
Authentication Codes 305................................
10.1 Introduction 305......................................

FIGURE 10.1 3 0 6..
FIGURE 10.2 307..

10.2 Computing Deception Probabilities 307..
FIGURE 10.3 308..
FIGURE 10.4 310..

10.3 Combinatorial Bounds 312......................
10.3.1 Orthogonal Arrays 315.............................
10.3.2 Constructions and Bounds for OAs 316...
10.3.3 Characterizations of Authenticatio 320.....

10.4 Entropy Bounds 322...............................
10.5 Notes and References 324.....................
Exercises 325...

10
Authentication Codes

10.1 Introduction

We have spent a considerable amount of time studying cryptosystems, which are
used to obtain secrecy. An authentication code provides a method of ensuring
the integrity of a message, i.e., that the message has not been tampered with
and that it originated with the presumed transmitter. Our goal is to achieve this
authentication capability even in the presence of an active opponent, Oscar, who
can observe messages in the channel and introduce messages of his own choosing
into the channel. This goal is accomplished in the “private-key” setting whereby
Alice and Bob share a secret key, I(, before any message is transmitted.

In this chapter, we study codes that provide authentication but no secrecy. In
such a code, a key is used to compute an authentication tag which will enable Bob
to check the authenticity of the message he receives. Another application of an
authentication code is verify that data in a large file has not been tampered with.
An authentication tag would be stored with the data; the key used to generate and
verify the authenticator would be stored separately, in a “secure” area.

We should also point out that, in many respects, an authentication code is
similar to a signature scheme or to a message authentication code (MAC). The main
differences are as follows: The security of an authentication code is unconditional,
whereas signature schemes and MACs are studied from the point of view of
computational security. Also, when an authentication code (or a MAC) is used, a
message can be verified only by the intended receiver. In comparison, anyone can
verify a signature using a public verification algorithm.

We now give a formal definition of the terminology we use in the study of
authentication codes.

DEFINITIONlO. An authentication code is a four-tuple (S, A, K, &), where
the following conditions are satisfied:

1. S is a finite set of possible source states

305

CHAPTER 10. AUTHENTICATION CODES

FIGURE 10.1
Impersonation by Oscar

Oscar F Bob

2. A is finite set of possible authentication tags

3. K, the keyspace, is a$nite set of possible keys

4. For each I< E K, there is an authentication rule eK : S + A.

The message set is dejned to be M = S x A.

REMARK Note that a source state is analogous to a plaintext. A message
consists of a plaintext with an appended authentication tag; it could be more
precisely referred to as a signed message. Also, an authentication rule need not
be an injective function. 1

In order to transmit a (signed) message, Alice and Bob follow the following
protocol. First, they jointly choose a random key I< E K. This is done in
secret, as in a private-key cryptosystem. At a later time, suppose that Alice wants
to communicate a source state s E S to Bob over an insecure channel. Alice
computes a = eK (s) and sends the message (s, u) to Bob. When Bob receives
(~,a), he computes u’ = eK (s). If u’ = a, then he accepts the message as
authentic; otherwise, he rejects it.

We will study two different types of attacks that Oscar might carry out. In both
of these attacks, Oscar is an “intruder-in-the-middle.” These attacks described are
as follows:

Impersonation

Oscar introduces amessage (s, u) into thechannel, hoping to have it accepted
as authentic by Bob. This is depicted in Figure 10.1.

Substitution

Oscar observes a message (s, u) in the channel, and then changes it to
(s’, a’), where s’ # s, again hoping to have it accepted as authentic by Bob.
Hence, he is hoping to mislead Bob as to the source state. This is depicted
in Figure 10.2.

Associated with each of these attacks is a deception probability, which repre-
sents the probability that Oscar will successfully deceive Bob, if he (Oscar) follows
an optimal strategy. These probabilities are denoted by P&J (impersonation) and
I’dI (substitution). In order to compute Pda and I’d,, we need to specify proba-
bility distributions on S and KY. These will be denoted by ps and PI, respectively.

10.2. COMPUTING DECEPTION PROBABILITIES 307

FIGURE 10.2
Substitution by Oscar

Alice
(S> a)

+ Oscar
(s’, 4

N Bob

We assume that the authentication code and these two probability distributions
are known to Oscar. The only information that Alice and Bob possess that is not
known to Oscar is the value of the key, K. This is analogous to the way that we
studied the unconditional security of private-key cryptosystems.

10.2 Computing Deception Probabilities

In this section, we look at the computation of deception probabilities. We begin
with a small example of an authentication code.

Example 10.1
Suppose

S=d=Z3

and

K=Z3 xz3.

For each (i, j) E K and each s E S, define

eij(s) = is + j mod 3.

It will be useful to study the authentication matrix, which tabulates all the values
eij (s). For each key K E K and for each s E S, place the authentication tag
eK(S) in row I< and column s of a InI x ISI matrix M. The array M is presented
in Figure 10.3.

Suppose that the key is chosen at random, i.e., ~~(10 = l/9 for each I< E Ic.
We do not specify the probability distributionps since it turns out to be immaterial
in this example.

Let’s first consider an impersonation attack. Oscar will pick a source state s,
and attempt to guess the “correct” authentication tag. Denote by I(0 the actual key
being used (which is unknown to Oscar). Oscar will succeed in deceiving Bob if
he guesses the tag ua = e&(s). However, for any s E S and a E A, it is easy to
verify that there are exactly three (out of nine) authentication rules Ii’ E EC such

308 CHAPTER 10. AUTHENTICATION CODES

FIGURE 10.3
An authentication matrix

that eK (s) = a. (In other words, each symbol occurs three times in each column
of the authentication matrix.) Hence, it follows that Pde = l/3.

Substitution is a bit more complicated to analyze. As a specific case, suppose
Oscar observes the message (0,O) in the channel. This does give Oscar some
information about the key: he now knows that

I(0 E ~(W, (l,O), GAO)).

Now suppose Oscar replaces the message (0,O) with the message (1,l). Then,
he will succeed in his deception if and only if I(0 = (1,l). The probability that
I(0 is the key is l/3, since the key is known to be in the set {(O,O), (1, 0), (2,O)).

A similar analysis can be done for any substitution that Oscar might make. In
general, if Oscar observes the message (s, a), and replaces it with any message
(s’, a’) where s’ # s, then he deceives Bob with probability l/3. We can see
this as follows. Observation of (s, u) restricts the key to one of three possibilities.
Then, for each choice of (s’, a’), there is one key (out of the three possible keys)
under which u’ is the authentication tag for s’. 0

Let’s now discuss how to compute the deception probabilities in general. First,
we consider Pda. As above, let Ka denote the key chosen by Alice and Bob. For
s E S and a E ,4, define payofl(s, u) to be the probability that Bob will accept
the message (s, u) as being authentic. It is not difficult to see that

= c PK(IO.

{K~Ce~(s)=ca}

10.2. COMPUTING DECEPTION PROBABILITIES 309

That is, payofl(s, a) is computing by selecting the rows of the authentication
matrix that have entry a in column s, and summing the probabilities of the corre-
sponding keys.

In order to maximize his chance of success, Oscar will choose (s, u) such that
payofl(s, u) is a maximum. Hence,

Pdo = max{puyo#(s, u) : s E S, a E A}. (10.1)

Note that Pdo does not depend on the probability distribution ps.
Pdl is more difficult to compute, and it may depend on the probability distribu-

tion ps. Let’s first consider the following problem: Suppose Oscar observes the
message (s, u) in the channel. Oscar will substitutesome (s’, u’) for (s, a), where
s’ # s. Hence, for s, s’ E S, s # s’, and a, a’ E A, we define payoff (s’, a’; s, u)
to be the probability that a substitution of (s, u) with (s’, u’) will succeed in
deceiving Bob. Then we can compute the following:

puyoff(s’, u’; s, a) = prob(a’ = eK,(s’)lu = e&(s))

= prOb(a’ = e&(d) A a = e&(S))

prob(a = eK,(s))

c PK (IO
= {K~FC:e~(a)=a,e,(s’)=a’}

c PK(IO
{KEFCXK(S)=~}

c PK (I()
= {K~~:e~(s)=a,e~(s’)=a’}

PaYofl(s, a) *

The numerator of this fraction is found by selecting the rows of the authentication
matrix that have the value a in column s and the value u’ in column s’, and
summing the probabilities of the corresponding keys.

Since Oscar wants to maximize his chance of deceiving Bob, he will compute

p,,, = max{payofl(s’, a’; s, u) : s’ E S, s # s’, a’ E A}.

The quantity p,,, denotes the probability that Oscar can deceive Bob with a
substitution, given that (s, u) is the message observed in the channel.

Now, how do we compute the deception probability Pdl ? Evidently, we have to
compute a weighted average of the quantities p,,, with respect to the probabilities
pM(s, u) of observing messages (s, u) in the channel. That is, we calculate Pdr
to be

(10.2)

310 CHAPTER 10. AUTHENTICATION CODES

FIGURE 10.4
An authentication matrix

The probability distributionp~ is as follows:

f’M(%Q) = I’S(s) x PK(+)

=ps(s) x c PK (I()
{K~K:e~(s)=a)

= P&J x P~YO~(S, a).

In Example 10.1,

PaYofl(s, a) = l/3

for all s, a, so Pdo = l/3. Also, it can be checked that

payof(s’, a’; s, u) = l/3

for all s, s’, a, u’, s # s’. Hence, Pdl = l/3 for any probability distribution ps.
(In general, though, Pdl will depend on ps.)

Let’s look at the computation of Pdo and Pdl for a less “regular” example.

Example 10.2
Consider the authentication matrix of Figure 10.4. Suppose the probability distri-
butions on S and X: are

w(i) = l/4,

1 5 i 5 4; and

PK(l) = 1/2,2’K(2) = PK(3) = l/4.

The values payof(s, u) are as follows:

Pwdf(l, 1) = 3/4

Pwo$(1,2) = l/4

10.2. COMPUTING DECEPTION PROBABILITIES 311

pwzW& 1) = l/2

pwif(2,2) = l/2

PayoifP, 1) = 3/4

pamW,2) = l/4

payofs(4,l) = l/4

payofl(4,2) = 3/4.

Hence, Pdo = 3/4. Oscar’s optimal impersonation strategy is to place any of the
messages (1, 1), (3, 1) or (4,2) into the channel.

Now we turn to the computation of Pdl. First, we present the various values
payofs(s’, a’; s, a) in the form of a matrix. The entry in row (s, u) and column
(s’, a’) is the valuepayofS(s’, a’; s, u).

Thus we have pi,1 = 2/3, p2,2 = l/2, and p,,, = 1 for all other s, a. It is
then a simple matter to evaluate Pdl = 7/8. An optimal substitution strategy for
Oscar is as follows:

(l,l) + (291)

Cl,4 + P,2)

c&l) + (171)
P,4 + (131)
(3,l) + (492)

(3,2) + (~1)

(471) + (191)

(4,2) + (391).

This strategy indeed yields Pdl = 7/8. 0

312 CHAPTER 10. AUTHENTICATION CODES

The computation of Pdl in Example 10.2 is straightforward but lengthy. We can
in fact simplify the computation of Pdl by observing that we divide by the quantity
payo#(s, u) in the computation of p,,,, and then later multiply by payoff (s, u)
in the computation of Pdl. Of course, these two operations cancel each other out.
Suppose we define

Q s,a = max c p&i') :s’ E s,s'# s,u'E A
{KEK:eK(s)=a,eK(a’)=a’}

for all s, a. Then we have the following more concise formula for Pdl:

Pdl = c ps(s)qs,,.
(s,a)EM

(10.3)

10.3 Combinatorial Bounds

We have seen that the security of an authentication code is measured by the decep-
tion probabilities. Hence, we want to construct codes so that these probabilities are
as small as possible. But other considerations are also important. Let’s consider
the various objectives that we might strive for in an authentication code:

I. The deception probabilities Pdo and Pdl must be small enough to obtain
the desired level of security.

2. The number of source states must be large enough so that we can commu-
nicate the desired information by appending an authentication tag to one
source state.

3. The size of the key space should be minimized, since the value of the key
must be communicated over a secure channel. (Note that the key must
be changed every time a message is communicated, as is done with the
One-time Pad.)

In this section, we determine lower bounds on the deception probabilities, which
will be computed in terms of other parameters of the code. Recall that we have
defined an authentication code to consist of a four-tuple (S, A, K, E). Throughout
this section, we will denote IAl = e.

Suppose we fix a source state s E S. Then we can compute:

c f’a?/ofl(s,a) = c c PK(lo
aEd aEd {KEK:eK(s)=a}

= c pKc(I()
KEK

10.3. COMBINATORIAL BOUNDS 313

= 1.

Hence, for every s E S, there exists an authentication tag u(s) such that

PaYo#-(%a(s)) 2 ;.

The following theorem follows easily.

THEOREM 10.1
Suppose (S, d, K, 8) is an authentication code. Then Pdo > l/C where e = Idl.
Further; Pdo = l/t! ifand only if

c
{K~K:e’:e~(s)=a}

P(K) = f (10.4)

foreverysES,uEd.

Now, we turn our attention to substitution. Suppose we fix s, a and s’, where
s’ # s. Then we have the following:

c PK (I()

c puyo~(s’, u~; s, u) = C tKEK:e-:e,(,)=a,eK(J’)=a’)

a'ed a'Ed
c PK (I()

{KEK:eK(s)=a}

c PK (I<)
= {KEK:~K(s)=~}

c PK (I-i-‘)
{KEK:eK(s)=a}

= 1.

So, there exists an authentication tag a’(~‘, s, u) such that

puyoff(s’, u’(s’, s, a); s, u) 2 ;.

