
Pseudo-random Number Generation 361........
12.1 Introduction and Examples 361...............

FIGURE 12.1 362...
TABLE 12.1 363...
FIGURE 12.2 364...

12.2 Indistinguishable Probability 365.............
12.2.1 Next Bit Predictors 367..............................

FIGURE 12.3 369..
FIGURE 12.4 371..

12.3 The Blum-Blum-Shub Generator 372......
FIGURE 12.5 373...
FIGURE 12.6 374...
TABLE 12.3 374...
12.3.1 Security of the BBS Generator 375...........

FIGURE 12.7 376..
FIGURE 12.8 377..

12.4 Probabilistic Encryption 380....................
FIGURE 12.9 381...
FIGURE 12.10 382...

12.5 Notes and References 384......................
FIGURE 12.11 385...

Exercises 385..

Pseudo-random Number Generation

12.1 Introduction and Examples

There are many situations in cryptography where it is important to be able to
generate random numbers, bit-strings, etc. For example, cryptographic keys are
to be generated at random from a specified keyspace, and many protocols require
random numbers to be generated during their execution. Generating random
numbers by means of coin tosses or other physical processes is time-consuming
and expensive, so in practice it is common to use a pseudo-random bit generator
(or PRBG). A PRBG starts with a short random bit-string (a “seed”) and expands
it into a much longer “random-looking” bit-string. Thus a PRBG reduces the
amount of random bits that are required in an application.

More formally, we have the following definition.

DEFINITIONl2.1 L.et k, L be positive integers such that f! 2 k + 1 (where t? is a
speci$ed polynomialfunction of k). A (k, l?)-pseudo-random bit generator (more
brie$y, a (k, L)-PRBG) is afunction f : (I&$ + (Z# that can be computed in
polynomial time (as a function of k). The input SO E (22~)~ is called the seed, and
the output f(so) E (222) ’ is called a pseudo-random bit-string.

The function f is deterministic, so the bit-string f(se) is dependent only on the
seed. Our goal is that the pseudo-random bit-string f(sa) should “look like” truly
random bits, given that the seed is chosen at random. Giving a precise definition
is quite difficult, but we will try to give an intuitive description of the concept later
in this chapter.

One motivating example for studying this type PRBG is as follows. Recall
the concept of perfect secrecy that we studied in Chapter 2. One realization of
perfect secrecy is the One-time Pad, where the plaintext and the key are both bit-
strings of a specified length, and the ciphertext is constructed by taking the bitwise
exclusive-or of the plaintext and the key. The practical difficulty of the One-time
Pad is that the key, which must be randomly generated and communicated over a

361

362 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

FIGURE 12.1
Linear Congruential Generator

Let M 1 2 be an integer, and let 1 5 a, b < M - 1. Define k = [log, M]
andletk+l <es M-l.

For a seed SO, where 0 5 SO 5 M - 1, define

si = (usi-1 + b) mod M

for 1 5 i 5 C, and then define

f(s0) = (Zl,%Z, . . . , ZL),

where

zi = si mod 2,

1 5 i 2 !?. Then f is a (k, L)-Linear Congruential Generator.

secure channel, must be as long as the plaintext in order to ensure perfect secrecy.
PRBGs provide a possible way of alleviating this problem. Suppose Alice and
Bob agree on a PRBG and communicate a seed over the secure channel. Alice and
Bob can then both compute the same string of pseudo-random bits, which will be
used as a One-time Pad. Thus the seed functions as a key, and the PBRG can be
thought of as a keystream generator for a stream cipher.

We now present some well-known PRBGs to motivate and illustrate some of
the concepts we will be studying. First, we observe that a linear feedback shift
register, as described in Section 1.1.7, can be thought of as a PRBG. Given a
k-bit seed, an LFSR of degree k can be used to produce as many as 2k - k - 1
further bits before repeating. The PRBG obtained from an LFSR is very insecure:
we already observed in Section 1.25 that knowledge of any 2k consecutive bits
suffice to allow the seed to be determined, and hence the entire sequence can be
reconstructed by an opponent. (Although we have not yet defined security of a
PRBG, it should be clear that the existence of an attack of this type means that the
generator is insecure!)

Another well-known (but insecure) PRBG, called the Linear Congruential
Generator, is presented in Figure 12.1. Here is a very small example to illustrate.

Example 12.1
We can obtain a (5,10)-PRBG by taking M = 31, a = 3 and b = 5 in theLinear
Congruential Generator. If we consider the mapping s I+ 3s + 5 mod 3 1, then

12.1. INTRODUCTION AND EXAMPLES

TABLE 12.1
Bit-strings produced by the linear congruential generator

seed sequence
0 101ooo1101
1 0100110101
2 110101ooo1
3 ooo1101001
4 1100101101
5 01ooo11010
6 loo01 10010
7 0101ooo110
8 1001101010
9 1010011010

10 0110010110
11 10101ooo11
12 0011001011
13 1111111111
14 0011010011
15 10101ooo11
16 0110100110
17 1001011010
18 0101101010
19 0101ooo110
20 loo01 10100
21 01ooo11001
22 1101001101
23 ooo1100101
24 110101ooo1
25 0010110101
26 101ooo1100
27 0110101ooo
28 1011010100
29 0011010100
30 0110101ooo

363

13 I+ 13, and the other 30 residues are permuted in a cycle of length 30, namely
0,5,20, 3, 14, 16,22,9, 1,8,29,30,2, 11,7,26,21,6,23, 12, 10,4, 17,25, 18,
28,27, 24, 15, 19. If the seed is anything other than 13, then the seed specifies a
starting point in this cycle, and the next 10 elements, reduced modulo 2, form the
pseudo-random sequence.

The 31 possible pseudo-random bit-strings produced by this generator are il-
lustrated in Table 12.1. 0

We can use some concepts developed in earlier chapters to consrtruct PRBGs.

