
Zero-knowledge Proofs 387.............................
13.1 Interactive Proof Systems 387................

FIGURE 13.1 388..
FIGURE 13.2 389..
FIGURE 13.3 389..

13.2 Perfect Zero-knowledge Proofs 390.......
FIGURE 13.4 391..
FIGURE 13.5 391..
FIGURE 13.6 393..
FIGURE 13.7 396..
FIGURE 13.8 398..
FIGURE 13.9 399..
FIGURE 13.10 400..

13.3 Bit Commitments 400..............................
13.4 Computational Zero-knowledge 402.......

FIGURE 13.11 403..
FIGURE 13.12 404..
FIGURE 13.13 407..

13.5 Zero-knowledge Arguments 407.............
TABLE 13.1 409..

13.6 Notes and References 409.....................
FIGURE 13.14 410..

Exercises 410...
Further Reading 412.......................................

13
Zero-knowledge Proofs

13.1 Interactive Proof Systems

Very informally, a zero-knowledge proof system allows one person to convince
another person of some fact without revealing any information about the proof.
We first discuss the idea of an interactive proof system. In an interactive proof
system, there are two participants, Peggy and Vie. Peggy is the prover and Vie is
the verifier. Peggy knows some fact, and she wishes to prove to Vie that she does.

It is necessary to describe the kinds of computations that Peggy and Vie will
be allowed to perform, and also to describe the interaction that takes place. It
is convenient to think of both Peggy and Vie as being probabilistic algorithms.
Peggy and Vie will each perform private computations, and each of them has a
private random number generator. They will communicate to each other through
a communication channel. Initially, Peggy and Vie both possess an input 2.
The object of the interactive proof is for Peggy to convince Vie that 2 has some
specified property. More precisely, z will be a yes-instance of a specified decision
problem II.

The interactive proof, which is a challenge-and-response protocol, consists of
a specified number of rounds. During each round, Peggy and Vie alternately do
the following:

I. receive a message from the other party

2. perform a private computation

3. send a message to the other party.

A typical round of the protocol will consist of a challenge by Vie, and a response
by Peggy. At the end of the proof, Vie either accepts or rejects, depending on
whether or not Peggy successfully replies to all of Vie’s challenges. We define
the protocol to be an interactive proofsystem for the decision problem II if the
following two properties are satisfied whenever Vie follows the protocol:

387

388

FIGURE 13.1
Graph Isomorphism

Problem Instance Two graphs on n vertices, Gt = (VI, El) and
G2 = (v2, E2).

Question Is there a bijection rr : VI + Vz such that {u, v} E Ei if and
only if {X(U), r(u)} E E2? (In other words, are GI and G2 isomorphic?)

completeness

If z is a yes-instance of the decision problem II, then Vie will always accept
Peggy’s proof.

completeness

If t is a no-instance of II, then the probability that Vie accepts the proof is
very small.

We will restrict our attention to interactive proof systems in which the compu-
tations performed by Vie can be done in polynomial time. On the other hand, we
do not place any bound on the computation time required by Peggy (informally,
Peggy is “all-powerful”).

We begin by presenting an interactive proof system for the problem of Graph
Non-isomorphism. The Graph Isomorphism problem is described in Figure
13.1. This is an interesting problem since no polynomial-time algorithm to solve
it is known, but it is not known to be NP-complete.

We will present an interactive proof system which will allow Peggy to “prove”
to Vie that two specified graphs are not isomorphic. For simplicity, let us suppose
that Gt and GZ each have vertex set { 1, . . . , n}. The interactive proof system for
Graph Non-isomorphism is presented in Figure 13.2.

We present a toy example.

Example 13.1
Suppose Gt = (V, Et) and G2 = (V, E2), where V = {1,2,3,4}, El =
{ 12,14,23,34} and E2 = { 12,13,14,34}.

Suppose in some round of the protocol that Vie gives Peggy the graph H =
(V, E.1). where & = { 13,14,23,24} (see Figure 13.3). The graph H is isomor-
phic to Gi (one isomo hism from H to Gt is the permutation (1 3 4 2)). So
Peggy answers “1.” ‘;p

It is easy to see that this proof system satisfies the completeness and soundness
properties. If Gt is not isomorphic to G2, then j will equal i in every round, and

13.1. INTERACTIVE PROOF SYSTEMS 389

FIGURE 13.2
An interactive proof system for Graph Non-isomorphism

1.

2.

3.

4.

5.

Input: two graphs Gt and G2, each having vertex set { 1, . . . , n}

Repeat the following steps n times:

Vie chooses a random integer i = 1 or 2 and a random
permutation rr of { 1, . . . , n}. Vie computes H to be the
image of Gi under the permutation ‘IF, and sends H to
Peggy.
Peggy determines the value j such that Gj is isomorphic to
H, and sends j to Vie.
Vie checks to see if i = j.

Vie accepts Peggy’s proof if i = j in each of the n rounds.

r-1: :K:
\

1

III

4

3 2
H

FIGURE 13.3
Peggy’s non-isomorphic graphs and Vie’s challenge

CHAPTER 13. ZERO-KNOWLEDGE PROOFS

Vie will accept with probability 1. Hence, the protocol is complete.
On the other hand, suppose that Gt is isomorphic to G2. Then any challenge

graph H submitted by Vie is isomorphic to both Gt and G2. Peggy has no way of
determining if Vie constructed H as an isomorphic copy of Gi or of Gz, so she
can do no better than make a guess j = 1 or 2 for her response. The only way that
Vie will accept is if Peggy is able to guess all n choices of i made by Vie. Her
probability of doing this is 2-“. Hence, the protocol is sound.

Notice that Vie’s computations are all polynomial-time. We cannot say anything
about Peggy’s computation time since the Graph Isomorphism problem is not
known to be solvable in polynomial time. However, recall that we assumed that
Peggy has infinite computing power, so this allowed under the “rules of the game.”

13.2 Perfect Zero-knowledge Proofs

Although interactive proof systems are of interest in their own right, the most
interesting type of interactive proof is a zero-knowledge proof. This is one in
which Peggy convinces Vie that x possesses some specified property, but at the
end of the protocol, Vie still has no idea of how to prove (himself) that x has
this property. This is a very tricky concept to define formally, and we present an
example before attempting any definitions.

In Figure 13.4, we present a zero-knowledge interactive proof for Graph Iso-
morphism. A small example will illustrate the workings of the protocol.

Example 13.2
Suppose Gt = (V,El) and Gz = (V,E2), where V = {1,2,3,4}, EI =
{ 12,13,14,34} and E2 = { 12,13,23,24}. One isomorphism from G2 to Gt
is the permutation u = (4 1 3 2).

