks up the value y in the table, immediately obtaining the key IT. Now the
actual determination of the key requires only constant time, but we have a large
memory requirement and a large precomputation time. (Note that this approach
would yield no advantage in total computation time if only one key is to be found,
since constructing the table takes at least as much time as an exhaustive search.
The advantage occurs when several keys are to be found over a period of time,
since the same table can be used in each case.)

The time-memory trade-off combines provides a smaller computation time than
exhaustive search with a smaller memory requirement than table look-up. The
algorithm can be described in terms of two parameters m and t, which are positive
integers. The algorithm requires a reductionfunction R which reduces a bitstring
of length 64 to one of length 56. (R might just discard eight of the 64 bits, for
example.) Let x be a fixed plaintext string of length 64. Define the function
g(Ico) = R(eK,(x)) f or a bitstring I(0 of length 56. Note that g is a function that
maps 56 bits to 56 bits.

In the pre-processing stage, Oscar chooses m random bitstrings of length 56,
denoted X(i, 0), I 2 i 5 m. Oscar computes X(i, j) for 1 < j 5 t according
to the recurrence relation X(i,j) = g(X(i,j - l)), 1 5 i 5 m, 1 5 j 5 t, as
indicated in Figure 3.6.

Then Oscar constructs a table of ordered pairs T = (X(i, t), X(i, 0)), sorted
by their first coordinate (i.e., only the first and last columns of X are stored).

At a later time, Oscar obtains a ciphertext y which is an encryption of the chosen
plaintext x (as before). He again wants to determine I<. He is going to determine
if I< is in the first t columns of the array X, but he will do this by looking only at
the table T.

Suppose that I< = X(i, t - j) for some j, 1 5 j 5 t (i.e., suppose that I< is in
the first t columns of X). Then it is clear that gJ (I<) = X(i, t), where gj denotes

88 CHAPTER 3. THE DATA ENCRYPTION STANDARD

FIGURE 3.7
DES time-memory trade-off

I
1. compute y1 = R(y)

2. forj= ltotdo
3. if Yj = X(;, t) for some i then
4. compute X(i, t - j) from X(i, 0) by iterating the g

function t - j times
5. if y = ex(;,t-j)(t) then

set I< = X(i, t - j) and QUIT
7. compute yjtl = s(yj)

the function obtained by iterating g, j times. Now, observe that

gj(K) = gj-'(g(K))

= gj-'(R(eK(X))

= gj-‘(R(y)).

Suppose we compute yj, 1 5 j 5 t, from the recurrence relation

y. = R(Y)
{

ifj = 1
3 g(yj-1) if2 5 j St.

Then it follows that yj = X(i, t) if I< = X(;, t - j). However, note that
yj = X(i, t) is not sufficient to ensure that 1-C = X(i, t - j). This is because the
reduction function R is not an injection: The domain of R has cardinality 264 and
the range of R has cardinality 256 , so, on average, there are 2s = 256 pre-images of
any given bitstring of length 56. So we need to check whether y = ex(i,t-j)(z),
to see if X(;, t - j) is indeed the key. We did not store the value X(i, t - j), but
we can easily re-compute it from X(i, 0) by iterating the g function t - j times.

Oscar proceeds according to the algorithm presented in Figure 3.7.
By analyzing the probability of success for the algorithm, it can be shown that

if mt2 NN N = 256, then the probability that I< = X(i, t - j) for some i, j is about
0.8mt/N. The factor 0.8 accounts for the fact that the numbers X(i, t) may not
all be distinct. It is suggested that one should take m % t NN N’i3 and construct
about N ‘I3 tables, each using a different reduction function R. If this is done, the
memory requirement is 112 x N2i3 bits (since we need to store 2 x N2/” integers,
each of which has 56 bits). The precomputation time is easily seen to be O(N).

The running time is a bit more dificult to analyze. First, note that step 3 can
be implemented to run in (expected) constant time (using hash coding) or (worst-

3.6. DIFFERENTIAL CRYPTANALYSIS 89

case) time O(logm) using a binary search. If step 3 is never satisfied (i.e., the
search fails), then the running time is O(N2i3). A more detailed analysis shows
that even when the running time of steps 4 and 5 is taken into account, the expected
running time increases by only a constant factor.

3.6 Differential Cryptanalysis

One very well-known attack on DES is the method of “differential cryptanalysis”
introduced by Biham and Shamir. This is a chosen-plaintext attack. Although

it does not provide a practical method of breaking the usual 16-round DES, it
does succeed in breaking DES if the number of rounds of encryption is reduced.
For instance, g-round DES can be broken in only a couple of minutes on a small
personal computer.

We will now describe the basic ideas used in this technique. For the purposes
of this attack, we can ignore the initial permutation IP and its inverse (it has no
effect on cryptanalysis). As mentioned above, we consider DES restricted to n
rounds, for various values of n 5 16. So, in this setting, we will regard LO& as
the plaintext, and L, R, as the ciphertext, in an n-round DES. (Note also that we
are not inverting L, R, .)

Differential cryptanalysis involves comparing the x-or (exclusive-or) of two
plaintexts to the x-or of the corresponding two ciphertexts. In general, we will
be looking at two plaintexts LORQ and Lc Ri with a specified x-or value LbRb =
LO& ~3 Lf, R:. Throughout this discussion, we will use prime markings (‘) to
indicate the x-or of two bitstrings.

DEFINITION3.1 Let Sj be a particular S-box (1 5 j 5 8). Consider an
(ordered) pair of bitstrings of length six, say (Bj , B;). We say that the input x-or

(of Sj) is Bj $ BJ and the output x-or (of Sj) is Sj (Bj) $ Sj (BT).

Note that an input x-or is a bitstring of length six and an output x-or is a bitstring
of length four.

DEFINITION3.2 For any Bi E (ZZ)~, define the set A(B(i) to consist of the
ordered pairs (Bj , Bj+) having input x-or Bj.

It is easy to see that any set A(B(i) contains 26 = 64 pairs, and that

A(B;) = {(Bj, Bj $ B;) : Bj E (Z2)6}.

For each pair in A(B$), we can compute the output x-or of Sj and tabulate the
resulting distribution. There are 64 output x-ors, which are distributed among

90 CHAPTER 3. THE DATA ENCRYPTION STANDARD

24 = 16 possible values. The non-uniformity of these distributions will be the
basis for the attack.