364 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

FIGURE 12.2
RSA Generator

Let p, q to be two (k/2)-bit primes, and define R = pq. Let b be chosen
such that gcd(b, 4(n)) = 1. A s al wa y s, n and b are public while p and q
are secret.

A seed SO is any element of Z,,” , so se has k bits. For i > 1, define

si+l = sib mod n,

and then define

where

f(s0) = (a, z2,. . f, a),

zi = si mod 2,

1 5 i < l!. Then f is a (k, L)-RSA Generator.

For example, the output feedback mode of DES, as described in Section 3.4.1, can
be thought of as a PRBG; moreover, it appears to be computationally secure.

Another approach in constructing very fast PRBGs is to combine LFSRs in
some way that the output looks less linear. One such method, due to Coppersmith,
Krawczyk and Mansour, is called the Shrinking Generator. Suppose we have
two LFSRs, one of degree kl and one of k2. We will require a total of kl + k2
bits as our seed, in order to initialize both LFSRs. The first LFSR will produce
a sequence of bits, say at, a2,. . ., and the second produces a sequence of bits
bl, b2, Then we define a sequence of pseudo-random bits zt , ~2, . . . by the rule

zj = aj,,

where ik is the position of the kth 1 in the sequence bl, b2, These pseudo-
random bits comprise a subsequence of the bits produced by the first LFSR. This
method of pseudo-random bit generation is very fast and is resistent to various
known attacks, but there does not seem to be any way to prove that it is secure.

In the rest of this chapter, we will investigate PRBGs that can be proved to be
secure given some plausible computational assumption. There are PRBGs based
on the fundamental problems of factoring (as it relates to the RSA public-key
cryptosystem) and the Discrete Logarithm problem. A PRBG based on the RSA
encryption function is shown in Figure 12.2, and a PRBG based on the Disc&e
Logarithm problem is discussed in the exercises.

We now give an example of the RSA Generator.

12.2. INDISTINGUISHABLE PROBABILITY DISTRIBUTIONS 365

TABLE 12.2
Bits produced by RSA generator

i
0 755834

zi

1 31483 1
2 31238 0
3 51968 0
4 39796 0
5 28716 0
6 14089 1
7 5923 1
8 44891 1
9 62284 0

10 11889 1
11 43467 1
12 71215 1
13 10401 1
14 77444 0
15 56794 0
16 78147 1
17 72137 1
18 89592 0
19 29022 0
20 13356 0

Example 12.2
Suppose n = 91261 = 263 x 347, b = 1547, and SO = 75364. The first 20 bits
produced by the RSA Generator are computed as shown in Table 12.2. Hence
the bit-string resulting from this seed is

10000111011110011ooo.

II

12.2 Indistinguishable Probability Distributions

There are two main objectives of a pseudo-random number generator: it should
be fast (i.e., computable in polynomial time as a function of k) and it should be
secure. Of course, these two requirements are often conflicting. The PRBGs
based on linear congruences or linear feedback shift registers are indeed very
fast. These PRBGs are quite useful in simulations, but they are very insecure for
cryptographic applications.

366 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

Let us now try to make precise the idea of a PRBG being “secure.” Intuitively, a
string of km bits produced by a PRBG should look “random.” That is, it should be
impossible in an amount of time that is polynomial in k (equivalently, polynomial
in e) to distinguish a string of e pseudo-random bits produced by a PRBG from a
string of e truly random bits.

This motivates the idea of distinguishability of probability distributions. Here
is a definition of this concept.

DEFINITION12.2 Suppose po and pl are two probability distributions on the
set (&)l of bit-strings of length -L Let A : (Z2)(+ (0, 1) be a probabilistic
algorithm that runs in polynomial time (as a function of e). Let c > 0. For
j = 0, 1, define

EA(Pj) = c Pj(Zl9 - . . , ZL) x P@(zI,. . . ,a) = ll(z1,. . . 1~)).

(a,...,zc)E(w

We say that A is an c-distinguisher of po and pl provided that

IEA(PO) - EA(Pl)t 1 6,

and we say that po and pl are c-distinguishable if there exists an t-distinguisher
of po and PI.

REMARK If A is a deterministic algorithm, then the conditional probabilities

p(A(zl, . ..,ZL) = 11(a,...,zt))

always have the value 0 or 1. 1

The intuition behind this definition is as follows. The algorithm A tries to decide
if a bit-string (zt , . . . , zf) of length e is more likely to have arisen from proba-
bility distribution pl or from probability distribution pn. This algorithm may use
random numbers if desired, i.e., it can be probabilistic. The output A(zt , . . . , ZL)
represents the algorithm’s guess as to which of these two probability distributions
is more likely to have produced (zt , . . . , zi). The quantity EA(pj) represents
the average (i.e., expected) value of the output of A over the probability distribu-
tion pj, for j = 0,l. This is computed by summing over all possible sequences
(a, . . . , ZL) the product of the probability of the !-tuple (11, . . . , zl) and the prob-
ability that A answers “1” when given (zt , . . . , zl) as input. A is an c-distinguisher
provided that the values of these two expectations are at least c apart.

The relevance to PRBGs is as follows. Consider the sequence of e bits produced
by the PRBG. There are 2l possible sequences, and if the bits were chosen
independently at random, each of these 2l sequences would occur with equal
probability 1/2e. Thus a truly random sequence corresponds to an equiprobable

12.2. INDISTINGUISHABLE PROBABKITY DISTRIBUTIONS 367

distribution on the set of all bit-strings of length .L Suppose we denote this
probability distribution by po.

Now, consider sequences produced by the PRBG. Suppose a k-bit seed is chosen
at random, and then the PRBG is used to obtain a bit-string of length e. Then we
obtain a probability distribution on the set of all bit-strings of length !!, which we
denote by pl . (For the purposes of illustration, suppose we make the simplifying
assumption that no two seeds give rise to the same sequence of bits. Then, of
the 2e possible sequences, 2” sequences each occur with probability 1 J2k, and
the remaining 2e - 2” sequences never occur. So, in this case, the probability
distribution pl is very non-uniform.)

