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Classical Cryptography 

1.1 Introduction: Some Simple Cryptosystems 

The fundamental objective of cryptography is to enable two people, usually re- 
ferred to as Alice and Bob, to communicate over an insecure channel in such a way 
that an opponent, Oscar, cannot understand what is being said. This channel could 
be a telephone line or computer network, for example. The information that Alice 
wants to send to Bob, which we call “plaintext,” can be English text, numerical 
data, or anything at all - its structure is completely arbitrary. Alice encrypts 
the plaintext, using a predetermined key, and sends the resulting ciphertext over 
the channel. Oscar, upon seeing the ciphertext in the channel by eavesdropping, 
cannot determine what the plaintext was; but Bob, who knows the encryption key, 
can decrypt the ciphertext and reconstruct the plaintext. 

This concept is described more formally using the following mathematical 
notation. 

DEFINITION 1.1. A cryptosystem is a five -tuple (P, C, K, f, V), where the fol- 
lowing conditions are satisfied: 

1. P is a finite set of possible plain texts 

2. C is a finite set of possible ciphertexts 
3. K, the keyspace, is a finite set of possible keys 
4. For each IT E EC, there is an encryption rule eK E Z. and a corresponding 

decryption rule dK E 2). Each eK : P + C and dK : C + P are functions 
such that dK(eK(x)) = x for every plaintext x E P. 

The main property is property 4. It says that if a plaintext x is encrypted using eK, 
and the resulting ciphertext is subsequently decrypted using dK, then the original 
plaintext x results. 

Alice and Bob will employ the following protocol to use a specific cryptosystem. 
First, they choose a random key K E K. This is done when they are in the same 
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Oscar 

secure channel 
K 

FIGURE 1.1 
The Communication Channel 

place and are not being observed by Oscar, or, alternatively, when they do have 
access to a secure channel, in which case they can be in different places. At a later 
time, suppose Alice wants to communicate a message to Bob over an insecure 
channel. We suppose that this message is a string 

for some integer n 2 1, where each plaintext symbol xi E P, 1 5 i 5 n. Each 
xi is encrypted using the encryption rule eK specified by the predetermined key 
Ii. Hence, Alice computes yi = eK(zi), 1 5 i 5 n, and the resulting ciphertext 
string 

y = YlY2...yn 

is sent over the channel. When Bob receives yt y2 . . . y,,, he decrypts it using the 
decryption function dK, obtaining the original plaintext string, 21x2 . . . t,. See 
Figure 1.1 for an illustration of the communication channel. 

Clearly, it must be the case that each encryption function eK is an injective 
function (i.e., one-to-one), otherwise, decryption could not be accomplished in an 
unambiguous manner. For example, if 

y = eK(xl) = eK(x2) 

where XI # x2, then Bob has no way of knowing whether y should decrypt to XI or 
x2. Note that if P = C, it follows that each encryption function is a permutation. 
That is, if the set of plaintexts and ciphertexts are identical, then each encryption 
function just rearranges (or permutes) the elements of this set. 
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1.1.1 The Shift Cipher 

In this section, we will describe the Shift Cipher, which is based on modular 
arithmetic. But first we review some basic definitions of modular arithmetic. 

DEFINITION I.2 Suppose a and b are integers, and m is a positive integer: Then 
we write a E b (mod m) if m divides b - a. The phrase a = b (mod m) is read 
as “a is congruent to b modulo m.” The integer m is called the modulus. 

Suppose we divide a and b by m, obtaining integer quotients and remainders, 
where the remainders are between 0 and m - 1. That is, a = qlm + rt and 
b = qzm + r2, where 0 5 rt 5 m - 1 and 0 5 rz 5 m - 1. Then it is not 
difficult to see that a G b (mod m) if and only if rt = r2. We will use the notation 
a mod m (without parentheses) to denote the remainder when a is divided by m, 
i.e., the value rt above. Thus a E b (mod m) if and only if a mod m = b mod m. 
If we replace a by a mod m, we say that a is reduced modulo m. 

REMARK Many computer programming languages define a mod m to be the 
remainder in the range -m + 1, . . . , m - 1 having the same sign as a. For 
example, -18 mod 7 would be -4, rather than 3 as we defined it above. But 
for our purposes, it is much more convenient to define a mod m always to be 
non-negative. I 

We can now define arithmetic modulo m: Z, is defined to be the set { 0, . . . , m- 
l}, equipped with two operations, + and x. Addition and multiplication in Z, 
work exactly like real addition and multiplication, except that the results are 
reduced modulo m. 

For example, suppose we want to compute 11 x 13 in &5. As integers, we 
have 11 x 13 = 143. To reduce 143 modulo 16, we just perform ordinary long 
division: 143 = 8 x 16 + 15, so 143 mod 16 = 15, and hence 11 x 13 = 15 in 
&6. 

0 for any a E I& 

6. multiplication is closed, i.e., for any a, b E Z,, ab E Z,,, 

7. multiplication is commutative, i.e., for any a, b E Z,,,, ab = ba 

8. multiplicationis associative, i.e., for any a, b, c E Z,, (ab)c = a(bc) 
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FIGURE 1.2 
Shift Cipher 
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9. 1 is a multiplicative identity, i.e., for any a E Z,, a x 1 = 1 x a = a 
IO. multiplication distributes over addition, i.e., for any a, b, c E &, (a+ b)c = 

(ac) + (bc) and a(b + c) = (ab) + (ac). 

Properties 1, 3-5 say that Z,,, forms an algebraic structure called a group with 
respect to the addition operation. Since property 4 also holds, the group is said to 
be abelian. 

Properties l-10 establish that Z, is, in fact, a ring. We will see many other 
examples of groups and rings in this book. Some familiar examples of rings include 
the integers, Z; the real numbers, R; and the complex numbers, Cc. However, these 
are all infinite rings, and our attention will be confined almost exclusively to finite 
rings. 

Since additive inverses exist in &, we can also subtract elements in ;2,. We 
define a - b in Z,,, to be a + m - b mod m. Equivalently, we can compute the 
integer a - b and then reduce it modulo m. 

For example, to compute 1 1 - 18 in Zst , we can evaluate 1 1 + 13 mod 3 1 = 24. 
Alternatively, we can first subtract 18 from 11, obtaining -7 and then compute 
-7 mod 31 = 24. 

We present the Shift Cipher in Figure 1.2. It is defined over & since there 
are 26 letters in the English alphabet, though it could be defined over Z, for any 
modulus m. It is easy to see that the Shift Cipher forms a cryptosystem as defined 
above, i.e., dK(eK(x)) = x for every 2 E &6. 

REMARK For the particular key K = 3, the cryptosystem is often called the 
Caesar Cipher, which was purportedly used by Julius Caesar. 1 

We would use the Shift Cipher (with a modulus of 26) to encrypt ordinary 
English text by setting up a correspondence between alphabetic characters and 
residues modulo 26 as follows: A +) 0, B +) 1, . . ., 2 +) 25. Since we will be 
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using this correspondence in several examples, let’s record it for future use: 

A small example will illustrate. 

Example 1.1 
Suppose the key for a Shift Cipher is K = 11, and the plaintext is 

We first convert the plaintext to a sequence of integers using the specified corre- 
spondence, obtaining the following: 

22 4 22 8 11 11 12 4 4 19 
0 19 12 8 3 13 8 6 7 19 

Next, we add 11 to each value, reducing each sum modulo 26: 

7 15 7 19 22 22 23 15 15 4 
11 4 23 19 14 24 19 17 18 4 

Finally, we convert the sequence of integers to alphabetic characters, obtaining 
the ciphertext: 

To decrypt the ciphertext, Bob will first convert the ciphertext to a sequence 
of integers, then subtract 11 from each value (reducing modulo 26), and finally 
convert the sequence of integers to alphabetic characters. 0 

REMARK In the above example we are using upper case letters for ciphertext 
and lower case letters for plaintext, in order to improve readability. We will do 
this elsewhere as well. 1 

If a cryptosystem is to be of practical use, it should satisfy certain properties. 
We informally enumerate two of these properties now. 
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1. Each encryption function eK and each decryption function dK should be 
efficiently computable. 

2. An opponent, upon seeing a ciphertext string y, should be unable to deter- 
mine the key I< that was used, or the plaintext string x. 

The second property is defining, in a very vague way, the idea of “security.” 
The process of attempting to compute the key IT, given a string of ciphertext y, is 
called cryptanalysis. (We will make these concepts more precise as we proceed.) 
Note that, if Oscar can determine I(, then he can decrypt y just as Bob would, 
using dK. Hence, determining IC is at least as difficult as determining the plaintext 
string x. 

We observe that the Shift Cipher (modulo 26) is not secure, since it can be 
cryptanalyzed by the obvious method of exhaustive key search. Since there are 
only 26 possible keys, it is easy to try every possible decryption rule dK until 
a “meaningful” plaintext string is obtained. This is illustrated in the following 
example. 

Example 1.2 
Given the ciphertext string 

we successively try the decryption keys do, dl , etc. The following is obtained: 

At this point, we have determined the plaintext and we can stop. The key is 
K=9. 0 

On average, a plaintext will be computed after trying 26/2 = 13 decryption 
rules. 
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FIGURE 1.3 
Substitution Cipher 

As the above example indicates, a necessary condition for a cryptosystem to 
be secure is that an exhaustive key search should be infeasible; i.e., the keyspace 
should be very large. As might be expected, a large keyspace is not sufficient to 
guarantee security. 

1.1.2 The Substitution Cipher 

Another well-known cryptosystem is the Substitution Cipher. This cryptosystem 
has been used for hundreds of years. Puzzle “cryptograms” in newspapers are 
examples of Substitution Ciphers. This cipher is defined in Figure 1.3. 

Actually, in the case of the Substitution Cipher, we might as well take P and 
C both to be the 26-letter English alphabet. We used &j in the Shift Cipher 
because encryption and decryption were algebraic operations. But in the Sub- 
stitution Cipher, it is more convenient to think of encryption and decryption as 
permutations of alphabetic characters. 

Here is an example of a “random” permutation, rr, which could comprise an 
encryption function. (As before, plaintext characters are written in lower case and 
ciphertext characters are written in upper case.) 
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alphabetical order. The following is obtained: 

Hence, dn(A) = d, d,(B) = 1, etc. 
As an exercise, the reader might decrypt the following ciphertext using this 

decryption function: 

A key for the Substitution Cipher just consists of a permutation of the 26 
alphabetic characters. The number of these permutations is 26!, which is more 
than 4.0 x 1 026, a very large number. Thus, an exhaustive key search is infeasible, 
even for a computer. However, we shall see later that a Substitution Cipher can 
easily be cryptanalyzed by other methods. 

1.1.3 The Affine Cipher 

The Shift Cipher is a special case of the Substitution Cipher which includes 
only 26 of the 26! possible permutations of 26 elements. Another special case of 
the Substitution Cipher is the Affine Cipher, which we describe now. In the 
Affine Cipher, we restrict the encryption functions to functions of the form 

e(z) = ~3: + b mod 26, 

a, b E &6. These functions are Called affine functions, hence the name Affine 
Cipher. (Observe that when a = 1, we have a Shift Cipher.) 

In order that decryption is possible, it is necessary to ask when an affine function 
is injective. In other words, for any y E &a, we want the congruence 

~3: + b - y (mod 26) 

to have a unique solution for 2. This congruence is equivalent to 

a+ E y-b (mod 26). 

Now, as y varies over &rj, so, too, does y - b vary over &j. Hence, it Suffices to 
study the congruence KC G y (mod 26) (y E &6). 

We claim that this congruence has a unique solution for every y if and only if 
gcd(a, 26) = 1 (where the gcd function denotes the greatest common divisor of 
its arguments). First, suppose that gcd(u, 26) = d > 1. Then the congruence 
CM s 0 (mod 26) has (at least) two distinct solutions in z.26, namely 1: = 0 and 
z = 26/d. In this case e(z) = ux + b mod 26 is not an injective function and 
hence not a valid encryption function. 
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For example, since gcd(4,26) = 2, it follows that 4t+7 is not a valid encryption 
function: t and 2 -t 13 will encrypt to the same value, for any t E &i. 

Let’s next suppose that gcd(u, 26) = 1. Suppose for some x:1 and x2 that 

ax1 E ux2 (mod 26). 

Then 

a(xl - 4 E 0 (mod 26), 

and thus 

26 1 a(~ - ~2). 

We now make use of a property of division: if gcd(u, b) = 1 and a 1 bc, then a 1 c. 
Since 26 1 u(xt - ~2) and gcd(u, 26) = 1, we must therefore have that 

26 I (XI - x2), 

i.e., xi 3 22 (mod 26). 
At this point we have shown that, if gcd(u, 26) = 1, then a congruence of the 

form KC G y (mod 26) has, at most, one solution in &6. Hence, if we let t vary 
over &s, then ux mod 26 takes on 26 distinct values modulo 26. That is, it takes 
on every value exactly once. It follows that, for any y E iZ26, the congruence 
uz E y (mod 26) has a unique solution for y. 

There is nothing special about the number 26 in this argument. The following 
result can be proved in an analogous fashion. 

THEOREM 1.1 
The congruence uz G b (mod m) has a uniquesolution x E Z, for every b E Z, 
if and only if gcd(a, m) = 1. 

Since 26 = 2 x 13, the values of a E i&j such that gcd(u, 26) = 1 are a = 1, 
3, 5, 7, 9, 11, 15, 17, 19, 21, 23, and 25. The parameter b can be any element in 
&6. Hence the Affine Cipher has 12 x 26 = 312 possible keys. (Of course, this 
is much too small to be secure.) 

Let’s now consider the general setting where the modulus is m. We need another 
definition from number theory. 

DEFINITION 1.3 Suppose a 2 1 and m > 2 are integers. If gcd(u, m) = 1, 
then we say that (I and m are relatively prime. The number of integers in Z, 
that are relatively prime to m is often denoted by d(m) (this function is culled the 
Euler phi-function). 

A well-known result from number theory gives the value of d(m) in terms of 
the prime power factorization of m. (An integer p > 1 is prime if it has no positive 
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divisors other than 1 and p. Every integer m > 1 can be factored as a product of 
powers of primes in a unique way. For example, 60 = 2* x 3 x 5 and 98 = 2 x 7*.) 

We record the formula for 4(m) in the following theorem. 

THEOREM I.2 
Suppose 

m= fine’, 
i=l 

where the pi ‘s are distinctprimes and ei > 0, 1 5 i 5 n. Then 

d(m) = fi(pi’, - ~4’~‘). 
i=l 

It follows that the number of keys in the Affine Cipher over Z& is m+(m), 
where 4(m) is given by the formula above. (The number of choices for b is 
m, and the number of choices for a is $(m), where the encryption function is 
e(x) = ux + b.) For example, when m = 60, $(60) = 2 x 2 x 4 = 16 and the 
number of keys in the Affine Cipher is 960. 

Let’s now consider the decryption operation in the Affine Cipher with modulus 
m = 26. Suppose that gcd(q26) = 1. To decrypt, we need to solve the 
congruence y E ux + b (mod 26) for x. The discussion above establishes that the 
congruence will have a unique solution in &jr but it does not give us an efficient 
method of finding the solution. What we require is an efficient algorithm to do 
this. Fortunately, some further results on modular arithmetic will provide us with 
the efficient decryption algorithm we seek. 

We require the idea of a multiplicative inverse. 

DEFINITION I.4 Suppose a E Z, . The multiplicative inverse of a is an element 
u-’ E Z,,, such that au-’ G a-‘a z 1 (mod m). 

By similar arguments to those used above, it can be shown that a has a multi- 
plicative inverse modulo m if and only if gcd( a, m) = 1; and if a multiplicative 
inverse exists, it is unique. Also, observe that if b = a-‘, then a = b-‘. If p is 
prime, then every non-zero element of ZP has a multilicative inverse. A ring in 
which this is true is called afield. 

In a later section, we will describe an efficient algorithm for computing mul- 
tiplicative inverses in iZ, for any m. However, in &6, trial and error suffices to 
find the multiplicative inverses of the elements relatively prime to 26: 1-l = 1, 
3-l = 9, 5-l = 21,7-l = 15 , 11-l = 19, 17-l = 23, and 25-l = 25. (All 
of these can be verified easily. For example, 7 x 15 = 105 = 1 mod 26, so 
7-l = 15.) 
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FIGURE 1.4 
Affine Cipher 

Consider our congruence y q uz + b (mod 26). This is equivalent to 

uz:~y-b(mod26). 

11 

Since gcd(u, 26) = 1, a has a multiplicative inverse modulo 26. Multiplying both 
sides of the congruence by a-‘, we obtain 

u-‘(m) E a-‘(~ - b) (mod 26). 

By associativity of multiplication modulo 26, 

a-‘(al) E (a-‘+ G la: - I. 

Consequently, 2 E u-’ (y - b) (mod 26). Th is is an explicit formula for z, that 
is, the decryption function is 

d(y) = a-‘(~ - b) mod 26. 

So, finally, the complete description of the Affine Cipher is given in Figure 
1.4. Let’s do a small example. 

Example 1.3 
Suppose that Ii = (7,3). As noted above, 7-l mod 26 = 15. The encryption 
function is 

eK(2) = 72 + 3, 

and the corresponding decryption function is 

&(y) = lS(y - 3) = 15y - 19, 
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FIGURE 1.5 
Vigenke Cipher 

Let m be some fixed positive integer. Define P = C = K = (ZX)~. For 
a key Ii = (ICI, k2, . . . , IF,), we define 

eK(x1,12, . . . , x,) = (I, + h, x2 + k2, . . . ,2, + km) 

and 

dK(Yl,YZ,..., urn) = (YI - h, ~2 - k2, . . . , urn - km), 

where all operations are performed in &j. 

where all operations are performed in &j. It is a good check to verify that 
dK(eK(z)) = 2 for all I E &6. Computing in &6, we get 

dK(eK(X)) = &(7x + 3) 

= 15(7x + 3) - 19 

=x+45- 19 

= 2. 

To illustrate, let’s encrypt the plaintext hot. We first convert the letters h, o, t to 
residues modulo 26. These are respectively 7, 14, and 19. Now, we encrypt: 

7 x 7 + 3 mod 26 = 52 mod 26 = 0 
7x 14+3mod26 = lOlmod26 = 23 
7x 19+3mod26 = 136mod26 = 6. 

So the three ciphertext characters are 0,23, and 6, which corresponds to the 
alphabetic string AXG. We leave the decryption as an exercise for the reader. 
[I 

1.1.4 The Vigenbe Cipher 

In both the Shift Cipher and the Substitution Cipher, once a key is chosen, each 
alphabetic character is mapped to a unique alphabetic character, For this reason, 
these cryptosystems are called monoalphabetic. We now present in Figure 1.5 
a cryptosystem which is not monoalphabetic, the well-known Vigenitre Cipher. 
This cipher is named after Blaise de Vigenere, who lived in the sixteenth century. 
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Using the correspondence A +) 0, B t) 1, . . ., 2 t) 25 described earlier, we 
can associate each key I< with an alphabetic string of length m, called a keyword. 
The Vigenke Cipher encrypts m alphabetic characters at a time: each plaintext 
element is equivalent to m alphabetic characters. 

Let’s do a small example. 

Example 1.4 
Suppose m = 6 and the keyword is CIPHER. This corresponds to the numerical 
equivalent Ii = (2,8, 15,7,4, 17). Suppose the plaintext is the string 

thiscryptosystemisnotsecure. 

We convert the plaintext elements to residues modulo 26, write them in groups of 
six, and then “add” the keyword modulo 26, as follows: 

19 7 8 18 2 17 24 15 19 14 18 24 
2 8 15 7 4 17 2 8 15 7 4 17 

21 15 23 25 6 8 0 23 8 21 22 15 

18 19 4 12 8 18 13 14 19 18 4 2 
2 8 15 7 4 17 2 8 15 7 4 17 

20 1 19 19 12 9 15 22 8 25 8 19 

20 17 4 
2 8 15 

22 25 19 

The alphabetic equivalent of the ciphertext string would thus be: 

VPXZGIAXIVWPUBTTMJPWIZITWZT. 

To decrypt, we can use the same keyword, but we would subtract it modulo 26 
instead of adding. 0 

Observe that the number of possible keywords of length m in a Vigedre Cipher 
is 26m, so even for relatively small values of m, an exhaustive key search would 
require a long time. For example, if we take m = 5, then the keyspace has size 
exceeding 1.1 x 107. This is already large enough to preclude exhaustive key 
search by hand (but not by computer). 

In a Vigenere Cipher having keyword length m, an alphabetic character can 
be mapped to one of m possible alphabetic characters (assuming that the keyword 
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contains m distinct characters). Such a cryptosystem is called polyalphabetic. In 
general, cryptanalysis is more difficult for polyalphabetic than for monoalphabetic 
cryptosystems. 

1.1.5 The Hill Cipher 

In this section, we describe another polyalphabetic cryptosystem called the Hill 
Cipher. This cipher was invented in 1929 by Lester S. Hill. Let m be a positive 
integer, and define P = c = @~6)~. The idea is to take m linear combinations 
of the m alphabetic characters in one plaintext element, thus producing the m 
alphabetic characters in one ciphertext element. 

For example, if m = 2, we could write a plaintext element as x = (xi, x2) and 
a ciphertext element as y = (yi , ~2). Here, yt would be a linear combination of 
~1 and x2, as would ~2. We might take 

y1 = 11X, +3X2 

y2 = 8x, + 7x2. 

Of course, this can be written more succinctly in matrix notation as follows: 

(Yl,Y2/2) = (x1,22) 

In general, we will take an m x m matrix K as our key. If the entry in row i and 
column j of I< is ki,j, then we write Ii = (ki,i). For x = (xl, . . . , x,) E P and 
I< E K, we compute y = cK (X) = (ye , . . . , ‘ji) as fOllOWS: 

(Yl, y2, . * . , ym) = (Xl, x2, . . ., xnl) 
[k-j; ;j; 1; if). 

In other words, y = xl<. 
We say that the ciphertext is obtained from the plaintext by means of a linear 

transformation. We have to consider how decryption will work, that is, how x can 
be computed from y. Readers familiar with linear algebra will realize that we use 
the inverse matrix Ii’-’ to decrypt. The ciphertext is decrypted using the formula 
x = yr’. 

Here are the definitions of necessary concepts from linear algabra. If A = (ui,j) 
is an e x m matrix and B = (bj,k) is an m x n matrix, then we define the matrix 
product AB = (ci,k) by the formula 

m 
Ci,k = c ui,jbj,k 

j=l 
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for 1 5 i 5 e and 1 5 k 5 n. That is, the entry in row i and column k of 
AB is formed by taking the ith row of A and the kth column of B, multiplying 
corresponding entries together, and summing. Note that AB is an e x n matrix. 

This definition of matrix multiplication is associative (that is, (AB)C = 
A( BC)) but not, in general, commutative (it is not always the case that AB = BA, 
even for square matrices A and B). 

The m x m identity matrix, denoted by I,,,, is the m x m matrix with l’s on 
the main diagonal and O’s elsewhere. Thus, the 2 x 2 identity matrix is 

I,,, is termed an identity matrix since AI,,, = A for any r! x m matrix A and 
I, B = B for any m x n matrix B. Now, the inverse matrix to an m x m matrix 
A (if it exists) is the matrix A-’ such that AA-’ = A-IA = I,,, . Not all matrices 
have inverses, but if an inverse exists, it is unique. 

With these facts at hand, it is easy to derive the decryption formula given above: 
since y = x11, we can multiply both sides of the formula by I(-‘, obtaining 

YI( -’ = (xK)IP = x(IUP) = XI, = 2. 

(Note the use of the associativity property.) 
We can verify that the encryption matrix above has an inverse in i&6: 

since 

(E) (ix) = ( 11x7+8x2311x18+8x11 
3x7+7x23 3x18+7x 11 

(Remember that all arithmetic operations are done modulo 26.) 
Let’s now do an example to illustrate encryption and decryption in the Hill 

Cipher. 

Example 1.5 
Suppose the key is 
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From the computations above, we have that 

Suppose we want to encrypt the plaintext ju1y. We have two elements of plaintext 
to encrypt: (9,20) (correpsonding to ju) and (11,24) (corresponding to Zy). We 
compute as follows: 

= (99 + 60,72 + 140) = (3,4) 

and 

= (121+ 72,88+ 168) = (11,22). 

Hence, the encryption of july is DELW. To decrypt, Bob would compute: 

(3,4) ( l3 ;; ) = (9>20) 

and 

(11,22) ( l3 :; ) = (11,24). 

Hence, the correct plaintext is obtained. 0 

At this point, we have shown that decryption is possible if Ii has an inverse. 
In fact, for decryption to be possible, it is necessary that Ii has an inverse. (This 
follows fairly easily from elementary linear algebra, but we will not give a proof 
here.) So we are interested precisely in those matrices I< that are invertible. 

The invertibility of a (square) matrix depends on the value of its determinant. 
To avoid unnecessary generality, we will confine our attention to the 2 x 2 case. 

DEFINITION I.5 The determinant of the 2 x 2 matrix A = (ai,j) is the value 

detA = qm,2 - qm,l. 

REMARK The determinant of an m x m square matrix can be computed by 
elementary row operations: see any text on linear algebra. 1 

Two important properties of determinants are that det 1, = 1; and the multi- 
plication rule det(AB) = detA x det B. 

A real matrix It’ has an inverse if and only if its determinant is non-zero. 
However, it is important to remember that we are working over Z&. The relevant 
result for our purposes is that a matrix IC has an inverse modulo 26 if and only if 
gcd(det K, 26) = 1. 
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We briefly sketch the proof of this fact. First suppose that gcd(det K, 26) = 1. 
Then det I< has an inverse in &6. Now, for 1 5 i 2 m, 1 5 j < m, define Kij to 
be the matrix obtained from K by deleting the ith row and the jth column. Define 
a matrix K* to have as its (i, j)-entry the value (- l)‘+j det ICji. (I<* is called 
the adjoint matrix of I<.) Then it can be shown that 

1-T’ = (det I<)-‘I{*. 

Hence, Ii is invertible. 
Conversely, suppose K has an inverse, K- ’ . By the multiplication rule for 

determinants, we have 

1 = detl = det(KK-t) = detKdetK-‘. 

Hence, det Ii is invertible in &6. 

REMARK The above formula for K-t is not very efficient computationally, 
except for small values of m (say m = 2,3). For larger m, the preferred method 
of computing inverse matrices would involve elementary row operations. 1 

In the 2 x 2 case, we have the following formula: 

THEOREM 1.3 

Suppose A = (ai,j) isa 2 x 2 matrixover& such thatdet A = al,la2,2-a1,2a2,1 
is invertible. Then 

A-’ = (detA)-’ a2,2 --a,2 
-a2,l > al,1 . 

Let’s look again at the example considered earlier. First, we have 

-11x7-8x3mod26 

= 77 - 24 mod 26 

= 53 mod 26 

= 1. 

Now, 1-i mod 26 = 1, so the inverse matrix is 

(:’ ;y=( 273 :;)j 

as we verified earlier. 
We now give a precise description of the Hill Cipher over Z& in Figure 1.6. 
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FIGURE 1.6 
Hill Cipher 

Let m be some fixed positive integer. I.et P = C = (&j)m and let 

K = {m x m invertible matrices over z.26). 

For a key Ii, we define 

and 

dK(Y) = Yli--‘, 

where all operations are performed in &6. 

FIGURE 1.7 
Permutation Cipher 

Let m be some fixed positive integer. Let P = C = (&x)~ and let K 
consist of all permutations of { 1, . . . , m}. For a key (i.e., a permutation) 
T, we define 

eT(xl,. * * 9 %a) = (Gl(1) 7 . . . , Gr(m)) 

and 

hr(Yl,. * a, 21773) = (Y?+(l), . * * > Y+(m)), 

where rr- ’ is the inverse permutation to A. 

1.1.6 The Permutation Cipher 

All of the cryptosystems we have discussed so far involve substitution: plaintext 
characters are replaced by different ciphertext characters. The idea of a permuta- 
tion cipher is to keep the plaintext characters unchanged, but to alter their positions 
by rearranging them. The Permutation Cipher (also known as the Transposition 
Cipher) has been in use for hundreds of years, In fact, the distinction between 
the Permutation Cipher and the Substitution Cipher was pointed out as early 
as 1563 by Giovanni Porta. A formal definition is given in Figure 1.7. 

As with the Substitution Cipher, it is more convenient to use alphabetic char- 
acters as opposed to residues modulo 26, since there are no algebraic operations 
being performed in encryption or decryption. 
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Here is an example to illustrate: 

Example 1.6 
Suppose m = 6 and the key is the following permutation A: 

+-t+#-+ 

Then the inverse permutation F’ is the following: 

+#q-++ 

Now, suppose we are given the plaintext 

shesellsseashellsbytheseashore. 

We first group the plaintext into groups of six letters: 

shesel 1 lsseas 1 hellsb 1 ythese 1 ashore 

Now each group of six letters is rearranged according to the permutation A, 
yielding the following: 

EESLSH 1 SALSES 1 LSHBLE 1 HSYEET 1 HRAEOS 

So, the ciphertext is: 

EESLSHSALSESLSHBLEHSYEETHRAEOS. 

The ciphertext can be decrypted in a similar fashion, using the inverse permutation 
n-1. 0 

In fact, the Permutation Cipher is a special case of the Hill Cipher. Given 
a permutation of T of the set (1, . . . , m}, we can define an associated m x m 
permutation matrix I<, = (Icij) according to the formula 

kij = 
1 if j = r(i) 
0 otherwise. 



matrices are 

Ii-‘, = 

and 
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(A permutation matrix is a matrix in which every row and column contains exactly 
one “1,” and all other values are “0.” A permutation matrix can be obtained from 
an identity matrix by permuting rows or columns.) 

It is not difficult to see that Hill encryption using the matrix Ii’, is, in fact, 
equivalent to permutation encryption using the permutation X. Moreover, IT,-’ = 
Ii’,-I, i.e., the inverse matrix to I<, is the permutation matrix defined by the 
permutation A- I. Thus, Hill decryption is equivalent to permutation decryption. 

For the permutation ?r used in the example above, the associated permutation 

001000 
000001 
100000 / 1 000010 
010000 
000100 

The reader can verify that the product of these two matrices is the identity. 

1.1.7 Stream Ciphers 

In the cryptosystems we have studied to this point, successive plaintext elements 
are encrypted using the same key, I<. That is, the ciphertext string y is obtained 
as follows: 

y=y1y2... = eK(zi)eK(x2). . . . 

Cryptosystems of this type are often called block ciphers. 
An alternative approach is to use what are called stream ciphers. The basic idea 

is to generate a keystream z = ztz2. . ., and use it to encrypt a plaintext string 
x=x:122... according to the rule 

Y =y1y2... = e,, (a)e,,(xz) . . . . 

A stream cipher operates as follows. Suppose K E K is the key and 21x2.. . 
is the plaintext string. The function fi is used to generate ,zi (the ith element of 
the keystream), where fi is a function of the key, I<, and the first i - 1 plaintext 
characters: 

zj = fj(K,X,, . . .,xj-*). 
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The keystream element zi is used to encrypt xi, yielding yi = e*,(xi). So, to 
encrypt the plaintext string zt x2 . . ., we would successively compute 

Decrypting the ciphertext string yiy2. . . can be accomplished by successively 
computing 

Here is a formal mathematical definition: 

DEFINITIONI. A Stream Cipher is a tuple (P, C, K, L, 3, E, IV), where the 
following conditions are satisjed: 

I. P is a#nite set of possibleplaintexts 

2. C is a finite set of possible ciphertexts 

3. K, the keyspace, is ajnite set of possible keys 
4. L is a finite set called the keystream alphabet 

5. 3=(f1,f2,. . .) is the keystream generator. For i 2 1, 

j-j : k: x Pi--’ + L. 

6. For each z E L, there is an encryption rule e, E E and a corresponding 
decryption rule d, E 2). e, : P + C and d, : C + P are functions such 
that d, (e, (z)) = 2: for every plaintext x E P. 

We can think of a block cipher as a special case of a stream cipher where the 
keystream is constant: zi = IC for all i 2 1. 

Here are some special types of stream ciphers together with illustrative ex- 
amples. A stream cipher is synchronous if the keystream is independent of the 
plaintext string, that is, if the keystream is generated as a function only of the key 
K. In this situation, we think of I< as a “seed” that is expanded into a keystream 
%1%2.. . . 

A stream cipher isperiodic with period d if zi+d = .ri for all integers i 2 1. The 
Vigenke Cipher with keyword length m can be thought of as a periodic stream 
cipher with period m. In this case, the key is I< = (kt , . . . , k,). IT itself provides 
the first m elements of the keystream: zi = Ici, 1 5 i 5 m. Then the keystream 
just repeats itself from that point on. Observe that in this stream cipher setting 
for the Vigenke Cipher, the encryption and decryption functions are identical to 
those used in the Shift Cipher: e,(x) = x + z and d,(y) = y - z. 

Stream ciphers are often described in terms of binary alphabets, i.e., P = C = 
L = Z2. In this situation, the encryption and decryption operations are just 
addition modulo 2: 

e,(t)=x++mod2 
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and 

d,(y) =y+zmod2. 

If we think of “0” as representing the boolean value “false” and “1” as representing 
“true,” then addition modulo 2 corresponds to the exclusive-or operation. Hence, 
encryption (and decryption) can be implemented very efficiently in hardware. 

Let’s look at another method of generating a (synchronous) keystream. Suppose 
we start with (kt , . . . , k,,,) and let zi = Ici, 1 5 i 5 m (as before), but we now 
generate the keystream using a linear recurrence relation of degree m: 

m-l 

Zi+m = c 
cjzi+j mod 2, 

j=o 

where co, . ..,cm- t E & are predetermined constants. 

REMARK This recurrence is said to have degree m since each term depends on 
the previous m terms. It is linear because z’+ , m is a linear function of previous 
terms. Note that we can take CO = 1 without loss of generality, for otherwise the 
recurrence will be of degree m - 1. 1 

Here, the key Ii consists of the 2m values kt , . . . , k,, CO, . . . , c,-1. If 
(h,..., km) = (0,. . . , 0), then the keystream consists entirely of 0’s. Of course, 
this should be avoided, as the ciphertext will then be identical to the plaintext. 
However, if the constants CO,. . . , cm-t are chosen in a suitable way, then any 
other initialization vector (ICI, . . . , km) will give rise to a periodic keystream hav- 
ing period 2” - 1. So a “short” key can give rise to a keystream having a very 
long period. This is certainly a desirable property: we will see in a later section 
how the Vigen&re Cipher can be cryptanalyzed by exploiting the fact that the 
keystream has short period. 

Here is an example to illustrate. 

Example 1.7 
Suppose m = 4 and the keystream is generated using the rule 

~i+4 = .~i + %i+l mod 2 

(i 2 1). If the keystream is initialized with any vector other than (0, 0, 0, 0), then 
we obtain a keystream of period 15. For example, starting with (1, 0, 0, 0), the 
keystream is 

l,O,O,O, 1,0,0,1,1,0,1,0,1,1,1,.... 

Any other non-zero initialization vector will give rise to a cyclic permutation of 
the same keystream. 0 
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FIGURE 1.8 
A Linear Feedback Shift Register 

Another appealing aspect of this method of keystream generation is that the 
keystream can be produced efficiently in hardware using a linear feedback shift 
register, or LFSR. We would use a shift register with m stages. The vector 
(h,...,kn) would be used to initialize the shift register. At each time unit, the 
following operations would be performed concurrently: 

I. kI would be tapped as the next keystream bit 
2. k2,. . . , k, would each be shifted one stage to the left 
3. the “new” value of k, would be computed to be 

m-l 

c cjlcj+l 
j=O 

(this is the “linear feedback”). 

Observe that the linear feedback is carried out by tapping certain stages of the 
register (as specified by the constants cj having the value “1”) and computing a 
sum modulo 2 (which is an exclusive-or). This is illustrated in Figure 1.8, where 
we depict the LFSR that will generate the keystream of Example 1.7. 

An example of a non-synchronous stream cipher that is known as the Autokey 
Cipher is given in Figure 1.9. It is apparently due to Vigenere. 

The reason for the terminology “autokey” is that the plaintext is used as the key 
(aside from the initial “priming key” K). Here is an example to illustrate: 

Example 1.8 
Suppose the key is Ii = 8, and the plaintext is 

rendezvous. 

We first convert the plaintext to a sequence of integers: 

17 4 13 3 4 25 21 14 20 18 
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FIGURE 1.9 
Autokey Cipher 

Let p = C = K: = ,C, = &. Let zt = K, and zi = q-1 (i > 2). For 
0 5 z 5 25, define 

e,(x)=z+zmod26 

and 

d,(y)=y-zmod26 

The keystream is as follows: 

8 17 4 13 3 4 25 21 14 20 

Now we add corresponding elements, reducing modulo 26: 

25 21 17 16 7 3 20 9 8 12 

In alphabetic form, the ciphertext is: 

ZVRQHDUJIM. 

Now let’s look at how Alice decrypts the ciphertext. She will first convert the 
alphabetic string to the numeric string 

25 21 17 16 7 3 20 9 8 12 

Then she can compute 

Next, 

x1 = ds(25) = 25 - 8 mod 26 = 17. 

22 = dt7(21) = 21 - 17 mod 26 = 4, 

and so on. Each time she obtains another plaintext character, she also uses it as 
the next keystream element. 0 

Of course, the Autokey Cipher is insecure since there are only 26 possible 
keys. 

In the next section, we discuss methods that can be used to cryptanalyze the 
various cryptosystems we have presented. 
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1.2 Cryptanalysis 

In this section, we discuss some techniques of cryptanalysis. The general assump- 
tion that is usually made is that the opponent, Oscar, knows the cryptosystem being 
used. This is usually referred to as Kerckhoff’s principle. Of course, if Oscar does 
not know the cryptosystem being used, that will make his task more difficult. But 
we do not want to base the security of a cryptosystem on the (possibly shaky) 
premise that Oscar does not know what system is being employed. Hence, our 
goal in designing a cryptosystem will be to obtain security under Kerckhoff’s 
principle. 

First, we want to differentiate between different levels of attacks on cryptosys- 
terns. The most common types are enumerated as follows. 

Ciphertext-only 
The opponent possesses a string of ciphertext, y. 

Known plaintext 
The opponent possesses a string of plaintext, x, and the corresponding 
ciphertext, y. 

Chosen plaintext 
The opponent has obtained temporary access to the encryption machinery. 
Hence he can choose a plaintext string, x, and construct the corresponding 
ciphertext string, y. 

Chosen ciphertext 
The opponent has obtained temporary access to the decryption machinery. 
Hence he can choose a ciphertext string, y, and construct the corresponding 
plaintext string, x. 

In each case, the object is to determine the key that was used. Clearly, these 
four levels of attacks are enumerated in increasing order of strength. We note 
that a chosen ciphertext attack is relevant to public-key cryptosystems, which we 
discuss in the later chapters. 

We first consider the weakest type of attack, namely a ciphertext-only attack. We 
also assume that the plaintext string is ordinary English text, without punctuation 
or “spaces.” (This makes cryptanalysis more dificult than if punctuation and 
spaces were encrypted.) 

Many techniques of cryptanalysis use statistical properties of the English lan- 
guage. Various people have estimated the relative frequencies of the 26 letters 
by compiling statistics from numerous novels, magazines, and newspapers. The 
estimates in Table 1.1 were obtained by Beker and Piper. 

On the basis of the above probabilities, Beker and Piper partition the 26 letters 
into five groups as follows: 

1. E, having probability about 0.120 
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TABLE 1.1 
Probabilities of Occurrence of tbe 26 Letters 

letter probability 
A .082 
B .015 
c .028 
D .043 
E .127 
F .022 
G .020 
H .061 
I .070 
J .002 
I< .008 
L .040 
M .024 

letter probability 
N .067 
0 .075 
G .019 

.OOl 
R .060 
s .063 
T .091 
u .028 
V .OlO 
W .023 
X .OOl 
Y .020 
Z .ool 

2. T, A, 0, I, N, S, H, R, each having probabilities between 0.06 and 0.09 
3. D, L, each having probabilities around 0.04 
4. C, U, M, W, F, G, Y, P, B, each having probabilities between 0.015 and 

0.023 

5. V, I(, J, X, Q, 2, each having probabilities less than 0.01. 

It may also be useful to consider sequences of two or three consecutive letters 
called digrums and trigrums, respectively. The 30 most common digrams are 
(in decreasing order) TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, 
AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, 
SE, HI, and OF. The twelve most common trigrams are (in decreasing order) 
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, 
and DTH. 

1.2.1 Cryptanalysis of the Affine Cipher 

As a simple illustration of how cryptanalysis can be performed using statistical 
data, let’s look first at the Affine Cipher. Suppose Oscar has intercepted the 
following ciphertext: 

Example 1.9 
Ciphertext obtained from an Affine Cipher 

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHWFEDK 
APRKDLYEVLRHHRH 
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TABLE 1.2 
Frequency of Occurrence of the 26 Ciphertext Letters 

letter frequency 

iTi 2 1 
C 0 
D 6 
E 5 
F 4 
G 0 
H 5 
Z 0 
J 0 
Ii- 5 
L 2 
M 2 

letter frequency 
N 1 
0 1 
: 0 3 

R 8 
S 3 
T 0 
u 2 
V 4 
W 0 
X 2 
Y 1 
Z 0 

The frequency analysis of this ciphertext is given in Table 1.2. 
There are only 57 characters of cipher-text, but this is sufficient to cryptanalyze 

an Affine Cipher. The most frequent ciphertext characters are: R (8 occurrences), 
D (6 occurrences), E, H, Ii’ (5 occurrences each), and F, S, V (4 occurrences 
each). As a first guess, we might hypothesize that R is the encryption of e and 
D is the encryption oft, since e and t are (respectively) the two most common 
letters. Expressed numerically, we have eK (4) = 17 and eK (19) = 3. Recall that 
eK (x) = az + b, where a and b are unknowns. So we get two linear equations in 
two unknowns: 

4a+b= 17 

19a + b = 3. 

This system has the unique solution a = 6, b = 19 (in &j). But this is an illegal 
key, since gcd(u, 26) = 2 > 1. So our hypothesis must be incorrect. 

Our next guess might be that R is the encryption of e and E is the encryption 
oft. Proceeding as above, we obtain a = 13, which is again illegal. So we try the 
next possibility, that R is the encryption of e and H is the encryption oft. This 
yields a = 8, again impossible. Continuing, we suppose that R is the encryption 
of e and Ii is the encryption oft. This produces a = 3, b = 5, which is at 
least a legal key. It remains to compute the decryption function corresponding to 
K = (3,5), and then to decrypt the cipher-text to see if we get a meaningful string 
of English, or nonsense. This will confirm the validity of (3,5). 
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If we perform these operations, we have dK(y) = 9y - 19 and the given 
ciphertext decrypts to yield: 

algorithmsarequitegeneraldefinitionsofarit 
hmeticprocesses 

We conclude that we have determined the correct key. 0 

1.2.2 Cryptanalysis of the Substitution Cipher 

Here, we look at the more complicated situation, the Substitution Cipher. Con- 
sider the following ciphertext: 

Example 1. IO 
Ciphertext obtained from a Substitution Cipher 

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ 
NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ 
NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ 
XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR 

The frequency analysis of this ciphertext is given in Table 1.3. 
Since 2 occurs significantly more often than any other ciphertext character, 

we might conjecture that dK (Z) = e. The remaining cipher-text characters that 
occur at least ten times (each) are C, D, F, J, M, R, Y. We might expect that 
these letters are encryptions of (a subset of) t, a, o, i, n, s, h, T, but the frequencies 
really do not vary enough to tell us what the correspondence might be. 

At this stage we might look at digrams, especially those of the form -2 or Z-, 
since we conjecture that 2 decrypts to e. We find that the most common digrams 
of this type are DZ and 2%’ (four times each); NZ and ZU (three times each); 
and RZ, HZ, XZ, FZ, ZR, ZV, ZC, ZD, and ZJ (twice each). Since ZW 
occurs four times and WZ not at all, and W occurs less often than many other 
characters, we might guess that dK(W) = d. Since DZ occurs four times and 
ZD occurs twice, we would think that DK (D) E {T, s, t}, but it is not clear which 
of the three possibilities is the correct one. 

If we proceed on the assumption that OK = e and d~( W) = d, we 
might look back at the ciphertext and notice that we have ZRW and RZW both 
occurring near the beginning of the ciphertext, and RW occurs again later on. 
Since R occurs frequently in the cipher-text and nd is a common digram, we might 
try dK (R) = n as the most likely possibility. 
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TABLE 1.3 
Frequency of Occurrence of the 26 Ciphertext Letters 

letter frequency letter frequency 
A 0 N 9 
B 1 0 0 
c 15 ; 1 
D 13 4 
E 7 R 10 
F 11 S 3 
G 1 T 
H 4 u : 
Z 5 V 5 
J 11 W 8 
I< 1 X 6 
L 0 Y 10 
M 16 Z 20 

At this point, we have the following: 

------end---------e----ned---e------------ 

YIFQFMZRWQFWECFMDZPCVMRZWNMDZVEJBTXCDDUMJ 

--------e----e---------n--d---en----e----e 

NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ 

-e---n------n------ed---e---e--ne-nd-e-e-- 

NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ 

-ed-----n-----------e---------d-------d---e--n 

XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR 

Our next step might be to try dK (N) = h, since NZ is a common digram and 
ZN is not. If this is correct, then the segment of plaintext ne - ndhe suggests 
that dK (c) = a. Incorporating these guesses, we have: 
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------end-----a---e-a--e------a--e------a----- 

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ 

h-------ea---e-a---a---nhad-a-en--a-e-h--e 

NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ 

he-a-n------n------ed---e---e--neandhe-e-- 

NZUCDRJXYYSMRTMEYIFZWDWZVYFZUMRZCRWNZDZJJ 

-ed-a---nh---ha---a-e----ed-----a-d--he--n 

XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR 

Now, we might consider M, the second most common cipher-text character. 
The ciphertext segment RNM, which we believe decrypts to nh-, suggests that 
h- begins a word, so M probably represents a vowel. We have already accounted 
for a and e, so we expect that dK(M) = i or o. Since ui is a much more likely 
digram than uo, the ciphertext digram CM suggests that we try dK (M) = i first. 
Then we have: 

-----iend-----a-i-e-a-ine~i-e------a---i- 

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ 

h-----i-ea-i-e-a---a-i-nhad-a-en--a-e-hi-e 

NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ 

he-a-n-----in-i----ed---e---e-ineandhe-e-- 

NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ 

-ed-a--inhi--hai--a-e-i--ed--he--n 

XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR 

Next, we might try to determine which letter is encrypted to o. Since o is 
a common letter, we guess that the corresponding ciphertext letter is one of 
D, F, J, Y. Y seem to be the most likely possibility, otherwise, we would get 
long strings of vowels, namely uoi from CFM or CJM. Hence, let’s suppose 
d,(Y) = o. 

The three most frequent remaining ciphertext letters are D, F, J, which we 
conjecture could decrypt to T, s, t in some order. Two occurrences of the trigram 
NMD suggest that dE(D) = s, giving the trigram his in the plaintext (this 
is consistent with our earlier hypothesis that d,y (D) E {T, s, t}). The segment 
HNCMF could be an encryption of chair, which would give dE(F) = r (and 
dE(H) = c) and so we would then have dE( J) = t by process of elimination. 
Now, we have: 
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o-r-riend-ro--arise-a-inedhise--t---ass-it 
YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ 

hs-r-riseasi-e-a-orationhadta-en--ace-hi-e 
NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ 

he-asnt-oo-in-i-o-redso-e-ore-ineandhesett 
NZUCDRJXYYSMRTMEYIFZWDWZVYFZUMRZCRWNZDZJJ 

-ed-ac-inhischair-aceti-ted--to-ardsthes-n 
XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR 

It is now very easy to determine the plaintext and the key for Example 1.10. 
The complete decryption is the following: 

Our friend from Paris examined his empty glass with surprise, as 
if evaporation had taken place while he wasn’t looking. I poured some 
more wine and he settled back in his chair, face tilted up towards the 
sun.’ 

1.2.3 Cryptanalysis of the Vigenk Cipher 

In this section we describe some methods forcryptanalyzing the Vigedre Cipher. 
The first step is to determine the keyword length, which we denote by m. There 
are a couple of techniques that can be employed. The first of these is the so-called 
Kasiski test and the second uses the index of coincidence. 

The Kasiski test was first described by Friedrich Kasiski in 1863. It is based 
on the observation that two identical segments of plaintext will be encrypted 
to the same ciphertext whenever their occurrence in the plaintext is t positions 
apart, where 3: E 0 mod m. Conversely, if we observe two identical segments of 
ciphertext, each of length at least three, say, then there is a good chance that they 
do correspond to identical segments of plaintext. 

The Kasiski test works as follows. We search theciphertext for pairs of identical 
segments of length at least three, and record the distance between the starting 
positions of the two segments. If we obtain several such distances dl , dz, . . . , then 
we would conjecture that m divides the greatest common divisor of the di’s. 

Further evidence for the value of m can be obtained by the index of coincidence. 
This concept was defined by Wolfe Friedman in 1920, as follows. 

’ P. Mayle, A Year in Provence, A. Knopf, Inc., 1989. 
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DEFlNIT10Nl.7 Supposex= x1x2.. . x,, is a string of n alphabeticcharacters. 
The index of coincidence of x, denoted I,(x), is defined to be the probability that 
two random elements of x are identical. Suppose we denote the frequencies of 
A,B,C ,..., zinxbyhft,..., f25 (respectively). We can choose two elements 
of x in (t) ways. 2 For each i, 0 5 i 5 25, there are (2) ways of choosing both 
elements to be i. Hence, we have the formula 

L(x) = i’“,(, _ 1) . 

Now, suppose x is a string of English language text. Denote the expected 
probabilities of occurrence of the letters A, B, . . . ,A’ in Table 1 .l by pa, . . . , ~25. 
Then, we would expect that 

25 

L(x) NN cpi2 = 0.065, 
i=o 

since the probability that two random elements both are A is pe2, the probability 
that both are B is pi 2, etc. The same reasoning applies if x is a ciphertext obtained 
by means of any monoalphabetic cipher. In this case, the individual probabilities 
will be permuted, but the quantity 

25 

c Pi2 
i=o 

will be unchanged. 
Now, suppose we start with a ciphertext y = yiy2 . . . yn that has been con- 

structed by using a Vigenk Cipher. Define m substrings yt , ~2, . . . , ym of y 
by writing out the ciphertext, by columns, in a rectangular array of dimensions 
m x (n/m). The rows of this matrix are the substrings yi, 1 5 i 5 m. If this 
is done, and m is indeed the keyword length, then each 1, (yi) should be roughly 
equal to 0.065. On the other hand, if m is not the keyword length, then the 
substrings yi will look much more random, since they will have been obtained by 
shift encryption with different keys. Observe that a completely random string will 
have 

I, a 26(1/26)2 = l/26 = 0.038. 

The two values 0.065 and 0.038 are sufficiently far apart that we will often be able 
to determine the correct keyword length (or confirm a guess that has already been 
made using the Kasiski test). 

Let us illustrate these two techniques with an example. 

2The binomial cot$icient (1) = n!/(k!(n - k)!) d enotes the number of ways of choosing a 
subset of Ic objects from a set of n objects. 
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Example 1.11 
Ciphertext obtained from a Vigenere Cipher 

CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW 
RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK 
LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX 
VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR 
ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT 
AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI 
PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP 
WQAIIWXNRMGWOIIFKEE 

First, let’s try the Kasiski test. The ciphertext string CH R occurs in four places 
in the ciphertext, beginning at positions 1, 166,236 and 286. The distances from 
the first occurrence to the other three occurrences are (respectively) 165,235, and 
285. The gcd of these three integers is 5, so that is very likely the keyword length. 

Let’s see if computation of indices of coincidence gives the same conclusion. 
With m = 1, the index of coincidence is 0.045. With m = 2, the two indices 
are 0.046 and 0.041. With m = 3, we get 0.043,0.050,0.047. With m = 4, we 
have indices 0.042,0.039,0.046,0.040. Then trying m = 5, we obtain the values 
0.063,0.068,0.069,0.061 and 0.072. This also provides strong evidence that the 
keyword length is five. 0 

Proceeding under this assumption, how do we determine the keyword? It is 
useful to consider the mutual index of coincidence of two strings. 

DEFINITION 1.8 Suppose x = x:1x2. . , x,, and y = ye y2 . . . ~~1 are strings of 
n and n’ alphabetic characters, respectively. The mutual index of coincidence 
of x and y, denoted MI,(x, y), is defined to be the probability that a random 
element of x is identical to a random element of y. If we denote the frequencies of 
A,B,C ,..., Z in x and y by fo, fi , . , , , f25 and flO, f’, , . . . , ft25, respectively, 
then MI, (x, y) is seen to be 

Eff t i i 
MI,(x, y) = ‘=’ 

nn’ ’ 

Now, given that we have determined the value of m, the substrings yi are 
obtained by shift encryption of the plaintext. Suppose K = (k, , k2, . . . , km) is 
the keyword. Let us see if we can estimate MIc(yi 7 yj). Consider a random 
character in yi and a random character in yj . The probability that both characters 
are A is p-k,p-kj, the probability that both are B is pl-k,pl-kj, etc. (Note that 
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TABLE 1.4 
Expected Mutual Indices of Coincidence 

relative shift expected value of MI, 
0 0.065 
1 0.039 
2 0.032 
3 0.034 
4 0.044 
5 0.033 
6 0.036 
7 0.039 
8 0.034 
9 0.034 

10 0.038 
11 0.045 
12 0.039 
13 0.043 

all subscripts are reduced modulo 26.) Hence, we estimate that 

25 25 

MIc(Yi, Yj) M C P/l-k*Ph-kj = C PhPh+k*-kj’ 
h=O h=O 

Observe that the value of this estimate depends only on the difference Ici - 
kj mod 26, which we call the relative shif of yi and yj. Also, notice that 

5 &hPh-t!r phph+l = 

h=O h=O 

so a relative shift of e yields the same estimate of MI, as does a relative shift of 
26 - L 

We tabulate these estimates, for relative shifts ranging between 0 to 13, in Table 
1.4. 

The important observation is that, if the relative shift is not zero, these estimates 
vary between 0.03 1 and 0.045; whereas, a relative shift of zero yields an estimate 
of 0.065. We can use this observation to formulate a likely guess for -!? = Z<i - ZCj , 
the relative shift of yi and yj, as follows. Suppose we fix yi, and consider the 
effect of encrypting yj by ea, et, e2,. . . . Denote the resulting strings by y!, yj, 
etc. It is easy to compute the indices MZ,(yi, y!), 0 5 g 5 25. This can be done 
using the formula 

5f.f .- 
’ 

t ’ 9 

MI,(x, yq = i=” 
nn’ ’ 
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When g = C, the MI, should be close to 0.65, since the relative shift of yi and 
yj is zero. However, for values of g # !, the MI, should vary between 0.31 and 
0.45. 

By using this technique, we can obtain the relative shifts of any two of the 
substrings yi . This leaves only 26 possible keywords, which can easily be obtained 
by exhaustive key search, for example. 

Let us illustrate by returning to Example 1.11. 

Example 1.11 (Cont.) 
We have hypothesized that the keyword length is 5. We now try to compute 
the relative shifts. By computer, it is not difficult to compute the 260 values 
Mlc(Yi, Yj”)v h w ere 1 < i < j 5 5,O 5 g 5 25. These values are tabulated in 
Table 1.5. For each (i, j) pair, we look for values of MI, (yi, yi) that are close to 
0.065. If there is a unique such value (for a given (i, j) pair), we conjecture that 
it is the value of the relative shift. 

Six such values in Table 1.5 are boxed. They provide strong evidence that the 
relative shift of yi and y2 is 9; the relative shift of yt and y5 is 16; the relative 
shift of y2 and ys is 13; the relative shift of y2 and ys is 7; the relative shift of y3 
and ys is 20; and the relative shift of y4 and ys is 11. This gives us the following 
equations in the five unknowns I(,, K2, K3, K4, KS: 

I(1 - Ii-2 = 9 

Kt - Ii5 = 16 

K2- I(3 = 13 

I<2 - K5 = 7 

K3 - I(s = 20 

K4 - Ii-5 = 11. 

This allows us to express the five I(i’s in terms of ICI : 

K2 = It-1 + 17 

Ii-3 = K1 + 4 

K5 = K] + 10. 

So the key is likely to be (Ki, Ki + 17, Ki + 4, Iii + 21, Kt + 10) for some 
Kt E &6. Hence, we suspect that the keyword is some cyclic shift of AREVK. 
It now does not take long to determine that the keyword is JANET. The complete 
decryption is the following: 

The almond tree was in tentative blossom. The days were longer, 
often ending with magnificent evenings of corrugated pink skies. The 
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TABLE 1.5 
Observed Mutual Indices of Coincidence 

T 
I 

i 

i 

i 

i 

T 

T 

2 

3- 

T 

b 

- 

j value Of MZc(yi, y,“) 

2 .028 .027 .028 .034 .039 .037 .026 .025 .052 
hiid .044 .026 .037 .043 .037 .043 .037 ,028 pjzc .041 .034 .037 .OSl .045 .042 .036 

3 I ,039 .033 440 .034 .028 .053 .048 .033 .029 
1 .056 .oso .045 .039 .040 .036 .037 .032 .027 ) 
1 .037 .036 .031 .037 .055 .029 .024 .037 

4 I .034 .043 .025 .027 .038 .049 .040 .032 .029 
1 .034 .039 .044 .044 .034 .039 .045 .044 .037 1 
1 .055 .047 .032 .027 .039 .037 .039 .035 

5 I .043 .033 .028 .046 a43 .044 .039 .031 .026 
.030 .036 .040 .041 .024 .019 .048 m .044 
.028 .038 .044 .043 .047 .033 .026 .046 

3 .046 .048 .041 .032 .036 .035 .036 .030 .024 
.039 .034 .029 .040 l-zl a41 .033 .037 .045 

1 .033 .033 .027 .033 .045 .052 .042 .030 
4 I .046 .034 .043 .044 .034 .031 .040 .045 .040 

.048 .044 .033 .024 .028 .042 .039 .026 .034 

.050 .035 .032 .040 .056 .043 .028 .028 

5 .033 .033 .036 .046 .026 .018 .043 .050 
.029 .031 .045 .039 .037 .027 .026 .03 1 .039 
.040 .037 .041 .046 .045 .043 .035 .030 

4 .038 .036 .040 .033 .036 .060 .035 .041 .029 
.058 .035 .035 .034 .053 .030 .032 .035 .036 

1 .036 .028 .046 .032 .051 .032 .034 ,030 
5 I .035 .034 .034 .036 .030 a43 .043 .050 .025 

hunting season was over, with hounds and guns put away for six 
months. The vineyards were busy again as the well-organized farmers 
treated their vines and the more lackadaisical neighbors hurried to do 
the pruning they should have done in November.3 

3 E? Maple, A Year in Provence, A. Knopf, Inc., 1989. 
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1.2.4 A Known Plaintext Attack on the Hill Cipher 

The Hill Cipher is more difficult to break with a ciphertext-only attack, but it 
succumbs easily to a known plaintext attack. Let us first assume that the opponent 
has determined the value of m being used. Suppose he has at least m distinct 
pairs of m-tuples, xj = (Zt,jjZ2,j,. . .,Z,,j) and 9.j = (yt,j,yz,j,. . . ,ym,j) 
(1 5 j 5 m), such that yj = cK(zj), 1 5 j < m. If we define two m x m 
matrices X = (xi,j) and Y = (yi,j), then we have the matrix equation Y = XI<, 
where the m x m matrix I< is the unknown key. Provided that the matrix Y is 
invertible, Oscar can compute K = X-‘Y and thereby break the system. (If Y is 
not invertible, then it will be necessary to try other sets of m plaintext-ciphertext 
pairs.) 

Let’s look at a simple example. 

Example 1.12 
Suppose the plaintext friday is encrypted using a Hill Cipher with m = 2, to 
give the ciphertext PQCFKU. 

We have that eK(5,17) = (15, 16), eK(8,3) = (2,5) and eK(0,24) = 
(10,20). From the first two plaintext-ciphertext pairs, we get the matrix equation 

(:” :“>=(; y)K. 
Using Theorem 1.3, it is easy to compute 

(ii kg-I=(; ,:)y 

so 

K=(; ;5)( ‘2’ :“)=(; :‘). 
This can be verified by using the third plaintext-ciphertext pair. 0 

What would the opponent do if he does not know m? Assuming that m is not 
too big, he could simply try m = 2,3, . . ., until the key is found. If a guessed value 
of m is incorrect, then an m x m matrix found by using the algorithm described 
above will not agree with further plaintext-ciphertext pairs. In this way, the value 
of m can be determined if it is not already known. 

1.2.5 Cryptanalysis of the LFSR-based Stream Cipher 

Recall that the ciphertext is the sum modulo 2 of the plaintext and the keystream, 
i.e., yi = Q + Zi mod 2. The keystream is produced from zt, . . . , z, using the 
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linear recurrence relation 

m-l 

fm+i = c 
cjzi+j mod 2, 

j=O 

where CO, . . . , c,-1 E Z2 (and CO = 1). 
Since all operations in this cryptosystem are linear, we might suspect that the 

cryptosystem is vulnerable to a known-plaintext attack, as is the case with the Hill 
Cipher. Suppose Oscar has a plaintext string 2122 . . . 2, and the corresponding 
ciphertext string yt y2 . . . yn. Then he can compute the keystream bits Zi = 
Zi + yi mod 2, 1 5 i 5 n. Let US also suppose that Oscar knows the value m. 
Then Oscar needs only to compute CO, . . . , cm-t in order to be able to reconstruct 
the entire keystream. In other words, he needs to be able to determine the values 
of m unknowns. 

Now, for any i > 1, we have 

m-l 

&a+i = C cj%i+j mod 2, 
j=O 

which is a linear equation in the m unknowns. If n > 2m, then there are m linear 
equations in m unknowns, which can subsequently be solved. 

The system of m linear equations can be written in matrix form as follows: 

! %,+I, Gn+2,. . . , 2274 = (co, Cl,. ..,-ii:‘;i, 1; g,). 

If the coefficient matrix has an inverse (modulo 2), we obtain the solution 

In fact, the matrix will have an inverse if m is the degree of the recurrence used to 
generate the keystream (see the exercises for a proof). 

Let’s illustrate with an example. 

Example 1.13 
Suppose Oscar obtains the ciphertext string 

101101011110010 
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corresponding to the plaintext string 

011001111111001. 

Then he can compute the keystream bits: 

110100100001010. 

Suppose also that Oscar knows that the keystream was generated using a 5-stage 
LFSR. Then he would solve the following matrix equation, which is obtained from 
the first 10 keystream bits: 

1 1 0 1 0 
1 0 1 0 0 

(0,1,0,0,0) = (CO,C1,C2,C3,C4) 

1 0 0 1 0 
0 0 1 0 0 

It can be checked that 

This yields 

Thus the recurrence used to generate the keystream is 

%j+5 = %j + %i+3 mod 2. 

1.3 Notes 

Much of the material on classical cryptography is covered in textbooks, for ex- 
ample Beker and Piper [BP821 and Denning [D~82]. The probability estimates 
for the 26 alphabetic characters are taken from Beker and Piper. As well, the 
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cryptanalysis of the Vigenke Cipher is a modification of the description given in 
Beker and Piper. 

A good reference for elementary number theory is Rosen [R093]. Background 
in elementary linear algebra can be found in Anton [AN91]. 

Kahn’s book “The Codebreakers” [K~67] is an entertaining and informative 
history of cryptography up to 1967. In it, Kahn states that the Vigenk Cipher 
is incorrectly attributed to Vigenbre. 

The Hill Cipher was first described in [H129]. Much information on stream 
ciphers can be found in the book by Rueppel [Ru86]. 

Exercises 

1.1 Below are given four examples of ciphertext, one obtained from a Substitution Ci- 
pher, one from a Vigenike Cipher, one from an Affine Cipher, andoneunspecified. 
In each case, the task is to determine the plaintext. 

Give a clearly written description of the steps you followed to decrypt each cipher- 
text. This should include all statistical analysis and computations you performed. 

The first two plaintexts were taken from ‘The Diary of Samuel Marchbanks,” by 
Robertson Davies, Clarke Irwin, 1947; the fourth was taken from “Lake Wobegon 
Days,” by Garrison Keillor, Viking Penguin, Inc., 1985. 

(a) Substitution Cipher: 
EMGLOSUDCGDNCUSWYSFHNSFCYKDPUMLWGYICOXYSIPJCK 
QPKUGKMGOLICGINCGACKSNISACYKZSCKXECJCKSHYSXCG 
OIDPKZCNKSHICGIWYGKKGKGOLDSILKGOIUSIGLEDSPWZU 
GFZCCNDGYYSFUSZCNXEOJNCGYEOWEUPXEZGACGNFGLKNS 
ACIGOIYCKXCJUCIUZCFZCCNDGYYSFEUEKUZCSOCFZCCNC 
IACZEJNCSHFZEJZEGMXCYHCJUMGKUCY 

HINT F decrypts to 20. 

(b) Vigenke Cipher: 
KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXRGUD 
DKOTFMBPVGEGLTGCKQRACQCWDNAWCRXIZAKFTLEWRPTYC 
QKYVXCHKFTPONCQQRHJVAJUWETMCMSPKQDYHJVDAHCTRL 
SVSKCGCZQQDZXGSFRLSWCWSJTBHAFSIASPRJAHKJRJUMV 
GKMITZHFPDISPZLVLGWTFPLKKEBDPGCEBSHCTJRWXBAFS 
PEZQNRWXCVYCGAONWDDKACKAWBBIKFTIOVKCGGH~LNHI 
FFSQESVYCLACNVRWBBIREPBBVFEXOSCDYGZWPFDTKFQIY 
CWHJVLNHIQIBTKHJVNPIST 

(c) Affine Cipher: 
KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP 
KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP 
BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF 
ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK 
IVKSCPICBRKIJPKABI 
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1.2 

1.3 

1.4 

1.5 

(d) unspecified cipher: 
BNVSNSIHQCEELSSKKYERIFJKXUMBGYKAMQLJTYAVFBKVT 
DVBPVVRJYYLAOKYMPQSCGDLFSRLLPROYGESEBWALRWXM 
MASAZLGLEDFJBZAWPXWICGJXASCBYEHOSNMULKCEAHTQ 
OKMFLEBKFXLRRFDTZXCIWBJSICBGAWDVYDHAVFJXZIBKC 
GJIWEAHTTOEWTUHKRQWRGZBXYIREMMASCSPBNLHJMBLR 
FFJELHWEYLWISTFVWFJCMHYUYRUFSFMGESIGRLWALSWM 
NUHSIM'!t7ITCCQPZSICEHBCCMZFEGVJYOCDEMMPGHVAAUM 
ELCMOEHVLTIPSUYILVGFLMVWDVYDBTHFRAYISYSGKVSUU 
HYHGGCKTMBLRX 

(a) How many 2 x 2 matrices are there that are invertible over Z&b? 
(b) Let p be prime. Show that the number of 2 x 2 matrices that are invertible 

overZPis(p2- l)(p’-p). 

HINT Sincep is prime, i& is a field. Use the fact that a matrix over a field 
is invertible if and only if its rows are linearly independent vectors (i.e., there 
does not exist a non-zero linear combination of the rows whose sum is the 
vector of all O’s). 

(c) For p prime, and m > 2 an integer, find a formula for the number of m x m 
matrices that are invertible over &,. 

Sometimes it is useful to choose a key such that the encryption operation is identical 
to the decryption operation. In the case of the Hill Cipher, we would be looking for 
matrices K such that IC = I<-’ (such a matrix is called involurory). In fact, Hill 
recommended the use of involutory matrices as keys in his cipher. Determine the 
number of involutory matrices (over &,) in the case m = 2. 

HINT Use the formula given in Theorem 1.3 and observe that det A = f 1 for an 
involutory matrix over &. 

Suppose we are told that the plaintext 

conversation 

yields the ciphertext 

HIARRTNUYTUS 

where the Hill Cipher is used (but m is not specified). Determine the encryption 
matrix. 
An Affine-Hill Cipher is the following modification of a Hill Cipher: Let m be 
a positive integer, and define P = C = (&)m. In this cryptosystem, a key I< 
consists of a pair (L,b), where L is an m x m invertible matrix over &6, and 
b E (ZZ~)~. For z = (xi,..., zm) E P and K = (L, b) E K, we compute 
Y = eK(z) = (YI,..., y,) by means of the formula y = sL + b. Hence, if 
L = (&,l) and b = (bl,. . . , b,), then 

(Yl,..., Ym) =(~l,...,Zm) (;;, ;’ ::_ z) +(b I,..., b,). 

Suppose Oscar has learned that the plaintext 
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adisplayedequation 

is encrypted to give the ciphertext 

DSRMSIOPLXLJBZULLM 

and Oscar also knows that m = 3. Compute the key, showing all computations. 
1.6 Here is how we might cryptanalyze the Hill Cipher using a ciphertext-only attack. 

Suppose that we know that m = 2. Break the ciphertext into blocks of length two 
letters (digrams). Each such digram is the encryption of a plaintext digram using 
the unknown encryption matrix. Pick out the most frequent ciphertext digram and 
assume it is the encryption of a common digram in the list following Table 1.1 (for 
example, TH or ST). For each such guess, proceed as in the known-plaintext 
attack, until the correct encryption matrix is found. 

Here is a sample of ciphertext for you to decrypt using this method: 
LMQETXYEAGTXCTUIEWNCTXLZEWUAISPZYVAPEWLMGQWYA 
XFTCJMSQCADAGTXLMDXNXSNPJQSYVAPRIQSMHNOCVAXFV 

1.7 We describe a special case of a Permutation Cipher. Let m, n be positive integers. 
Write out the plaintext, by rows, in m x n rectangles. Then form the ciphertext by 
taking the columns of these rectangles. For example, if m = 4, n = 3, then we 
would encrypt the plaintext “cryptography” by forming the following rectangle: 

crm 
togr 
why 

The ciphertext would be “CTAROPYGHPRY.” 
(a) Describe how Bob would decrypt a ciphertext (given values for m and n). 
(b) Decrypt the following ciphertext, which was obtained by using this method 

of encryption: 
MYAMRARUYIQTENCTOFdHROYWDSOYEOUARRGDERNOGW 

1.8 There are eight different linear recurrences over & of degree four having CO = 1. 
Determine which of these recurrences give rise to a keystream of period 15 (given a 
non-zero initialization vector). 

1.9 The purpose of this exercise is to prove the statement made in Section 1.2.5 that the 
m x m coefficient matrix is invertible. This is equivalent to saying that the rows of 
this matrix are linearly independent vectors over a. 

As before, we suppose that the recurrence has the form 
m-1 

ih+i = 
c 

C3%i+J mod 2. 
j=lJ 

(%I,..., z,,,) comprises the initialization vector. For i > 1, define 

Vi = Zi,. e e ,Zi+m--l). ( 
Note that the coefficient matrix has the vectors VI,. . . , vm as its rows, so our 
objective is to prove that these m vectors are linearly independent. 

Prove the following assertions: 
(a) Foranyi 2 1, 

m--l 

Vm+i = c 
cjVi+, mod 2. 

j=O 
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lb) Choose h to be the minimum integer such that there exists a non-trivial linear 
combination of the vectors ur, . . . , oh which sums to the vector (0, . . . ,O) 
modulo 2. Then 

h-2 

V,, = 
c 

(Yjv3+l mod 2, 

Cc) 

and not all the oJ’s are zero. Observe that h 5 m + 1, since any m + 1 
vectors in an m-dimensional vector space are dependent. 
Prove that the keystream must satisfy the recurrence 

h-2 

foranyiz 1. 

rh-l+i = 
c 

ajz,+i mod 2 
j=O 

6-Q Observe that if h 5 m, then the keystream satisfies a linear recurrence of 
degree less than m, a contradiction. Hence, h = m + 1, and the matrix must 
be invertible. 

1.10 Decrypt the following ciphertext, obtained from the Autokey Cipher, by using 
exhaustive key search: 

MALWMAFBHBUQPTSOXALTGVWWRG 

1.11 We describe a stream cipher that is a modification of the Vigedre Cipher. Given 
a keyword (I<!, . . . , I<,,,) of length m, construct a keystream by the rule 2; = I(, 
(1 5 i 5 m), 2’ $trn = ti + 1 mod 26 (i 2 m + 1). In other words, each time 
we use the the keyword, we replace each letter by its successor modulo 26. For 
example, if SUMMER is the keyword, we use SUMMER to encrypt the first 
six letters, we use TVNNFS for the next six letters, and so on. 

Describe how you can use the concept of index of coincidence to first determine 
the length of the keyword, and then actually find the keyword. 

Test your method by cryptanalyzing the following ciphertext: 
IYMYSILONRFNCQXQJEDSHBUIBCJUZBOLFQYSCHATPEQGQ 
JEJNGNXZWHHGWFSUKULJQACZKKJOAAHGKEMTAFGMKVRDO 
PXNEHEKZNKFSKIFRQVHHOVXINPHMRTJPYWQGJWPUUVKFP 
OAWPMRKKQZWLQDYAZDRMLPBJKJOBWIWPSEPWQMBCRYVC 
RUZAAOUMBCHDAGDIEMSZFZHALIGKEMJJFPCIWKRMLMPIN 
AYOFIREAOLDTHITDVRMSE 

The plaintext was taken from “The Codebreakers,” by D. Kahn, Macmillan, 1967. 
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