Example 3.1
Suppose we consider the first S-box, St, and the input x-or 110100. Then

A(110100) = ((000000, llOlOO), (000001, llOlOl), . . ., (111111,001011)}.

For each ordered pair in the set A(1 lOlOO), we compute output x-or of Si. For
example, Si (000000) = El6 = 1110 and St(11O1OO) = 916 = 1001, so the
output x-or for the pair (000000, 110100) is 011 I.

If this is done for all 64 pairs in A(1 lOlOO), then the following distribution of
output x-ors is obtained:

0000 0001 0010 0011 0100 0101 0110 0111
0 8 16 6 2 0 0 12

1000 1 1001) 1010) 1011 1 1100 1 1101 1 1110 1 1111
610[0(0[018[0(6

II

In Example 3.1, only eight of the 16 possible output x-ors actually occur. This
particular example has a very non-uniform distribution. In general, if we fix an
S-box Sj and an input x-or Bi, then on average, it turns out that about 75 - 80%
of the possible output x-ors actually occur.

It will be convenient to have some notation to describe these distributions and
how they arise, so we make the following definitions.

DEFINITION3.3 For I _< j 5 8, andfor bitstrings Bi of length six and Cj of
length four; deJne

INj(Bi, Ci) = {Bj E (2~)~ : Sj(Bj) @ Sj(Bj $ Bi) = Cj)

and

Nj(B;, C;) = IINj(B;, C;)l.

Nj (B$, Ci) counts the number of pairs with input x-or equal to B$ which have
output x-or equal to Cj for the S-box Sj. The actual pairs having the specified
input x-ors and giving rise to the specified output x-ors can be obtained from the
set 1Nj (B;., Cj). Observe that this set can be partitioned into Nj (B(i) Cj)/2 pairs,
each of whrch has (input) x-or equal to Bi .

Note that the distribution tabulated in Example 3.1 consists of the values
N,(110100, C{), c; E (234. Th e sets INi (110100, C{) are listed in Figure
3.8.

3.6. DIFFERENTIAL CRYPTANALYSIS 91

FIGURE 3.8
Possible inputs with input x-or 110100

For each of the eight S-boxes, there are 64 possible input x-ors. Thus, there
are 512 distributions which can be computed. These could easily be tabulated by
computer.

Recall that the input to the S-boxes in round i is formed as B = E @ J, where
E = E(Ri-t) is the expansion of Ri-1 and J = Ki consists of the key bits for
round i. Now, the input x-or (for all eight S-boxes) can be computed as follows:

B@B*=(E@J)@(E*@J)

= E@ E’.

It is very important to observe that the input x-or does not depend on the key bits

92 CHAPTER 3. THE DATA ENCRYPTION STANDARD

J. (However, the output x-or certainly does depend on these key bits.)
We will write each of B, E and J as the concatenation of eight 6-bit strings:

B = B1B2B3B4B5BSB7B8

E = E,E2E3E4E5E6E7Eg

J = JI J~J~J~J~J~J~Js,

and we write B* , E* , J’ in a similar way. Let us suppose for the moment that we
know the values Ej and E; for some j, 1 < j 5 8, and the value of the output
x-or for Sj , Cj = Sj (Bj) $ Sj (Bj). Then it must be the case that

Ej @ Jj E INj(Eli,C;),

where E(= Ej @ Ej.
Suppose we define a set testj as follows:

DEFINITION3.4 Suppose Ej and ET are bitstrings of length six, and Ci is a
bitstring of length fou,: Dejine

testj(Ej, E;,Ci) = {Bj @ Ej : Bj E INj(E(i,Ci)},

where Ej = Ej @ EJ.

That is, we take the x-or of Ej with every element of the set IN, (Ei, Cj).
The following result is an immediate consequence of the discussion above.

THEOREM 3.1
Suppose Ej and ET are two inputs to the S-box Sj, and the outputx-orfor Sj is Cj.
Denote EJ = Ej @ ET. Then the key bits Jj occur in the set testj (Ej, ET, Ci).

Observe that there will be exactly Nj (E$, C,!) bitstrings of length six in the set
testj (Ej , ET, C;); the correct value of Jj must be one of these possibilities.

Example 3.2
Suppose El = 000001, Ei = 110101 andC[= 1101. Since NI (110100, 1101) =
8, there will be exactly eight bitstrings in the set test~(000001, 110101,1101).
From Figure 3.8, we see that

IN,(110100,1101) =

{000110,010000,010110,011100,100010,100100,101000,110010}.

Hence,

test1 (000001, 110101, 1101) =

{000111,010001,010111,011101,100011,100101,101001,110011}. II

3.6. DIFFERENTIAL CRYPTANALYSIS 93

If we have a second such triple El, Ei, Cl, then we can obtain a second set
test1 of possible values for the keybits in Jl. The true value of J1 must be in
the intersection of both sets. If we have several such triples, then we can quickly
determine the key bits in J1. One straightforward way to do this is to maintain an
array of 64 counters, representing the 64 possibilities for the six key bits in Jl. A
counter is incremented every time the corresponding key bits occur in a set test 1
for a particular triple. Given t triples, we hope to find a unique counter which has
the value t; this will correspond to the true value of the keybits in JI .

3.6.1 An Attack on a 3-round DES

Let’s now see how the ideas of the previous section can be applied in a chosen
plaintext attack of a 3-round DES. We will begin with a pair of plaintexts and
corresponding ciphertexts: L&I, L;j Ri, L3 R3 and L; R; . We can express R3 as
follows:

R3 = ~52 fI+ f(R2, K3)

= RI @ f(R2, I(3)

= Lo CB f(Ro, I(I) CB f(R2, I(3).

Rj can be expressed in a similar way, and hence

Ri, = Lb $ f(Ro, ICI) $ f(R;;, ICI) @ f(R2, K3) 6B f(R;, I-3).

Now, suppose we have chosen the plaintexts so that & = R:, i.e., so that

R;=OO...O.

Then f(&, Kr) = f(Rf,, Kt) and so

R; = L; $ f(R2, J(3) CB f(R;, K3).

At this point, Ri is known since it can be computed from the two ciphertexts, and
Lb is known since it can be computed from the two plaintexts. This means that
we can compute f(R2, Ks) $ j(g, 1(s) from the equation

f(R2, I(3) $ f(R;, I(3) = R; @ Lb.

Now, f(R2, Ks) = P(C) and f(R; , Ks) = P(C*), where C and C*, respec-
tively, denote the two outputs of the eight S-boxes (recall that P is a fixed, publicly
known permutation). Hence,

P(C) $ P(C*) = R; @ Lb,

CHAPTER 3. THE DATA ENCRYPTION STANDARD 94

FIGURE 3.9
Differential attack on 3-round DES

Input: L&Q, LG Rz , L3 R3 and L; R;, where & = RG

1. compute C’ =P-‘(R;@L;)

2. compute E = E(Lg) and E’ = E(Lj)

3. forj= lto8do

compute testy (Ej , Ej , Ci)

and consequently

C’=C$C*=P-‘(R;$Lb). (3.1)

This is the output x-or for the eight S-boxes in round three.
Now, R2 = L3 and R; = L; are also known (they are part of the ciphertexts).

Hence, we can compute

E = E(L3) (3.2)

and

E* = E(L;) (3.3)

using the publicly known expansion function E. These are the inputs to the S-boxes
for round three. So, we now know E, E*, and C’ for the third round, and we
can proceed, as in the previous section, to construct the sets testl, . . ., tests of
possible values for the key bits in JI , . . . , Jg.

A pseudo-code description of this algorithm is given in Figure 3.9. The attack
will use several such triples E, E*, C’. We set up eight arrays of counters, and
thereby determine the 48 bits in K3, the key for the third round. The 56 bits in the
key can then be computed by an exhaustive search of the 2* = 256 possibilities
for the remaining eight key bits.

Let’s look at an example to illustrate.

Example 3.3
Suppose we have the following three pairs of plaintexts and ciphertexts, where the
plaintexts have the specified x-ors, that are encrypted using the same key. We use
a hexadecimal representation, for brevity:

3.6. DIFFERENTIAL CRYPTANALYSIS 95

plaintext ciphertext
748502CD38451097 03C70306D8A09FlO
3874756438451097 78560A0960E6D4CB
486911026ACDFF31 45FA285BE5ADC730
375BD31F6ACDFF31 134F7915AC253457
357418DA013FEC86 D8A31B2F28BBC5CF
12549847013FEC86 OF317AC2B23CB944

From the first pair, we compute the S-box inputs (for round 3) from Equations
(3.2) and (3.3). They are:

E = 000OOOOOO111111000001110100OOOOOO1101OOOOOO01100

E* = 10111111OOOOOO10101011000000010101OOOOOO01010010.

The S-box output x-or is calculated using Equation (3.1) to be:

C’ = 10010110010111010101101101100111.

From the second pair, we compute the S-box inputs to be

E = 1010000010111111111101OOOOO101010000001011110110

E* = 100010100110101001011110101111110010100010101010

and the S-box output x-or is

C’ = 10011100100111OOOOO1111101010110.

From the third pair, the S-box inputs are

E = 111011110001010100000110100011110110100101011111

E* = 000001011110100110100010101111110101011OOOOOO100

and the S-box output x-or is

c’ = 11010101011101011101101100101011

Next, we tabulate the values in the eight counter arrays for each of the three
pairs. We illustrate the procedure with the counter array for J1 from the first pair.
Inthispair,wehave Ei = 1OllllandC~ = 1001. Theset

IN1(lO1lll,lOOl) = {OOOOOO,000111,101000,101111}.

Since El = 000000, we have that

JI E test~(000000,101111,1001) = {OOOOOO,000111,101000,101111}.

Hence, we increment the values 0,7,40, and 47 in the counter array for J1.

96 CHAPTER 3. THE DATA ENCRYPTION STANDARD

The final tabulations are now presented. If we think of a bit-string of length
six as being the binary representation of an integer between 0 and 63, then the 64
values correspond to the counts of 0, 1, . . . ,63. The counter arrays are as follows:

71
, * I

(1

3.6. DIFFERENTIAL CRYPTANALYSIS 97

J8
0000000000000000
0000000000000000
0000000010100101

(0 3 0 0 0 0 10 0 0 0 0 0 0 0 01

In each of the eight counter arrays, there is a unique counter having the value
3. The positions of these counters determine the key bits in J1, . . . , Jg. These
positions are (respectively): 47,5, 19,0,24,7,7,49. Converting these integers to
binary, we obtain JI , . . . , 58:

J1 = 101111

J2 = 000101

J3 = 010011

54 = t)OOOOO

Js = 011000

56 = 000111

J7 = 000111

Js = 110001.

We can now construct 48 bits of the key, by looking at the key schedule for
round 3. It follows that I< has the form

0001101 0110001 Ol?Ol?O l?OOlOO
0101001 OOOO??O 11 l?l l? ?100011

where parity bits are omitted and ‘?” denotes an unknown key bit. The complete
key (in hexadecimal, including parity bits), is:

lA624C89520DEC46.

0

98 CHAPTER 3. THE DATA ENCRYPTION STANDARD

3.6.2 An Attack on a 6-round DES

We now describe an extension of these ideas to a probabilistic attack on a 6-round
DES. The idea is to carefully choose a pair of plaintexts with a specified x-or, and
then to determine the probabilities of a specified sequence of x-ors through the
rounds of encryption. We need to define an important concept now.

DEFINITION 3.5 Let n 2 1 be an integer: An n-round characteristic is a list of
the form

Lb,Rb,L’,,R’,,pl,...,L:,,R~,p,,

which satis$es the following properties:

I. L:=R:-,forl~i<n.

2. Let 1 5 i < n, and let Li-1, Ri-1 and Lz-, , Rf-, be chosen such that
Li-1 %3 Li*_, = L:-, and Ri-1 $ Rf-, = R:-,. Suppose Li,Ri and
Lf , Rf are computed by applying one round of DES encryption. Then the
probability that Li @ Lf = L: and & @ Rz = R: is precisely pi. (Note that
this probability is computed over all possible 4%tuples J = J1 . . . 58.)

Theprobability of the characteristic is defined to be the product p = pl x . . x p,.

REMARK Suppose we choose LO, & and Lt, Ri so that LO $ Li = Lb and
Ro @ Rz = Rb and we apply n rounds of DES encryption, obtaining LI , . . . , L,
and RI,... , R,. Then we cannot claim that the probability that Li $ Lf = Li
and Ri $ Rf = R: for all i (1 5 i 5 n) is pl x . . . x p,. This is because the
4%tuples in the key schedule Ki , . . . , I(,, are not mutually independent. (If these
n 48-tuples were chosen independently at random, then the assertion would be
true.) But we nevertheless expect pt x . . . x p, to be a fairly accurate estimate of
this probability.

We also need to recognize that the probabilities pi in a characteristic are defined
with respect to an arbitrary (but fixed) pair of plaintexts having a specified x-
or, where the 48 key bits for one round of DES encryption vary over all 248
possibilities. However, a cryptanalyst is attempting to determine a fixed (but
unknown) key. He is going to choose plaintexts at random (such that they have
specified x-ors), hoping that the probabilities that the x-ors during the n rounds
of encryption agree with the x-ors specified in the characteristic are fairly close to
pl, . . . , p,, respectively. I

As a simple example, we present in Figure 3.10 a l-round characteristic which
was the basis of the attack on the 3-round DES (as before, we use hexadecimal
representations). We depict another l-round characteristic in Figure 3.11.

Let’s look at the characteristic in Figure 3.11 in more detail. When f(&, Kt)
and f(R;, Kr) are computed, the first step is to expand Rc and R;. The resulting

3.4. DIFFERENTIAL CRYPTANALYSIS 99

FIGURE 3.10
A l-round characteristic

Lb = anything R& = 00000000,6
L’, = 00000000~6 R’, = Lb p=l

FIGURE 3.11
Another l-round characteristic

L:, = 000000001‘j
L’, = 60000000~6

R; = 6OO0000016
R; = 0080820016 p = 14/64

x-or of the two expansions is

001100.. .o.

So the input x-or to Si is 001100 and the input x-ors for the other seven S-boxes
are all 000000. The output x-ors for 5’2 through Ss will all be 0000. The output
x-or for St will be 1110 with probability 14/64 (since it can be computed that
Nt (001100,1110) = 14). So we obtain

C’ = 1110000

with probability 14164. Applying P, we get

P(C) CB P(C’) = OOOOOOOO1OOOOOO01OOOOO1O,

which in hexadecimal is 00808200 16. When this is x-ored with Lb, we get the
specified R’, with probability 14/64. Of course L’, = Rb always.

The attack on the 6-round DES is based on the 3-round characteristic given
in Figure 3.12. In the 6-round attack, we will start with LO&, LG Ri, L6R6
and Lg Rz, where we have chosen the plaintexts so that Lb = 4008OOOOt6 and

FIGURE 3.12
A 3-round characteristic

Lb = 40080000~fj
L’, = 04~l6

L’2 = 00000000~6
L: = 040OOoO01rG

R; = 04O00000,6
R’, = 0000000016 p= l/4
R; = 04O0000016 p=l
R: = 400800001~ v= l/4

100 CHAPTER 3. THE DATA ENCRYPTION STANDARD

R; = 0400~00],j. we can express & as follows:

R6 = L5 @f(Rs,1(6)

= R4 Cl3 f(RsI(6)

= ~53 63 f(R3,1(4) @ f(Rslc6).

Rz can be expressed in a similar way, and hence we get

R;= L;~f(R3,1(4)~f(R;,114)t4f(Rs,1(6)$f(R;,li'a). (3.4)

(Note the similarity with the 3-round attack.)
Rb is known. From the characteristic, we estimate that L$ = 040OOOOOt6 and

Ri = 4008OOOOt6 with probability l/16. If this is in fact the case, then the input
x-or for the S-boxes in round 4 can be computed by the expansion function to be:

0010000OOOOOOOOOO1010000.. .o.

The input x-ors for 5’2, Ss, Se, ST and Ss are all 000000, and hence the output
x-ors are 0000 for these five S-boxes in round 4. This means that we can compute
the output x-ors of these five S-boxes in round 6 from Equation (3.4). So, suppose
we compute

c~c~c~c~c~c~c;c~ = P-‘(R’, $04000000,6)

where each Ci is a bitstring of length four. Then with probability l/16, it will be
the case that C;, C:, CL, C$ and Ci are respectively the output x-ors of S2,5’5, Se,
5’7 and Ss in round 6. The inputs to these S-boxes in round 6 can be computed to
be E2, ES, ES, El and Eg, and Es, E;, E6f, E; and Ei, where

I$ E&&E&&& = E(Rs) = E(L6)

and

E; E; E; E; E; E; E; E; = E(R;) = E(L;)

can be computed from the ciphertexts, as indicated in Figure 3.13.
We would like to determine the 30 key bits in 52, J5, 56, 57 and Jg as we did

in the 3-round attack. The problem is that the hypothesized output x-or for round
6 is correct only with probability l/16. So 15/16 of the time we will obtain
random garbage rather than possible key bits. We somehow need to be able to
determine the correct key from the given data, 15/16 of which is incorrect. This
might not seem very promising, but fortunately our prospects are not as bleak as
they initially appear.

DEFlNITION3.6 Suppose LO $ L$ = Lb and & $ Rz = R& We say that the
pair of plaintexts LO& and Ls R;, is rightpair with respect to a characteristic if
Li $ Lf = L: and Ri @ Rf = R: for all i, 1 5 i < n. The pair is a defined to be
wrongpair, otherwise.

3.6. DIFFERENTIAL CRYPTANALYSIS 101

FIGURE 3.13
Differential attack on 6-round DES

Input: LO&, LGR:, L6R6 and LZRZ, where Lb = 4008000016 and
R; = 0400000016

1. compute C’ = P-’ (Rk $4008000016)

2. compute E = E(L6) and E* = E(Lg)
3. forj E {2,5,6,7,8}do

compute testj (Ej , ET, C,!).

We expect that about l/16 of our pairs are right pairs and the rest are wrong
pairs with respect to our 3-round characteristic.

Our strategy is to compute Ej, ET, and C;, as described above, and then to
determine testj (Ej, ET, C,!), for j = 2,5,6,7,8. If we start with a right pair,
then the correct key bits for each Jj will be included in the set testj. If the pair
is a wrong pair, then the value of Ci will be incorrect, and it seems reasonable to
hypothesize that each set testj will be essentially random.

We can often identify a wrong pair by this method: If ltestj 1 = 0, for any
j E {2,5,6,7,8}, then we necessarily have a wrong pair. Now, given a wrong
pair, we might expect that the probability that 1 testjl = 0 for a particular j is
approximately l/5. This is a reasonable assumption since Nj (L$, Ci) = I testj I
and, as mentioned earlier, the probability that Nj (El, C,!) = 0 1s approximately
l/5. The probability that all five testj’s have positive cardinality is estimated
to be .g5 M .33, so the probability that at least one testj has zero cardinality is
about .67. So we expect to eliminate about 2/3 of the wrong pairs by this simple
observation, which we call thejfiltering operation. The proportion of right pairs
that remain after filtering is approximately (l/16)/(l/3) = 3/16.

Example 3.4

Suppose we have the following plaintext-ciphertext pair:

plaintext ciphertext
86FAlC2BlF51D3BE lE23ED7F2F553971
C6F2lC2BlB51D3BE 296DE2B687AC6340

102 CHAPTER 3. THE DATA ENCRYPTION STANDARD

Observe that Lb = 4008OOOOt6 and Rb = 0400OOOOt6. The S-box inputs and
outputs for round 6 are computed to be the following:

+-l-x%x
5 111101
6 011010
7 101111
8 111110

Then, the sets testj are as follows:

E;
010010
111100
000101
010110
101100

teSt.j

t t

C;
1101
0001
0010
1100
1101

81 34,35,48,49

We see that both tests and test7 are empty sets, so this pair is a wrong pair and is
discarded by the filtering operation, 0

Now suppose that we have a pair such that ltestjl > 0 for j = 2,5,6,7,8, so
that it survives the filtering operation. (Of course, we do not know if the pair is a
right pair or a wrong pair.) We say that the bitstring J2Js J&& of length 30 is
suggested by the pair if Jj E testj for j = 2,5,6,7,8. The number of suggested
bitstrings is

I-J IteStjI.

jEt2,5,6,7,8)

It is not unusual for the number of suggested bitstrings to be quite large (for
example, greater than 80000).

Suppose we were to tabulate all the suggested bitstrings obtained from the N
pairs that were not discarded by the filtering operation. For every right pair, the
correct bitstring J2 JS 56 J7 Jg will be a suggested bitstring. This correct bitstring
will be counted about 3N/16 times. Incorrect bitstrings should occur much less
often, since they will occur essentially at random and there are 2’O possibilities (a
very large number).

It would get extremely unwieldy to tabulate all the suggested bitstrings, so we
use an algorithm that requires less space and time. We can encode any testj as a
vector Tj of length 64, where the ith coordinate of Tj is set to 1 (for 0 5 i 5 63)
if the bitstring of length six that is the binary representation of i is in the set testj;
and the ith coordinate is set to 0 otherwise (this is essentially the same as the
counter array representation that we used in the 3-round attack).

3.6. DIFFERENTIAL CRYPTANALYSIS 103

For each remaining pair, construct these vectors as described above, and name
themTj,j=2,5,6,7,8,l<i<N. For1c{l,..., N},wesaythatIis
allowable if for each j E {2,5,6,7,8}, there is at least one coordinate equal to
) I) in the vector

cly.
iE1

If the ith pair is a right pair for every i E I, then the set I is allowable. Hence, we
expect there to be an allowable set of size (approximately) 3 N/ 16, which we hope
will suggest the correct key bits and no other. It is a simple matter to construct all
the allowable sets I by means of a recursive algorithm.

Example 3.5
We did some computer runs to test this approach. A random sample of 120 pairs of
plaintexts with the specified x-ors was generated, and these were encrypted using
the same (random) key. We present the 120 pairs of ciphertexts and corresponding
plaintexts in hexadecimal form in Table 3.1.

When we compute the allowable sets, we obtain ni allowable sets of cardinality
i, for the following values:

The unique allowable set of size 10 is

{24,29,30,48,50,52,55,83,92,118}.

In fact, it does arise from the 10 right pairs. This allowable set suggests the correct
key bits for 52, J5, J6, 57 and Jg and no others. They are as follows:

52 = 011001

J5 = 110000

56 = 001001

57 = 101010

104 CHAPTER 3. THE DATA ENCRYPTION STANDARD

FIGURE 3.14
Another 3-round characteristic

Lb = 00200008,6 R; = 00000400,,j
L’, = 00000400,6 R; = 00000000,6 p= l/4
Li = 00000000 16 R; = 0000040016 p= 1
L; = 0000040016 R; = 00200008 16 p = l/4

Jg = 100011

Note that all the allowable sets of cardinality at least 6, and all but three of
the allowable sets of cardinality 5, arise from right pairs, since (:“> = 252 and
(Ii”> = ni for 6 5 i < 10.

This method yields 30 of the 56 key bits. By means of a different 3-round
characteristic, presented in Figure 3.14, it is possible to compute 12 further key
bits, namely those in Jl and J4. Now only 14 key bits remain unknown. Since
214 = 16384 is quite small, an exhaustive search can be used to determine the
remaining 14 key bits.

The entire key (in hexadecimal, including parity-check bits) is:

34E9F71A20756231.

As mentioned above, the 120 pairs are given in Table 3.1. In the second
column, a * denotes that a pair is a right pair, while a ** denotes that the pair is
an identifiable wrong pair and is discarded by the filtering operation. Of the 120
pairs, 73 are identified as being wrong pairs by the filtering process, so 47 pairs
remain as “possible” right pairs. 0

3.6.3 Other examples of Differential Cryptanalysis

Differential cryptanalysis techniques can be used to attack DES with more than
six rounds. An g-round DES requires 2 l4 chosen plaintexts, and lo-, 12-, 14-
and 16-round DESs can be broken with 2”, 23’, 239 and 247 chosen plaintexts,
respectively. The attacks on more than 10 rounds are probably not practical at this
time.

Several substitution-permutation product ciphers other than DES are also sus-
ceptible (to varying degrees) to differential cryptanalysis. These cryptosystems
include several substitution-premutation cryptosystems that have been proposed
in recent years, such as FEAL, REDOC-II, and LOKI.

3.6. DIFFERENTIAL CRYPTANALYSIS 105

TABLE 3.1
Cryptanalysis of 6-round DES

pair right pair? plaintext ciphertext
1 ** 86FAlC2BlF51D3BE lE23ED7F2F553971

C6F21C2BlBSlD3BE 296DE2B687AC6340
2 ** EDC439EC935ElACD OF847EFE90466588

ADCC39EC975ElACD 93E84839F374440B
3 ** 9468AOBE00166155 3D6A906A6566DOBF

D460AOBE04166155 3BC3B236398379El
4 ** D4FF2BlaA5AaAAC8 26B14738C2556BA4

94F72B18AlA8AAC8 15753FDE86575AaF
5 09DOF2CF277AF54F 15751F4F11308114

6
49DaF2CF237AF54F 6046A7C863F066AF
CBC7157240D415DF 7FCDC300FB9698E5
8BCF157244D415DF 522185DD7E47D43A

7 0D4A1E84890981C1 E7COBOlE32557558
4D421E848D0981C1 912C6341A69DF295

8 ** 6CE6B2AgB8194835 75D52E028A5C48A3
2CEEB2AgBC194835 6C88603B48E5AWE

9 ** 799F63C3C9322ClA A6DA322BaF2444B5
399763C3CD322ClA 6634AA9DF18307F4

10 ** lB36645E381EDF48 lF91E295D559091B
5B3E645E3ClEDF48 D094FC12CO2C17CA

11 85CA13F5OB4ADBB9 EDlOaEE7397DDEOA
C5C213F5OF4ADBB9 3F405F4A3E254714

12 ** 7963AaEFD15BC4Al 8C714399715A33BA
396BAaEFD55BC4Al C344C73CC97E4AC4

13 7BCFF7BCA455E65E 475A2D0459BCCE62
3BC7F7BCAO55E65E 8E94334AEF359EF8

14 OC505CEDB499218C D3C66239E89CC076
4C585CEDBO99218C 9A316E801EE18EBl

15 6C5EA056CDC91A14 BC7EBA159BCA94E6

16
2C56A056C9C91A14 67DB935C21FFlAaD

** 6622A441AOD32415 35F8616FEBA62883
262AA441A4D32415 4313E1925F5B64BC

17 CO333C994AFFlC99 D46A4CFlC0221Bll
803B3C994EFFlC99 D22B42DB150E2CE8

18 9E7B2974FOOElA6E 172D286D9606E6FE
DE732974F40ElA6E 2217A91FaC427D27

19 ** CF592897BFD70C7E FB892B59E7DCE7EC
8F512897BBD70C7E C328B765ElCC6653

20 E976CF19124AgFAl 905BF24188509FA6
A97ECF19164A9FAl 9ADDBAOC23DD724F

21 ** 5C09696E7363675D 92D60E5C71801A99
lC01696E7763675D DD90908A4FE8168F

22 ** A8145AB3ClB2C7DE F68FC9F80564847B
EalC5AB3C5B2C7DE 51CO41B5711B8132

23 47DF6AOBB1787159 52E36C4CA22EA5A2
07D76AOBB5787159 373EAFD503F68DE4

24 * 7CE65464329B4E6D 832A9D7032015D9F
3CEE5464369B4E6D 85E2CE665571E99C

106 CHAPTER 3. THE DATA ENCRYPTION STANDARD

pair right pair? plaintext ciphertext
25 ** 421FB6AD95791BA7 DlE730BAlDB565E7

0217B6AD91791BA7 188E61735FA4F3CE
26 ** C58E9A361368FFD6 795EB9D30CAE6879

85869A361768FFD6 26D37AC4867ACC61
27 ** DD86B6C74C8EA4E2 CC3B6915C9A348DF

9D8EB6C7488EA4E2 104C2394555645FO
28 ** 43DB9D2F483CA585 E3E4DA503DlB9396

03D39D2F4C3CA585 4EAO2COO61332443
29 * 855A309F96FEASEA 85AD6EgE352AFAFA

C552309F92FEASEA 929D2237OACAB80D
30 * AB3CA25BO2BD18C8 OF7D768E9203F786

EB34A25B06BD18C8 A1313BC26A99D353
31 ** A9F7A6F4A7COOE06 F26B385E6BA057FD

E9FFA6F4A3COOE06 203D8384F8F54D19
32 ** 688B9ACD856D1312 C41D99C107B4EF76

28839ACD816D1312 6CC817CAO25A7DAC
33 ** 76BFO621C03D4CD9 BBElF95AFClE052A

36B70621C43D4CD9 561F4801F2EBOC63
34 ** 014CF8DlF981B8EE D27091C4314CBFE8

4144F8DlFD81B8EE B7976D6A80E3DB61
35 ** 487D66EDE0405F8C 8136325COAEB84CE

087566EDE4405F8C 8C638BC4495B69AO
36 ** DDCA47093A362521 51040CF16B600FAA

9DC247093E362521 7FC75515AC3CAAF9
37 ** 45A9D34A3996F6D9 F2004B854AE6C46C

OSAlD34A3D96F6D9 546825016B03D193
38 ** 295D2FBFB00875EA A309DF027E69C265

69552FBFB40875EA 4F633FFB95AOCllE
39 964C8B98D590D524 lFFlD0271D6F6C18

D6448B98D190D524 8CF2D8D401EBFCOF
40 60383D2BAF0836BC lOA82D55FC480640

20303D2BAB0836BC 602346173581EF79
41 ** 5CF8D539A22AlCAD 92685D806FBE8738

lCFOD539A62AlCAD 17006DAB2D28081C
42 F95167CAB6565609 C52E2EB27446054E

B95967CAB2565609 OC219F686840E57A
43 49FlC83615874122 2680C8ECDFSE51CD

09F9C83611874122 5022A7B69B4E75EF
44 ** ACB2EC1941B03765 D6B593460098DECS

ECBAEC1945B03765 D319OA0200FC6B9B
4s CCCC129D5CB55ECO 3AD22B7EF59EOD5E

8CC4129D58B55ECO A48C92CBEC17E430
46 ** 917FF8E2EE6B78DS EF847E058DB71724

D177F8E2EA6B78DS F243FO554AOOE4C5
47 ** 51DBCFO28E96DEOO 574897CAlEE73885

llD3CFO28A96DEOO 9FOFDOASB2C2BSFD
48 * 2094942E093463CE 59F6A018C6AOD820

609C942EOD3463CE 799FE001432346CO

3.6. DIFFERENTIAL CRYPTANALYSIS 107

108 CHAPTER 3. THE DATA ENCRYPTION STANDARD

28F7407AF958B3

3.6. DIFFERENTIAL CRYPTANALYSIS 109

pair right pair? plaintext ciphertext
97 ** lEB8ADAA43BBD575 21AlE04813616E42

SEBOADAA47BBD575 D044BA3F25DFDO2A
98 ** 3164AA5454D9F991 9382C6C1883F1038

716CAA5450D9F991 SCDFED4FF2117DEC
99 D78ClCSC6F2243D2 lCCEB091E030E6A6

97841CSC6B2243D2 4DA2CD67CC449B21
100 BBE212A7D3CE3D14 2917C207B4D93EOD

FBEA12A7D7CE3D14 AOlDSOESA2B902D8
101 ** 104917795E98DOFB 40916A71385C2803

504117795A98DOFB 413FD26EF671F46D
102 ** 4DDA114D6EFEEEB4 2E2C65ElDSCBAC31

ODD2114D6AFEEEB4 A16FFO3BC0913ED6
103 EOBED7B285BFOA77 SD9EFEFFOAD10490

AOB6D7B281BFOA77 4C6CAlFAC36A8ESB
104 ** OAE1555FA1716214 378400BCED39EB81

4AE9555FA5716214 AlEOC758BD8912C2
105 ** 4657C26790FCB354 588BA079B2E7ED20

065FC26794FCB354 DA90827AEED7A41F
106 ** 32BD719BODClB091 F3477C7552BCBOSD

72B5719B09ClB091 EFF444449D66BE9E
107 ** 0992F8C8C73A9BFE 9F3FFDOF158295F6

499AF8C8C33AgBFE C138358DCECC8FC7
108 02C3F061A237BBEB AC28B0307127EA7C

42CBF061A637BBEB 3FFlDAED9EOFCBC5
109 ** 80E529E69EDE6827 lDFlDB7B66BAlAFl

COED29E69ADE6827 15700151A5804549
110 BSSE84630067B8DS 88321611FFgDA421

355684630467B8D5 90649D7EACF91F9A
111 2749C2EBC603BFF2 A62B23A7348E2C3A

6741C2EBC203BFF2 EB760A09C7FF5153
112 ** C4CSE14D4C5D9FF5 ABC2312FBFD94DF5

84CDE14D485D9FF5 D2BB5954E5062D53
113 ** 1566BA21F2647E18 A247ED988457CB78

556EBA21F6647E18 SE99F231005F5249
114 ** 2D093D426D922F92 5DF62030B9F23AE9

6D013D4269922F92 SD92DAlFA3DO7BAl
115 004518468EOC96C3 F28D85FF7E84F38F

404D18468AOC96C3 52541B0443053C57
116 ** 437B70A98AE03344 04B3FBF9823B4CF7

037370A98EE03344 14EBEC79DAD3093E
117 2DOlF1073D3E375B FlOB3ElEE356226C

6D09F107393E375B 6FF26DA5E3525B62
118 * 66573DD7EOD7FllO F2F26204C29FESlE

265F3DD7E4D7FllO 083A4ECE57E429AC
119 0846DB9538155201 F120DOD2AE788057

484EDB953C155201 OOCC914A33034782
120 ABB34FC195C820Dl SF17AE066BSOFC81

EBBB4FC191C820Dl 2858DD63A2FA4B53 1

110 CHAPTER 3. THE DATA ENCRYPTION STANDARD

3.7 Notes and References

A nice article on the history DES is by Smid and Branstad [SB92]. Federal
Information Processing Standards (FIPS) publications concerning DES include the
following: description of DES [NBS77]; implementing and using DES [NBS8 I];
modes of operation of DES [NBSSO]; and authentication using DES [NBSSS].

Some properties of the S-boxes are studied by Brickell, Moore, and Purtill
[BMP87].

The DEC DES chip is described in [EB93]. Wiener’s key search machine was
described at CRYPTO ‘93 [Wr94].

The time-memory trade-off for DES is due to Hellman [HEgO]. A more general
time-memory trade-off is presented by Fiat and Naor in [FN91].

The technique of differential cryptanalysis was developed by Biham and Shamir
[BS91] (see also [BS93A] and their book [BS93], where cryptanalysis of other
cryptosystems is also discussed). Our treatment of differential cryptanalysis is
based largely on [BS93].

Another new method of cryptanalysis that can be used to attack DES and other
similar cryptosystems is the linear cryptanalysis of Matsui [MA94, MA%A].

Descriptions of other substitution-permutation cryptosystems can be found in
the following sources: LUCIFER [F~73]; FEAL [M191]; REDOC-II [CW91];
and LOKI [BKPS90].

Exercises

3.1 Prove that DES decryption can be done by applying the DES encryption algorithm
to the plaintext with the key schedule reversed.

3.2 Let DES(z, K) represent the encryption of plaintext x with key I< using the DES
cryptosystem. Suppose y = DES(x, K) and y’ = DES(c(z), c(K)), where c(.)
denotes the bitwise complement of its argument. Prove that y’ = c(y) (i.e., if we
complement the plaintext and the key, then the ciphertext is also complemented).
Note that this can be proved using only the “high-level” description of DES - the
actual structure of S-boxes and other components of the system are irrelevant.

3.3 One way to strengthen DES is by double encryption: Given two keys, ICI and I(z,
define y = eK,(erC, (2)) (of course, this is just the product of DES with itself). If it
happened that the encryption function eK, was the same as the decryption function
dr<, , then KI and I(z are said to be dual keys. (This is very undesirable for double
encryption, since the resulting ciphertext is identical to the plaintext.) A key is
self-dual if it is its own dual key.

(a) Prove that if Co is either all O’s or all l’s and DO is either all O’s or all l’s,
then I< is self-dual.

(b) Prove that the following keys (given in hexadecimal notation) are self-dual:
0101010101010101

Exercises 111

FEFEFEFEFEFEFEFE
lFlFlFlFOEOEOEOE
EOEOEOEOFlFlFlFl

(c) Prove that if CO = 0101.. .Ol or 1010.. . 10 (in binary), then the x-or of the
bitstrings Ci and Cl,-i is 1111. . . 11, for 1 2 i < 16 (a similar statement
holds for the Di’S).

(d) Prove that the following pairs of keys (given in hexadecimal notation) are
dual:

EOOlEOOlFlOlFlOl OlEOOlEOOlFlOlFl
FElFFElFFEOEFEOE 1FFElFFEOEFEOEFE
EOlFFOlFFFlOFFlO lFEOlFEOOEFlOEFl

3.4 A message authentication code (MAC) can be produced by using CFB mode, as well
as by using CBC mode. Given a sequenceof plaintext blocks xr . . .z,,. suppose we
define the initialization vector IV to be XI. Then encrypt xz . . . sn using key I< in
CFB mode, obtaining yr . . . y,-t (note that there are only n - 1 ciphertext blocks).
Finally, define the MAC to be erc(y,+t). Prove that this MAC is identical to the
MAC produced in Section 3.4.1 using CBC mode.

3.5 Suppose a sequence of plaintext blocks, x1 . . . xn. is encrypted using DES, pro-
ducing ciphertext blocks yt . . . y,,. Suppose that one ciphertext block, say yi, is
transmitted incorrectly (i.e., some l’s are changedto O’s and vice versa). Show that
the number of plaintext blocks that will be decrypted incorrectly is equal to one if
ECB or OFB modes were used for encryption; and equal to two if CBC or CFB
modes were used.

3.6 The purpose of this question is to investigate a simplified time-memory trade-off for
a chosen plaintext attack. Suppose we have a cryptosystem in which P = C = K,
which attains perfect secrecy. Then it must be the case that eK(I) = eK, (x) implies
IC = I<,. DenoteP= Y = {yt,... , ye}. Let x be a fixed plaintext. Define the
function g : Y + Y by the rule g(y) = ey(x). Define a directed graph G having
vertex set Y, in which the edge set consists of all the directed edges of the form
(Yir!?(Y*)), 1 I i I N*

(a) Prove that G consists of the union of disjoint directed cycles.
(b) Let T be a desired time parameter. Suppose we have a set of elements

z = {%I,..., z,} C Y such that, for every element yi E Y, either yi is
contained in a cycle of length at most T, or there exists an element tl # yi
such that the distance from yi to Zj (in G) is at most T. Prove that there
exists such a set Z such that

IZI 5 g,

so IZl is O(N/T).
(c) For each rj E Z, definegmT(zj) to e eeementyi suchthatgT(y;) = zj, b th 1

where gT is the function that consists of T iterations of g. Construct a table
X consisting of the ordered pairs (dJ, gsT(tl)), sorted with respect to their
first coordinates.

A pseudo-code description of an algorithm to find I<, given y = eK(x),
is presented in Figure 3.15. Prove that this algorithm finds I(in at most T
steps. (Hence the time-memory trade-off is O(N).)

112 CHAPTER 3. THE DATA ENCRYPTION STANDARD

FIGURE 3.15
Time-memory trade-off

I
1. ?/start = Y
2. backup = false
3. while g(y) # mart do
4. if y = z, for some j and not backup then
5. Y = LrT(4
6. backup = true

else
7. Y = g(y)
8. K = y

FIGURE 3.16
Differential attack on 4-round DES

Input: LO&I, L,fg, L3R3 and L;R;, where Lo = 2oOOOOOO16 and R{, =
0000oooo16

1:
compute C’ = P-‘(Ri)
compute E = E(Ld) and E’ = E(L;)

3. forj=2to8do
compute testj (E3, EJ, Cj)

(d) Describe a pseudo-code algorithm to construct the desired set Z in time
0(NT) without using an array of size N.

3.7 Compute the probabilities of the following 3-round characteristic:

I;:, = 0020000816 g = OOOOO40016
G = 00000400’6 R; = 0OOO0000~ p=?
L; = ~0~16 R; = 000004001fi p=?
L; = oooomol6 R; = cxmm%6 p=?

3.8 Here is a differential attack on a 4-round DES. It uses the following characteristic,
which is a special case of the characteristic presented in Figure 3.10:

L;, = 2m16 R:, = -16
L; = 0000000016 f?; = 2m0m016 p=l I

(a) Suppose that the following algorithm presented in Figure 3.16 is used to
compute sets test2, . . . tests. Show that J, E test, for 2 _< j 5 8.

(b) Given the following plaintext-ciphertext pairs, determine the key bits in
52,. . . , Jg.

Exercises 113

plaintext ciphertext
18493AC485B8D9AO E332151312AlaB4F
38493AC485BaDgAO 87391C2735282161
482765DDD7009123 BSDDD8339D82DlDl
682765DDD7009123 81F4B92BD94B6FD8
ABCD09873373lFFl 93A4B42F62EA59E4
8BCD09873373lFFl ABA494072BF411ES
13578642AAFFEDCB FDEB526275FB9D94
33578642AAFFEDCB CCaF72AAE685FDBl

(c) Compute the entire key (14 key bits remain to be determined, which can be
done by exhaustive search).

	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	The Data Encryption Standard
	3.1 Introduction
	3.2 Description of DES
	FIGURE 3.1
	FIGURE 3.2
	FIGURE 3.3

	3.2.1 An Example of DES Encryption
	3.3 The DES Controversy
	3.4 DES in Practice
	3.4.1 DES Modes of Operation
	FIGURE 3.4
	FIGURE 3.5

	3.5 A Time-memory Trade-off
	FIGURE 3.6
	FIGURE 3.7

	3.6 Differential Cryptanalysis
	FIGURE 3.8
	3.6.1 An Attack on a 3-round DES
	FIGURE 3.9

	3.6.2 An Attack on a 6-round DES
	FIGURE 3.10
	FIGURE 3.12
	FIGURE 3.13
	FIGURE 3.14

	3.6.3 Other examples of Differential Cryptanalysis
	TABLE 3.1

	3.7 Notes and References
	Exercises
	FIGURE 3.15
	FIGURE 3.16

	4 The RSA System and Factoring
	5 Other Public-key Cryptosystems
	6 Signature Schemes
	7 Hash Functions
	8 Key Distribution and Key Agreement
	9 Identification Schemes
	10 Authentication Codes
	11 Secret Sharing Schemes
	12 Pseudo-random Number Generation
	13 Zero-knowledge Proofs
	Bibliography
	Index

	Next Chapter:
	Next:
	Home:
	Previous:
	Previous Chapter:

