Faculty of Science Final Examination

Computer Science 308-250B section I Introduction to Computer Science

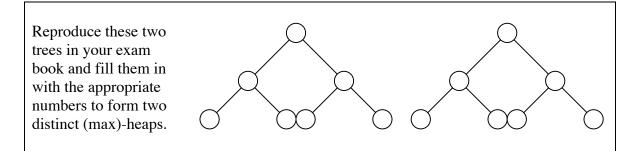
Examiner: Prof. Claude Crépeau **Associate Examiner:** Prof. Nathan Freidman

Date: April 28, 2000 **Time:** 9:00 – 12:00

INSTRUCTIONS:

This examination is worth 60% of your final grade. The total of all (sub-)questions is 65 points. Each (sub-)question is assigned a value found in brackets next to it. <u>OPEN•BOOKS •/• OPEN•NOTES</u> Faculty standard calculator permitted only. This examination consists of 3 pages including title page. This examination consists of 6.

<u>SUGGESTION</u> : read all the questions and their values before you start answering.


- 1) Consider the following pattern: "barbados".
 - Construct the failure function of the Knuth-Morris-Pratt algorithm for this pattern.
 - Draw a FSA that accepts exactly this pattern.

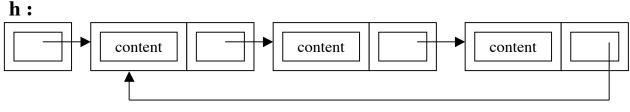
2) HEAPS

a) What is the largest number of disitnet integers that we can put in a binary tree that satisfy both the definitions (explain your answers)

- of a (min)-heap and of a binary search tree ?
- of a (max)-heap and of a binary search tree ?

b) Consider the following list of numbers : { 3, 19, 17, 11, 7, 9, 21 }. Give two distinct ways of putting these elements in a (max)-heap.

3) Consider the following (Java and graphical) definition of a node


Class node	
{	
Object content;	
node next;	
}	

node:						
		content		next		

Let \mathbf{h} be an object of type node, the head of a linked list of nodes.

Give the pseudo-code description of an algorithm "reverse(node \mathbf{h})" that reverses the nodes in the list without actually moving the contents.

Make sure that your algorithm works even if the list loops on itself at the start, such as :

4) For each statement, say if it is *true* or *false*.

<u>Right = +2pts</u>, <u>Wrong = -1pt</u>, <u>Blank = 0pt</u>.

(a) In order to compute the fibonacci number f_n , any algorithm requires at least time $\Omega(n)$.

(b) The regular expressions $a(b+a)^*$ and $a+a(a+b)^*$ generate the same strings.

(c) When you calculate a **simple closed path** using the algorithm seen in class around the vertices of an n-sided polygon, you can determine in time $O(\log n)$ if a given point is a vertex of the polygon or not.

(d) The convex hull of a rectangle is always the rectangle itself.

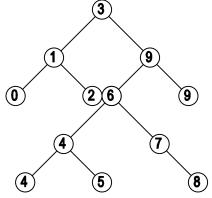
(e) Every planar graph is 4-colorable.

5) Suppose you are given a (single) queue Q containing <u>distinct</u> integers.

• Find an algorithm (in pseudo-code) to sort these numbers using nothing else than a fixed number of extra **int** variables (no array, no stack, no other queue) and queue operations on Q.

• Estimate the worst-case running time of your algorithm and express this time function using the Big-O notation.

• Argue that this would be impossible with a single stack S instead of a queue.



6) Consider the following binary tree. List the sequence of nodes visited according to a

- Depth-first search starting at (3).
- Breath-first search starting at (3).

Notice that this is a binary search tree.

- What is the successor of (2) ?
- Draw the resulting tree after removing (6).

