
6Stacks

An Inefficient Algorithm
•There is a straightforward way to compute the span

of a stock on each of n days:

Algorithm computeSpans1(P):
Input: an n-element array P of numbers such that

P[i] is the price of the stock on day i
Output: an n-element array S of numbers such that

S[i] is the span of the stock on day i
for i ← 0 to n − 1 do

k ←0
done ← false
repeat

if P[i − k] ≤ P[i] then
k ← k + 1

else
done ← true

until (k > i) or done
S[i] ← k

return S

•The running time of this algorithm is (ugh!) O(n2).
Why?



8Stacks

An Efficient Algorithm
•The code for our new algorithm:

Algorithm computeSpan2(P):
Input: A nn-elementarray P ofnumbersrepresenting

stock prices
Output: An n-element array S of numbers such that

S[i] is the span of the stock on day i
Let D be an empty stack
for i ← 0 to n − 1 do

done ← false
while not(D.isEmpty() or done) do

if P[i] ≥ P[D.top()] then
D.pop()

else
done ← true

if D.isEmpty() then
h ← −1

else
h ← D.top()

S[i] ← i − h
D.push(i)

return S

•Let’s analyze computeSpan2’s run time...


	Sheet 6
	Sheet 8