Now suppose in some round of the protocol that Peggy chooses the permutation
?r = (2 4 1 3). Then H has edge set { 12,13,23,24} (see Figure 13.5).

If Vi& challenge is i = 1, then Peggy gives Vie the permutation ?r and Vie
checks that the image of Gt under ?r is H. If Vie’s challenge is i = 2, then Peggy
gives Vie the composition p = 7~ o u = (3 2 1 4) and Vie checks that the image
ofG2underpisH. 0

Completeness and soundness of the protocol are easy to verify. It is easy to see
that the probablity that Vie accepts is 1 if Gt is isomorphic to G2. On the other
hand, if Gt is not isomorphic to Gz, then the only way for Peggy to deceive Vie is
for her to correctly guess the value i that Vie will choose in each round, and write
a (random) isomorphic copy of Gi on the communication tape. Her probability

13.2. PERFECT ZERO-KNOWLEDGE PROOFS 391

FIGURE 13.4
A perfect zero-knowledge interactive proof system for Graph Isomorphism

1.

2.

3.

4.

5.

6.

Input: two graphs Gt and G2, each having vertex set { 1, . . . , n}

Repeat the following steps n times:

Peggy chooses a random permutation T of { 1, . . . , n}. She
computes H to be the image of Gt under the permutation
rr, and sends H to Vie.
Vie chooses a random integer i = 1 or 2 and sends it to
Peggy.
Peggy computes a permutation p of { 1, . . . , n} such that H
is the image of Gi under p. Peggy sends p to Vie. (If i = 1,
then Peggy defines p = n; and if i = 2, then Peggy defines
p to be the composition of u and A, where u is some fixed
permutation such that the image of G:! under u is Gt .)
Vie checks to see if H is the image of Gi under p.

Vie accepts Peggy’s proof if H is the image of Gi in each of the
n rounds.

FIGURE 13.5
Peggy’s isomorphic graphs

392 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

of correctly guessing Vie’s n random challenges is 2-“.
All of Vie’s computations can be done in polynomial time (as a function of

TX, the number of vertices in Gt and G2). Although it is not necessary, notice
that Peggy’s computations can also be done in polynomial time provided that she
knows the existence of one permutation u such that the image of GZ under u is
GI.

Why would we refer to this proof system as a zero-knowledge proof? The
reason is that, although Vie is convinced that Gi is isomorphic to G2, he does not
gain any “knowledge” that would help him find a permutation u that carries G2
to Gt. All he sees in each round of the proof is a random isomorphic copy H
of the graphs Gi and G2, together with a permutation that carries Gt to H or GZ
to H (but not both!). But Vie can compute random isomorphic copies of these
graphs by himself, without any help from Peggy. Since the graphs H are chosen
independently and at random in each round of the proof, it seems unlikely that
this will help Vie find an isomorphism from Gt to Gz.

Let us look carefully at the information that Vie obtains by participating in the
interactive proof system. We can represent Vie’s view of the interactive proof by
means of a transcript that contains the following information:

1. the graphs Gt and G2

2. all the messages that are transmitted by both Peggy and Vie

3. the random numbers used by Vie to generate his challenges.

Hence, a transcript T for the above interactive proof of Graph Isomorphism
would have the following form:

T= ((Gl,G2);(H,,il,pl);...;(H,,i,,p,)).

The essential point, which forms the basis for the formal definition of zero-
knowledge proof, is that Vie (or anyone else) can forge transcripts - without
participating in the interactive proof - that “look like” real transcripts. This can
be done provided that the input graphs Gi and G2 are isomorphic. Forging is
accomplished by means of the algorithm presented in Figure 13.6. The forging
algorithm is a polynomial-time probabilistic algorithm. In the vernacular of zero-
knowledge proofs, a forging algorithm is often called a simulator.

The fact that a simulator can forge transcripts has a very important consequence.
Anything that Vie (or anyone else) can compute from the transcript could also be
computed from a forged transcript. Hence, participating in the proof system does
not increase Vie’s ability to perform any computation; and in particular, it does
not enable Vie himself to “prove” that Gi and G2 are isomorphic. Moreover, Vie
cannot subsequently convince someone else that Gt and G2 are isomorphic by
showing them the transcript T, since there is no way to distinguish a legitimate
transcript from one that has been forged.

We still have to make precise the idea that a forged transcript “looks like” a real
one. We give a rigorous definition in terms of probability distributions.

13.2. PERFECT ZERO-KNOWLEDGE PROOFS 393

FIGURE 13.6
Forging algorithm for transcripts for Graph Isomorphism

Input: two isomorphic graphs Gt and G2, each having vertex
set{l,...,n}

1. T = (G,,G2)

2. forj= ltondo

3. Choose ij = 1 or 2 at random;

4. Choose pj to be a random permutation of { 1, . . . , n};

5. Compute Hj to be the image of Gij under pj ;

6. concatenate (Hj , ij , pj) onto the end of T

DEFINITION13.1 Suppose that we have a polynomial-time interactive proof
system for a decision problem II, and a polynomial-time simulator S. Denote the
set of all possible transcripts that could be produced as a result of Peggy and vie
carrying out the interactive proof with a yes-instance I by ‘T(x), and denote the
the set of all possible forged transcripts that could be produced by S by 3(x). For
any transcript T E T(x), let pr (T) denote the probability that T is the transcript
producedfrom the interactive proof Similarly, for T E 3(x), let OF denote
the probability that T is the (forged) transcript produced by S. Suppose that
‘T(x) = 3(x), andf or any T E T(x), suppose that pT(T) = OF. (In other
words, the set of real transcripts is identical to the set offorged transcripts, and
the two probability distributions are identical.) Then we define the interactive
proof system to be perfect zero-knowledge for Vie.

Of course we can define zero-knowledge however we like. But it is important
that the definition captures our intuitiveconcept of what “zero-knowledge” should
mean. We are saying that an interactive proof system is zero-knowlege for Vie
if there exists a simulator that produces transcripts with an identical probability
distribution to those produced when Vie actually takes part in the protocol. (This
is a related but stronger concept than that of indistinguishable probability distribu-
tions that we studied in Chapter 12.) We have observed that a transcript contains
all the information gained by Vie by taking part in the protocol. So it should
seem reasonable to say that whatever Vie might be able to do after taking part in
the protocol he could equally well do by just using the simulator to generate a
forged transcript. We are perhaps not defining “knowledge” by this approach; but
whatever “knowledge” might be, Vie doesn’t gain any!

We will now prove that the interactive proof system for Graph Isomorphism
is perfect zero-knowledge for Vie.

394 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

THEOREM13.1
The interactive proof system for Graph Isomorphism is pelfect zero-knowledge
for Kc.

PROOF Suppose that Gt and Gz are isomorphic graphs on n vertices. A transcript
T (real or forged) contains n triples of the form (H, i, p). where i = 1 or 2, p is
a permutation of { 1, . . . , n}, and H is the image of Gi under the permutation p.
Call such a triple a valid triple and denote by 7% the set of all valid triples. We
begin by computing IRl, the number of valid triples. Evidently IRI = 2 x n!
since each choice of i and p determines a unique graph H.

In any given round, say j, of the forging algorithm, it is clear that each valid
triple (H, i, p) occurs with equal probability l/(2 x n!). What is the probability
that the valid triple (H, i, p) is the jth triple on a real transcript? In the interactive
proof system, Peggy first chooses a random permutation T and then computes H
to be the image of Gt under ?r. The permutation p is defined to be rr if i = 1, and
it is defined to be the composition of the two permutations ?r and u if i = 2.

We are assuming that the value of i is chosen at random by Vie. If i = 1, then
all n! permutations p are equiprobable, since p = T in this case and ?F was chosen
to be a random permutation. On the other hand, if i = 2, then p = rr o u, where
?r is random and u is fixed. In this case as well, every possible permutation p is
equally probable. Now, since the two cases i = 1 and 2 are equally probable, and
each permutation p is equally probable (independent of the value of i), and since
i and p together determine H, it follows that all triples in R are equally likely.

Since a transcript consists of the concatenation of n independent random triples,
it follows that

PT(T) = PAT) = ’ (2 x n!)n

for every possible transcript T. 1

The proof of Theorem 13.1 assumes that Vie follows the protocol when he takes
part in the interactive proof system. The situation is much more subtle if Vie does
not follow the protocol. Is it true that an interactive proof remains zero-knowledge
even if Vie deviates from the protocol?

In the case of Graph Isomorphism, the only way that Vie can deviate from
the protocol is to choose his challenges i in a non-random way. Intuitively, it
seems that this does not provide Vie with any “knowledge.” However, transcripts
produced by the simulator will not “look like” transcripts produced by Vie if he
deviates from the protocol. For example, suppose Vie chooses i = 1 in every
round of the proof. Then a transcript of the interactive proof will have ij = 1 for
1 5 j 5 n; whereas a transcript produced by the simulator will have ij = 1 for
1 5 j 5 n only with probability 2~“.

The way around this difficulty is to show that, no matter how a “cheating”
Vie deviates from the protocol, there exists a polynomial-time simulator that will

13.2. PERFECT ZERO-KNOWLEDGE PROOFS 39s

produce forged transcripts that “look like” the transcripts produced by Peggy and
(the cheating) Vie during the interactive proof. As before, the phrase “looks like”
is formalized by saying that two probability distributions are identical.

Here is a more formal definition.

DEFINITION13.2 Suppose that we have a polynomial-time interactive proof
system for a given decision problem lI. Let V’ be any polynomial-time proba-
bilistic algorithm that (a possibly cheating) verifier uses to generate his challenges.
(That is, V’ represents either an honest or cheating verQier) Denote the set of
all possible transcripts that could be produced as a result of Peggy and V* car-
rying out the interactive proof with a yes-instance x of KI by T(V* , x). Suppose
that, for every such V’, there exists an expected polynomial-time probabilistic
algorithm S* = S’ (V*) (the simulator) which will produce a forged transcript.
Denote the set of possible forged transcripts by 3(V’ , x). For any transcript
T E ‘T(V*, x), let p7(T) denote the probability that T is the transcript pro-
duced by Vu taking part in the interactive proof Similarly, for T E 3(x), let
p7(T) denote the probability that T is the (forged) transcript produced by S.
Suppose that T(V*, x) = 3(V*,) x , and for any T E T(V*, xc), suppose that
p~,v. (T) = pr,v. (T). Then the interactive proof system is said to be perfect
zero-knowledge (without qualification).

In the special case where V* is the same as Vie (i.e., when Vie is honest), the
above definition is exactly the same as what we defined as “perfect zero-knowledge
for Vie.”

In order to prove that a proof system is perfect zero-knowledge, we need a
generic transformation which will construct a simulator S’ from any V’. We
proceed to do this for the proof system for Graph Isomorphism. The simulator
will play the part of Peggy, using V* as a “restartable subroutine.” Informally,
S* tries to guess the challenge ij that V* will make in each round j. That is,
S* generates a random valid triple of the form (Hj , ij , pj), and then executes the
algorithm V’ to see what its challenge is for round j. If the guess ij is the same
as the challenge i(i (as produced by V*), then the triple (Hj, ij , pj) is appended
to the forged transcript. If not, then this triple is discarded, s* guesses a new
challenge ii, and the algorithm V’ is restarted after resetting its “state” to the way
it was at the beginning of the current round. By the term “state” we mean the
values of all variables used by the algorithm.

We now give a more detailed description of the simulation algorithms’. At any
given time during the execution of the program V*, the current state of V* will
be denoted by state(V’). A pseudo-code description of the simulation algorithm
is given in Figure 13.7.

It is possible that the simulator will run forever, if it never happens that ij =
ii. However, we can show that the average running time of the simulator is
polynomial, and that the two probability distributions p~,v* (T) and p~,v* (T)
are identical.

396

FIGURE 13.7
Forging algorithm for V’ for transcripts for Graph Isomorphism

Input: two isomorphic graphs Gt and Gz, each having vertex
set(l,...,n}

1. T = (G,,Gz)

2. forj=ltondo

3. define oldstate = state(V*)

4. repeat

5. Choose ij = 1 or 2 at random

6. Choose pj to be a random permutation of { 1, . . . , n}

7. Compute Hj to be the image of Gi under p

8. call V’ with input Hj, obtaining a challenge ii

9. if ij = i: then
concatenate (Hi, ij , pj) onto the end of T

else

10.

reset V* by defining state(V’) = oldstate

until ij = i$

THEOREM 13.2

The interactive proof system for Graph Isomorphism is perfect zero-knowledge.

PROOF First, we observe that, regardless of how V’ generates its challenges, the
probability that the guess $ of S* is the same as the challenge ij is l/2. Hence,
on average, S* will generate two triples for every triple that it concatenates to the
forged transcript. Hence, the average running time is polynomial in n.

The more difficult task is to show that the two probability distributions p~,v* (T)
and pr,v l (T) are identical. In Theorem 13.1, where Vie was honest, we were able
to compute the two probability distributions and see that they were identical. We
also used the fact that triples (H, i, p) generated in different rounds of the proof
are independent. However, in the current setting, we have no way of explicitly
computing the two probability distributions. Further, triples generated in different
rounds of the proof need not be independent. For example, the challenge that V’
presents in round j may depend in some very complicated way on challenges from
previous rounds and on the way Peggy replied to those challenges.

‘Ihe way to handle these difficulties is to look at the probability distributions on
the possible partial transcripts during the course of the simulation or interactive
proof, and proceed by induction on the number of rounds. For 0 5 j 5 n, we

13.2. PERFECT ZERO-KNOWLEDGE PROOFS 397

define probabilitydistributionspT,v. ,j andpF,v* ,j on the set of partial transcripts
3 that could occur at the end of round j. Notice that p~,v*,~ = p~,v. and
p~,v*,~ = p~,v*. Hence, if we can show that the two distributionspr,v. ,j and
p~,v* ,j are identical for all j, then we will be done.

The case j = 0 corresponds to the beginning of the algorithm; at this point
the transcript contains only the two graphs Gt and Gz. Hence, the probability
distributions are identical when j = 0. We use this for the start of the induction.

Wemake an inductive hypothesis that the two probability distributionsp7,v* ,j- t
and p~,ve ,j- t on Tj- 1 are identical, for some j > 1. We now prove that the two
probability distributionspT,V. ,j and p~,v* ,j on T are identical.

Consider what happens during round j of the interactive proof. The probability
that V*‘s challenge ij = 1 is some real number pl and the probability that his
challenge ij = 2 is 1 - pl, where pl depends on the state of the algorithm V*
at the beginning of round j. We noted earlier that in the interactive proof, all
possible graphs H are chosen by Peggy with equal probability. As well, any
permutation p occurs with equal probability, independent of the value of pl , since
all permutations are equally likely for either possible challenge ij. Hence, the
probability that the jth triple on the transcript is (H, i, p) is pl /n! if i = 1, and
(1 - pl)/n! if i = 2.

Next, let’s do a similar analysis for the simulation. In any given iteration of the
repeat loop, S* will choose any graph H with probability l/n!. The probability
that i = 1 and V’ ‘s challenge is 1 is PI/~; and the probability that i = 2 and V’ ‘s
challenge is 2 is (1 - p1)/2. In each of these situations, (H, i, p) is written as the
jth triple on the transcript. With probability l/2, nothing is written on the tape
during any given iteration of the repeat loop.

Let us first consider the case i = 1. As mentioned above, the probability that
V*‘s challenge is 1 is pl. The probability that a triple (H, 1, p) is written as the
jth triple on the transcript during the Cth iteration of the repeat loop is

Pl
K-z.

Hence, the probability that (H, 1, p) is the jth triple on the transcript is

PI
2 X n! (

1+;+;+... =$.
)

The case i = 2 is analyzed in a similar fashion: the probability that (H, 2, p) is
written as the jth triple on the transcript is (1 - pt)/n!

Hence, the two probability distributions on the partial transcripts at the end of
round j are identical. By induction, the two probability fstributions p~,v* (T)
and p~,v- (T) are identical, and the proof is complete.

It is interesting also to look at the interactive proof system for Graph Non-
isomorphism. It is not too difficult to prove that this proof is perfect zero-
knowledge if Vie follows the protocol (i.e., if Vie chooses each challenge graph

398 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

FIGURE 13.8
A perfect zero-knowledge interactive proof system for Quadratic Residues

Input: an integer n with unknown factorization n = pq, where p and
q are prime, and x E QR(n)

1. Repeat the following steps log2 n times:

2. Peggy chooses a random v E Z,, *, and computes

y = v2 mod n.

3.

4.

Peggy sends y to Vie.
Vie chooses a random integer i = 0 or 1 and sends it to
Pew.
Peggy computes

.z = uiv mod n,

5.
where u is a square root of x, and sends z to Vie.
Vie checks to see if

z2 E xc’y (mod n).

6. Vie accepts Peggy’s proof if the computation of step 5 is verified
in each of the log, n rounds.

to be a random isomorphic copy of Gi where i = 1 or 2 is chosen at random).
Further, provided that Vie constructs each challenge graph by taking an isomorphic
copy of either G1 or G2, the protocol remains zero-knowledge even if Vie chooses
his challenges in a non-random fashion. However, suppose that our ubiquitous
troublemaker, Oscar, gives a graph H to Vie which is isomorphic to one of GI or
G2, but Vie does not know which Gi is isomorphic to H. If Vie uses this H as
one of his challenge graphs in the interactive proof system, then Peggy will give
Vie an isomorphism he didn’t previously know, and (possibly) couldn’t figure out
for himself. In this situation, the proof system is (intuitively) not zero-knowledge,
and it does not seem likely that a transcript could be forged by a simulator.

It is possible to alter the proof of Graph Non-isomorphism so it is perfect
zero-knowledge, but we will not go into the details.

We now present some other examples of perfect zero-knowledge proofs. A
perfect zero-knowledge proof for Quadratic Residues (modulo n = pq, where p
and q are prime) is given in Figure 13.8. Peggy is proving that x is a quadratic
residue. In each round, she generates a random quadratic residue y and sends it
to Vie. Then, depending on Vie’s challenge, Peggy either gives Vie a square root

13.2. PERFECT ZERO-KNOWLEDGE PROOFS

FIGURE 13.9
Subgroup Membership

399

Two positive integers n and e, and two distinct

Is p = ok for some integer k such that 0 5 k < l - l? (In
other words, is p a member of the subgroup of &* generated by a?)

of y or a square root of my.
It is clear that the protocol is complete. To prove soundness, observe that if x

is not a quadratic residue, then Peggy can answer only one of the two possible
challenges since, in this case, y is a quadratic residue if and only if xy is not a
quadratic residue. So Peggy will be caught in any given round of the protocol
with probability l/2, and her probability of deceiving Vie in all n rounds is only
2-“gzn = l/n. (Th e reason for having log, n rounds is that the size of the
problem instance is proportional to the number of bits in the binary representation
of n, which is log, n. Hence, the deception probability for Peggy is exponentially
small as a function of the size of the problem instance, as in the zero-knowledge
proof for Graph Isomorphism.)

Perfect zero-knowledge for Vie can be shown in a similar manner as was done
for Graph Isomorphism. Vie can generate a triple (y, i, Z) by first choosing i
and t, and then defining

y = z2(xi)-l mod n.

Triples generated in this fashion have exactly the same probability distribution
as those generated during the protocol, assuming Vie chooses his challenges at
random. Perfect zero-knowledge (for an arbitrary V*) is proved by following the
same strategy as for Graph Isomorphism. It requires building a simulator S’ that
guesses V’ ‘s challenges and keeps only the triples where the guesses are correct.

As a further illustration, we present one more example of a perfect zero-
knowledge proof, this one for a decision problem related to the Discrete Log-
arithm problem. The problem, which we call Subgroup Membership, is defined
in Figure 13.9. Of course, the integer k (if it exists) is just the discrete logarithm
of p.

We present a perfect zero-knowledge proof for Subgroup Membership in
Figure 13.10. The analysis of this protocol is similar to the others that we have
looked at; the details are left to the reader.

400 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

FIGURE 13.10
A perfect zero-knowledge interactive proof system for Subgroup Membership

Input: A positive integer n, and two distinct elements (Y, p E &,*,
where the order of cr is denoted by !Z and is publicly known

I. Repeat the following steps log, n times:

1. Peggy chooses a random j such that 0 5 j 5 e - 1, and
computes

y = d mod n.

3.

4.

Peggy sends y to Vie.
Vie chooses a random integer i = 0 or 1 and sends it to

Peggy.
Peggy computes

h = j + ik mod f,

where

k = log, P,

5.
and sends h to Vie.
Vie checks to see if

ah G @r (mod n).

6. Vie accepts Peggy’s proof if the computation of step S is verified
in each of the log, n rounds.

13.3 Bit Commitments

The zero-knowledge proof system for Graph Isomorphism is interesting, but
it would be more useful to have zero-knowledge proof systems for problems
that are known to be NP-complete. There is theoretical evidence that perfect
zero-knowledge proofs do not exist for NP-complete problems. However, we can
describe proof systems that attain a slightly weaker form of zero-knowledge called
computational zero-knowledge. The actual proof systems are described in the

next section; in this section we describe the technique of bit commitment that is
an essential tool used in the proof system.

Suppose Peggy writes a message on a piece of paper, and then places the
message in a safe for which she knows the combination. Peggy then gives the

13.3. BIT COMMITMENTS 401

safe to Vie. Even though Vie doesn’t know what the message is until the safe
is opened, we would agree that Peggy is committed to her message because she
cannot change it. Further, Vie cannot learn what the message is (assuming he
doesn’t know the combination of the safe) unless Peggy opens the safe for him.
(Recall that we used a similar analogy in Chapter 4 to describe the idea of a
public-key cryptosystem, but in that case, it was the recipient of the message, Vie,
who could open the safe.)

Suppose the message is a bit b = 0 or 1, and Peggy encrypts b in some way.
The encrypted form of b is sometimes called a blob and the encryption method is
called a bit commitment scheme. In general, a bit commitment scheme will be a
function f : (0, 1) x X + Y, where X and Y are finite sets. An encryption of
b is any value f(b, xc), x E X. We can informally define two properties that a bit
commitment scheme should satisfy:

concealing

For a bit b = 0 or 1, Vie cannot determine the value of b from the blob

binding

Peggy can later “open” the blob, by revealing the value of x used to encrypt
b, to convince Vie that b was the value encrypted. Peggy should not be able
toopenablobasbothaOanda1.

If Peggy wants to commit any bitstring, she simply commits every bit indepen-
dently.

One way to perform bit commitment is to use the Goldwasser-Micali Prob-
abilistic Cryptosystem described in Section 12.4. Recall that in this system,
n = pq, where p and q are primes, and m E OR(n). The integers n and m are
public; the factorization n = pq is known only to Peggy. In our bit commitment
scheme, we have X = Y = Z,,* and

f (4 x) = mbx2 mod n

Peggy encrypts a value b by choosing a random x and computing y = f(b, I); the
value y comprises the blob.

Later, when Peggy wants to open y, she reveals the values b and x. Then Vie
can verify that

y E mbx2 (mod n).

Let us think about the concealing and binding properties. A blob is an encryption
of 0 or of 1, and reveals no information about the plaintext value x provided that
the Quadratic Residues problem is infeasible (we discussed this at length in
Chapter 12). Hence, the scheme is concealing.

Is the scheme binding? Let us suppose not; then

mx12 z xz2 (mod n)

CHAPTER 13. ZERO-KNOWLEDGE PROOFS

forsomezi,q E Z&*. Butthen

m G (~221-‘)~ (mod n),

which is a contradiction since m E CR(n).
We will be using bit commitment schemes to construct zero-knowledge proofs.

However, they have another nice application, to the problem of coin-flipping by
telephone. Suppose Alice and Bob want to make some decision based on a random
coin flip, but they are not in the same place. This means that it is impossible for
one of them to flip a real coin and have the other verify it. A bit commitment
scheme provides a way out of this dilemma. One of them, say Alice, chooses a
random bit b, and computes a blob, y. She gives y to Bob. Now Bob guesses the
value of b, and then Alice opens the blob to reveal b. The concealing property
means that it is infeasible for Bob to compute b given y, and the binding property
means that Alice can’t “change her mind” after Bob reveals his guess.

We now give another example of a bit commitment scheme, this time based on
the Discrete Logarithm problem. Recall from Section 5.1.2 that if p E 3 (mod 4)
is a prime such that the Discrete Logarithm problem in Zr* is infeasible, then
the second least significant bit of a discrete logarithm is secure. Actually, it has
been proved for primes p E 3 (mod 4) that any Monte Carlo algorithm for the
Second Bit problem having error probability l/2 - E with E > 0 can be used to
solve the Discrete Log problem in Zp* . This much stronger result is the basis for
the bit commitment scheme.

This bit commitment scheme will have X = { 1,. . . ,p - 1) and Y = &,*.
The second least significant bit of an integer 2, denoted by SLB(x), is defined as
follows:

SLB(x) =
{

0 iftEO,l(mod4)
1 ifz - 2,3 (mod 4).

The bit commitment scheme f is defined by

f(b, z) = { $1 zz;; ;;;$; ; ;.

In other words, a bit b is encrypted by choosing a random element having second
last bit b, and raising cr to that power modulo p. (Note that SLB (p - Z) # SLB (GE)
since p G 3 (mod 4).)

The scheme is binding, and by the remarks made above, it is concealing provided
that the Discrete Logarithm problem in Z&* is infeasible.

13.4 Computational Zero-knowledge Proofs

In this section, we give a zero-knowledge proof system for the NP-complete
decision problem Graph 3Xolorability, which is defined in Figure 13.11. The

13.4. COMPUTATIONAL ZERO-KNOWLEDGE PROOFS 403

FIGURE 13.11
Graph 3Xolorability

Problem Instance A graph G = (V, E) on n vertices,

Question Is there a proper 3-coloring of G? (In mathematical terms,
is there a function 4 : V(G) + { 1,2,3} such that {u, v} E E implies
4(u) # 4(v)?)

proof system uses a bit commitment scheme; to be specific, we will employ the
bit commitment scheme presented in Section 13.3 that is based on probabilistic
encryption. We assume that Peggy knows a 3-coloring 4 of a graph G, and she
wants to convince Vie that G is 3-colorable in a zero-knowledge fashion. Without
loss of generality, we assume that G has vertex set V = { 1, . . . , n}. Denote
m = 1 E I. The proof system will be described in terms of a commitment scheme
f : (0, 1) x X + Y which is made public. Since we want to encrypt a color
rather than a bit, we will replace the color 1 by the two bits 01, the color 2 by 10
and the color 3 by 11. Then we encrypt each of the two bits representing the color
by using f.

The interactive proof system is presented in Figure 13.12. Informally, what
happens is the following. In each round, Peggy commits a coloring that is a
permutation of the fixed coloring 4. Vie requests that Peggy open the blobs
corresponding to the endpoints of some randomly chosen edge. Peggy does so,
and then Vie checks that the commitments are as claimed and that the two colors
are different. Notice that all Vie’s computations are polynomial-time, and so are
Peggy’s, provided that she knows the existence of one 3-coloring 4.

Here is a very small example to illustrate.

Example 13.3
Suppose G is the graph (V, E), where

V = {1,2,3,4,5}

and

E = { 12,14,15,23,34,45}.

Suppose that Peggy knows the 3-coloring 4 where d(1) = 1, d(2) = 4(4) = 2
and 4(3) = ~j(5) = 3. Suppose also that the parameters of the bit commitmtent
scheme are n = 321389 and m = 156897, so f(b, x) = mbx2 mod n, where
b=O,landxEZ&*.

Suppose that Peggy chooses the permutation A = (1 3 2) in some round of the

404 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

FIGURE 13.12
A computational zero-knowledge interactive proof system for Graph 3-colorability

Input: a graph G = (E, V) on vertex set { 1, . . . , n}

I. Repeat the following steps m2 times:

!. Let 4 be a 3-coloring of G. Peggy chooses a random
permutation A of { 1,2,3}. For 1 5 i 5 n, she defines

ci = r(4(i)),

and writes ci as a bitstring of length two:

cj = Ci,JCj,J.

Then, for 1 5 i 5 n, she chooses two random elements
ri,i, ri,2 E X, and computes

Ri,j = f(ci,j,ri,j),
j = 1,2. She sends the list

to Vie.
Vie chooses a random edge {u, v} E E and sends it to
Peggy.
Peggysends(c,,l,cu,2,~u,~,~,,2)and(c,,~,cu,2,~u,~,r,,2)
to Vie.
Vie checks that

(%,l,Cu,2) # (C”,l,C”,2),

(%,I, C”,2) # (0, O),

(CV,l~C”,2) # (O,O),

Ru,j = f(Cu,j, pu,j),j = 1,2, and
Rv,j = f(Cv,j,Tv,j),j = 112.

5. Vie accepts Peggy’s proof if the computation of step 5 is verified
in each of the m2 rounds.

13.4. COMPUTATIONAL ZERO-KNOWLEDGE PROOFS 405

proof. Then she computes:

Cl = 1

c2 = 3

cj = 2

q = 3

c5 = 2.

She will encode this coloring in binary as the lo-tuple

0111101110

and then compute commitments of these ten bits. Suppose that she does this as
follows:

b f (4 ~1
0 14$58 176593
1 318856 205585
1 14497 189102
1 285764 294039
1 128589 230968
0 228569 77477
1 53369 305090
1 194634 276484
1 202445 292707
0 177561 290599

Then Peggy gives Vie the ten values f (b, X) computed above.
Next, suppose that Vie chooses the edge 34 as his challenge. Then Peggy opens

four blobs: the two that correspond to vertex 3 and the two that correspond to
vertex 4. So Peggy gives Vie the ordered pairs

(b,x) = (1,128589),(0,228569),(1,53369),(1,194634).

Vie will first check that the two colors are distinct: 10 encodes color 2 and 11
encodes color 3, so this is all right. Next, Vie verifies that the four commitments
are valid and hence this round of the proof is completed successfully. 0

As in previous proof systems we have studied, Vie will accept a valid proof
with probability 1, so we have completeness. What is the probability that Vie will
accept if G is not 3-colorable? In this case, for any coloring, there must be at least
one edge ij such that i and j have the same color. Vie’s chances of choosing such
an edge are at least l/m. Peggy’s probability of fooling Vie in all m2 rounds is at

406 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

most

Since (1 - l/m)m + e-’ as m + 00, we see that (1 - l/m)m2 + emm, which
approaches zero exponentially quickly as a function of m = 1 E I. Hence, we have
soundness as well.

Let’s now turn to the zero-knowledge aspect of the proof system. All that
Vie sees in any given round of the protocol is an encrypted 3-colouring of G,
together with the two distinct colours of the endpoints of one particular edge, as
previously committed by Peggy. Since the colors are permuted in each round, it
seems that Vie cannot combine information from different rounds to reconstruct
the 3-coloring.

The proof system is not perfect zero-knowledge, but it does provide a weaker
form of zero-knowledge called computational zero-knowledge. Computational
zero-knowledge is defined exactly as perfect zero-knowledge, except that the rel-
evant probability distributions of transcripts are required only to be polynomially
indistinguishable (in the sense of Chapter 12) rather than identical.

We begin by showing how transcripts can be forged. We give an explicit
algorithm that will forge transcripts that cannot be distinguished from those pro-
duced by an honest Vie. If Vie deviates from the protocol, then it is possible to
construct a simulator which uses the algorithm V* as a restartable subroutine to
construct forged transcripts. Both forging algorithms follow the pattern of the
related algorithms for the Graph Isomorphism proof system.

Here, we consider only the case where Vie follows the protocol. A transcript T
for the interactive proof of Graph 3-colorability would have the form

(G; AI;A.z),

where Aj consists of 2n blobs computed by Peggy, the edge uv chosen by Vie,
the colors assigned by Peggy in round j to u and v, and the four random numbers
used by Peggy to encrypt the colors of these two vertices. A transcript is forged
by means of the forging algorithm presented in Figure 13.13.

Proving (computational) zero-knowledge for Vie requires showing that the two
probability distributions on transcripts (as produced by the Vie taking part in
the protocol, and as produced by the simulator) are indistinguishable. We will
not do this here, but we will make a couple of comments. Notice that the two
probability distributions are not identical. This is because virtually all the Rji’S in
a forged transcript are blobs encrypting 1; whereas the Rji’s on a real transcript
will (usually) be encryptions of more equal numbers of O’s and 1’s. However, it is
possible to show that the two probability distributions cannot be distinguished in
polynomial time, provided that the underlying bit commitment scheme is secure.
More precisely, this means that the probability distribution on blobs encrypting
color c are indistinguishable from the probability distribution on blobs encrypting

13.5. ZERO-KNOWLEDGE ARGUMENTS 407

FIGURE 13.13
Forging algorithm for transcripts for Graph 3-colorability

Input: a graph G = (V, E) having vertex set V = { 1, . . . , n}

1. T=(G)

2. forj= 1 tom2do

3. Choose an edge {u, v} E E at random

4. Choose d = dld2 and e = ete2 to be random, distinct
colors, where dl, d2, el, e2 E (0, 1)

5. Choose ri,j to be a random element of X, for 1 6 i 2 n,
j= 1,2

6. For1 <i<nandj= 1,2,define

f(l,ri,j) ifi # U,V

Ri,j = f(dj,ri,j) if i = u

f(ej,ri,j) ifi = 21.

7. concatenate

(RI,I, . . . , &,2, u, v, 4, &, rd,l, rd,2, el, e2, r,,I, r,,2)

onto the end of T.

color d if c # d.
Readers familiar with NP-completeness theory will realize that, having given a

zero-knowledge proof for one particular NP-complete problem, we can obtain a
zero-knowledge proof for any other NP-complete problem. This can be done by
applying a polynomial transformation from a given NP-complete problem to the
Graph 3-coloring problem.

13.5 Zero-knowledge Arguments

Let us recap the basic properties of the computational zero-knowledge proof for
Graph J-colorability presented in the last section. No assumptions are needed to
prove completeness and soundness of the protocol. A computational assumption
is needed to prove zero-knowledge, namely that the underlying bit commitment
scheme is secure. Observe that if Peggy and Vie take part in the protocol, then Vie
may later try to break the bit commitment scheme that was used in the protocol (for

408 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

example, if the scheme based on quadratic residuosity were used, then Vie would
try to factor the modulus). If at any future time Vie can break the bit commitment
scheme, then he can decrypt the blobs used by Peggy in the protocol and extract
the 3-coloring.

This analysis depends on the properties of the blobs that were used in the pro-
tocol. Although the binding property of the blobs is unconditional, the concealing
property relies on a computational assumption.

An interesting variation is to use blobs in which the concealing property is
unconditional but the binding property requires a computational assumption. This
leads to a protocol that is known as a zero-knowledge argument rather than
a zero-knowledge proof. The reader will recall that we have assumed up until
now that Peggy is all-powerful; in a zero-knowledge argument we will assume that
Peggy’s computations are required to be polynomial-time. (In fact, this assumption
creates no difficulties, for we have already observed that Peggy’s computations
are polynomial-time provided she knows one 3-coloring of G.)

Let us begin by describing a couple of bit commitment schemes of this type
and then examine the ramifications of using them in the protocol for Graph
S-coloring.

The first scheme is (again) based on the Quadratic Residues problem. Suppose
n = pq, where p and q are prime, and let m E QR(n) (note that in the previous
scheme m was a pseudo-square). In this scheme neither the factorization of n nor
the square root of m should be known to Peggy. So either Vie should construct
these values or they should be obtained from a (trusted) third party.

Let X = Zn* and Y = QR(n), and define

f (b, x) = mbx2 mod n.

As before, Peggy encrypts a value b by choosing a random x and computing the
blob y = f (b, x). In this scheme all the blobs are quadratic residues. Further,
any y E QR(n) is both an encryption of 0 and an encryption of 1. For suppose
y = x2 mod n and m = k2 mod n. Then

y = f(O,x) = f(l,xk-’ mod n).

This means that the concealing property is achieved unconditionally. On the other
hand, what happens to the binding property? Peggy can open any given blob both
as a 0 and as a 1 if and only if she can compute k, a square root of m. So, in order
for the scheme to be (computationally) binding, we need to make the assumption
that it is infeasible for Peggy to compute a square root of m. (If Peggy were
all-powerful, then she could, of course, do this. This is one reason why we are
now assuming that Peggy is computationally bounded.)

As a second bit commitment scheme of this type, we give an example of a
scheme based on the Discrete Logarithm problem. Let p be a prime such that the
discrete log problem in Zr* is infeasible, let (Y be a primitive element of Zr* and
let p E 7&,*. The value of p should be chosen by Vie, or by a trusted third party,

13.6. NOTES AND REFERENCES 409

TABLE 13.1
Comparison of Properties of Proofs and Arguments

prww
completeness

zero-knowledge proof zero-knowledge argument
unconditional unconditional

soundness
zero-knowledge
concealing blobs

binding blobs

unconditional
computational
unconditional
computational

computational
perfect

computational
unconditional

rather than by Peggy. This scheme will have X = (0, . . . , p - 1}, Y = Z&*, and
f is defined by

f(b, z) = pba” mod p.

It is not hard to see that this scheme is unconditionally concealing, and it is binding
if and only if it is infeasible for Peggy to compute the discrete logarithm log, /3.

Now, suppose we use one of these two bit commitment schemes in the protocol
for Graph 3xolorability. It is easy to see that the protocol remains complete. But
now the soundness condition depends on a computational assumption: the protocol
is sound if and only if the bit commitment scheme is binding. What happens to
the zero-knowledge aspect of the protocol? Because the bit commitment scheme
is unconditionally concealing, the protocol is now

perfect zero-knowledge rather than just computational zero-knowledge. Thus
we have a perfect zero-knowledge argument.

Whether one prefers an argument to a proof depends on the application, and
whether one wants to make a computational assumption regarding Peggy or Vie.
A comparison of the properties of proofs and arguments is summarized in Table
13.1. In the column “zero-knowledge proof,” the computational assumptions
pertain to Peggy’s computing power; in the column “zero-knowledge argument,”
the computational assumptions refer to Vie’s computing power.

13.6 Notes and References

Most of the material in this chapter is based on Brassard, Chaum, and CrCpeau
[BCCSS] and on Goldreich, Micali, and Wigderson [GMW91]. The bit commit-
ment schemes we present, and a thorough discussion of the differences between
proofs and arguments, can be found in [BCCSS] (however, note that the term
“argument” was first used in [BC90]). Zero-knowledge proofs for Graph Iso-
morphism, Graph Non-isomorphism and Graph 3-colorability can be found in
[GMW91]. Another relevant paper is Goldwasser, Micah, and Rackoff [GMR89],

410 CHAPTER 13. ZERO-KNOWLEDGE PROOFS

FIGURE 13.14
An interactive proof system for Quadratic Non-residues

Input: an integer n with unknown factorization n = pq, where p and q are
prime, and x E aR(n)

1. Repeat the following steps log, n times:

2. Vie chooses a random v E & l , and computes

y = Y’ mod n.

Vie chooses i = 0 or 1 at random, and he sends

z=~‘ymodn

to Peggy.
3. If z E QR(n), then Peggy defines j = 0, otherwise she defines

j = 1. Then she sends j to Vie.
4. Vie checks to see if i = j.
5. Vie accepts Peggy’s proof if the computation of step 4 is verified in

each of the log, n rounds.

in which interactive proof systems are first defined formally. The zero-knowledge
proof for Quadratic Residues is from this paper.

The idea of coin-flipping by telephone is due to Blum [B~82].
A very informal and entertaining illustration of the concept of zero-knowledge

is presented by Quisquater and Guillou [QG90]. Also, see Johnson [Jo881 for a
more mathematical survey of interactive proof systems.

Exercises

13.1 Consider the interactive proof system for the problem Quadratic Non-residues
presented in Figure 13.14. Prove that the system is sound and complete, and explain
why the protocol is not zero-knowledge.

13.2 Devise an interactive proof system for the problem Subgroup Non-membership.
Prove that your protocol is sound and complete.

13.3 Consider the zero-knowledge proof for Quadratic Residues that was presented in
Figure 13.8.

(a) Define a valid triple to be one having the form (y, i, z), where y E QR(n),
i = 0 or 1, 2 E Z,’ and t2 = z’y (mod n). Show that the number of
valid triples is 2(p - l)(q - 1). and each such triple is generated with equal
probability if Peggy and Vie follow the protocol.

(b) Show that Vie can generate triples having the same probability distribution
without knowing the factorization n = pq.

Exercises 411

(c) Prove that the protocol is perfect zero-knowledge for Vie.
13.4 Consider the zero-knowledge proof for Subgroup Membership that was presented

in Figure 13.10.
(a) Prove that the protocol is sound and complete.
(b) Define a valid triple to be one having the form (y, i, h), where y E Z&‘,

i = 0 or 1,O 5 h _< e - 1 and ah z /3’y (mod n). Show that the number
of valid triples is 2, and each such triple is generated with equal probability
if Peggy and Vie follow the protocol.

(c) Show that Vie can generate triples having the same probability distribution
without knowing the discrete logarithm log,, p.

(d) Prove that the protocol is perfect zero-knowledge for Vie.
13.5 Prove that the Discrete Logarithm bit commitment scheme presented in Section

13.5 is unconditionally concealing, and prove that it is binding if and only if Peggy
cannot compute log, p.

13.6 Suppose we use the Quadratic Residues bit commitment scheme presented in
Section 13.5 to obtain a zero-knowledge argument for Graph 3-coloring. Using
the forging algorithm presented in Figure 13.13, prove that this protocol is perfect
zero-knowledge for Vie.

Further Reading

Other recommended textbooks and monographs on cryptography include the fol-
lowing: Beker and Piper [BP82], Beutelspacher [BE94], Brassard [B~88], Biham
and Shamir [BS93], Denning [DE82], Kahn [K~67], Koblitz [K087], Konheim
[KO81], Kranakis [K~86], Menezes [ME%], Meyer and Matyas [MM82], Pat-
terson [P~87], Pomerance [PO90A], Rueppel [Ru86], Salomaa [SA90], Schneier
[Sc93], Seberry and Pieprzyk [SP89], Simmons [SI~~B], van Tilborg [vT88], and
Welsh [WESS].

The main research journals in cryptography are the Jountal of Cryptology and
Designs, Codes and Cryptography. The Journal of Cryptology is the journal of the
International Association for CryptologicResearch (or IACR) which also sponsors
the two main annual cryptology conferences, CRYPTO and EUROCRYPT.

CRYPTO has been held since 1981 in Santa Barabara. The proceedings of
CRYPTO have been published annually since 1982: CRYPTO ‘82 [CRS83],
CRYPTO ‘83 [C~84], CRYPTO ‘84 [BC85], CRYPTO ‘85 [W186], CRYPTO
‘86 [0087], CRYPTO ‘87 [Po88], CRYPTO ‘88 [Go90], CRYPTO ‘89 [BR~O],
CRYPTO ‘90 [MV91], CRYPTO ‘91 [F~92], CRYPTO ‘92 [BR93], CRYPTO ‘93
[S’t94], and CRYPTO ‘94 [DE%]. EUROCRYPT has been held annually since
1982, and except for 1983 and 1986, its proceedings have been published, as fol-
lows: EUROCRYPT ‘82 [BE83], EUROCRYPT ‘84 [BCI85], EUROCRYPT ‘85
[Pr86], EUROCRYPT ‘87 [CP88], EUROCRYPT ‘88 [Gu88A], EUROCRYPT
‘89 [QV90], EUROCRYPT ‘90 [DA91], EUROCRYPT ‘91 [DA9lA], EURO-
CRYPT ‘92 [Ru93], and EUROCRYPT ‘93 [H~94].

A third conference series, AUSCRYPT/ASIACRYPT, has been held “in as-
sociation with” the IACR. Its conference proceedings have also been published:
AUSCRYPT’90 [SP90], ASIACRYPT’ [IRM93], and AUSCRYPT’92 [SZ92].

412

	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	3 The Data Encryption Standard
	4 The RSA System and Factoring
	5 Other Public-key Cryptosystems
	6 Signature Schemes
	7 Hash Functions
	8 Key Distribution and Key Agreement
	9 Identification Schemes
	10 Authentication Codes
	11 Secret Sharing Schemes
	12 Pseudo-random Number Generation
	Zero-knowledge Proofs
	13.1 Interactive Proof Systems
	FIGURE 13.1
	FIGURE 13.2
	FIGURE 13.3

	13.2 Perfect Zero-knowledge Proofs
	FIGURE 13.4
	FIGURE 13.5
	FIGURE 13.6
	FIGURE 13.7
	FIGURE 13.8
	FIGURE 13.9
	FIGURE 13.10

	13.3 Bit Commitments
	13.4 Computational Zero-knowledge Proofs
	FIGURE 13.11
	FIGURE 13.12
	FIGURE 13.13

	13.5 Zero-knowledge Arguments
	TABLE 13.1

	13.6 Notes and References
	FIGURE 13.14

	Exercises
	Further Reading

	Bibliography
	Index

	Next Chapter:
	Next:
	Home:
	Previous:
	Previous Chapter:

