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Shannon’s Theory 

In 1949, Claude Shannon published a paper entitled “Communication Theory of 
Secrecy Systems” in the Bell Systems Technical Journal. This paper had a great 
influence on the scientific study of cryptography. In this chapter, we discuss 
several of Shannon’s ideas. 

2.1 Perfect Secrecy 

There are two basic approaches to discussing the security of a cryptosystem. 

computational security 

This measure concerns the computational effort required to break a cryp- 
tosystem. We might define a cryptosystem to be computationally secure if 
the best algorithm for breaking it requires at least N operations, where N is 
some specified, very large number. The problem is that no known practical 
cryptosystem can be proved to be secure under this definition. In practice, 
people will call a cryptosystem “computationally secure” if the best known 
method of breaking the system requires an unreasonably large amount of 
computer time (but this is of course very different from a proof of security). 
Another approach is to provide evidence of computational security by re- 
ducing the security of the cryptosystem to some well-studied problem that 
is thought to be difficult. For example, it may be able to prove a statement 
of the type “a given cryptosystem is secure if a given integer n cannot be 
factored.” Cryptosystems of this type are sometimes termed “provably se- 
cure,” but it must be understood that this approach only provides a proof of 
security relative to some other problem, not an absolute proof of security. ’ 

‘This is a similar situation to proving that a problem is NP-complete: it proves that the given 
problem is at least as difficult as any other NP-complete problem, but it does not provide an absolute 
proof of the computational difficulty of the problem. 

44 
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unconditional security 

This measure concerns the security of cryptosystems when there is no bound 
placed on the amount of computation that Oscar is allowed to do. A cryp- 
tosystem is defined to be unconditionally secure if it cannot be broken, even 
with infinite computational resources. 

When we discuss the security of a cryptosystem, we should also specify the 
type of attack that is being considered. In Chapter 1, we saw that neither the Shift 
Cipher, the Substitution Cipher nor the Vigenke Cipher is computationally 
secure against a ciphertext-only attack (given a sufficient amount of ciphertext). 

What we will do in this section is to develop the theory of cryptosystems that are 
unconditionally secure against a ciphertext-only attack. It turns out that all three 
of the above ciphers are unconditionally secure if only one element of plaintext is 
encrypted with a given key! 

The unconditional security of a cryptosystem obviously cannot be studied from 
the point of view of computational complexity, since we allow computation time 
to be infinite. The appropriate framework in which to study unconditional security 
is probability theory. We need only elementary facts concerning probability; the 
main definitions are reviewed now. 

DEFINITION2.1 Suppose X and Y are random variables. We denote the prob- 
ability that X takes on the value x by p(x), and the probability that Y takes on the 
value y by p( y). The jointprobability p( x, y) is the probability that X takes on the 
value x and Y takes on the value y. The conditionalprobability p(xly) denotes 
the probability that X takes on the value x given that Y takes on the value y. The 
random variables X and Y are said to be independent if p(x, y) = p(x)p(y) for 
all possible values x of X and y of Y. 

Joint probability can be related to conditional probability by the formula 

P(Z9 Y) = P(tlY)P(Y). 

Interchanging 3: and y, we have that 

P(Z, Y) = P(YlX)P(X). 

From these two expressions, we immediately obtain the following result, which is 
known as Bayes’ Theorem. 

THEOREM 2.1 (Bayes ’ Theorem) 
Ifp(y) > 0, then 

p(x,y) = P(Z)P(YlX) 
P(Y) . 
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COROLLARY 2.2 
X and Y are independent variables ifand only ifp(x)y) = p(x) for all I, y. 

Throughout this section, we assume that a particular key is used for only one 
encryption. Let us suppose that there is a probability distribution on the plaintext 
space, P. We denote the a priori probability that plaintext x occurs by pi. 
We also assume that the key I( is chosen (by Alice and Bob) using some fixed 
probability distribution (often a key is chosen at random, so all keys will be 
equiprobable, but this need not be the case). Denote the probability that key I< 
is chosen by pi (Ii). Recall that the key is chosen before Alice knows what the 
plaintext will be. Hence, we make the reasonable assumption that the key I< and 
the plaintext x are independent events. 

The two probability distributions on P and K induce a probability distribution 
on C. Indeed, it is not hard to compute the probabilitypc (y) that y is the ciphertext 
that is transmitted. For a key I< E K, define 

C(K) = {eK(x) : 2 E P}. 

That is, C(K) represents the set of possible ciphertexts if I< is the key. Then, for 
every y E C, we have that 

PC(Y) = c PK(WPP((-k(Y)). 
{K:YEc(K)l 

We also observe that, for any y E C and x E P, we can compute the conditional 
probability PC (ylt) ( i.e., the probability that y is the ciphertext, given that x is the 
plaintext) to be 

PC(YlX) = c PK(W. 
{K:z=&(y)) 

It is now possible to compute the conditional probability pp (xly) (i.e., the proba- 
bility that x is the plaintext, given that y is the ciphertext) using Bayes’ Theorem. 
The following formula is obtained: 

PP(4 c PK(I-) 

PP(4Y) = 
{K:z=dK(y)] 

c PKW)PPkMYN . 

Observe that all these calculations can be performed by anyone who knows the 
probability distributions. 

We present a toy example to illustrate the computation of these probability 
distributions. 
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Example 2.1 
Let P = {a,b} with p?(a) = 1/4,pp(b) = 3/4. Let X: = {Iii,Iiz, 1<3} 
with p~(li’l) = 1/2,p~(K2) = pi = l/4. Let C = {1,2,3,4}, and 
suppose the encryption functions are defined to be eK, (u) = 1, eK, (b) = 2; 
eKz t”) = 2, eK,(b) = 3; and eKs(u) = 3, eK,(b) = 4. This cryptosystem can be 
represented by the following encryption matrix: 

We now compute the probability distributionpc. We obtain 

PC(l) = $ 

pc(2) = ;+k = $ 
PC(3) = &+A = ; 

PC(4) = &. 

Now we can compute the conditional probability distributions on the plaintext, 
given that a certain ciphertext has been observed. We have: 

PP(Ull) = 1 pP(bll) = 0 

PP(Q) = + 

PP(d3) = ; 

PPUW = f 

PPW) = ; 

PP(Ul4) = 0 pP(bl4) = 1. 

We are now ready to define the concept of perfect secrecy. Informally, perfect 
secrecy means that Oscar can obtain no information about plaintext by observ- 
ing the ciphertext. This idea is made precise by formulating it in terms of the 
probability distributions we have defined, as follows. 
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DEFINITION 2.2 A cryptosystem hasperfect secrecy ifpp (x I y) = pp (x) for all 
x E P, y E C. That is, the a posteriori probability that the plaintext is x, given 
that the cipher-text y is observed, is identical to the a priori probability that the 
plaintext is 2. 

In Example 2.1, the perfect secrecy property is satisfied for the ciphertext 3, but 
not for the other three ciphertexts. 

We next prove that the Shift Cipher provides perfect secrecy. This seems quite 
obvious intuitively. For, if we are given any ciphertext element y E &6, then any 
plaintext element x E i&j is a possible decryption of y, depending on the value 
of the key. The following theorem gives the formal statement and proof using 
probability distributions. 

THEOREM 2.3 
Suppose the 26 keys in the Shit Cipher are used with equal probability l/26. Then 
for any plaintext probability distribution, the Shift Cipher has pelfect secrecy. 

PROOF Recall that P = C = K = &!6, and for 0 < Ii 5 25, the encryption rule 
eK is eK(x) = x + I< mod 26 (x E &j). First, we compute the distributionpc. 
Let y E &6; then 

PC(Y) = c Px:(Wm(dK(d) 

K&&6 

= c 
KEG 

&PP(Y - 10 

= & c PP(Y -I(). 

K&6 

Now, for fixed y, the values y - Ii mod 26 comprise a permutation of &6, and 
pp is a probability distribution. Hence we have that 

c PP(Y - K) = c PP(Y) 

Consequently, 

PC(Y) = & 

for any y E &,. 
Next, we have that 

PC(YI~) = PK(Y - x mod 26) 
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1 
=- 

26 

for every 2, y, since for every x, y the unique key I< such that eK (x) = y is 
I< = y - x mod 26. Now, using Bayes’ Theorem, it is trivial to compute 

m(xly) = PdX)PC(YlX) 

PC(Y) 

PPW&i 
=1 

z 

= PP(X:), 

so we have perfect secrecy. 1 

So, the Shift Cipher is “unbreakable” provided that a new random key is used 
to encrypt every plaintext character. 

Let us next investigate perfect secrecy in general. First, we observe that, using 
Bayes’ Theorem, the condition that pp(xly) = p.p(x) for all x E P, y E C is 
equivalent to pc(y(x) = PC(Y) for all x E P, y E C. Now, let us make the 
reasonable assumption that pc (y) > 0 for all y E C (if pc (y) = 0, then ciphertext 
y is never used and can be omitted from C). Fix any x E P. For each y E C, we 
have pc(ylz) = PC(Y) > 0. Hence, for each y E C, there must be at least one 
key Ii such that eK (z) = y. It follows that IrCl 1 JCJ. In any cryptosystem, we 
must have ICI 2 IPl since each encoding rule is an injection. In the boundary 
case llcl = ICI = IPI, we can give a nice characterization of when perfect secrecy 
can be obtained. This characterization is originally due to Shannon. 

THEOREM 2.4 
Suppose (P,C,K,E,D) is a cryptosystem where IKl = ICI = [PI. Then the 
cryptosystem provides perfect secrecy if and only if every key is used with equal 
probability l/lKl, df an or every x E P and every y E C, there is a unique key K 
such that eK (x) = y. 

PROOF Suppose the given cryptosystem provides perfect secrecy. As observed 
above, for each x E P and y E C there must be at least one key I< such that 
eK(x) = y. So we have the inequalities: 

ICI = l{eK(X) : I( E n}( 

5 IU* 
But we are assuming that ICI = (ICI. Hence, it must be the case that 

I{eK(x) : I( E n}l = 1x1. 

That is, there do not exist two distinct keys Ki and Kz such that eK, (x) = 
eKz (x) = y. Hence, we have shown that for any x E P and y E C, there is exactly 
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FIGURE 2.1 
One-time Pad 

CHAPTER 2. SHANNON’S THEORY 

Let n 2 1 be an integer, and take P = C = K = (Z&)n. For I- E (&T)~, 
define cK (x) to be the vector sum modulo 2 of IT and x (or, equivalently, 
the exclusive-or of the two associated bitstrings). So, if z = (xi, . . . , xcn) 
andK = (Ki,...,I(n),then 

eK(X) = (2, + I(,, . . .,x, + Kn) mod 2. 

Decryption is identical to encryption. If y = (yi , . . . , yn), then 

dK(Y) = (~1 + ITI,. . . , yfl + &) mod 2. 

one key K such that eK (x) = y. 
Denoten=liCI.LetP={xi:l<i~n}andfixayEC.Wecannamethe 

keys Ki, K2, . . . , &, in such a way that eKi (xi) = y, 1 5 i 2 n. Using Bayes’ 
theorem, we have 

pp(xily) = PC(YlXi)PP(Xi) 

PC(Y) 

= PdIG)PP(Xi) 

PC(Y) . 

Consider the perfect secrecy condition pp (xi Iy) = pp(xi). From this, it follows 
that px: (Ki) = pc (y), for 1 5 i 5 n. This says that the keys are used with equal 
probability (namely, PC(Y)). But since the number of keys is 1x1, we must have 
that px(l-) = l/lKl for every K E K. 

Conversely, suppose the two hypothesized conditions are satisfied. Then the 
cryptosystem is easily seen to provide perfect secrecy for any plaintext probability 
distribution, in a similar manner as the proof of Theorem 2.3. We leave the details 
for the reader. 1 

One well-known realization of perfect secrecy is the Vernam One-time Pad, 
which was first described by Gilbert Vernam in 1917 for use in automatic encryp- 
tion and decryption of telegraph messages. It is interesting that the One-time Pad 
was thought for many years to be an “unbreakable” cryptosystem, but there was 
no proof of this until Shannon developed the concept of perfect secrecy over 30 
years later. 

The description of the One-time Pad is given in Figure 2.1. 
Using Theorem 2.4, it is easily seen that the One-time Pad provides perfect 

secrecy. The system is also attractive because of the ease of encryption and 
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decryption. 
Vernam patented his idea in the hope that it would have widepread commer- 

cial use. Unfortunately, there are major disadvantages to unconditionally secure 
cryptosystems such as the One-time Pad. The fact that llcl 2 IPl means that 
the amount of key that must be communicated securely is at least as big as the 
amount of plaintext. For example, in the case of the One-time Pad, we require 12 
bits of key to encrypt 12 bits of plaintext. This would not be a major problem if the 
same key could be used to encrypt different messages; however, the security of 
unconditionally secure cryptosystems depends on the fact that each key is used for 
only one encryption. (This is the reason for the term “one-time” in the One-time 
Pad.) 

For example, the One-time Pad is vulnerable to a known-plaintext attack, since 
A can be computed as the exclusive-or of the bitstrings x and eK(x). Hence, a 
new key needs to be generated and communicated over a secure channel for every 
message that is going to be sent. This creates severe key management problems, 
which has limited the use of the One-time Pad in commercial applications. 
However, the One-time Pad has seen application in military and diplomatic 
contexts, where unconditional security may be of great importance. 

The historical development of cryptography has been to try to design cryptosys- 
terns where one key can be used to encrypt a relatively long string of plaintext 
(i.e., one key can be used to encrypt many messages) and still maintain (at least) 
computational security. One such system is the Data Encryption Standard, 
which we will study in Chapter 3. 

2.2 Entropy 

In the previous section, we discussed the concept of perfect secrecy. We restricted 
our attention to the special situation where a key is used for only one encryption. 
We now want to look at what happens as more and more plaintexts are encrypted 
using the same key, and how likely a cryptanalyst will be able to carry out a 
successful ciphertext-only attack, given sufficient time. 

The basic tool in studying this question is the idea of entropy, a concept from 
information theory introduced by Shannon in 1948. Entropy can be thought of 
as a mathematical measure of information or uncertainty, and is computed as a 
function of a probability distribution. 

Suppose we have a random variable X which takes on a finite set of values 
according to a probability distribution p(X). What is the information gained by 
an event which takes place according to distribution p(X)? Equivalently, if the 
event has not (yet) taken place, what is the uncertainty about the outcome? This 
quantity is called the entropy of X and is denoted by H(X). 

These ideas may seem rather abstract, so let’s look at a more concrete example. 
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Suppose our random variable X represents the toss of a coin. The probability 
distribution is p( heads) = p( tails) = l/2. It would seem reasonable to say that 
the information, or entropy, of a coin toss is one bit, since we could encode heads 
by 1 and tails by 0, for example. In a similar fashion, the entropy of n independent 
coin tosses is n, since the n coin tosses can be encoded by a bit string of length n. 

As a slightly more complicated example, suppose we have a random variable 
X that takes on three possible values xi, x2, x3 with probabilities l/2, l/4, l/4 
respectively. The most efficient “encoding” of the three possible outcomes is to 
encode xi as 0, to encode 22 as 10 and to encode x3 as 11. Then the average 
number of bits in an encoding of X is 

The above examples suggest that an event which occurs with probability 2-” 
can be encoded as a bit string of length n. More generally, we could imagine that 
an event occurring with probability p might be encoded by a bit string of length 
approximately - log, p. Given an arbitrary probability distribution pi, ~2, . . . , p, 
for a random variable X, we take the weighted average of the quantities - log, pi 
to be our measure of information. This motivates the following formal definition. 

DEFINITION2.3 Suppose X is a random variable which takes on a finite set 
of values according to a probability distribution p(X). Then, the entropy of this 
probability distribution is defined to be the quantity 

H(X) = - epj 1og2pj. 
i=l 

If the possible values of X are xi, 1 5 i 2 n, then we have 

H(X) = -&(X = Xj) log,p(X = Xi). 
i=l 

REMARK Observe that log,pi is undefined if pi = 0. Hence, entropy is some- 
times defined to be the relevant sum over all the non-zero probabilities. Since 
lim,,a x log, x = 0, there is no real difficulty with allowing pi = 0 for some 
i. However, we will implicitly assume that, when computing the entropy of a 
probability distribution pi, the sum is taken over the indices i such that pi # 0. 
Also, we note that the choice of two as the base of the logarithms is arbitrary: 
another base would only change the value of the entropy by a constant factor. 1 

Note that if pi = l/n for 1 5 i 5 n, then H(X) = log, n. Also, it is easy to 
see that H(X) 2 0, and H(X) = 0 if and only if pi = 1 for some i and pj = 0 
for all j # i. 
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Let us look at the entropy of the various components of a cryptosystem. We 
can think of the key as being a random variable K that takes on values according 
to the probability distribution pi, and hence we can compute the entropy H(K). 
Similarly, we can compute entropies H(P) and H(C) associated with plaintext 
and ciphertext probability distributions, respectively. 

To illustrate, we compute the entropies of the cryptosystem of Example 2.1. 

Example 2.1 (Cont.) 
We compute as follows: 

H(P) = -;10g2; - ;10g2; 

= -$2) - i(log,3 - 2) 

= 2 - i(log,3) 

z 0.81. 

Similar calculations yield H(K) = 1.5 and H(C) M 1.85. 0 

2.2.1 Huffman Encodings and Entropy 

In this section, we discuss briefly the connection between entropy and Huffman 
encodings. As the results in this section are not relevant to the cryptographic 
applications of entropy, it may be skipped without loss of continuity. However, 
this discussion may serve to further motivate the concept of entropy. 

We introduced entropy in the context of encodings of random events which 
occur according to a specified probability distribution. We first make these ideas 
more precise. As before, X is a random variable which takes on a finite set of 
values, and p(X) is the associated probability distribution. 

An encoding of X is any mapping 

f : x + (0, l}‘, 

where (0, 1)’ denotes the set of all finite strings of O’s and 1’s. Given a finite list 
(or string) of events xi . . . x,, we can extend the encoding f in an obvious way 
by defining 

f(~l...~n)=f(~l)II...IIf(~,) 

where II denotes concatenation. In this way, we can think off as a mapping 

f : x* + {o,l}*. 

Now, suppose a string xi . . . x, is produced by a memoryless source, such that 
each xi occurs according to the probability distribution on X. This means that the 
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probability of any string xi . . .x, is computed to bep(xl) x . . . x p(xcn). (Notice 
that this string need not consist of distinct values, since the source is memoryless. 
As a simple example, consider a sequence of n tosses of a fair coin.) 

Now, given that we are going to encode strings using the mapping f, it is 
important that we are able to decode in an unambiguous fashion. Thus it should 
be the case that the encoding f is injective. 

Example 2.2 
Suppose X = {a, b, c, d}, and consider the following three encodings: 

f(a) = 1 f(b) = 10 f(c) = 100 f(d) = 1000 

s(a) = 0 g(b) = 10 g(c) = 110 g(d) = 111 

h(u) = 0 h(b) = 01 h(c) = 10 h(d) = 11 

It can be seen that f and g are injective encodings, but h is not. Any encoding 
using f can be decoded by starting at the end and working backwards: every time 
a 1 is encountered, it signals the end of the current element. 

An encoding using g can be decoded by starting at the beginning and proceeding 
sequentially. At any point where we have a substring that is an encoding of a, b, c, 
or d, we decode it and chop off the substring. For example, given the string 
10101110, we decode 10 to b, then 10 to b, then 111 to d, and finally 0 to a. So 
the decoded string is bbda. 

To see that h is not injective, it suffices to give an example: 

h(uc) = h(bu) = 010. 

II 

From the point of view of ease of decoding, we would prefer the encoding g to 
f. This is because decoding can be done sequentially from beginning to end if g 
is used, so no memory is required. The property that allows the simple sequential 
decoding of g is called the prefix-free property. (An encoding g is prefi-free if 
there do not exist two elements x, y E X, and a string r E (0, l}* such that 
g(x) = g(y) II 2.1 

The discussion to this point has not involved entropy. Not surprisingly, entropy 
is related to the efficiency of an encoding. We will measure the efficiency of an 
encoding f as we did before: it is the weighted average length (denoted by e(f)) 
of an encoding of an element of X. So we have the following definition: 

e(f) = c P(X)lf(X)I, 
XEX 

where IyI denotes the length of a string y. 
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Now, our fundamental problem is to find an injective encoding, f, that min- 
imizes l(f). There is a well-known algorithm, known as Huffman’s algorithm, 
that accomplishes this goal. Moreover, the encoding f produced by Huffman’s 
algorithm is prefix-free, and 

H(X) 5 f(f) < H(X) + 1. 

Thus, the value of the entropy provides a close estimate to the average length of 
the optimal injective encoding. 

We will not prove the results stated above, but we will give a short, informal 
description of Huffman’s algorithm. Huffman’s algorithm begins with the prob- 
ability distribution on the set X, and the code of each element is initially empty. 
In each iteration, the two elements having lowest probability are combined into 
one element having as its probability the sum of the two smaller probabilities. 
The smaller of the two elements is assigned the value “0” and the larger of the 
two elements is assigned the value “1.” When only one element remains, the 
coding for each x E X can be constructed by following the sequence of elements 
“backwards” from the final element to the initial element I. 

This is easily illustrated with an example. 

Example 2.3 
SupposeX = {a, b, c, d, e} has the followingprobabilitydistribution: p(a) = .05, 
p(b) = .lO,p(c) = .12,p(d) = .13 andp(e) = .60. Huffman’s algorithmwould 
proceed as indicated in the following table: 

I.,, 
.15 .25 .60 

*, 

1.0 

This leads to the following encodings: 

x f(x) 
a ooo 
b 001 
c 010 
d 011 
e 1 
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Thus, the average length encoding is 

e(f) = .05 x 3 + .lO x 3 + .12 x 3 + .13 x 3 + .60 x 1 

= 1.8. 

Compare this to the entropy: 

H(X) = .2161+ .3322 + .3671+ .3842 + .4422 

= 1.7402. 

0 

2.3 Properties of Entropy 

In this section, we prove some fundamental results concerning entropy. First, we 
state a fundamental result, known as Jensen’s Inequality, that will be very useful 
to us. Jensen’s Inequality involves concave functions, which we now define. 

DEFINITION 2.4 A real-valued function f is concave on an interval I if 

for all 2, y E I. f is strictly concave ifon an interval I if 

> f(x) + f(Y) 
2 

forallx,y E I, 2 # y. 

Here is Jensen’s Inequality, which we state without proof. 

THEOREM 2.5 (Jensen’s Inequality) 
Suppose f is a continuous strictly concave function on the interval I, 

n 

c Ui = 1, 
i=l 

andai>O,l<i<n.Then 

gaif(Xi) I f (gaixi) I 

where xi E I, 1 5 i 5 n. Furthel; equality occurs if and only if x1 = . . . = x,. 
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We now proceed to derive several results on entropy. In the next theorem, we 
make use of the fact that the function log, x is strictly concave on the interval 
(0, c~). (In fact, this follows easily from elementary calculus since the second 
deriviative of the logarithm function is negative on the interval (0, ce).) 

THEOREM2.6 
Suppose X is a random variable having probability distribution pl , ~2, . . ., p,, 
where Pi > 0, 1 5 i 5 n. Then H(X) 2 log, n, with equality if and only if 
pi = l/n, 1 5 i < n. - 

PROOF Applying Jensen’s Inequality, we have the following: 

H(X) = - 2Pi log,pi 
i=l 

n 

= 
c 
i=l 

Pi lo!?2 $, 
I 

L lOi32 2 Pi x i 
i=l ( > 

= log, n. 

Further, equality occurs if and only if pi = l/n, 1 5 i 5 n. 1 

THEOREM2.7 
H(X,Y) L H(X) + H(Y), with equality if and only if X and Y are independent 
events. 

PROOF Suppose X takes on values xi, l<i<m,andYtakesonvaluesy~, 
1 < j 5 n. Denote pi = p(X = xi), 1 5 i 5 m, and qj = p(Y = yj), 
1 < j 5 n. Denote rij = p(X = xi, Y = yj), 1 5 i < m, 1 5 j 5 n (this is the 
joint probability distribution). 

Observe that 

pi = 2Yij 
j=l 

(1 5 i 5 m)and 

qj = 2 rij 
i=l 

(1 5 j 5 n). We compute as follows: 

H(X) +H(Y) = - cpilog2Pi + eqjlog,qj 
i=l j=l 
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=- ~~rjjlOg2p~+~~~~jlOg2*j 

( i=i j=l j=l i=l 1 

= -~~rjjlO&pjqj. 

i=l j=l 

On the other hand, 

m n 

H (X, Y) = - c c rij lo& rij. 
i=l j=l 

Combining, we obtain the following: 

H(X,Y) -H(X) - H(Y) = FtTrjlO& $ +~~rijlO&Pi!7j 
i=l j=l i=l j=l 

n 

=lEc 
rij log2 PiQj 

i=l j=l rij 

(Here, we apply Jensen’s Inequality, using the fact that the rij’s form a probability 
distribution.) 

We can also say when equality occurs: it must be the case that there is a constant 
c such that piqj/rij = c for all i, j. Using the fact that 

n m n m 

CCrij = TxPiqj = 1, 
j=l i=l j=l i=l 

it follows that c = 1. Hence, equality occurs if and only if rij = piqj, i.e., if and 
only if 

1 5 i 5 m, 1 5 j 5 n. But this says that X and Y are independent. 1 

We next define the idea of conditional entropy. 
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DEFINITION2.5 Suppose X and Y are two random variables. Then for any 
fixed value y of Y, we get a (conditional)probability distributionp(X(y). Clearly, 

H(Xly) = - CP(~Y) log,p(xly). 
x 

We define the conditional entropy H(XIY) to be the weighted average (with 
respect to the probabilities p(y)) of the entropies H (Xl y) over all possible values 
y. It is computed to be 

H(V) = - x ~P(Y)P(x~Y) lo&p(xly). 
Y x 

The conditional entropy measures the average amount of information about X that 
is revealed by Y. 

The next two results are straightforward; we leave the proofs as exercises. 

THEOREM 2.8 
H(X,Y) = H(Y) + H(XIY). 

COROLLARY 2.9 
H(XIY) 5 H(X), with equality tfand only ifX and Y are independent. 

2.4 Spurious Keys and Unicity Distance 

In this section, we apply the entropy results we have proved to cryptosystems. 
First, we show a fundamental relationship exists among the entropies of the 
components of a cryptosystem. The conditional entropy H(KIC) is called the 
key equivocation, and is a measure of how much information about the key is 
revealed by the ciphertext. 

THEOREM 2.IO 
Let (P, C, K, E, D) be a cryptosystem. Then 

H(KIC) = H(K) + H(P) - H(C). 

PROOF First, observe that H(K, P, C) = H(CIK,P) + H(K, P). Now, the 
key and plaintext determine the ciphertext uniquely, since y = eK(x). This 
implies that H(CIK,P) = 0. Hence, H(K,P, C) = H(K,P). But K and P are 
independent, so H(K, P) = H(K) + H(P). Hence, 

H(K, P, C) = H(K, P) = H(K) + H(P). 
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In a similar fashion, since the key and ciphertext determine the plaintext uniquely 
(i.e., x = h(y)), we have that H(PIK, C) = 0 and hence H(K,P, C) = 
HF, C). 

Now, we compute as follows: 

H(KIC) = H(K,C) - H(C) 

= H(K, P, C) - H(C) 

= H(K) + H(P) - H(C), 

giving the desired formula. 1 

Let us return to Example 2.1 to illustrate this result. 

Example 2.1 (Cont.) 
We have already computed H(P) M 0.81, H(K) = 1.5 and H(C) x 1.85. 
Theorem 2.10 tells us that H(KIC) z 1.5 + 0.81 - 1.85 M 0.46. This can 
be verified directly by applying the definition of conditional entropy, as follows. 
First, we need to compute the probabilitiesp(l<iIj), 1 5 i 5 3, 1 5 j 5 4. This 
can be done using Bayes’ Theorem, and the following values result: 

P(l~lll) = 1 

P(1(114 = f 

P(I-113) = 0 

p(A-211) = 0 

P(K212) = + 

p(l(2l3) = i 

p(li311) = 0 

p(K312) = 0 

P(1(313) = a 

p(li’ll4) = 0 p(Ic2l4) = 0 p(K314) = 1. 

Now we compute 

ff(KIC) = f x 0 + & x 0.59 + ; x 0.81+ & x 0 = 0.46, 

agreeing with the value predicted by Theorem 2.10. 0 

Suppose (P, C, Ic, Z, 2)) is the cryptosystem being used, and a string of plaintext 
21x2.. . x, is encrypted with one key, producing a string of ciphertext yt y2 . . yn. 
Recall that the basic goal of the cryptanalyst is to determine the key. We are looking 
at ciphertext-only attacks, and we assume that Oscar has infinite computational 
resources. We also assume that Oscar knows that the plaintext is a “natural” 
language, such as English. In general, Oscar will be able to rule out certain keys, 
but many “possible” keys may remain, only one of which is the correct key. The 
remaining possible, but incorrect, keys are called spurious keys. 
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For example, suppose Oscar obtains the ciphertext string WNA J W, which has 
been obtained by encryption using a shift cipher. It is easy to see that there are 
only two “meaningful” plaintext strings, namely river and arena, corresponding 
respectively to the possible encryption keys F (= 5) and W (= 22). Of these two 
keys, one will be the correct key and the other will be spurious. (Actually, it is 
moderately difficult to find a ciphertext of length 5 for the Shift Cipher that has 
two meaningful decryptions; the reader might search for other examples.) 

Our goal is to prove a bound on the expected number of spurious keys. First, 
we have to define what we mean by the entropy (per letter) of a natural language 
L, which we denote HL. HL should be a measure of the average information 
per letter in a “meaningful” string of plaintext. (Note that a random string of 
alphabetic characters would have entropy (per letter) equal to log2 26 M 4.76.) As 
a “first-order” approximation to Hr,, we could take H(P). In the case where L is 
the English language, we get H(P) M 4.19 by using the probability distribution 
given in Table 1.1. 

Of course, successive letters in a language are not independent, and correlations 
among successive letters reduce the entropy. For example, in English, the letter 
“Q” is always followed by the letter “U.” For a “second-order” approximation, 
we would compute the entropy of the probability distribution of all digrams and 
then divide by 2. In general, define P” to be the random variable that has as 
its probability distribution that of all n-grams of plaintext. We make use of the 
following definitions. 

DEFINITION2.6 Suppose L is a natural language. The entropy of L is defined 
to be the quantity 

HP) HL = lim - 
n-boo n 

and the redundancy of L is defined to be 

HL Rr,=l-- 
'og, PI 

REMARK HL measures the entropy per letter of the language L. A random 
language would have entropy log, IPI. So the quantity RL measures the fraction 
of “excess characters,” which we think of as redundancy. 1 

In the case of the English language, a tabulation of a large number of digrams 
and their frequencies would produce an estimate for H(P2). H (P2) x 3.90 is 
one estimate obtained in this way. One could continue, tabulating trigrams, etc. 
and thus obtain an estimate for HL. In fact, various experiments have yielded the 
empirical result that 1 .O 5 HL 5 1 S. That is, the average information content in 
English is something like one to one and a half bits per letter! 
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Using 1.25 as our estimate of HL gives a redundancy of about 0.75. This 
means that the English language is 75% redundant! (This is not to say that one 
can arbitrarily remove three out of every four letters from English text and hope 
to still be able to read it. What is does mean is that it is possible to find a Huffman 
encoding of n-grams, for a large enough value of n, which will compress English 
text to about one quarter of its original length.) 

Given probability distributions on K and Pn, we can define the induced prob- 
ability distribution on C”, the set of n-grams of ciphertext (we already did this in 
the case n = 1). We have defined P” to be a random variable representing an 
n-gram of plaintext. Similarly, define C” to be a random variable representing an 
n-gram of ciphertext. 

Given y E C”, define 

Ii(y) = {I-C E K: : 3x E Pn,ppn(x) > 0, eK(x) = y}. 

That is, K(y) is the set of keys I( for which y is the encryption of a meaningful 
string of plaintext of length n, i.e., the set of “possible” keys, given that y is the 
ciphertext. If y is the observed sequence of ciphertext, then the number of spurious 
keys is IK(y)I - 1, since only one of the “possible” keys is the correct key. The 
average number of spurious keys (over all possible ciphertext strings of length n) 
is denoted by 2,. Its value is computed to be 

&I = c P(Y)W(Y)l - 1) 
YEC” 

From Theorem 2.10, we have that 

H(KIC”) = H(K) + H(P”) -H(V). 

Also, we can use the estimate 

HP”) m nHL = n(1 - RL) log, IPI, 

provided 12 is reasonably large. Certainly, 

H(F) 5 nlog, ICI. 

Then, if ICI = IPI, it follows that 

H(KIC”) >_ H(K) - nRL log, IPI. (2.1) 
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Next, we relate the quantity H (KI C”) to the number of spurious keys, 3,. We 
compute as follows: 

H(KICn) = c P(YPWIY) 
ye- 

I y; P(Y) log2 W(Y)l 
” 

I log, c dY)W(Y)l 
ycc- 

= log,& + l), 

where we apply Jensen’s Inequality (Theorem 2.5) with f(z) = log, I. Thus we 
obtain the inequality 

H(KIC’“) 5 log,@, + 1). (2.2) 

Combining the two inequalities (2.1) and (2.2), we get that 

log,& + 1) L H(K) - nRL log2 IPI. 

In the case where keys are chosen equiprobably (which maximizes H(K)), we 
have the following result. 

THEOREM 2.11 
Suppose (P, C, Ic, I, V) is a cryptosystem where ICI = IPl and keys are chosen 
equiprobably. Let RL denote the redundancy of the underlying language. Then 
given a string of ciphertext of length n, where n is sufJiciently large, the expected 
number of spurious keys, S,, satisfies 

Kl -- 
% 2 1plnRr. " 

Thequantity IKI/IPInRL - 1 approaches 0 exponentially quickly as n increases. 
Also, note that the estimate may not be accurate for small values of n, especially 
since H(Pn)/n may not be a good estimate for HL if n is small. 

We have one more concept to define. 

DEFINITION2.7 The unicity distance of a cryptosystem is defined to be the 
value of n, denoted by no, at which the expected number of spun’ous keys becomes 
zero; i.e., the average amount of cipher-text requiredfor an opponent to be able to 
uniquely compute the key, given enough computing time. 
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If we set S, = 0 in Theorem 2.11 and solve for n, we get an estimate for the 
unicity distance, namely 

log, IK I 
no a RL log, IPI. 

As an example, consider the Substitution Cipher. In this cryptosystem, IP I = 
26 and llcl = 26!. If we take RJ, = 0.75, then we get an estimate for the unicity 
distance of 

no M 88.4/(0.75 x 4.7) M 25. 

This suggests that, given a ciphertext string of length at least 25, (usually) a unique 
decryption is possible. 

2.5 Product Cryptosystems 

Another innovation introduced by Shannon in his 1949 paper was the idea of 
combining cryptosystems by forming their “product.” This idea has been of 
fundamental importance in the design of present-day cryptosystems such as the 
Data Encryption Standard, which we study in the next chapter. 

For simplicity, we will confine our attention in this section to cryptosystems 
in which C = P: cryptosystems of this type are called endomorphic. Suppose 
St =(PlP,K:~,E~,~~)andSz=(P,P,~2,~2,2)2)aretwoendomorphiccryp- 
tosystems which have the same plaintext (and ciphertext) spaces. Then theproduct 
. of St and SZ, denoted by St x ST, is defined to be the cryptosystem 

(P,P,h x ICz,E,q. 

A key of the product cryptosystem has the form K = (Kt , I(z), where Kt E Kt 
and K2 E K;?. The encryption and decryption rules of the product cryptosystem 
are defined as follows: For each I< = (Kt , K2). we have an encryption rule EK 
defined by the formula 

e(K,,Kd(“) = eKz(eKl(z)), 

and a decryption rule defined by the formula 

d(K,,K,)(Y) = dK,(dKz(Y)). 

That is, we first encrypt I with eK, , and then “re-encrypt” the resulting ciphertext 
with eK2. Decrypting is similar, but it must be done in the reverse order: 

d(K,,Kz)(e(K~,Kz)(z)) = d(K,,Kz)(eKz(eK,(t))) 

= dK,(dKz(eKz(eK,(2)))) 
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FIGURE 2.2 
Multiplicative Cipher 

Let p = C = &, and let 

K = {a E Z26 : gcd(a, 26) = 1). 

For a E K, define 

e,(c) = UC mod 26 

and 

d,(y) = a-‘y mod 26 

= k teK, (z)) 
= 2. 

Recall also that cryptosystems have probability distributions associated with 
their keyspaces. Thus we need to define the probability distribution for the 
keyspace K of the product cryptosystem. We do this in a very natural way: 

In other words, choose Kt using the distribution pi,, and then independently 
choose I<2 using the distribution px2. 

Here is a simple example to illustrate the definition of a product cryptosystem. 
Suppose we define the Multiplicative Cipher as in Figure 2.2. 

Suppose M is the Multiplicative Cipher (with keys chosen equiprobably) and 
S is the Shift Cipher (with keys chosen equiprobably). Then it is very easy to 
see that M x S is nothing more than the Affine Cipher (again, with keys chosen 
equiprobably). It is slightly more difficult to show that S x M is also the Affine 
Cipher with equiprobable keys. 

Let’s prove these assertions. A key in the Shift Cipher is an element Ii E &?6, 
and the corresponding encryption rule is eK(X) = 2: + K mod 26. A key in 
the Multiplicative Cipher is an element a E &j such that gcd(a, 26) = 1; the 
corresponding encryption rule is e,(z) = uz mod 26. Hence, a key in the product 
cipher M x S has the form (a, I(), where 

e(,,K)(x) = ~3: -t K mod 26. 

But this is precisely the definition of a key in the Affine Cipher. Further, the 
probability of a key in the Affine Cipher is l/312 = l/12 x l/26, which is the 
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product of the probabilities of the keys a and K, respectively. Thus M x S is the 
Affine Cipher. 

Now let’s consider S x M. A key in this cipher has the form (Ii, a), where 

e(K,a)(z) = a(c + I-) = a~ + aI{ mod 26. 

Thus the key (I(, a) of the product cipher S x M is identical to the key (a, UK) 
of the Affine Cipher. It remains to show that each key of the Affine Cipher 
arises with the same probability l/312 in the product cipher S x M. Observe 
that UK = Kt if and only if K = a-‘I<1 (recall that gcd(a,26) = 1, so a has 
a multiplicative inverse). In other words, the key (a, IT,) of the Affine Cipher 
is equivalent to the key (a-‘Kt , a) of the product cipher S x M. We thus have 
a bijection between the two key spaces. Since each key is equiprobable, we 
conclude that S x M is indeed the Afiine Cipher. 

We have shown that M x S = S x M. Thus we would say that the two 
cryptosystems commute. But not all pairs of cryptosystems commute; it is easy 
to find counterexamples. On the other hand, the product operation is always 
associative: (Sl x S2) x S3 = S1 X (S2 X Sj). 

If we take the product of an (endomorphic) cryptosystem S with itself, we 
obtain the cryptosystem S x S, which we denote by S2. If we take the n-fold 
product, the resulting cryptosystem is denoted by S”. We call S” an iterated 
cryptosystem. 

A cryptosystem S is defined to be idempotent if S2 = S. Many of the cryp- 
tosystems we studied in Chapter 1 are idempotent. For example, the Shift, Sub- 
stitution, Affine, Hill, Vigenk and Permutation Ciphers are all idempotent. 
Of course, if a cryptosystem S is idempotent, then there is no point in using the 
product system S2, as it requires an extra key but provides no more security. 

If a cryptosystem is not idempotent, then there is a potential increase in security 
by iterating several times. This idea is used in the Data Encryption Standard, 
which consists of 16 iterations. But, of course, this approach requires a non- 
idempotent cryptosystem to start with. One way in which simple non-idempotent 
cryptosystems can sometimes be constructed is to take the product of two different 
(simple) cryptosystems. 

REMARK It is not hard to show that if St and S2 are both idempotent and they 
commute, then St x S2 will also be idempotent. This follows from the following 
algebraic manipulations: 

(S] x S2) x (S, x S2) = St x (S2 x S,) x sz 

= S] x (Sl x 54 x s2 

= (Sl x Sl) x (S2 x S2) 

= s, x ST. 

(Note the use of the associative property in this proof.) 
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So, if S 1 and S2 are both idempotent, and we want S1 x S2 to be non-idempotent, 
then it is necessary that S1 and S:! not commute. 1 

Fortunately, many simple cryptosystems are suitable building blocks in this type 
of approach. Taking the product of substitution-type ciphers with permutation- 
type ciphers is a commonly used technique. We will see a realization of this in 
the next chapter. 

2.6 Notes 

The idea of perfect secrecy and the use of entropy techniques in cryptography 
was pioneered by Shannon [sH49]. Product cryptosystems are also discussed in 
this paper. The concept of entropy was defined by Shannon in [S~48]. Good 
introductions to entropy, Huffman coding and related topics can be found in the 
books by Welsh [W~88] and Goldie and Pinch [GP!91]. 

The results of Section 2.4 are due to Beauchemin and Brassard [BB88], who 
generalized earlier results of Shannon. 

Exercises 

2.1 Let n be a positive integer. A Latin square of order n is an n x n array L of the 
integers 1, . . . , n such that every one of the n integers occurs exactly once in each 
row and each column of 15. An example of a Latin square of order 3 is as follows: 

1 2 3 

EEI 

3 1 2 
2 3 1 

Given any Latin square 15 of order n, we can define a related cryptosystem. Take 
P = c = K = {I, . . . . r~}. For 1 5 i 2 r~, the encryption rule ei is defined to be 
ei (j) = L( i, j). (Hence each row of L gives rise to one encryption rule.) 

Give a complete proof that this Latin square cryptosystem achieves perfect secrecy. 
2.2 Prove that the Affine Cipher achieves perfect secrecy. 
2.3 Suppose a cryptosystem achieves perfect secrecy for a particular plaintext probability 

distribution po. Prove that perfect secrecy is maintained for any plaintext probability 
distribution. 

2.4 Prove that if a cryptosystem has perfect secrecy and llcl = ICI = IPI, then every 
ciphertext is equally probable. 

2.5 Suppose X is a set of cardinality n, where 2k 5 n < 2kt’, and p(z) = l/n for all 
x E x. 

(a) Find a prefix-free encoding of X, say f, such that e(f) = k + 2 - 2kt’/n. 
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HINT Encode 2kt’ - n elements of X as strings of length k, and encode 
the remaining elements as strings of length k + 1. 

(b) Illustrate your construction for n = 6. Compute e(f) and H(X) in this case. 
2.6 Suppose X = {a, b, c, d, e} has the following probability distribution: p(o) = .32, 

p(b) = .23,p(c) = .20,p(d) = .15 andp(e) = .lO. Use Huffman’s algorithm to 
find the optimal prefix-free encoding of X. Compare the length of this encoding to 
H(X). 

2.7 Prove that H(X, Y) = H(Y) + H(XIY). Th en show as a corollary that H(XJY) < 
H(X), with equality if and only if X and Y are independent. 

2.8 Prove that a cryptosystem has perfect secrecy if and only if H(PIC) = H(P). 
2.9 Prove that, in any cryptosystem, H(KIC) 2 H(PIC). (Intuitively, this result says 

that, given a ciphertext, the opponent’s uncertainty about the key is at least as great 
as his uncertainty about the plaintext.) 

2.10 Consider a cryptosystem in which P = {a, b, c}, Ic = {Ri, 1(2, Ic3) and C = 
{ 1,2,3,4}. Suppose the encryption matrix is as follows: 

a b c 
K, 1 2 3 

/ 

Kz 2 3 4 
K3 3 4 1 

Given that keys are chosenequiprobably, and the plaintext probability distribution is 
pp(a) = 1/2,pp(b) = 1/3,pp(c) = 1/6,computeH(P), H(C), H(K), H(W) 
and H(PIC). 

2.11 Compute H (KI C) and H (KIP, C) for the Affine Cipher. 
2.12 Consider a Vigedre Cipher with keyword length m. Show that the unicity distance 

is ~/RL, where RL is the redundancy of the underlying language. (This result is 
interpreted as follows. If no denotes the number of alphabetic characters being 
encrypted , then the “length” of the plaintext is no/m, since each plaintext element 
consists of m alphabetic characters. So, a unicity distance of l/ RL corresponds to 
a plaintext consisting of m/RL alphabetic characters.) 

2.13 Show that the unicity distanceof the Hill Cipher (with an m x m encryption matrix) 
is less than m/RL (Note that the number of alphabetic characters in a plaintext of 
this length is m2/RL.) 

2.14 A Substitution Cipher over a plaintext space of size n has llcl = n! Stirling’s 
formula gives the following estimate for n!: 

n! x G(i)“. 

(a) Using Stirling’s formula, derive an estimate of the unicity distance of the 
Substitution Cipher. 

(b) Let m 2 1 be an integer. The m-gram Substitution Cipher is the Substi- 
tution Cipher where the plaintext (and ciphertext) spaces consist of all 26”’ 
m-grams. Estimate the unicity distance of the m-gram Substitution Cipher 
if RL = 0.75. 

2.15 Prove that the Shift Cipher is idempotent. 
2.16 Suppose Si is the Shift Cipher (with equiprobable keys, as usual) and Sz is the 

Shift Cipher where keys are chosen with respect to some probability distribution 
pi (which need not be equiprobable). Prove that Si x S2 = Si. 
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2.17 Suppose S 1 and S2 are VigenGre Ciphers with keyword lengths m 1, m2 respectively, 
where mi > mz. 

(a) If ml I ml, then show that Sz x Si = Si. 
(b) One might try to generalize the previous result by conjecturing that S2 x SI = 

SJ, where S3 is the Vigenke Cipher with keyword length lcm(mi, m2). 
Prove that this conjecture is false. 

HINT If ml $ 0 mod m2, then the number of keys in the product cryp- 
tosystem S2 x Si is less than the number of keys in S3. 
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