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Secret Sharing Schemes 

11.1 Introduction: The Shamir Threshold Scheme 

In a bank, there is a vault which must be opened every day. The bank employs three 
senior tellers, but they do not trust the combination to any individual teller. Hence, 
we would like to design a system whereby any two of the three senior tellers can 
gain access to the vault, but no individual teller can do so. This problem can be 
solved by means of a secret sharing scheme, the topic of this chapter. 

Here is an interesting “real-world” example of this situation: According to 
Time Magazine’, control of nuclear weapons in Russia involves a similar “two- 
out-of-three” access mechanism. The three parties involved are the President, the 
Defense Minister and the Defense Ministry. 

We first study a special type of secret sharing scheme called a threshold scheme. 
Here is an informal definition. 

DEFINITIONll.1 Let t, w be positive integers, t 5 w. A (t, w)-threshold 
scheme is a method of sharing a key K among a set of w participants (denoted 
by P), in such a way that any t participants can compute the value of K, but no 
group oft - 1 participants can do so. 

Note that the examples described above are (2,3)-threshold schemes. 
The value of K is chosen by a special participant called the dealer. The dealer 

is denoted by D and we assume D $! P. When D wants to share the key K among 
the participants in P, he gives each participant some partial information called a 
share. The shares should be distributed secretly, so no participant knows the share 
given to another participant. 

At a later time, a subset of participants B E P will pool their shares in an 
attempt to compute the key K. (Alternatively, they could give their shares to a 
trusted authority which will perform the computation for them.) If 1BI 2 t, then 
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FIGURE 11.1 
The Shamir (t, w)-threshold scheme in Zp 

Initialization Phase 

1. D chooses w distinct, non-zero elements of i&,, denoted zi, 1 5 i 5 
w (this is where we require w 2 p + 1). For 1 5 i 2 w, D gives the 
value xi to Pi. The values Xi are public. 

Share Distribution 

2. Suppose D wants to share a key K E Zr. D secretly chooses 
(independently at random) t - 1 elements of ;Z,, at, . . , at-t. 

3. For 1 5 i 5 w, D computes yi = a(zi), where 

t-1 
U(X) = K + C ajd mod p. 

j=l 

4. Forl<i<w,DgivestheshareyitoPi. 

they should be able to compute the value of K as a function of the shares they 
collectively hold; if IBI < t, then they should not be able to compute K. 

We will use the following notation. Let 

P = {Pi : 15 i 5 w} 

be the set of w participants. K is the key set (i.e., the set of all possible keys); and 
S is the share set (i.e., the set of all possible shares). 

In this section, we present a method of constructing a (t, w)-threshold scheme, 
called the Shamir Threshold Scheme, which was invented in 1979. Let K = Zr,, 
where p 2 w + 1 is prime. Also, let S = Z$,. Hence, the key will be an element 
of 5, as will be each share given to a participant. The Shamir threshold scheme 
is presented in Figure 11.1. In this scheme, the dealer constructs a random 
polynomial u(x) of degree at most t - 1 in which the constant term is the key, Ii. 
Every participant Pi obtains a point (xi, yi) on this polynomial. 

Let’s look at how a subset B oft participants can reconstruct the key. This is 
basically accomplished by means of polynomial interpolation. We will describe a 
couple of methods of doing this. 

Suppose that participants Pi,, . . . , Pi, want to determine K. They know that 

Yij = ‘(‘ij)? 

1 5 j 2 t, where u(x) E &,[x] is the (secret) polynomial chosen by D. Since 
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u(x) has degree at most t - 1, u(x) can be written as 

where the coefficients ue, . . . , at-1 are unknown elements of Zr, and a0 = I< is 
the key. Since yij = u(xij), 1 5 j 5 t, B can obtain t linear equations in the t 
unknowns a~,. . . , at- I, where all arithmetic is done in ZP . If the equations are 
linearly independent, there will be a unique solution, and a0 will be revealed as 
the key. 

Here is a small example to illustrate. 

Example 11.1 
Suppose that p = 17, t = 3, and w = 5; and the public x-co-ordinates are 
xi = i, 1 5 i 5 5. Suppose that B = {PI, P3, Ps} pool their shares, which are 
respectively 8,10, and 11. Writing the polynomial u(x) as 

u(x) = a0 + a12 + u*x*, 

and computing u(l), u(3) and u(5), the following three linear equations in 2217 
are obtained: 

ao + UI + a2 = 8 

Uo + 3Ql+ 9~2 = 10 

~o+Zkl+8~2= 11. 

This system does have a unique solution in iZt7: a0 = 13, al = 10, and u2 = 2. 
The key is therefore Ii’ = a0 = 13. 0 

Clearly, it is important that the system oft linear equations has a unique solution, 
as in Example 11.1. We show now that this is always the case. In general, we 
have 

Yij = a(xij), 

1 <j<t,where 

a0 = K. 
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The system of linear equations (in Z&p> is the following: 

UO + U]Zjl + U*Xii* + . . . + Ut-lXilt-’ = Yii, 
uo + UlXi2 + u*2i2* + . . . + at-,x$-l = Yi2 

04 + UlXi, + Cl*Xit2 + . . . + Ut-lXirt-’ = Yit . 

This can be written in matrix form as follows: 

1 Xi, Xi,* . . . tilts1 

1 Xi2 Xi** . . . Xizt-’ 

t : 

a0 Yi/il 
a1 Yi2 

. . 

i M id 

= . . 
. . 
. . 

1 xir x1,* . . . x&t-l Q-1 Yit 

Now, the coefficient matrix A is a so-called Vandermonde matrix. There is a 
well-known formula for the determinant of a Vandermonde matrix, namely 

det A = n (xi* - qj) mod p. 
I<j<k<t 

Recall that the xi’s are all distinct, so no term xij - xi* in this product is equal to 
zero. The product is computed in Z&, where p is prime, which is a field. Since the 
product of non-zero terms in a field is always non-zero, we have that det A # 0. 
Since the determinant of the coefficient matrix is non-zero, the system has a unique 
solution over the field Z$. This establishes that any group oft participants will be 
able to recover the key in this threshold scheme. 

What happens if a group oft - 1 participants attempt to compute K? Proceeding 
as above, they will obtain a system oft - 1 equations in t unknowns. Suppose 
they hypothesize a value yo for the key. Since the key is 00 = u(O), this will yield 
a tth equation, and the coefficient matrix of the resulting system oft equations in t 
unknowns will again be a Vandermonde matrix. As before, there will be a unique 
solution. Hence, for every hypothesized value yo of the key, there is a unique 
polynomial uyO (x) such that 

Yij = ayo(xij), 

l<j<t-1,andsuchthat 

Hence, no value of the key can be ruled out, and thus a group oft - 1 participants 
can obtain no information about the key. 

We have analyzed the Shamir scheme from the point of view of solving systems 
of linear equations over ZP. There is an alternative method, based on the Lagrange 
interpolation formula for polynomials. The Lagrange interpolation formula is an 
explicit formula for the (unique) polynomial u(x) of degree at most t that we 
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computed above. The formula is as follows: 

II 

x - xi* 

j=l l<k<t,k#j 
xij _ xik. 

It is easy to verify the correctness of this formula by substituting x = xij: all 
terms in the summation vanish except for the jth term, which is yij. Thus, we 
have a polynomial of degree at most t - 1 which contains the t ordered pairs 
(xii, yij), 1 5 j 5 t. We already proved above that this polynomial is unique, so 
the interpolation formula does yield the correct polynomial. 

A group B oft participants can compute c(x) by using the interpolation formula. 
But a simplification is possible, since the participants in B do not need to know 
the whole polynomial u(x). It is sufficient for them to compute the constant term 
I< = u(O). Hence, they can compute the following expression, which is obtained 
by substituting x = 0 into the Lagrange interpolation formula: 

K = kyij 
j=l 

Suppose we define 

bj= JJ xi,, 
, 

I<k<t,k#j 
Xik - Xij 

1 5 j 5 t. (Note that these values bj can be precomputed, if desired, and their 
values are not secret.) Then we have 

K = Cbjyij. 
j=l 

Hence, the key is a linear combination of the t shares. 
To illustrate this approach, let’s recompute the key from Example 11.1. 

Example 11.1 (Cont.) 
The participants { 9, PJ, Ps} can compute bl, b2, and b3 according to the formula 
given above. For example, they would obtain 

bl = (x1 - x;;;“z’l - x5) mod l7 

= 3 x 5 x (-2)-l x (-4)-l mod 17 

= 4. 

Similarly, b2 = 3 and b3 = 11. Then, given shares 8,10, and 11 (respectively), 
they would obtain 
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FIGURE 11.2 
A (t, t)-threshold scheme in & 

1. D secretly chooses (independently at random) t - 1 elements of Z,,,, 
Yl,...,Yt-I. 

2. D computes 
t-1 

yt = K-Cyimodm. 
i=l 

3. For 1 5 i 5 t, D gives theshare yi to Pi. 

as before. 0 

The last topic of this section is a simplified construction for threshold schemes 
in the special case w = t. This construction will work for any key set K = iz, 
with S = &. (For this scheme, it is not required that m be prime, and it is not 
necessary that m > w + 1.) If D wants to share the key K E Z, , he carries out 
the protocol of Figure 11.2. 

Observe that the t participants can compute I< by the formula 

K =)$i modm. 
i=l 

Can t - 1 participants compute K? Clearly, the first t - 1 participants cannot do 
so, since they receive t - 1 independent random numbers as their shares. Consider 
the t - 1 participants in the set P\{Pi}, where 1 < i 5 t - 1. These t - 1 
participants possess the shares 

YI,. . .,!A-l,Yi+l,...,Yt-1 

and 
t-1 

K-cyj. 
i=l 

By summing their shares, they can compute K - yi. However, they do not know 
the random value yi, and hence they have no information as to the value of I(. 
Consequently, we have a (t, t)-threshold scheme. 
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11.2 Access Structures and General Secret Sharing 

In the previous section, we desired that any t of the w participants should be able 
to determine the key. A more general situation is to specify exactly which subsets 
of participants should be able to determine the key and which should not. Let r be 
a set of subsets of P; the subsets in r are those subsets of participants that should 
be able to compute the key. I7 is called an access structure and the subsets in I 
are called authorized subsets. 

Let K: be the key set and let S be the share set. As before, when a dealer D 
wants to share a key Ii’ E K, he will give each participant a share from S. At 
a later time a subset of participants will attempt to determine I< from the shares 
they collectively hold. 

DEFINITION 11.2 A perfect secret sharing scheme realizing the access struc- 
ture r is a method of sharing a key K among a set of w participants (denoted by 
P), in such a way that the following two properties are satisfied: 

1. If an authorized subset of participants B 2 P pool their shares, then they 
can determine the value of K. 

2. If an unauthorized subset of participants B 2 P pool their shares, then they 
can determine nothing about the value of K. 

Observe that a (t , w)-threshold scheme realizes the access structure 

{B c P : IBI 1 t}. 

Such an access structure is called a threshold access structure. We showed in the 
previous section that the Shamir scheme is a perfect scheme realizing the threshold 
access structure. 

We study the unconditional security of secret sharing scheme schemes. That is, 
we do not place any limit on the amount of computation that can be performed by 
an unauthorized subset of participants. 

Suppose that B E r and B C C E P. Suppose the subset C wants to determine 
Ii. Since B is an authorized subset, it can already determine K. Hence, the subset 
C can determine Ii by ignoring the shares of the participants in C\B. Stated 
another way, a superset of an authorized set is again an authorized set. What this 
says is that the access structure should satisfy the monotone property: 

ifBErandBGCcP,thenCEr. 

In the remainder of this chapter, we will assume that all access structures are 
monotone. 

If r is an access structure, then B E r is a minimal authorized subset if A q! r 
whenever A c B, A # B. The set of minimal authorized subsets of r is denoted 
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re and is called the basis of r. Since r consists of all subsets of P that are 
supersets of a subset in the basis re, r is determined uniquely as a function of re. 
Expressed mathematically, we have 

We say that r is the closure of Te and write 

r = d(ro). 

Example 11.2 
Suppose P = { 4, P2, P3, Pd} and 

r. = wi, p2, p4h m, 9, p4h v2, ~~11. 

Then 

r = rOu{{plT p2, p3h {p2, p3, p4), ipI9 p2, p3, p4)h 

Conversely, given this access structure r, it is easy to see that To consists of the 
minimal subsets in r. 0 

In the case of a (t, w)-threshold access structure, the basis consists of all subsets 
of (exactly) t participants. 

11.3 The Monotone Circuit Construction 

In this section, we will give a conceptually simple and elegant construction due 
to Benaloh and Leichter that shows that any (monotone) access structure can be 
realized by a perfect secret sharing scheme. The idea is to first build a monotone 
circuit that “recognizes” the access structure, and then to build the secret sharing 
scheme from the description of the circuit. We call this the monotone circuit 
construction. 

Suppose we have a boolean circuit C, with w boolean inputs, ~1, . . . , 2, (cor- 
responding to the w participants 4, . . . , P,), and one boolean output, y. The 
circuit consists of “or” gates and “and” gates; we do not allow any “not” gates. 
Such a circuit is called a monotone circuit. The reason for this nomenclature 
is that changing any input zi from “0” (false) to “1” (true) can never result in 
the output y changing from “1” to “0.” The circuit is permitted to have arbitrary 
fan-in, but we require fan-out equal to 1 (that is, a gate can arbitrarily many input 
wires, but only one output wire). 
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If we specify boolean values for the w inputs of such a monotone circuit, we 
can define 

B(X*, . . . ,X,) = {Pi : Xi = l}, 

i.e., the subset of P corresponding to the true inputs. Suppose C is a monotone 
circuit, and define 

r(c) = {B(z,, . . . ,t,) : c(~,, . . .,z~) = i}, 
where C(zi, . . . , 2,) denotes the output of C, given inputs cl, . . . , xu,. Since the 
circuit C is monotone, it follows that I’(C) is a monotone set of subsets of P. 

It is easy to see that there is a one-to-one correspondence between monotone 
circuits of this type and boolean formulae which contain the operators A (“and’) 
and V (“or”), but do not contain any negations. 

If r is a monotone set of subsets of P, then it is easy to construct a monotone 
circuit C such that T(C) = r. One way to do this is as follows. Let ra be the 
basis of r. Then construct the disjunctive normal form boolean formula 

In Example 11.2, where 

ro = {{PI, p2, p4), {PI, p3, p4h {p2? p3)h 

we would obtain the boolean formula 

(PI A P2 A P4) V (PI A P3 A P4) V (P2 A P3). (11.1) 

Each clause in the boolean formula corresponds to an “and” gate of the asso- 
ciated monotone circuit; the final disjunction corresponds to an “or” gate. The 
number of gates in the circuit is lral+ 1. 

Suppose C is any monotone circuit that recognizes r (note that C need not 
be the circuit described above.) We describe an algorithm which enables D, the 
dealer, to construct a perfect secret sharing scheme that realizes r. This scheme 
will use as a building block the (t, t)-schemes constructed in Figure 11.2. Hence, 
we take the key set to be K: = Z, for some integer m. 

The algorithm proceeds by assigning a value f(W) E X: to every wire W in 
the circuit C. Initially, the output wire Wout of the circuit is assigned the value 
K, the key. The algorithm iterates a number of times, until every wire has a value 
assigned to it. Finally, each participant Pi is given the list of values f(W) such 
that W is an input wire of the circuit which receives input xi. 

A description of the construction is given in Figure 11.3. Note that, whenever 
a gate G is an “and” gate having (say) t input wires, we share the “key” f(lV~) 
among the input wires using a (t, t)-threshold scheme. 

Let’s carry out this procedure for the access structure of Example 11.2, using 
the circuit corresponding to the boolean formula (11.1). 
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FIGURE 11.3 
The monotone circuit construction 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

while there exists a wire W such that f(W) is not defined do 

find a gate G of C such that f(lVo) is defined, where l”vG 
is the output wire of G, but f(W) is not defined for any of 
the input wires of G 
if G is an “or” gate then 

f(w) = f(kV~) for every input wire W of G 

else (G is an “and” gate) 

let the input wires of G be WI, . . . , Wt 

choose (independently at random) t - 1 elements of 
%denotedby YG,l,. ..,yG,t-I 

compute 

t-1 

YG,t = f(WG) - c YG,i mod 7~ 

i=l 

10. for 1 5 i 5 t do 

11. f(wi) = YG,i 

Example 11.3 
We illustrate the construction in Figure 11.4. Suppose I< is the key. The value I( 
is given to each of the three input wires of the final “or” gate. Next, we consider 
the “and” gate corresponding to the clause PI A P2 A Pa. The three input wires 
are assigned values al, a2, Ii’ - al - a2, respectively, where all arithmetic is done 
in 7&. In a similar way, the three input wires corresponding to PI A P3 A P4 are 
assigned values br , b2, I< - bi - b2. Finally, the two input wires corresponding 
to PZ A P3 are assigned values cl, K - cl. Note that al, ~2, bl, b2 and ct are 
all independent random values in Z,. If we look at the shares that the four 
participants receive, we have the following: 

1. PI receives a 1, bl . 

2. P2 receives a2, cl. 

3. P3 receives b2, I< - cl. 

4. P4 receives I< - al - a2, I< - bl - b2. 

Thus, every participant receives two elements of Zm as his or her share. 
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FIGURE 11.4 
A monotone circuit 

Let’s prove that the scheme is perfect. First, we verify that each basis subset 
can compute I<. The authorized subset {PI, P2, P4) can compute 

I- = al + a2 + (Ii - al - a2) mod m. 

The subset {PI, P3, P4) can compute 

1-C = bl + b2 + (I< - bi - b2) mod m. 

Finally, the subset { P2, P3) can compute 

Ii’ = cl + (K - cl) mod m. 

Thus any authorized subset can compute I(, so we turn our attention to the 
unauthorized subsets. Note that we do not need to look at all the unauthorized 
subsets. For, if Br and Bz are both unauthorized subsets, BI & Bz, and B2 cannot 
compute I<, then neither can BI compute I<. Define a subset B E P to be a 
maximal unauthorized subset if B1 E r for all B1 > B, B1 # B. It follows that 
it suffices to verify that none of the maximal unauthorized subsets can determine 
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any information about I(. Here, the maximal unauthorized subsets are 

In each case, it is easy to see that I< cannot be computed, either because some 
necessary piece of “random” information is missing, or because all the shares 
possessed by the subset are random. For example, the subset { 4, P2) possesses 
only the random values al, bl, a2, cl. As another example, the subset { P3, P4) 
possesses the shares b2, Ii - cl, I< - ai - a2, I< - b, - b2. Since the values of 
cl, al, a2, and bl are unknown random values, I- cannot be computed. In each 
possible case, an unauthorized subset has no information about the value of Ii. 
II 

We can obtain a different scheme realizing the same access structure by using 
a different circuit. We illustrate by returning again to the access structure of 
Example 11.2. 

Example 11.4 
Suppose we convert the formula (11 .l) to the so-called conjunctive normal form: 

(PI V pz) A (PI V p3) A (pz V P3) A (P2 V P4) A (P3 V P4). (11.2) 

(The reader can verify that this formula is equivalent to the formula (11. l).) If we 
implement the scheme using the circuit corresponding to formula (11.2), then we 
obtain the following: 

I. PI receives al, a2. 

2. Pz receives ai , as, ad. 

3. P3 receives a2, ax, K - al - a2 - a3 - ad, 

4. P4 receives ad, K - al - a2 - aj - a+ 

We leave the details for the reader to check. 0 

We now prove that the monotone circuit construction always produces a perfect 
secret sharing scheme. 

THEOREM 11.1 
Let C be any monotone boolean circuit. Then the monotone circuit construction 
yields a perfect secret sharing scheme realizing the access structure T(C). 

PROOF We proceed by induction on the number of gates in the circuit C. If C 
contains only one gate, then the result is fairly trivial: If C consists of one “or” 
gate, then every participant will be given the key. This scheme realizes the access 
structure consisting of all non-empty subsets of participants. If C consists of a 
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single “and” gate with t inputs, then the scheme is the (t, t)-threshold scheme 
presented in Figure 11.2. 

Now, as an induction assumption, suppose that there is an integer j > 1 such 
that, for all circuits C with fewer than j gates, the construction produces a scheme 
that realizes I(C). Let C be a circuit on j gates. Consider the “last” gate, G, 
in the circuit; again, G could be either an “or” gate or an “and” gate. Let’s first 
consider the case where G is an “or” gate. Denote the input wires to G by Wi, 
1 5 i 5 t. These t input wires are the outputs oft sub-circuits of C, which we 
denote Ci, 1 5 i 5 t. Corresponding to each Ci, we have a (sub-)scheme that 
realizes the access structure Toi, by induction. Now, it is easy to see that 

r(c) = (J rCi. 
i=l 

Since every Wi is assigned the key I(, it follows that the scheme realizes I’(C), 
as desired. 

The analysis is similar if G is an “and” gate. In this situation, we have 

r(c) = (j rc,. 

Since the key I( is shared among the t wires Wi using a (t, t)-threshold scheme, 
it follows again that the scheme realizes T(C). This completes the proof. 1 

Of course, when an authorized subset, B, wants to compute the key, the par- 
ticipants in B need to know the circuit used by D to distribute shares, and which 
shares correspond to which wires of the circuit. All this information will be public 
knowledge. Only the actual values of the shares are secret. The algorithm for 
reconstructing the key involves combining shares according to the circuit, with 
the stipulation that an “and” gate corresponds to summing the values on the input 
wires modulo m (provided these values are all known), and an “or” gate involves 
choosing the value on any input wire (with the understanding that all these values 
will be identical). 

11.4 Formal Definitions 

In this section, we will give formal mathematical definitions of a (perfect) secret 
sharing scheme. We represent a secret sharing scheme by a set of distribution 
rules. A distribution rule is a function 

f :P+S. 
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A distribution rule represents a possible distribution of shares to the participants, 
where f (Pi) is the share given to Pi, 1 5 i 5 w. 

Now, for each li E EC, let FK be a set of distribution rules. FK will be 
distribution rules corresponding to the key having the value I<. The sets of 
distribution rules 3~ are public knowledge. 

Next, define 

3= u 3K. 
KEK 

3 is the complete set of distribution rules of the scheme. If Ii E X: is the value 
of the key that D wishes to share, then D will choose a distribution rule f E 3~) 
and use it to distribute shares. 

This is a completely general model in which we can study secret sharing 
schemes. Any of our existing schemes can be described in this setting by de- 
termining the possible distribution rules which the scheme will use. The fact that 
this model is mathematically precise makes it easier to give definitions and to 
present proofs. 

It is useful to develop conditions which ensure that a set of distribution rules 
for a scheme realizes a specified access structure. This will involve looking at 
certain probability distributions, as we did previously when studying the concept 
of perfect secrecy. To begin with, we suppose that there is aprobabilitydistribution 
pi on K. Further, for every K E Ic, D will choose a distribution rule in 3~ 
according to a probability distributionpF,,, . 

Given these probability distributions, it is straightforward to compute the prob- 
ability distribution on the list of shares given to any subset of participants, B 
(authorized or unauthorized). This is done as follows. Suppose B & P. Define 

S(B) = {fiB:fE 3}, 

where the function f (B denotes the restriction of the distributionrule f to B. That 
is, f/B : B + S is defined by 

flB(Pi) = f(Pi) 

for all Pi E B. Thus, S(B) is the set of possible distributions of shares to the 
participants in B. 

The probability distribution on S(B), denoted pS(B) , is computed as follows: 
Let fj3 E S(B). Then 

PS(B)(fB) = c PK(~O c P3K(f). 
KEK tfEFK:fIB=fB} 

Also, 

?%(B)(fBII-)= 

for all fB E S(B) and I< E K. 
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Here now is a formal definition of a perfect secret sharing scheme. 

DEFINITION11.3 Suppose r is an access structure and 3 = UKEx3K is a set 
of distribution rules. Then 3 is a perfect secret sharing scheme realizing the 
access structure r provided that the following two properties are satisfied: 

1. For any authorized subset of participants B 2 P, there do not exist two 
distribution rules f E 3~ and f’ E 3~1 with h’ # I(’ , such that f IB = 
f’ In. (That is, any distributionof shares to the participants in an authorized 
subset B determines the value of the key) 

2. For any unauthorized subset of participants B c P andfor any distribution 
of shares fB E Sn, px(l<lfB) = pi(K) for every I< E ic. (That is, 
the conditional probability distribution on Kc, given a distribution of shares 
fB to an unauthorized subset B, is the same as the a priori probability 
distribution on K. In other words, the distribution of shares to B provides 
no information as to the value of the key) 

Observe that the second property in Definition 11.3 is very similar to the concept 
of perfect secrecy; this similarity is why the resulting secret sharing scheme is 
termed “perfect.” 

Note that the probability pi (1-C ) fB) can be computed from probability distri- 
butions exhibited above using Bayes’ theorem: 

PECWIfB) = 
PS(B) (fB llo~~c(~O 

PS(B)(fJd 
Let us now illustrate these definitions by looking at a small example. 

Example 11.5 
We will present the distribution rules for the scheme constructed in Example 11.4 
when it is implemented in Z2. Each of 30 and 31 contains 16 equiprobable 
distribution rules. For conciseness, we replace a binary k-tuple by an integer 
between 0 and 2k - 1. If this is done, then 30 and 31 are as depicted in Figure 
11 S, where each row represents a distribution rule. 

This yields a perfect scheme for any probability distributionpn. on the keys. We 
will not perform all the verifications here, but we will look at a couple of typcial 
cases to illustrate the use of the two properties in Definition 11.3. 

The subset (P2, P3) is an authorized subset. Thus the shares that P2 and P3 
receive should (together) determine a unique key. It can easily be checked that 
any distribution of shares to these two participants occurs in a distribution rule in 
at most one of the sets 30 and 31. For example, if P2 has the share 3 and P3 has 
the share 6, then the distribution rule must be the eighth rule in 30 and thus the 
key is 0. 
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FIGURE 11.5 
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Distribution rules for a secret sharing scheme 

On the other hand, B = { Pt , Pz} is an unauthorized subset. It is not too hard 
to see that any distribution of shares to these two participants occurs in exactly 
one distribution rule in Fa and in exactly one distribution rule in Ft. That is, 

PS(B)(fBI~O = & 

for any fs E S(B) and for K = 0,l. Next, we compute 

PS(B)(fB) = c PK(J-0 c PFK (f) 
KEK tfE~~:fl~=f~) 

= &m(K) x & 
K=O 

1 = -. 
16 

Now, we use Bayes’ theorem to computepx(KlfB): 
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so the second property is satisfied for this subset B. 
Similar computations can be performed for other authorized and unauthorized 

sets, and in each case the appropriate property is satisfied. Hence we have a perfect 
secret sharing scheme. 0 

11.5 Information Rate 

The results of Section 11.3 prove that any monotone access structure can be 
realized by a perfect secret sharing scheme. We now want to consider the efficiency 
of the resulting schemes. In the case of a (t, w)-threshold scheme, we can construct 
a circuit corresponding to the disjunctive normal form boolean formula which will 
have 1 + (J) gates. Each participant will receive (;I:) elements of Z,,, as 
his or her share. This seems very inefficient, since a Shamir (t, zu)-threshold 
scheme enables a key to be shared by giving each participant only one “piece” of 
information. 

In general, we measure the efficiency of a secret sharing scheme by the infor- 
mation rate, which we define now. 

DEFINITIONll.4 Suppose we have a pelfect secret sharing scheme realizing 
an access structure r. The information rate for Pi is the ratio 

log, Ix: I 
pi = log* IS( Pi) I . 

(Note that S( Pi) denotes the set of possible shares that Pi might receive; of course 
S( Pi) c S.) The information rate of the scheme is denoted by p and is defined 
as 

p = min{p; : 12 i 5 UI}. 

The motivation for this definition is as follows. Since the key I< comes from 
a finite set K, we can think of I< as being represented by a bit-string of length 
log2 Ik: 1, by using a binary encoding, for example. In a similar way, a share given 
to Pi can be represented by a bit-string of length log, IS(P Intuitively, P; 
receives log, IS( bits of information (in his or her share), but the information 
content of the key is log, IX: I bits. Thus pi is the ratio of the number of bits in a 
share to the number of bits in the key. 
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Example 11.6 
Let’s look at the two schemes from Section 11.2. The scheme produced in Example 
11.3 has 

log2m 1 p=-=- 
log, m2 2 ’ 

However, in Example 11.4, we get a scheme with 

P= 
log2 m 1 

- = -. 
log, m3 3 

Hence, the first implementation is preferable. 0 

In general, if we construct a scheme from a circuit C using the monotone 
circuit construction, then the information rate can be computed as indicated in the 
following theorem. 

THEOREM 11.2 

Let C be any monotone boolean circuit. Then there is a perfect secret sharing 
scheme realizing the access structure T(C) having information rate 

p = max{l/ri : 1 < i < w}, 

where ri denotes the number of input wires to C carrying the input xi. 

With respect to threshold access structures, we observe that the Shamir scheme 
will have information rate 1, which we show below is the optimal value. In contrast, 
an implementation of a (t, w)-threshold scheme using a disjunctive normal form 
boolean circuit will have information rate l/(y::), which is much lower (and 
therefore inferior) if 1 < t < w. 

Obviously, a high informationrate is desirable. The first general result we prove 
is that p 2 1 in any scheme. 

THEOREM 11.3 
In any perfect secret sharing scheme realizing an access structure r, p 5 1. 

PROOF Suppose we have a a perfect secret sharing scheme that realizes the 
access structure r. Let B E ra and choose any participant Pj E B. Define 
B’ = B\{Pj}. Let g E S(B). N ow, B’ $ r, so the distribution of shares 
glB, provides no information about the key. Hence, for each I< E K, there is a 
distribution rule gK E 3~ such that gK 1~1 = glB,. Since B E r, it must be the 
case that gK(Pj) # gK’(Pj) if K # Ii’. Hence, IS( 2 IICI, and thus p < 1. 
I 
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Since p = 1 is the optimal situation, we refer to such a scheme an ideal 
scheme. The Shamir schemes are ideal schemes. In the next section, we present 
a construction for ideal schemes that generalizes the Shamir schemes. 

11.6 The Brickell Vector Space Construction 

In this section, we present a construction for certain ideal schemes known as the 
Brickell vector space construction. 

Suppose r is an access structure, and let (Zr)d denote the vector space of all 
d-tuples over Zr, where p is prime and d 2 2. Suppose there exists a function 

which satisfies the property 

(l,O,... ,0) E @(Pi) : Pi E B) e B E l-. (11.3) 

In other words, the vector (1, 0, . . . , 0) can be expressed as a linear combination 
of the vectors in the set {4(Pi) : Pi E B} if and only if B is an authorized subset. 

Now, suppose there is a function C$ that satisfies Property (11.3). (In general, 
finding such a function is often a matter of trial and error, though we will see 
some explicit constructions of suitable functions C#J for certain access structures 
a bit later.) We are going to construct an ideal secret sharing scheme with K = 
S(Pi) = Zr, 1 < i 5 w. The distribution rules of the scheme are as follows: for 
every vector Z = (at, . . . , ad) E Zr d, define a distribution rule f~ E 3a,, where 

h(x) = z. 4(x) 

for every 2 E P, and the operation “.” is the inner product modulo p. 
Note that each 3~ contains p d-t distribution rules. We will suppose that 

each probability distribution ~7, is equiprobable: ~7, (f) = 1 /pd-’ for every 
f E 3~. The Brickell scheme is presented in Figure 11.6. 

We have the following result. 

THEOREM 11.4 
Suppose q5 satisjies Property (11.3). Then the sets of distribution rules 3K, 
I-C E K, comprise an ideal scheme that realizes I’. 

PROOF First, we will show that if B is an authorized subset, then the participants 
in B can compute I<. Since 

(l,O,. . . ,O) E (4(R) : Pi E B), 
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FIGURE 11.6 
The Brickeli scheme 

Initialization Phase 

1. For 1 5 i 5 w, D gives the vector d(Pi) E (Zp)d to Pi. These 
vectors are public. 

Share Distribution 

2. Suppose D wants to share a key K E Zr. D secretly chooses 
(independently at random) d - 1 elements of &,, ~2,. . . , ad. 

3. For 1 5 i 5 w, D computes yi = E. $(Pi), where 

7i = (I<, a2, . . . , ad). 

4. Forl<isw,DgivestheshareyitoPi. 

we can write 

(l,O,..., 0) = c d(e), 
{i:PiEi?} 

where each ci E ;Z, . Denote by si the share given to Pi. Then 

Sj = E ’ d(Pi), 

where 7i is an unknown vector chosen by D and 

K=ut=Z.(l,O ,...) 0). 

By the linearity of the inner product operation, 

I<= C CjE’d(Pj). 
{i:PiEB} 

Thus, it is a simple matter for the participants in B to compute 

Ii = c cjsj. 
{i:P*EB} 

What happens if B is not an authorized subset? Denote by e the dimension of 
the subspace ($I( P;) : Pi E B) (note that e < I B)). Choose any I< E K, and 
consider the system of equations: 

4(Pi) *E = si,VPi E B 

(1,O )..., O).Z= K. 
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This is a system of linear equations in the d unknowns al, . . . , ad. The coefficient 
matrix has rank e + 1, since 

(l,O,..., 0) $ (4(e) : pi E B). 

Provided the system of equations is consistent, the solution space has dimension 
d - e - 1 (independent of the value of I<). It will then follow that there are 
precisely pdBe-’ distribution rules in each 3~ that are consistent with any possible 
distribution of shares to B. By a similar computation as was performed in Example 
11.5, we see thatpx(KlfB) = px(K) forevery I< E Ic, where f~(Pi) = si for 
all Pj E B. 

Why is the system consistent? The first I BI equations are consistent, since the 
vector 8 chosen by D is a solution. Since 

(l,O,. -.,O) $(4(e) :Pj EB) 

(as mentioned above), the last equation is consistent with the first I BI equations. 
This completes the proof. 1 

It is interesting to observe that the Shamir (t, w)-threshold scheme is a special 
case of the vector space construction. To see this, define d = t and let 

d(Pj) = (1,Xi,Xi2,...,XitT1) 

for 1 5 i 5 w, where xi is the x-coordinate given to Pi. The resulting scheme is 
equivalent to the Shamir scheme; we leave the details to the reader to check. 

Here is another general result that is easy to prove. It concerns access structures 
that have as a basis a collection of pairs of participants that forms a complete 
multipartite graph. A graph G = (V, E) with vertex set V and edge set E is 
defined to be a complete multipartite graph if the vertex set V can be partitioned 
into subsets VI, . . .,Vlsuchthat{x,y}EEifandonlyifzEK,yEVj,where 
i # j. The sets Vi are called parts. The complete multipartite graph is denoted 
by G,,...,n, if IVil = ni, 1 <_ i 5 .f!. A complete multipartite graph KI,,,,,~ (with 
! parts) is in fact a complete graph and is denoted I(c. 

THEOREM 11.5 
Suppose G = (V, E) is a complete multipartite graph. Then there is an ideal 
scheme realizing the access structure cl(E) on participant set V. 

PROOF Let&,..., Vl be the parts of G. Let XI, . . . , XL be distinct elements of 
Z$, where p 1 e. Let d = 2. For every participant 21 E vi, define 4(v) = (xi, 1). 
It is straightforward to verify Property (11.3). By Theorem 11.4, we have an ideal 
scheme. l 
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TABLE 11.1 
Access structures for at most four participants 

I Iwl subsets in To I L3* I . I 

1. 12 1 PI P2 1 ‘1 
2. I 3 I PI P2. P?P? I 1 

To illustrate the application of these constructions, we will consider the possible 
access structures for up to four participants. Note that it suffices to consider only 
the access structures in which the basis cannot be partitioned into two non-empty 
subsets on disjoint participant sets. (For example, To = {{PI, Pz}, { Ps, Pd}} can 
be partitioned as {{PI, Pz}) U {{Pj, Pd}} so we do not consider it.) We list the 
non-isomorphic access structures of this type on two, three, and four participants 
in Table 11.1 (the quantities p* are defined in Section 11.7). 

Of these 18 access structures, we can already obtain ideal schemes for ten 
of them using the constructions we have at our disposal now. These ten access 
structures are either threshold access structures or have a basis which is a complete 
multipartite graph, so Theorem 11.5 can be applied. One such access structure 
is # 9, whose basis is the complete multipartite graph Kt,r,2. We illustrate in the 
following example. 

Example Il. 7 
For access structure # 9, take d = 2, p 2 3, and define 4 as follows: 

4(Pl) = (O,l) 

4(P2) = (0, 1) 

4(P3) = (1,1) 



11.6. THE BRICKELL. VECTOR SPACE CONSTRUCTION 349 

d(P4) = (172). 

Applying Theorem 11.5, an ideal scheme results. 0 

Eight access structures remain to be considered. It is possible to use ad hoc 
applications of the vector space construction to construct ideal schemes for four 
of these: # 11, # 14, # 15 and # 16. We present the constructions for # 11 and # 
14 here. 

Example 11.8 
For access structure # 11, take d = 3, p 2 3, and define 4 as follows: 

4(Pl) = (O,l,O) 

fHP2) = (l,O, 1) 

?J(P3) = (0, 1, -1) 

4(P4) = (1, LO). 

First, we have 

Also, 

Hence, 

and 

qqP4) - $(Pl) = (l,l,O) - (09 l,O) 

= (l,O,O). 

c$(P2) + qqP3) - $(I?) = (l,O, 1) + (0, 1,--l) - (07 190) 

= (l,O,O). 

(1,&o) E (d(pl),~(p2)>@3)) 

Now, it suffices to show that 

if B is a maximal unauthorized subset. There are three such subsets B to be 
considered: {PI, Pz}, {PI, P3}, and (9, P3, P4). In each case, we need to 
establish that a system of linear equations has no solution. For example, suppose 
that 

(l,O,O) = Qd(P2) + a3qqP3) + .44(P4), 



350 CHAPTER Il. SECRET SHARING SCHEMES 

where ~2, ~3, a4 E Z&. This is equivalent to the system 

a2 + a4 = 1 

a3 + a4 = 0 

a2 - a3 = 0. 

The system is easily seen to have no solution. We leave other two subsets B for 
the reader to consider. 0 

Example 1 I .9 
For access structure # 14, take d = 3, p 2 2 and define 4 as follows: 

4(Pl) = (0, 170) 

$(P2) = Cl,& 1) 

d(P3) = ml, 1) 

d(P4) = (O,l,l). 

Again, Property (11.3) is satisfied and hence an ideal scheme results. 0 

Constructions of ideal schemes for the access structures # 15 and # 16 are left 
as exercises. In the next section, we will show that the remaining four access 
structures cannot be realized by ideal schemes. 

11.7 An Upper Bound on the Information Rate 

Four access structures remain to be considered: # 5, # 8, # 12, and # 13. We 
will see in this section that in each case, there does not exist a scheme having 
information rate p > 2/3. 

Denote by p* = p* (IJ the maximum information rate for any perfect secret 
sharing scheme realizing a specified access structure r. The first result we present 
is an entropy bound that will lead to an upper bound on p* for certain access 
structures. We have defined a probability distribution pi on Kc; the entropy of 
this probability distributionis denoted H(K). We have also denoted by ps(~) the 
probability distribution on the shares given to a subset B C P. We will denote 
the entropy of this probability distribution by H(B). 

We begin by giving yet another definition of perfect secret sharing schemes, 
this time using the language of entropy. This definition is equivalent to Definition 
11.3. 
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DEFINITION 11.5 Suppose r is an access structure and 3 is a set of distribution 
rules. Then 3 is a perfect secret sharing scheme realizing the access structure r 
provided that the following two properties are satisfied: 

1. For any authorized subset ofparticipants B C P, H(KJB) = 0. 

2. For any unauthorizedsubset ofparticipants B C P, H(KIB) = H(K). 

We will require several entropy identities and inequalities. Some of these 
results were given in Section 2.3 and the rest are proved similarly, so we state 
them without proof in the following Lemma. 

LEMMA 12.6 
Let X, Y and Z be random variables. Then the following hold: 

H(XY) = H(XJY) + H(Y) 

H(XYIZ) = H(XIYZ) + H(YIZ) 

H(XYIZ) = H(YIXZ) + H(XIZ) 

H(XlY) 10 
H(W) 2 WWZ) 

wwZ) 2 HPIZ) 

(11.4) 

(11.5) 

(11.6) 

(11.7) 

(11.8) 

(11.9) 

We next prove two preliminary entropy lemmas for secret sharing schemes. 

LEMMA Il.7 
Suppose r is an access structure and 3 is a set of distribution rules realizing r. 
SupposeB$-randAUBET,whereA,BCP. Then 

H(AIB) = H(K) + H(AIBK). 

PROOF From Equations 11.5 and 11.6, we have that 

H(AKjB) = H(AlBK) + H(KIB) 

and 

H(AKIB) = H(KIAB) + H(AIB), 

so 

H(AIBK) + H(KIB) = H(KIAB) + H(AIB). 

Since, by Property 2 of Definition 11.5, we have 

H(W) = H(K), 
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and, by Property 1 of Definition 11.5, we have 

H(KJAB) = 0, 

the result follows. 1 

LEMMA II.8 

Suppose r is an access structure and 3 is a set of distribution rules realizing r. 
Suppose A U B $2 r, where A, B C P. Then H(AIB) = H(AIBK). 

PROOF As in Lemma 11.7. we have that 

H(AIBK) + H(KIB) = H(KIAB) + H(AIB). 

Since 

H(KIB) = H(K) 

and 

H(K(AB) = H(K), 

the result follows. 1 

We now prove the following important theorem. 

THEOREM 11.9 

Suppose r is an access structure such that 

Let 3 be any pelfect secret sharing scheme realizing r. Then H(XY) 1 3H(K). 
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PROOF We establish a sequence of inequalities: 

H(K) = H(YIWZ) - H(YIWZK) 

I ~OwZ) 
L WIW) 
= ~(YIWK) 
5 H(XYJWK) 

= H(XIWK) + H(YIWXK) 

2 H(XIWK) + H(YIXK) 

= H(XjW) - H(K) + H(YJX) - H(K) 

5 H(X) - H(K) + H(YIX) - H(K) 

= H(XY) - 2H(K) 

Hence, the result follows. 1 

by Lemma 11.7 

by (11.7) 

by (11.8) 

by Lemma I 1.8 

by (11.9) 

by (11.5) 

by (11.8) 

by Lemma 11.7 

by (11.7) 

by (11.4). 

COROLLARY 11.10 
Suppose that r is an access structure that satisfies the hypotheses of Theorem 
11.9. Suppose the llcl keys are equally probable. Then p 5 213. 

PROOF Since the keys are equiprobable, we have 

H(K) = log, [ICI. 

Also, we have that 

fqXY) ir H(X) + H(Y) 

I log2 IW) I + log2 IV) I. 
By Theorem 11.9, we have that 

H(XY) 2 3H(K). 

Hence it follows that 

log, IW) I + log2 IV)l 1 3 log2 1x1. 
Now, by the definition of information rate, we have 

log, Kl 

and 

log2 Ix: I 
p L log2 IS(Y 
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It follows that 

3 log, WI 5 log, I~WI + log, IW)l 
< log, 1x1 + log2 WI - - - P P 
= 210g2 WI 

P . 

Hence, p 5 2/3. 1 

For the access structures # 5, # 8, # 12, and # 13, the hypotheses of Theorem 
11.9 are satisfied. Hence, p* 5 2/3 for these four access structures. 

We also have the following result concerning p* in the case where the access 
structure has a basis To which is a graph. The proof involves showing that any 
connected graph which is not a multipartite graph contains an induced subgraph 
on four vertices that is isomorphic to the basis of access structure # 5 or # 8. If 
G = (V, E) is a graph with vertex set V and edge set E, and VI C V, then the 
induced subgruph G[Vl] is defined to be the graph (VI, El), where 

El = {UV E E, U, w E V,}. 

THEOREM 11.11 
Suppose G is a connected graph that is not a complete multipartite graph. Let 
T(G) be the access structure that is the closure of E, where E is the edge set of 
G. Then p*@-(G)) 5 213. 

PROOF We will first prove that any connected graph that is not a complete 
multipartite graph must contain four vertices w, 2, y, z such that the induced 
subgraph G[w, CC, y, z] is isomorphic to either the basis of access structure # 5 or 
# 8. 

Let GC denote the complement of G. Since G is not a complete multipartite 
graph, there must exist three vertices 2, y, z such that zy, yz E E(Gc) and 
2.z E E(G). Define 

d = min{d&, 21, d&, z)), 

where dG denotes the length of a shortest path (in G) between two vertices. Then 
d 2 2. Without loss of generality, we can assume that d = dG(y, CC) by symmetry. 
Let 

be a path in G, where ya = y. We have that 

Yd-2Z, yd-22 E E(Gc) 
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and 

Yd-2$/d-l, Yd-12,2% E E(G). 

It follows that G[y,+2, y& t,~, Z] is isomorphic to the basis of access structure # 
5 or # 8, as desired. 

So, we can assume that we have found four vertices w, 2, y, z such that the 
induced subgraph G[w , t , y, z] is isomorphic to either the basis of access structure 
# 5 or # 8. Now, let 3 be any scheme realizing the access structure T(G). If we 
restrict the domain of the distributionrules to {w, 2, y, z}, then we obtain a scheme 
3’ realizing access structure # 5 or # 8. It is also obvious that ~(3’) 2 p(<). 
Since ~(3’) < 2/3, it follows that p(3) 5 2/3. This completes the proof. 

Since p* = 1 for complete multipartite graphs, Theorem 11.11 tells us that it 
is never the case that 2/3 < p* < 1 for any access structure that is the closure of 
the edge set of a connected graph. 

11.8 The Decomposition Construction 

We still have four access structures in Table 11.1 to consider. Of course, we 
can use the monotone circuit construction to produce schemes for these access 
structures. However, by this method, the best we can do is to obtain information 
rate p = l/2 in each case. We can get p = l/2 in cases # 5 and # 12 by using 
a disjunctive normal form boolean circuit. For cases # 8 and # 13, a disjunctive 
normal form boolean circuit will yield p = l/3, but other monotone circuits exist 
which allow us to attain p = l/2. But in fact, it is possible to construct schemes 
with p = 2/3 for each of these four access structures, by employing constructions 
that use ideal schemes as building blocks in the construction of larger schemes. 

We present a construction of this type called the “decomposition construction.” 
First, we need to define an important concept. 

DEFINITION 11.6 Suppose r is an access structure having basis To. Let K be 
a specijied key set. An ideal K-decomposition of To consists of a set { rl, . . . r,, } 
such that the following properties are satisfied: 

1. rkCrOfOt-l<Ic<n 

2. u;=, rk = r. 

3. for 1 2 k < n, there exists an ideal scheme with key set Kc, on the subset of 
participants 

pk = u B, 
BEI-* 
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for the access structure having basis rk, 

Given an ideal I&decomposition of an access structure r, we can easily construct 
a perfect secret sharing scheme, as described in the following theorem. 

THEOREM 11.12 
Suppose r is an access structure having basis ro. Let Ic be a specijed key set, 
and suppose { rl, . . . r, } is an ideal K-decomposition of r. For every participant 
Pi, de$ne 

Rj = I{k : Pi E ?,}I. 

Then there exists a perject secret sharing scheme realizing r, having information 
rate p = l/R, where 

PROOF For 1 5 k 5 n, we have an ideal scheme realizing the access structure 
with basis rk, with key set K, having 3’ as its set of distribution rules. We will 
construct a scheme realizing r, with key set K. The set of distribution rules 3 is 
constructed according to the following recipe. Suppose D wants to share a key 
Ii. Then, for 1 5 k 2 n, he chooses a random distribution rule fk E 3& and 
distributes the resulting shares to the participants in Pk. 

We omit the proof that the scheme is perfect. However, it is easy to compute the 
information rate of the resulting scheme. Since each of the component schemes 
is ideal, it follows that 

for 1 5 i 5 w. So 

IS( = IW’, 

1 
Pi=z’ 

and 
1 

P=max{R+:l<i<w}’ 

which is what we were required to prove. 1 

Although Theorem 11.12 is useful, it is often much more useful to employ a 
generalization in which we have e ideal K-decompositions of ra instead of just 
one. Each of the ! decompositions is used to share a key chosen from K. Thus, 
we build a scheme with key set I$. The construction of the scheme and its 
information rate are as stated in the following theorem. 
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THEOREM 11.13 (Decomposition Construction) 
Suppose r is an access structure having basis ro, and e 2 1 is an integer: Let K 
be a specijed key set, and for 1 5 j 5 f?, suppose that ‘0-j = { rj,l, . . . rj,nj} is 
an ideal decomposition of ro. Let Pj,k denote the participant set for the access 
structure rj,k. For every participant Pi, define 

Ri = C I{k : pi E pj,k}( 
j=l 

Then there exists a petiect secret sharing scheme realizing r, having information 
rate p = e/R, where 

R=max{Ri:l<i<w}. 

PROOF For 1 5 j < f? and 1 2 k 2 12, we have an ideal scheme realizing 
the access structure with basis rj,k, with key set Kc, having 3jlk as its set of 
distribution rules. We construct a scheme realizing r, with key set Ke. The set of 
distribution rules 3 is constructed according to the following recipe. Suppose D 
wants to share a key I< = (Kt , . ..,I&). Thenfor 1 <j 5 land 15 k 5 12, 
he chooses a random distribution rule fj?” E 3j$: and distributes the resulting 
shares to the participants in Pj,k. 

The information rate can be computed in a manner similar to that of Theorem 
11.12. I 

Let’s look at a couple of examples. 

Example Il. 10 
Consider access structure # 5. The basis is a graph that is not a complete multi- 
partite graph. Therefore we know from Theorem 11 .l 1 that p* 5 2/3. 

Let p be prime, and consider the following two ideal Z&,-decompositions: 

n = {h,1,r1,2), 

where 

rl,l = {{pi, p211 

r1,2 = w2, p3h {p3, p4)h 

and 

n = {r2,1, r2,2h 
where 

r2,1 = {{PI, p2h (9, p3H 

r2,2 = W3, p4H. 
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Each decomposition consists of a I<2 and a Kt,2, so they are indeed ideal Zr- 
decompositions. Either of them yields a scheme with p = l/2. However, if we 
“combine” them by applying Theorem 11.13 with e = 2, then we get a scheme 
with p = 2/3, which is optimal. 

One implementation of the scheme, using Theorem 11.5, is as follows. D will 
choose four random elements (independently) from Zr, say bl t , b12, b21, and b22. 
Given a key (Iit, I(2) E (.&)*, D distributes shares as follows: 

I. PI receives bll, b21. 

2. P2 receives bl1 + I-Cl, b12, b2l + IC2. 

3. 4 receives b12 + K1, b21,622. 

4. P4 receives b12, b22 + K2. 

(All arithmetic is performed in ZP .) 0 

Example 11.11 
Consider access structure # 8. Again, p* 5 2/3 by Theorem 11.11, and two 
suitable ideal compositions will yield an (optimal) scheme with p = 2/3. 

Take K = ZP for any prime p 2 3, and define two ideal K-decompositions to 
be: 

where 

25 = u-l,l,rl,2h 

rl,l = w3, ~3~11 

r1,2 = {{p2, p3h {p2, p41r {p3, p4H, 

and 

v2 = u-2,1, r2,2), 

where 

r2,1 = my p2h {p2, p3h {p2, p4}) 

r2,2 = w3, p4H. 

Dt consists of a I<2 and a K3, and Vt consists of a I<2 and a KIJ, so both are 
ideal K-decompositions. Applying Theorem 11.13 with e = 2, we get a scheme 
with p = 213. 

One implementation, using Theorem 11.5, is as follows. D will choose four 
random elements (independently) from I&,, say bll, bl2, bzl, and bn. Given a key 
(Iit, I(2) E (ZP)2, D distributes shares as follows: 

1. PI receives bl1 + K, , b2l + K2. 

2. & receives bll, b12, b21. 



11.9. NOTES AND REFERENCES 359 

3. P3 receives b12 + ICI, b21 + Kz, b22. 

4. P4 receives bl2 + 2111, b2, + 1(2, b22 + K2. 

(All arithmetic is performed in Zr.) 0 

To this point, we have explained all the information in Table 11.1 except for the 
values of p* for access structures # 12 and # 13. These values arise from a more 
general version of the decomposition construction which we do not describe here; 
see the notes below. 

11.9 Notes and References 

Threshold schemes were invented independently by Blakley [B~79] and Shamir 
[SH79]. Secret sharing for general access structures was first studied in Ito, Saito, 
and Nishizeki [ISN87]; we based Section 11.2 on the approach of Benaloh and 
Leichter [BL90]. The vector space construction is due to Brickell [BR89A]. The 
entropy bound of Section 11.7 is proved in Capocelli et al. [CDGV93], and some 
of the other material from this section is found in Blundo et al. [BDSV93]. 

In this chapter, we have emphasized a linear-algebraic and combinatorial ap- 
proach to secret sharing. Some interesting connections with matroid theory can 
be found in Brickell and Davenport [BD91]. Secret sharing schemes can also be 
constructed using geometric techniques. Simmons has done considerable research 
in this direction; we refer to [SIGMA] for an overview of geometric techniques in 
secret sharing. Further discussion of these topics, as well as constructions for 
schemes having information rate 2/3 for access structures # 12 and # 13, can be 
found in the expository paper by Stinson [Sl92A]. 

Exercises 

11.1 Write a computer program to compute the key for a Shamir (t, w)-threshold scheme 
implemented in &,. That is, given t public z-coordinates, ~1~~2, . . . , St, and t 
y-coordinates yl, . . . , yt , compute the resulting key. Use the Lagrange interpolation 
method, as it is easier to program. 

(a) Test your program if p = 31847, t = 5 and w = 10, with the following 
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shares: 
XI = 413 
x2 = 432 
x3 = 451 
24 = 470 
X5 = 489 
X6 = 508 
Xl = 527 
XR = 546 
X9 = 565 
x10 = 584 

Yl = 25439 
Y2 = 14847 
y3 = 24780 
y4 = 5910 
Ys = 12734 
Yl = 12492 
y2 = 12555 
y3 = 28578 
y4 = 20806 
Y5 = 21462 

Verify that the same key is computed by using several different subsets of 
five shares. 

(b) Having determined the key, compute the share that would be given to a 
participant with x-coordinate 10000. (Note that this can be done without 
computing the whole secret polynomial a(x).) 

11.2 A dishonest dealer might distribute “bad” shares for a Shamir threshold scheme, i.e., 
shares for which different t-subsets determine different keys. Given all w shares, 
we could test the consistency of the shares by computing the key for every one of 
the (y) t-subsets of participants, and verifying that the same key is computed in 
each case. Can you describe a more efficient method of testing the consistency of 
the shares? 

11.3 For access structures having the following bases, use the monotone circuit construc- 
tion to construct a secret sharing scheme with information rate p = l/2. 

(4 TO = {{PI, P2}, (P2, P31, (P2, P4}, {A, P4}}. 

0) ro = {{PI, 9, Ps}, {PI, P2), (P2, A}, (P2, P4)). 

(c) TO = {{PI, p2}, {PI, P3)r (p2, p3, p4}, (p2, P4, &}, (P3, P4r 8)). 

11.4 Use the vector space construction to obtain ideal schemes for access structures 
having the following bases: 

(a) TO = {{PI, P2r 41, {PI, p2, p4), (4, P4)). 

(b) I-o = {{PI, J’2, P3}, {A, P2, P4), {A, A, P4)). 

(4 To = {ml p21, {pl, p31r {p2, 13~1, {PI, p4, p5), {p2, p4, p5jj. 
11.5 Use the decomposition construction to obtain schemes with specified information 

rates for access structures having the following bases: 
(a) r. = {{PI, P3, P41, {PI, P21, (P2, P3)). P = 3/5. 
@I cl = {{PI, P3r P4lr {PI, 91, {9,4), (P2r P4)). P = 4/7. 
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