The next theorem follows as a consequence.

314 CHAPTERIO. AUTHENTICATIONCODES

THEOREM 10.2
Suppose(S,d,K,&) is an authenticationcode. Then Pdl 1 l/Q where L = IAl.
Furthel; Pdl = l/e ifand only if

c PK(K)
{KEK:eK(s)=a,e,(s’)=o’) 1

c Pn(q =
e

(10.5)

{KEK:erc(s)=a}

foreverys,s’ES,s’#s,a,a’Ed.

PROOF We have

Pdl = c PM(% a)P,,,
(s,aHM

> c PM(sya) -
(s,a)EM

e

1
= -.

e

Further, equality occurs if and only if p,,, = l/e for every (s, a). But this is
in turn equivalent to the condition that payofs(s’, a’; s, a) = l/e for every (s, a).
I

Combining Theorems 10.1 and 10.2, we get the following:

THEOREM IO.3
Suppose (S, d, K, &) is an authentication code, where e = IAl. Then Pdo =
Pdl = l/L ifand only if

c
{KEK:e,(d)=(l,e~(S’)=a’}

PK(:(IO = f (10.6)

forevery s,s’ E S,s’ # s, a,a’ Ed.

PROOF Equations (10.4) and (10.5) imply Equation (10.6). Conversely, Equation
(10.6) implies Equations (10.4) and (10.5). 1

If the keys are equiprobable, then we obtain the following corollary:

315

FIGURE 10.5
An OA(3,3,1)

/o 0 0)
1 1 1
2 2 2
0 1 2
1 2 0
2 0 1
0 2 1
1 0 2
2 1 0)

COROLLARY IO.4
Suppose (S, d, K, C) is an authentication code where ! =
chosen equiprobably. Then Pdo = Pdl = l/e if and only if

IdI, and keys are

‘9 (10.7) I{K E K : eK(s) = a,eK(s’) = a’}1 = 9

for every s, s’ E S,s’ # s, a, a’ E A.

10.3.1 Orthogonal Arrays

In this section, we look at the connections between authentication codes and certain
combinatorial structures called orthogonal arrays. First, we give a definition.

DEFINITION IO.2 An orthogonal array OA(n, k, X) is a Xn2 x k array of n
symbols, such that in any two columns of the array every one of the possible n2
pairs of symbols occurs in exactly X TOWS.

Orthogonal arrays are well-studied structures in combinatorial design theory, and
are equivalent to other structures such as transversal designs, mutually orthogonal
Latin squares and nets.

In Figure 10.5, we present an orthogonal array OA(3,3, 1) which is obtained
from the authentication matrix of Figure 10.3. Any orthogonal array OA(n, k, X)
can be used to construct an authentication code with Pdo = Pdl = l/n, as stated
in the following theorem.

THEOREM 10.5
Suppose there is an orthogonal array OA(n , k , X). Then there is an authentication
code (S, A, K, E), where ISI = k, IdI = n, IKl = Xn2 and Pdo = Pdl = I/n.

316 CHAPTERlO. AUTHENTICATIONCODES

PROOF Use each row of the orthogonal array as an authentication rule with equal
probability 1/(Xn2). The correspondences are as follows:

orthogonal array authentication code
row authentication rule

column source state
symbol authentication tag

Since Equation (10.7) is satisfied, we can apply Corollary 10.4, obtaining a code
with the stated properties. 1

10.3.2 Constructions and Bounds for OAs

Suppose that we construct an authentication code from an OA(n, k, X). The
parameter n determines the number of authenticators (i.e., the security of the
code), while the parameter k determines the number of source states the code can
accommodate. The parameter X relates only to the number of keys, which is Xn2.
Of course, the case X = 1 is most desirable, but we will see that it is sometimes
necessary to use orthogonal arrays with higher values of X.

Suppose we want to construct an authentication code with a specified source
set S, and a specified security level c (i.e., so that Pdo 5 c and Pdl 5 E). An
appropriate orthogonal array will satisfy the following conditions:

2. k 1 ISI (observe that we can always delete one or more columns from an
orthogonal array and the resulting array is still an orthogonal array, so we
do not require k = ISI)

3. X is minimized, subject to the two previous conditions being satisfied.

Let’s first consider orthogonal arrays with JI = 1. For a given value of n, we are
interested in maximizing the number of columns. Here is a necessary condition
for existence:

THEOREMlO.
Suppose there exists an OA(n, k, 1). Then k 5 n + 1.

PROOF LetAbeanOA(n,k,1)onsymbolsetX={0,1,...,n-1}.Suppose
T is a permutation of X, and we permute the symbols in any column of A according
to the permutation rr. The result is again an OA(n, k, 1). Hence, by applying a
succession of permutations of this type, we can assume without loss of generality
that the first row of A is (00. . .O).

We next show that each symbol must occur exactly n times in each column of
A. Choose two columns, say c and c’, and let t be any symbol. Then for each
symbol x’, there is a unique row of A in which x occurs in column c and x’ occurs

10.3. COMBINATORIAL BOUNDS 317

in column c’. Letting x’ vary over X, we see that x occurs exactly n times in
column c.

Now, since the first row is (00. . .O), we have exhausted all occurrences of
ordered pairs (0,O). Hence, no other row contains more than one occurrence of
0. Now, let us count the number of rows containing at least one 0: the total is
1 + k(n - 1). But this total cannot exceed the total number of rows in A, which
is n2. Hence, 1 + k(n - 1) 5 n2, so k 5 n + 1, as desired. 1

We now present a construction for orthogonal arrays with X = 1 in which
k = n. This is, in fact, the construction that was used to obtain the orthogonal
array presented in Figure 10.5.

THEOREM 10.7
Suppose p is prime. Then there exists an orthogonal array OA(p, p, 1).

PROOF The array will be a p2 x p array, where the rows are indexed by ZP x Z&,
and the columns are indexed by ZP. The entry in row (i, j) and column x is
defined to be ia: + j mod p.

Suppose we choose two columns, x, y, x # y, and two symbols a, b. We want
to find a (unique) row (i, j) such that a occurs in column x and b occurs in column
y of row (i, j). Hence, we want to solve the two equations

a=ix+j

b=iy+j

for the unknowns i and j (where all arithmetic is done in the field ZP). But this
system has the unique solution

i= (a-b)(x-y)-‘modp

j=a-ixmodp.

Hence, we have an orthogonal array. I

We remark that any OA(n, n, 1) can be extended by one column to form an
OA(n, n + 1, 1) (see the Exercises).. Hence, using Theorem 10.7, we can obtain
an infinite class of OA’s that meet the bound of Theorem 10.6 with equality.

Theorem 10.6 tells us that X > 1 if k > n + 1. We will prove a more general
result that places a lower bound on X as a function of n and k. First, however, we
derive an important inequality that we will use in the proof.

318 CHAPTERlO. AUTHENTICATIONCODES

LEMMA 10.8
Suppose bl , . . . , b, are real numbers. Then

m pi’ 2 (pJ2.

PROOF Apply Jensen’s Inequality (Theorem 2.5) with f(x) = -x2 and ai =
l/m, 1 5 i 5 m. The function f is continuous and concave, so we obtain

which simplifies to give the desired result. I

THEOREM 10.9
Suppose there exists an OA(n, k, X). Then

x , k(n - 1) + 1
- n2 *

PROOF LetAbeanOA(n,k,X)onsymbolsetX = {O,l,...,n- l},where,
without loss of generality, the first row of A is (00. . .O) (as in Theorem 10.6).

Let us denote the set of rows of A by R, let ~1 denote the first row, and let
Rr = R\{rt}. For any row P of A, denote by x,. the number of occurrences of
0 in row r. It is easy to count the total number of occurrences of 0 in RI. Since
each symbol must occur exactly Xn times in each column of A, we have that

c x, = k(Xn - 1).
rERl

Now, the number of times the ordered pair (0,O) occurs in rows in Rt is

c x,(x, - 1) = c xv2 - c xr
rERl rER2 TER2

= c xr2 - k(Xn - 1).
rER2

Applying Lemma 10.8, we obtain

(k(Xn - 1))2
c XT22 Xn2-1 '

rez1

and hence

c G(G - 1) 1 (k(XXnnZI:))2 - k(Xn - 1).
TE’RI

10.3. COMBINATORIAL BOUNDS 319

On the other hand, in any given pair of columns, the ordered pair (0,O) occurs
in exactly X rows. Since there are k(k - 1) ordered pairs of columns, it follows
that the exact number of occurrences of the ordered pair (0,O) in rows in 721 is
(X - l)k(k - 1). We therefore have

(A - l)k(k - 1) 1 (‘“‘xx,“2T:))* - k(Xn - l),

and hence

((A - l)k(k - 1) + k(Xn - 1)) (X2 - 1) 2 (k(Xn - l))?

If we divide out a factor of k, we get

(Xk - k - X + Xn)(Xn* - 1) > k(Xn - l)*.

Expanding, we have

X*kn* - Xkn* - X*n* + X2n3 - Xk + k + X - Xn 2 X*kn* - 2Xkn + k.

This simplifies to give

-X*n* + X2n3 >_ Xkn* + Xk - X + Xn - 2Xkn,

or

X2(n3 - n*) 1 X(k(n - l)* + n - 1).

Finally, taking out a factor of X(n - 1), we obtain

Xn* 2 k(n - 1) + 1,

which is the desired bound. 1

Our next result establishes the existence of an infinite class of orthogonal arrays
that meet the above bound with equality.

THEOREM 10.10

Suppose p is prime and d 2 2 is an integer: Then there is an orthogonal array
WP, (pd - l)l(p - I), pd-*).

PROOF Denote by (&,)d the vector space of all d-tuples over ZP. We will
construct A, an OA(p, (pd - l)/(p - l), pd-*) in which the rows and columns are
indexed by certain vectors in (Z$)d. The entries of A will be elements of Zr. The
set of rows is defined to be R = (ZP)d; the set of columns is

c = {(cl, . . . , cd) E &) d:33’,OIjId-l,c,=...=cj=O,cj+,= 1).

320 CHAPTERlO. AUTHENTICATIONCODES

R consists of all vectors in (Zp)d, so IRI = pd. C consists of all non-zero
vectors that have the first non-zero coordinate equal to 1. Observe that

ICI = pd - l
p-l’

and that no two vectors in C are scalar multiples of each other.
Now, for each P E R and each E E C, define

A(F, C) = P. z,

where . denotes the inner product of two vectors (reduced modulo p).
We prove that A is the desired orthogonal array. Let b, F E C be two distinct

columns, and let 2, y E ;2,. We will count the number of rows P such that
A(p,&)=~andA(i;,~)=y. Denoter=(rt,r2 ,..., rd),8=(bl,b2 ,..., bd)
andZ= (cr,~,..., cd). The two equations Fe 6 = 2, r. C = y can be written as
two linear equations in Z&p:

blri+.. . + b&-d = 2

clrl+.. . •+ cdrd = y.

This is a system of two linear equations in the d unknowns 9-1, . . . rd. Since ‘i; and
C are not scalar multiples, the two equations are linearly independent. Hence, this
system has a solution space of dimension d - 2. That is, the number of solutions
(i.e., the number of rows in which z occurs in column 8 and y occurs in column
Z) is pd-*, as desired. 1

Let’s carry out a small example of this construction.

Example 10.3
Suppose we take p = 2, d = 3. Then we will construct an OA(2,7,2). We have

R = {ouO,001,010,011, loo, 101,110,111}

c = {001,010,011, loo, 101,110,111}.

The orthogonal array in Figure 10.6 results. 0

10.3.3 Characterizations of Authentication Codes

To this point, we have studied authentication codes obtained from orthogonal
arrays. Then we looked at necessary existence conditions and constructions for
orthogonal arrays. One might wonder whether there are better alternatives to the

10.3. COMBINATORIAL BOUNDS 321

FIGURE10.6
An OA(2,7,2)

fooooooo
1010101
0110011
1100110
0001111
1011010
0111100

(1101001

orthogonal array approach. However, two characterization theorems tell us that
this is not the case if we restrict our attention to authentication codes in which the
deception probabilities are as small as possible.

We first prove the following partial converse to Theorem 10.5:

THEOREMIO.11

Suppose (S, A, K, E) is anauthenticationcode where IAl = n and Pdo = Pdl =
l/n. Then llcl 2 n*. Furthel; IK I = n* if and only if there is an orthogonal array
OA(n, k, 1) where IS) = k, andpx(K) = l/n*forevery key I< E Ic.

PROOF Fix two (arbitrary) source states s and s’, s # s’, and consider Equation
(10.6). For each ordered pair (a, a’) of authentication tags, define

K a,at = {K E K : eK(s) = a,eK(s’) = u’}.

Then IIC,+r I > 0 for every pair (a, a’). Also, then* sets Ic,,+ are disjoint. Hence,
licl> n*.

Now, suppose that IKl = n*. Then lK,,,~l = 1 for every pair (a, a’), and
Equation (10.6) tells us that px(K) = l/n* for every key I< E Ic.

It remains to show that the authentication matrix forms an orthogonal array
OA(n, k, 1). Consider the columns indexed by the source states s and s’. Since
/&,,,~I = 1 for every (a, a’), we have every ordered pair occurring exactly once
in these two columns. Since, s and s’ are arbitrary, we see that every ordered pair
occurs exactly once in any two columns. I

The following characterization is more difficult; we state it without proof.

THEOREMlO.

Suppose (S, A, K, E) is an authentication code where IAl = n and Pdo = Pdl =
l/n. Then 1x1 2 k(n - 1) + 1. Furthel; [Xl= k(n - 1) + 1 ifandonlyifthere

322 CHAPTER 10. AUTHENTICATION CODES

is an orthogonalarray OA(n, k, A), where ISI = k, X = (k(n - 1) + 1)/n*, and
~~(10 = l/(k(n - 1) + 1)forevet-y key 1-C E Ic.

REMARK Notice that Theorem 10.10 provides an infinite class of orthogonal
arrays that meet the bound of Theorem 10.12 with equality. 1

10.4 Entropy Bounds

In this section, we use entropy techniques to obtain bounds on the deception
probabilities. The first of these is a bound on Pdo.

THEOREM 10.13
Suppose that (S, A, Kc, f) is an authentication code. Then

log Pdo 2 H(KIM) - H(K).

PROOF From Equation (lO.l), we have

Pdo = max{payof(s, a) : s E S, a E A}.

Since the maximum of the values payof(s, e) is greater than their weighted
average, we obtain

Pdo 2 c PM (8, ~)Pw?f(Sj a).
SES,L3EA

Hence, by Jensen’s inequality (Theorem 2.3, we have

> c PM 6, u, l”gPaYofs(s~ (+
sES,aEA

Recalling from Section 10.2 that

PM(S, 0) = ~4s) x PaYofs(s, a),

we see that

log Pdo 2 c ps(s)payoff(s, a) hwwfs(s, a)-
8ES,GA

10.4. ENTROPYBOUNDS 323

Now, we observe that payofs(s, u) = p~(uls) (i.e., the probability that a is the
authenticator, given that s is the source state). Hence,

log Pdo 2 c PS(s)PA(+) logpA
8ES,NA

= -H(AIS),

by the definition of conditional entropy. We complete the proof by showing that
-H(AIS) = H(KIM) - H(K). This follows from basic entropy identities. On
one hand, we have

H(K,A,S) = H(KIA,S)+ H(AIS)+ H(S).

On the other hand, we compute

H(K, A, S) = H(AIK, S) + H(K, S)

= H(K) + H(S),

where we use the facts that H(AIK, S) = 0 since the key and source state uniquely
determine the authenticator, and H(K, S) = H(K) + H(S) since the source and
key are independent events.

Equating the two expressions for H(K, A, S), we obtain

-H(AIS) = H(KIA, S) - H(K).

But a message m = (s, u) is defined to consist of a source state and an authenticator
(i.e., M = S x A). Hence, H(KIA, S) = H(KIM) and the proof is complete.
I

There is a similar bound for Pdl which we will not prove here. It is as follows:

THEOREMlO.
Suppose that (S, A, IC, E) is an authentication code. Then

log Pdl 2 H(KIM*) - H(KIM).

We need to define what we mean by the random variable M*. Suppose we
authenticate two distinct source states using the same key K. In this way, we
obtain an ordered pair of messages (ml, mz) E M x M. In order to define
a probability distribution on M x M, it is necessary to define a probability
distribution on S x S, with the stipulation that psxs(s, s) = 0 for every s E S
(that is, we do not allow source states to be repeated). The probability distributions
on K and S x S will induce a probability distribution on M x M, in the same
way that the probability distributions on K and S induce a probability distribution
onM.

324 CHAPTER 10. AUTHENTICATION CODES

As an illustration of the two bounds, we consider our basic orthogonal array
construction and show that the bounds of Theorems 10.13 and 10.14 are both met
with equality. First, it is clear that

H(K) = logAn*,

since each of the An* authentication rules are chosen with equal probability. Let’s
next turn to the computation of H(KIM). If any message m = (s, u) is observed,
this restricts the possible keys to a subset of size Xn. Each of these An keys is
equally likely. Hence, H(Klm) = log Xn, for any message m. Then, we get the
following:

HWIW = c pM(m)HWlm)
mEM

= c PM(m)logAn
mEM

= log Xn.

Thus we have

H(KIM) - H(K) = log Xn - log Xn* = - logn = log Pdo,

so the bound is met with equality.
If we observe two messages which have been produced using the same key (and

different source states), then the number of possible keys is reduced to X. Using
similar reasoning as above, we have that H(KIM*) = log X. Then

H(KIM*) - H(KIM) = logA - 1ogXn = -1ogn = logPd1,

so this bound is also met with equality.

10.5 Notes and References

Authentication codes were invented in 1974 by Gilbert, MacWilliams, and Sloane
[GMS74]. Much of the theory of authentication codes was developed by Simmons,
who proved many fundamental results in the area. ‘lwo useful survey articles by
Simmons are [S192] and [SISS]. Another good survey is Massey [M~86].

The connections between orthogonal arrays and authentication codes has been
addressed by several researchers. The treatment here is based on three papers
by Stinson [S~88], [ST901 and [S?92]. Orthogonal arrays have been studied for
over 45 years by researchers in statistics and in combinatorial design theory. For
example, the bound in Theorem 10.9 was first proved by Plackett and Berman in
1945 in [PB45]. Many interesting results on orthogonal arrays can be found in

Exercises 325

various textbooks on combinatorial design theory such as Beth, Jungnickel, and
Lenz [BJL85].

Finally, the use of entropy techniques in the study of authentication codes
was introduced by Simmons. The bound of Theorem 10.13 was first proved in
Simmons [Sr85]; a proof of Theorem 10.14 can be found in Walker [wA90].

Exercises

10.1 Compute Pdc and Pdl for the following authentication code, represented in matrix
form:

The probability distributions on S and Ic are as follows:

ps(1) = ps(4) = 1/6,ps(2) = ps(3) = l/3

PK(~) = p&6) = 1/4,pr(2) = pi = pi =PK(~) = l/8.
What are the optimal impersonation and substitution strategies?

10.2 We have seen a construction for an orthogonal array OA(p, p, 1) when p is prime.
Prove that this OA(p, p, 1) can always be extended by one extra column to form an
OA(p, p + 1, 1). Illustrate your construction in the case p = 5.

10.3 SupposeAisanOA(n~,k,X~)onsymbolset{l,...,n~}andsupposeBisan
OA(nz,k,X~)onsymbolset{l,. . . , nz}. WeconstmctC,anOA(nins,k,XiX~)on
symbolset{l,..., ni} x {l,..., nz}, as follows: for each row t-1 = (xi,. . . ,x1;)
ofAandforeachrowsi =(yi,...,yk)ofB,definearow

t1 = ((or Yl), . . .1 (a Yk))

of C. Prove that C is indeed an OA(nins, k, X,X*).
10.4 Construct an orthogonal array OA(3,13,3).
10.5 Write a computer program to compute H(K), H(KIM) and H(KIM*) for the

authentication code from Exercise 10.1. The probability distribution on sequences
of two sources is as follows:

psz(1,2) =p9(1,3) =psz(1,4) = l/18

P&, 1) = P&, 3) = ~~~(2~4) = 119

ps2(3, 1) = ~~~(3~2) = ~~(3~4) = l/9

ps2(4, 1) = p&4,2) = p&4,3) = l/18

Compare the entropy bounds for Pdaand Pdl with the actual values you computed
in Exercise 10.1.

326 CHAPTER 10. AUTHENTICATION CODES

HINT To computepK(klm), use Bayes’ formula

pK(qm) = pM(ml~)PG)
PM(m)

We already know how to calculate pM (m). To compute PM (mlk), write m =
(~,a), and then observe thatpM(mllE) = ps(s) if ek(s) = a, andpM(mllc) = 0
otherwise.

To computepK(klml, mz), use Bayes’ formula

pK(klml m2) = pMz(ml~ m21k)pK(k)

P,w(ml, m2) ’

pM~(m~,m~)canbecalculatedasfollows: writeml = (sl,al)andm2 = (sz,az).
Then

pM2(ml,m2) = psz(s1,s2) x
c

PK(lC).
{JCEK:e*(s,)=a,,ek(SZ)=a*}

(Note the similarity with the computation of p(m).) To compute pMz (ml, mzlk),
observe that pMz(ml, mzlk) = pg(s~, ~2) if ek(sI) = al and ek(s2) = a2, and
pM2(ml, mzllc) = 0, otherwise.

	CRYPTOGRAPHY Theory and Practice
	Preface
	1 Classical Cryptography
	2 Shannon’s Theory
	3 The Data Encryption Standard
	4 The RSA System and Factoring
	5 Other Public-key Cryptosystems
	6 Signature Schemes
	7 Hash Functions
	8 Key Distribution and Key Agreement
	9 Identification Schemes
	Authentication Codes
	10.1 Introduction
	FIGURE 10.1
	FIGURE 10.2

	10.2 Computing Deception Probabilities
	FIGURE 10.3
	FIGURE 10.4

	10.3 Combinatorial Bounds
	10.3.1 Orthogonal Arrays
	10.3.2 Constructions and Bounds for OAs
	10.3.3 Characterizations of Authentication Codes

	10.4 Entropy Bounds
	10.5 Notes and References
	Exercises

	11 Secret Sharing Schemes
	12 Pseudo-random Number Generation
	13 Zero-knowledge Proofs
	Bibliography
	Index

	Next Chapter:
	Next:
	Home:
	Previous:
	Previous Chapter:

