Faculty of Science
 Final Examination

Computer Science 308-250B section I
 Introduction to Computer Science

Examiner: Prof. Claude Crépeau
Date: April 28, 2000
Associate Examiner: Prof. Nathan Freidman
Time: 9:00-12:00

INSTRUCTIONS:

- This examination is worth 60% of your final grade.
- The total of all (sub-)questions is 65 points.
- Each (sub-)question is assigned a value found in brackets next to it.
- OPEN•BOOKS \quad •OPEN•NOTES
- Faculty standard calculator permitted only.
- This examination consists of 3 pages including title page.
- This examination consists of 6 .

> | SUGGESTION : read all the questions and |
| :--- |
| their values before you start answering. |

1) Consider the following pattern: "barbados".

- Construct the failure function of the Knuth-Morris-Pratt algorithm for this pattern.
- Draw a FSA that accepts exactly this pattern.

2) HEAPS
a) What is the largest number of disitnct integers that we can put in a binary tree that satisfy both the definitions (explain your answers)

- of a (min)-heap and of a binary search tree ?
- of a (max)-heap and of a binary search tree ?
b) Consider the following list of numbers : $\{3,19,17,11,7,9,21\}$. Give two distinct ways of putting these elements in a (max)-heap.

Reproduce these two trees in your exam book and fill them in with the appropriate numbers to form two distinct (max)-heaps.

3) Consider the following (Java and graphical) definition of a node

```
Class node
{
Object content;
node next;
}
```

node:

Let \mathbf{h} be an object of type node, the head of a linked list of nodes.
Give the pseudo-code description of an algorithm "reverse(node h)" that reverses the nodes in the list without actually moving the contents.

Make sure that your algorithm works even if the list loops on itself at the start, such as :

4) For each statement, say if it is true or false.

$\underline{\text { Right }=+2 \text { pts, }}, \quad \underline{\text { Wrong }}=-1 \mathrm{pt}, \quad \underline{\text { Blank }=0 p t .}$

(a) In order to compute the fibonacci number f_{n}, any algorithm requires at least time $\square(n)$.
(b) The regular expressions $\mathbf{a}(\mathbf{b}+\mathbf{a})^{*}$ and $\mathbf{a + a}(\mathbf{a}+\mathbf{b})^{*}$ generate the same strings.
(c) When you calculate a simple closed path using the algorithm seen in class around the vertices of an n-sided polygon, you can determine in time $\mathrm{O}(\log n)$ if a given point is a vertex of the polygon or not.
(d) The convex hull of a rectangle is always the rectangle itself.
(e) Every planar graph is 4-colorable.
5) Suppose you are given a (single) queue Q containing distinct integers.

- Find an algorithm (in pseudo-code) to sort these numbers using nothing else than a fixed number of extra int variables (no array, no stack, no other queue) and queue operations on Q .
- Estimate the worst-case running time of your algorithm and express this time function using the Big-O notation.
- Argue that this would be impossible with a single stack S instead of a queue.

6) Consider the following binary tree. List the sequence of nodes visited according to a

- Depth-first search starting at (3).
- Breath-first search starting at (3).

Notice that this is a binary search tree.

- What is the successor of (2)?
- Draw the resulting tree after removing (6).