Even though the two probability distributionspa and pl may be quite different,
it is still conceivable that they might be c-distinguishable only for small values of
E. This is our objective in constructing PRBGs.

Example 12.3
Suppose that a PRBG only produces sequences in which exactly t/2 bits have the
value 0 and .! J2 bits have the value 1. Define the function A by

A(z~, . . . , ze) =
1 if(zt,. . . , zl) has L/2 bits equal to 0
0 otherwise.

In this case, the algorithm A is deterministic. It is not hard to see that

(eF3
EA(PO) = 7

EA(PI) = 1.

It can be shown that

Hence, for any fixed value of c < 1, po and pl are c-distinguishable if e is
sufficiently large. 0

12.2.1 Next Bit Predictors

Another useful concept in studying PRBGs is that of a next bit predictor, which
works as follows. Let f be a (k,L)-PRBG. Suppose we have a probabilistic
algorithm Bi, which takes as input the first i - 1 bits produced by f (given an
unknown seed), say zt , . . . , zi- 1, and attempts to predict the next bit zi. The value
i can be any value such that 0 5 i 5 e - 1. We say that Bi is an c-next bitpredictor

368 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

if Bi can predict the ith bit of a pseudo-random sequence with probability at least
1 J2 + 6, where c > 0.

We can give a more precise formulation of this concept in terms of probability
distributions, as follows. We have already defined the probability distribution pl
on (Z2)’ induced by the PRBG f. We can also look at the probability distributions
induced by f on any of thee pseudo-random output bits (or indeed on any subset of
these f? output bits). So, for 1 5 i 5 e, we will can think of the ith pseudo-random
output bit as a random variable that we will denote by zi.

In view of these definitions, we have the following characterization of a next
bit predictor.

THEOREM 12.1

Let f be a (k,C)-PRBG. Then the probabilistic algorithm Bi is an c-next bit
predictorfor f if and only if

c PI (a,. . . 9 G-1) X p(Zi = Bil(zl,. . . , Zi-1)) 2 i + E.
(21,...,zi-1)E(z2)‘-’

PROOF The probability of correctly predicting the ith bit is computed by sum-
ming over all possible (i - 1)-tuples (zt , . . . , zi- 1) the product of the probability
that the (i - I)-tuple (zt , . . . , zi-t) is produced by the PRBG and the probability
that the ith bit is predicted correctly given the (i - 1)-tuple (zi, . . . , zi-1). 1

The reason for the expression l/2 + E in this definition is that any predicting
algorithm can predict the next bit of a random sequence with probability 1 J2. If
a sequence is not random, then it may be possible to predict the next bit with
higher probability. (Note that it is unnecessary to consider algorithms that predict
the next bit with probability less than 1 J2, because in this case an algorithm that
replaces every prediction z by 1 - z will predict the next bit with probability
greater than l/2.)

We illustrate these ideas by producing a next-bit predictor for the Linear Con-
gruential Generator of Example 12.1.

Example 12.3 (Cont.)
For any i such that 1 5 i 5 9, Define Bi(z) = 1 - z. That is, Bi predicts that a
0 is most likely to be followed by a 1, and vice versa. It is not hard to compute
from Table 12.1 that each of these predictors Bi is a &-next bit predictor (i.e.,
they predict the next bit correctly with probability 20 J3 1). 0

We can use a next bit predictor to construct a distinguishing algorithm A, as
shown in Figure 12.3. The input to algorithm A is a sequence of bits, PI, . ..,Ze,
and A calls the algorithm Bi as a subroutine.

12.2. INDISTINGUISHABLE PROBABIL.ITY DISTRIBUTIONS 369

FIGURE 12.3
Constructing a distinguisher from a next bit predictor

Input: an e-tuple (~1, . . . , ze)

1. compute z := Bi(zl, . . . , zi-1)

2. if z = zi then

A(%, , . . . , z!) = 1

else

A(zl, , . . , ZL) = 0.

THEOREM 12.2
Suppose Bi is an c-next bit predictor for the (k, e)-PRBG f. Let pl be the
probability distribution inducedon (iZ# by f, and letpo be the uniform probability
distribution on (iz~)~. Then A, as described in Figure 12.3, is an c-distinguisher
ofm andpo.
PROOF First, observe that

Ai(z, ,ze)=ltiBi(~l,...,zi-I)=z~.

Also, the output of A is independent of the values of zi+l, . . . , 21. Thus we can
compute as follows:

EA(Pl) = c Pl(Zl,. . . ,a) x P(A = WI,. . . ,zt))

(a,...,zoE(w

=
c Pl(Zl,. ..,~i) XP(A= lJ(z1,...,zi))

(ZI,...,~AE(Z)

= c Pl(Q,... 3 Zi) X P(Bi = zi I(zI, . . ., Zi))

(~I,...,Z*)E(zz)’

=
c Pl(Zl,. -*,G-I) X P(zi =&l(zl,...,&-l))

(Zlp...pZi-I)E(Z2)‘-’

On the other hand, any predictor Bi will predict the ith bit of a truly random
sequence with probability l/2. Then, it is not difficult to see that EA(pO) = l/2.
Hence,

LEA - E~(pl)(1 6,

370 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

as desired. 1

One of the main results in the theory of pseudo-random bit generators, due to
Yao, is that a next bit predictor is a universal test. That is, a PRBG is “secure” if
and only if there does not exist an c-next bit predictor except for very small values
of 6. Theorem 12.2 proves the implication in one direction. To prove the converse,
we need to show how the existence of a distinguisher implies the existence of a
next bit predictor. This is done in Theorem 12.3.

THEOREM 12.3
Suppose A, is an c-distinguisher of pl and PO, where pl is the probability distri-
bution induced on (Z# by the (k, L)-PRBG f, and po is the uniform probability
distribution on (ZZ)~. Then for some a’, 1 5 i < e - 1, there exists an c/e-next bit
predictor Bi for f.

PROOF For 0 5 i 5 e, define qi to be a probability distribution on (Z# where
the first i bits are generated using f, and the remaining L - i bits are generated at
random. Thus qo = po and qt = ~1. For 0 5 i 5 e, let Qi = EA(Qj). We are
given that

IEA(Qo) - EA(qe)l 2 6.

By the triangle inequality, we have that

IEA(‘d - EA(Qe)I 5 k IEA(qi-1) - &(qi)l.
i=l

Hence, it follows that there is at least one value i, 1 5 i 5 e, such that

IEA(Qi-1) - EA(‘&)l 2 i.

Without loss of generality, we will assume that

EA(Qi-t) - EA(qi) > i.
We are going to construct an ith bit predictor (for this specified value of i). The

predicting algorithm is probabilistic in nature and is presented in Figure 12.4.
Here is the idea behind this construction. The predicting algorithm in fact produces
an e-tuple according to the probability distribution qi- t, given that zt , . . . , zl- i
are generated by the PRBG. If A answers “0,” then it thinks that the e-tuple was
most likely generated according to the probability distribution qi. Now qi - t and qi
differ only in that the ith bit is generated at random in qi- I, whereas it is generated
according to the PRBG in qi. Hence, when A answers “0,” it thinks that the ith
bit, ti, is what would be produced by the PRBG. Hence, in this case we take zi as
our prediction of the ith bit. If A answers “1,” it thinks that zi is random, so we
take 1 - zi as our prediction of the ith bit.

12.2. INDISTINGUISHABLE PR0BABILKl-Y DISTRIBUTIONS 371

FIGURE 12.4
Constructing a next bit predictor from a distinguisher

Input: an (i - I)-tuple (ft, . . . , Zi-*)

1. choose (z; , . . . , ze) E (Z,Z)~-~+’ at random

2. compute z := A(zt , . . . , zl)

3. define Bi(zt , . . . , zi-1) = (z + zi) mod 2.

We need to compute the probability that the ith bit is predicted correctly.
Observe that if A answers “0,” then the prediction is correct with probability

Pl(Zi((Zl, * *. Y G-l)),

where pl is the probability distribution induced by the PRFIG. If A answers “1,”
then the prediction is correct with probability

l - Pl(Zil(Zl, * * * 9 G-1)).

For brevity, we denote z = (zt , . . . , zl). In our computation, we will make use
of the fact that

Qi (Z)
S-l(Z) X Pl(Zi((Zl, . . .9 G-1)) = 2.

This can be proved easily as follows:

Pi-l(Zl,. . .Y Zt) X Pl(Zil(Zl, . . . Y G-1))

= Qi-1(%1,...,Zi-l) X & X Pl(Zil(Zl,...,Zi-I))

=Qi-l(Zlr..*rZi) X &

= Qi-1(z1,...,ze)
2 .

Now we can perform our main computation:

P(zi = &(%I,. . . , G-I))

= C qi-l(z)b(A=OIz) xPl(ziI(z1,...,zi-~))
ZE@2)~

= C qxp(A=Olz)+ c qi-l(z) xp(A=lb)

zE(a)t ZE @#

372 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

-
c

Qi (4 2 x p(A = 1 Iz)

ZE@d’

= 1 - fA(‘?i) CA(&)
2 + eA(qi-I) - 2

= ; + EA(%--I) - Et&i)

1 6
15+j,

which was what we wanted to prove. 1

12.3 The Blum-Blum-Shub Generator

In this section we describe one of the most popular PRBGs, due to Blum, Blum,
and Shub. First, we review some results on Jacobi symbols from Section 4.5 and
other number-theoretic facts from other parts of Chapter 4.

Suppose p and q are two distinct primes, and let n = pq. Recall that the Jacobi
symbol

0 ifgcd(z,n) > 1

0 - 2 = 1
n

-1

if (5) =(‘“j’ = l(otjif (E) = ($) = -1

ifoneof s and : islandtheotheris-1.

Denote the quadratic residues modulo n by QR(n). That is,

QR(n) = {x2 mod n : x E ZG}.

Recall that 2 is a quadratic residue modulo n if and only if

(;) = (J) = 1.

Define

QR(n) = {x E Z;\QR(n) : (;) = l}

Thus

@R(n)={xET$ (;) = (5) =-I}.
An element 2 E @R(n) is called a pseudo-square modulo n.

12.3. THE BLUM-BLUM-SHUB GENERATOR 373

FIGURE 12.5
Quadratic Residues

Problem Instance A positive integer n that is the product of two
unknown primes p and q, and an integer x E Zi such that (E) = 1.

Question Is x a quadratic residue modulo n?

The Blum-Blum-Shub Generator, as well as some other cryptographic sys-
tems, is based on the Quadratic Residues problem defined in Figure 12.5. (In
Chapter 4, we defined the Quadratic Residues problem modulo a prime and
showed that it is easy to solve; here we have a composite modulus.) Observe that
the Quadratic Residues problem requires us to distinguish quadratic residues
modulo n from pseudo-squares modulo n. This can be no more difficult than
factoring n. For if the factorization n = pq can be computed, then it is a simple
matter to compute

0
$, say. Given that (E) = 1, it follows that x is a quadratic

residue if and only if $
0

= 1.
There does not appear to be any way to solve the Quadratic Residues problem

efficiently if the factorization of n is not known. So this problem appears to be
intractible if it is infeasible to factor n.

The Blum-Blum-Shub Generator is presented in Figure 12.6 The genera-
tor works quite simply. Given a seed se E QR(n), we compute the sequence
SI, -92,. . , se by successive squaring modulo n, and then reduce each si modulo
2 to obtain zi. It follows that

zi = SO*’ mod n
(>

mod 2,

We now give an example of the BBS Generator.

Example 12.4
Suppose n = 192649 = 383 x 503 and SO = 101355* mod n = 20749. The first
20 bits produced by the BBS Generator are computed as shown in Table 12.3.
Hence the bit-string resulting from this seed is

11001110000100111010.

II

Here is a feature of the BBS Generator that is useful when we look at its
security. Since n =pqwherep=qE 3 mod 4, it follows that for any quadratic

374 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

FIGURE 12.6
Blum-Blum-Shub Generator

Let p, q to be two (k/2)-bit primes such that p z q 3 3 mod 4, and
define n = pq. Let QR(n) denote the set of quadratic residues modulo
12.

A seed SO is any element of QR(n). For i 2 1, define

si+l = si* mod n,

and then define

where

f (so) = (a, 22, . . . , Q),

ti = si mod 2,

1 5 i 5 e. Then f is a (k, I)-PRBG, called the Blum-Blum-Shut
Generator, which we abbreviate to BBS Generator.

TABLE 12.3
Bits produced by BBS generator

i Zi
0 2G49
1 143135 1
2 177671 1
3 97048 0
4 89992 0
5 174051 1
6 80649 1
7 45663 1
8 69442 0
9 186894 0

10 177046 0
11 137922 0
12 123175 1
13 8630 0
14 114386 0
15 14863 1
16 133015 1
17 106065 1
18 45870 0
19 137171 1
20 48060 0

12.3. THE BLUM-BLUM-SHUB GENERATOR 375

residue z, there is a unique square root of z that is also a quadratic residue.
This square root is called the principal square root of 2. It follows the mapping
2 I-+ x2 mod n used to define the BBS Generator is a permutation on QR(n), the
set of quadratic residues modulo n.

12.3.1 Security of the BBS Generator

In this section, we look at the security of the BBS Generator in detail. We begin
by supposing that the pseudo-random bits produced by the BBS Generator are
e-distinguishable from ! random bits and then see where that leads us. Throughout
this section, n = pq, where p and q are primes such that p E q e 3 mod 4, and
the factorization n = pq is unknown.

We have already discussed the idea of a next bit predictor. In this section we
consider a similar concept that we call a previous bit predictor. A previous bit
predictor for a (k, &)-BBS Generator will take as input ! pseudo-random bits
produced by the generator (as determined by an unknown random seed SO E
QR(n)), and attempt to predict the value zo = SO mod 2. A previous bit predictor
can be a probabilistic algorithm, and we say that a previous bit predictor Bo is an
t--previous bit predictor if its probability of correctly guessing zo is at least l/2 + E,
where this probability is computed over all possible seeds SO.

We state the following theorem, which is similar to Theorem 12.3, without
proof.

THEOREM 12.4
Suppose A, is an c-distinguisher of pt and PO, where pl is the probability distri-
bution induced on (&)’ by the (12, C)-BBS Generator, f, and po is the uniform
probabilitydistributionon (Z2)l. Then there exists an (e/f)-previous bitpredictor
&for f.

We now show how to use an (c/L)-previous bit predictor, Bo, to construct
a probabilistic algorithm that distinguishes quadratic residues modulo n from
pseudo-squares modulo n with probability l/2 + 6. This algorithm A, presented
in Figure 12.7, uses Bo as a subroutine, or oracle.

THEOREM 12.5
Suppose Bo is an e-previous bit predictor for the (k, [)-BBS Generator f. Then
the algorithm A, as described in Figure 12.7, determines quadratic residuosity
correctly with probability at least l/2 + e, where this probability is computed over
all possible inputs x E QR(n) U QR(n).

PROOF Since 12 = pq and p E q E 3 mod 4, it follows that (2) = 1, so
- 1 E QR(n). Hence, if (:) = 1, then the principal square root of se = x2 is x if

376 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

FIGURE 12.7
Constructing a quadratic residue distinguisher from a previous bit predictor

Input: 2 E &* such that (:) = 1

1. compute se = x2 mod n

2. use the BBS Generator to compute zt , . . . , ze from seed so

3. compute z = B&l,. . . , q)

4. if (SO mod 2) = (.z mod 2) then

answer “c E QR(n)”

else

answer “x E @R(n).”

x E QR(n); and -x if x E QR(n). But

(-x mod n) mod 2 # (x mod n) mod 2,

so it follows that algorithm A gives the correct answer if and only if Bo correctly
predicts ze. The result then follows immediately. 1

Theorem 12.5 shows how we can distinguish pseudo-squares from quadratic
residues with probability at least l/2 + 6. We now show that this leads to a Monte
Carlo algorithm that gives the correct answer with probability at least l/2 + c.
In other words, for any x E QR(n) U @R(n), the Monte Carlo algorithm gives
the correct answer with probabilty at least l/2 + 6. Note that this algorithm is an
unbiased algorithm (it may give an incorrect answer for any input) in contrast to
the Monte Carlo algorithms that we studied in Section 4.5 which were all biased
algorithms.

The Monte Carlo algorithm AI is presented in Figure 12.8. It calls the previous
algorithm A as a subroutine.

THEOREM 12.6
Suppose that algorithm A determines quadratic residuosity correctly with prob-
ability at least l/2 + E. Then the algorithm Al, as described in Figure 12.8, is
a Monte Carlo algorithm for Quadratic Residues with errOr probability at most
l/2 - e.

PROOF For any given input x E QR(n) U QR(n), the effect of step 3 in algorithm
Al is to produce an element x’ that is a ran? element of QR(n) U QR(n) whose
status as a quadratic residue is known.

12.3. THE BLUM-BLUM-SHUB GENERATOR

FIGURE 12.8
A Monte Carlo algorithm for Quadratic Residues

Input: x E &* such that (a) = 1

1. choose r E Z; at random

2. with probability l/2, compute

x’ = r2x mod n,

otherwise compute

x’ = -r2x mod n.

3. call A(x’), obtaining an answer “QR” or “QR”

4. if

A(x’) = QR and I’ = r2x mod n

or

A(z’) = QR and x’ = -r2x mod n

then

answer “x E QR”

else

answer “x E QR.”

377

The last step is to show that any (unbiased) Monte Carlo algorithm that has
error probability at most l/2 - c can be used to construct an unbiased Monte
Carlo algorithm with error probability at most S, for any 6 > 0. In other words,
we can make the probability of correctness arbitrarily close to 1. The idea is to
run the given Monte Carlo algorithm 2m + 1 times, for some integer m, and take
the “majority vote” as the answer. By computing the error probability of this
algorithm, we can also see how m depends on 6. This dependence is stated in the
following theorem.

THEOREM 12.7

Suppose Al is an unbiased Monte Carlo algorithm with error probability at most
l/2 - 6. Suppose we run A1 n = 2m + 1 times on a given instance I, and we take
the most frequent answer: Then the errOr probability of the resulting algorithm is

378 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

at most

(1 - 43773
2 ’

PROOF The probability of obtaining exactly i correct answers in the n trials is
at most

The probability that the most frequent answer is incorrect is equal to the probability
that the number of correct answers in the n trials is at most m. Hence, we compute
as follows

p(error)<g(f) (~+e)‘(~-6)2m+‘-i

= (;+c)” (;-c)m+‘fJ:^) ($y)m-i

I (;+c>” (;-gm+‘gf)

I (1 -4G)m
2 ’

as required. 1

Suppose we want to lower the probability of error to some value 6, where
0 < 6 < l/2 - 6. We need to choose m so that

(1 - 4c7m < s
2 -*

Hence, it suffices to take

m= 1
1 +10&s 1 log,(l-46) .

12.3. THE BLUM-BLUM-SHUB GENERATOR 319

Then, if algorithm A is run 2m + 1 times, the majority vote yields the correct
answer with probability at least 1 - S. It is not hard to show that this value of
m is at most c/(66*) for some constant c. Hence, the number of times that the
algorithm must be run is polynomial in l/6 and l/c.

Example 12.5
Suppose we start with a Monte Carlo algorithm that returns the correct answer
with probability at least 3, so E = .05. If we desire a Monte Carlo algorithm in
which the probability of error is at most .05, then it suffices to take m = 230 and
n=471. II

Let us combine all the reductions we have done. We have the following sequence
of implications:

(k, L)-BBS Generator can be c-distinguished from e random bits
u

(c/e)-previous bit predictor for (k, L)-BBS Generator
u

distinguishing algorithm for Quadratic Residues that is correct with
probability at least l/2 + e/t

u
unbiased Monte Carlo algorithm for Quadratic Residues having error
probability at most l/2 - f/e

u
unbiased Monte Carlo algorithm for Quadratic Residues having error
probability at most 6, for any S > 0

Since it is widely believed that there is no polynomial-time Monte Carlo al-
gorithm for Quadratic Residues with small error probability, we have some
evidence that the BBS Generator is secure.

We close this section by mentioning a way of improving the efficiency of the
BBS Generator. The sequence of pseudo-random bits is constructed by taking the
least significant bit of each si, where si = so*’ mod n. Suppose instead that we
extract the m least significant bits from each si. This will improve the efficiency of
the LFSR by a factor of m, but we need to ask if the LFSR will remain secure. It has
been shown that this approach will remain secure provided that m 5 log, log, n.
So we can extract about log2 log, n pseudo-random bits per modular squaring. In
a realistic implementation of the BBS Generator, n x 1O’6o, so we can extract
nine bits per squaring.

380 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

12.4 Probabilistic Encryption

Probabilistic encryption is an idea of Goldwasser and Micali. One motivation is
as follows. Suppose we have a public-key cryptosystem, and we wish to encrypt
a single bit, i.e., 2 = 0 or 1. Since anyone can compute eK(0) and eK (l), it is a
simple matter for an opponent to determine if a ciphertext y is an encryption of 0
or an encryption of 1. More generally, an opponent can always determine if the
plaintext has a specified value by encrypting a hypothesized plaintext, hoping to
match a given ciphertext.

The goal of probabilistic encryption is that “no information” about the plaintext
should be computable from the ciphertext (in polynomial time). This objective
can be realized by a public-key cryptosystem in which encryption is probabilistic
rather than deterministic. Since there are “many” possible encryptions of each
plaintext, it is not feasible to text whether a given ciphertext is an encryption of a
particular plaintext.

Here is a formal mathematical definition of this concept.

DEFINITION 12.3 A probabilisticpublic-key cryptosystem is defined to be a six-
tuple (P, C, K, E, V, R), where P is the set ofpluintexts, C is the set of cipher-texts,
K is the keyspace, andfor each key K E Ic, eK E 8 is a public encryption rule
and dK E V is a secret decryption rule. The following properties should be
satisfied:

1. Each eK : P x R + C and dK : C + P are functions such that

dK(eK(b, r)) = b

for every plaintext b E ‘P and every r E R. (ln particulal; this implies that
eK (xj r) # eK (2’, r,) if 2 # X’.)

2. Let 6 be a specified security parameter. For any@ed K E K and for any
x E P, define a probability distribution pK,$ on C, where pK+ (y) denotes
the probability that y is the cipher-text given that K is the key and x is the
plaintext (this probability is computed over all r E RI. Suppose x, x’ E P,
x # x’, and K E K. Then the probability distributions pK,= and pK,r’ are
not e-distinguishable.

Here is how the system works. To encrypt a plaintext x, choose a random r E R
and compute y = eK (x, r). Any such value y = eK (x, r) can be decrypted to
x. Property 2 is stating that the probability distribution of all encryptions of x
cannot be distinguished from the probability distribution of all encryptions of x’
if 2’ # I. Informally, an encryption of x “looks like” an encryption of x’. The
security parameter E should be small: in practice we would want to have 6 = c/lRl
for some small c > 0.

12.4. PROBABILISTIC ENCRYPTION

FIGURE 12.9
Goldwasser-Micah Probabilistic Public-key Cryptosystem

381

Let n = pq, where p and q are primes, and let m E @R(n). The integers
n and m are public; the factorization n = pq is secret. Let P = (0, l},
C=‘R=&*,anddefine

X:= {(n,p,q,m):n=pq,p,qprime,mE~R(n)}.

ForK = (n,p,q,m),define

eK(X, r) = m"r* mod n

and

dK(Y) =
0 if y E QR(n)
1 ify $ QR(n),

wherex = Oor 1 andr,yE &*.

We now present the Goldwasser-Micali Probabilistic Public-key Cryptosys-
tern in Figure 12.9. This system encrypts one bit at a time. A 0 bit is encrypted
to a random quadratic residue modulo n; a 1 bit is encrypted to a random pseudo-
square modulo n. When Bob recieves an element y E QR(n) U @R(n), he can
use his knowledge of the factorization of n to determine whether y E QR(n) or
whether y E QR(n). He does this by computing

0 2!
n

= (-I)@-‘)I* mod p;

then

YE QR(n) H (t) = 1.

A more efficient probabilistic public-key cryptosystem was given by Blum and
Goldwasser. The Blum-Goldwasser Probabilistic Public-key Cryptosystem
is presented in Figure 12.10. The basic idea is as follows. A random seed se
generates a sequence of e psuedorandom bits zt , . . . , .ZL using the BBS Generator.
The zi’s are used as a keystream, i.e., they are exclusive-ored with the C plaintext
bits to form the ciphertext. As well, the (e + 1)st element sl+r = SO*‘+’ mod n is
transmitted as part of the ciphertext.

When Bob receives the ciphertext, he can compute se from se+1 , then recon-
struct the keystream, and finally exclusive-or the keystream with the ! ciphertext
bits to obtain the plaintext. We should explain how Bob derives se from se+r.
Recall that each si-t is the principal square root of si. Now, n = pq with

382 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

FIGURE 12.10
Blum-Goldwasser Probabilistic Public-key Cryptosystem

Let n = pq, where p and q are primes, p E q E 3 mod 4. The
nteger n is public; the factorization n = pq is secret. Let P = (ZZ)~,
! = (Z*)l x zn* and%? = &*. Define

X: = {(n, P, q) : n = pq, P, q prime) .

:or Ii = (n, p, q) and x E (ZZ)~ and r E Z,‘, encrypt x as follows:

2. Compute .zr , . . . , ZL from seed se = r using the BBS Generator.

2. Compute sf+t = so*‘+’ mod n.

3. Compute yi = (xi + Zi) mod 2 for 1 5 i 5 e.

4. Definey= (YI ,..., YL,Q+I).

To decrypt y, Bob performs the following steps:

1. Compute ar = ((p + 1)/4)l+’ mod (p - 1).

2. Computea = ((q + 1)/4)l+’ mod (q - 1).

3. Compute bl = SL+~~’ mod p.

4. Compute b2 = setla* mod q.

5. Use the Chinese remainder theorem to find SO such that

and

so-brmodp

SO 3 b2 mod q.

6. Compute zr , . . . , zl from seed se = r using the BBS Generator.

7. Compute xi = (yi + zi) mod 2 for 1 5 i 5 e.

8. The plaintext x = (xl,. . . , z~).

12.4. PROBABILISTIC ENCRYPTION 383

p - q = 3 mod 4, so the square roots of any quadratic residue x modulo p are
zI&‘+‘)/~. Using properties of Jacobi symbols, we have that

(&++P) = (;)(P+‘P

= 1.

It follows that x(P~‘)/~ is the principal square root of x modulo p. Similarly,
x(9+1)/4 is the principal square root of x modulo q. Then, using the the Chinese
remainder theorem, we can find the principal square root of x modulo n.

More generally, x((P+~)/~)‘+’ will be the principal 2lt’st root of x modulo
p and x((P+1)/4) will be the principal 21tr st root of x modulo q. Since Zi
has order p - 1, we can reduce the exponent ((p + l)/4)lt’ modulo p - 1
in the computation x((P+~)/~)‘+’ mod p. Similarly, we can reduce the exponent
((q + 1)/4P’ modulo q - 1. In Figure 12.10, having obtained the principal
21t’st roots of se+] modulo p and modulo q (steps l-4 of the decryption process),
the Chinese remainder theorem is used to compute the principal 21t’st roots of
se+ i modulo n.

Here is an example to illustrate.

Example 12.6
Suppose n = 192649, as in Example 12.4. Suppose further that Alice chooses
r = 20749 and wants to encrypt the 20-bit plaintext string

x = 11010011010011101101.

She will first compute the keystream

z = 11001110000100111010,

exactly as in Example 12.4, and then exclusive-or it with the plaintext, to obtain
the ciphertext

y=00011101010111010111

which she transmits to Bob. She also computes

~21 = s20* mod n = 94739

and sends it to Bob.
Of course Bob knows the factorization n = 383 x 503, so (p + 1)/4 = 96 and

(q + 1)/4 = 126. He begins by computing

al = ((p -t 1)/4)l+’ mod (p - 1)

- 96*’ mod 382 -

= 266

384 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

and

~2 = ((q + 1)/4)e+’ mod (q - 1)

= 1262’ mod 502

= 486.

Next, he calculates

bl = ~21” modp

= 94i’39266 mod 383

= 67

and

b2 = s21az mod q

= 94739486 mod 503

= 126.

Now Bob proceeds to solve the system of congruences

r G 67 (mod 383)

r E 126 (mod 503)

to obtain Alice’s seed T = 20749. Then he constructs Alice’s keystream from
r. Finally, he exclusive-ors the keystream with the ciphertext to get the plaintext.
0

12.5 Notes and References

A lengthy treatment of PRBGs can be found in the book by Kranakis [K~86]. See
also the survey paper by Lagarias [LA90].

The Shrinking Generator is due to Coppersmith, Krawczyk, and Mansour
[CKM94]; another practical method of constructing PBRGs using LFSRs has
been given by Gunther [Gu88]. For methods of breaking the Linear Congruential
Generator, see Boyar [Bo89].

The basic theory of secure PRBGs is due to Yao [Y~82], who proved the
universality of the next bit test. Further basic results can be found in Blum and
Micali [BM84]. The BBS Generator is described in [BBS86]. The security of
the Quadratic Residues problem is studied by Goldwasser and Micali [GM84],

Exercises 385

FIGURE 12.11
Discrete Logarithm Generator

Let p be a Ic-bit prime, and let (Y be a primitive element modulo p.

A seed 10 is any element of iZ,*. For i 2 1, define

E;+I = cxzi modp,

and then define

where

f(m) = (.a, z2,. . . I a),

Zi =
t

1 ifsi >p/2
0 if Xi < p/2.

Then f is called a (k, !)-Discrete Logarithm Generator.

on which we based much of Section 12.3.1. We have, however, used the approach
of Brassard and Bratley [BB~~A, Section 8.61 to reduce the error probability of an
unbiased Monte Carlo algorithm.

The RSA Generator is studied in Alexi, Chor, Goldreich, and Schnorr [ACGS88].
PRBGs based on the Discrete Logarithm problem are treated in Blum and Micali
[BM84], Long and Wigderson [LW88], and H&tad, Schrift, and Shamir [HSS93].
A sufficient condition for the secure extraction of multiple bits per iteration of a
PRBG was proved by Vazirani and Vazirani [VV84].

The concept of probabilistic encryption is due to Goldwasser and Micali
[GM84]; the Blum-Goldwasser Cryptosystem is presented in [BG85].

Exercises

12.1 Consider the Linear Congruential Generator defined by si = (asi- +b) mod M.
Suppose that M = qa + 1 where a is odd and q is even, and suppose that b = 1.
Show that the next bit predictor Bi (2) = 1 - z for the i bit is an e-next bit predictor,
where

da + 1) ;+c=7.

12.2 Suppose we have an RSA Generator with n = 36863, b = 229 and seed SO = 25.
Compute the first 100 bits produced by this generator.

12.3 A PRBG based on the Discrete Logarithm problem is given in Figure 12.11.
Suppose p = 21383, the primitive element LY = 5 and the seed SO = 15886.
Compute the first 100 bits produced by this generator.

12.4 Suppose that Bob has knowledge of the factorization n = pq in the BBS Generator.
(a) Show how Bob can use this knowledge to compute any si from so with

2k multiplications modulo 4(n) and 2k multiplications modulo n, where n

386 CHAPTER 12. PSEUDO-RANDOM NUMBER GENERATION

has k bits in its binary representation. (If i is large compared to k, then
this approach represents a substantial improvement over the i multiplications
required to sequentially compute SO, . . . , si .)

(b) Use this method to compute stuns if n = 59701 = 227 x 263 and SO = 17995.
12.5 We proved that, in order to reduce the error probability of an unbiased Monte Carlo

algorithm from l/2 - c to 6, where 6 + e < l/2, it suffices to run the algorithm m
times, where

m = [lo;2yz:2)] .

Prove that this value of m is 1 /(a~‘)).
12.6 Suppose Bob receives some ciphertext which was encrypted with the Blum-Goldwas-

ser Probabilistic Public-key Cryptosystem. The original plaintext consisted of
English text. Each alphabetic character was converted to a bitstring of length five
in the obvious way: A f) OOOOO,B f) 00001,. . . ,Z t) 11001. The plaintext
consisted of 236 alphabetic characters, so a bitstring of length 1180 resulted. This
bitstring was then encrypted. The resulting ciphertext bitstring was then converted
to a hexadecimal representation, to save space. The final string of 295 hexadecimal
characters is presented in Table 12.4. Also, sttst = 20291 is part of the ciphertext,
and n = 29893 is Bob’s public key. Bob’s secret factorization of n is n = pq.
wherep = 167 andq = 179.

Your task is to decrypt the given ciphertext and restore the original English
plaintext, which was taken from “Under the Hammer,” by John Mortimer, Penguin
Books, 1994.

	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	3 The Data Encryption Standard
	4 The RSA System and Factoring
	5 Other Public-key Cryptosystems
	6 Signature Schemes
	7 Hash Functions
	8 Key Distribution and Key Agreement
	9 Identification Schemes
	10 Authentication Codes
	11 Secret Sharing Schemes
	Pseudo-random Number Generation
	12.1 Introduction and Examples
	FIGURE 12.1
	TABLE 12.1
	FIGURE 12.2

	12.2 Indistinguishable Probability Distributions
	12.2.1 Next Bit Predictors
	FIGURE 12.3
	FIGURE 12.4

	12.3 The Blum-Blum-Shub Generator
	FIGURE 12.5
	FIGURE 12.6
	TABLE 12.3
	12.3.1 Security of the BBS Generator
	FIGURE 12.7
	FIGURE 12.8

	12.4 Probabilistic Encryption
	FIGURE 12.9
	FIGURE 12.10

	12.5 Notes and References
	FIGURE 12.11

	Exercises

	13 Zero-knowledge Proofs
	Bibliography
	Index

	Next Chapter:
	Next:
	Home:
	Previous:
	Previous Chapter:

