COMP 250, Winter 2004
Review of the course

Week 1 Lecture 1 Jan 5 Introduction, Algorithms
• What is an algorithm?
• Importance of finite description.
• How we describe an algorithm.
• Pseudo-code.

Lecture 2 Jan 7 Algorithms
• Examples: binary search, multiplication of integers.
• Notion of running time.

Lecture 3 Jan 9 Basics of Java
• Variables, data types, assignments, expressions, conditionals.
• Basics of Classes, Methods, file names, etc.

Week 2 Lecture 4 Jan 12 Arrays and Iteration in Java
• Arrays, WHILE/FOR loops.
• Examples.

Lecture 5 Jan 14 Procedural Abstraction
• Idea of a subprogram.
• Advantages.

(Mercer) Lecture 6 Jan 16 Classes and Methods
• Subprograms in JAVA.

Week 3 Lecture 7 Jan 19 Thinking Recursively

Lecture 8 Jan 21 Recursive Methods in Java
• Examples: Fibonacci, Multiplication.
• Advantages.

Lecture 9 Jan 23 Mathematical Induction
• Simple and generalized mathematical induction.
• Examples.

Week 4 Lecture 10 Jan 26 Recursion and Induction
• Proofs of termination.

Lecture 11 Jan 28 Running Time and Big-O
• Best case, worst case, average case.
• Justification of Big-O notation.
• Estimating running time of loops.

Lecture 12 Jan 30 Big-O, Ω, Θ
• Definitions
• Set of rules.

Week 5 Lecture 13 Feb 2 Running Time
• Estimating running time of several examples.

Lecture 14 Feb 4 Running Time & Recursion
Week 6
Lecture 15 Feb 9 Running Time & Recursion
- Estimating running time by setting a recursion.
- Master method.
- Examples: binary search, merge sort, etc.

Lecture 16 Feb 11 Lists
- Abstract notion of a list.
- Array implementation of a list.
- Constructing a list, list operations.

Week 7
Lecture 18 Feb 16 Stacks
- Abstract notion of a stack.
- Array implementation of a stack.
- Implementing stack operations: PUSH, POP, TOP, ISEMPTY, SIZE.

Lecture 19 Feb 18 Queues
- Abstract notion of a queue.
- Array implementation of a queue.
- Implementing stack operations: ENQUEUE, DEQUEUE, FRONT, ISEMPTY, SIZE.

Lecture 18 Feb 16 Stacks
- Abstract notion of a stack.
- Array implementation of a stack.
- Implementing stack operations: PUSH, POP, TOP, ISEMPTY, SIZE.

Week 8
Lecture 21 Mar 1 Classes and Objects
Lecture 22 Mar 3 Classes and Objects
- What is a JAVA object.
- Constructor.
- Lots of technical things about JAVA classes and Objects.

Lecture 23 Mar 5 Lists in Java
- Defining a node with an object and a reference to another node.
- Making a list.
- Implementing some list operations: INSERT, DELETE, SIZE.

Week 9
Lecture 24 Mar 8 Graphs
- Definition and properties.
- Various data structures for graphs.
- Running times, advantages and disadvantages.

Lecture 25 Mar 10 DFS & BFS
- Searching a graph, discovery edges.
- Depth-First search, Breath-First search, advantages and disadvantages.
- Spanning trees, connected components.

Lecture 26 Mar 12 Trees
- Definition and properties.
- Root, leaves, internal nodes, height.
- Binary and K-array trees.
Week 10 Lecture 27 Mar 15 Traversing Trees
• In-order, Pre-order, Post-order.
• DFS vs BFS: stacks & queues.

Lecture 28 Mar 17 Binary search Trees
• What is a binary-search tree.
• Representation.
• BST methods : SEARCH, MIN, MAX, SUCCESSOR,
 PREDECESSOR, INSERT, DELETE.
• running times.

Lecture 29 Mar 19 Heaps & Heapsort
• What's a heap ? min or max heap ?
• Heaps and arrays.
• Heap methods : heapify, build-heap, heapsort.
• running times.

Week 11 Lecture 30 Mar 22 Computational Geometry
• Points, line segments.
• Intersecting segments and orientation method.
• Inside or outside a polygon ?

Lecture 31 Mar 24 Simple Closed Path
• Simple closed path.
• Sorting unkown angles, comparing via orientation…

Lecture 32 Mar 26 Convex Hull
• Relevance of Convex Hull problem.
• Gift wrapping method.
• Graham scan method.
• running times.

Week 12 Lecture 33 Mar 29 Pattern Matching
• Pattern matching problem.
• Brute-force algorithm.
• Hashing and Karp-Rabin method.

Lecture 34 Mar 29 Pattern Matching
• Knuth-Morris-Pratt method, failure function.

Lecture 35 Mar 31 Regular expression & FSA
• Regular expressions.
• Finite State automata.
• Converting regular expression to FSA.

Lecture 36 Apr 2 FSA simulation
• Finding if an FSA accepts a word.
• Finding if a string contains a sub-word recognized by a FSA.
Week 13 Lecture 37 Apr 5 Computability Theory

- Hilbert problems.
- Proving all theorems !!!
- Uncomputability.
- Busy Beaver, Post Correspondence Problem.

Lecture 38 Apr 7 Complexity Theory

- 2,3,4-colorability of planar graphs.
- 2,3,4-colorability of general graphs.
- P,NP, the “P=NP?” question, NP-completeness.
- Quantum Computers...

Week 14 Lecture 39 Apr 13 Review of the course

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Lecture 1</th>
<th>Jan 5</th>
<th>Introduction, Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>What is an algorithm ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Importance of finite description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>How do we describe an algorithm ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pseudo-code.</td>
</tr>
</tbody>
</table>

Lecture 2 Jan 7 Algorithms

- Examples: binary search, multiplication of integers.
- Notion of running time.

Lecture 3 Jan 9 Basics of Java

- Variables, data types, assignments, expressions, conditionals.
- Basics of Classes, Methods, file names, etc.

Week 2 Lecture 4 Jan 12 Arrays and Iteration in Java

- Arrays, WHILE/FOR loops.
- Examples.

Lecture 5 Jan 14 Procedural Abstraction

- Idea of a subprogram.
- Advantages.

(Mercer) Lecture 6 Jan 16 Classes and Methods

- Subprograms in JAVA.

Week 3 Lecture 7 Jan 19 Thinking Recursively

Lecture 8 Jan 21 Recursive Methods in Java

- Examples: Fibonacci, Multiplication.
- Advantages.

Lecture 9 Jan 23 Induction

- Simple and generalized mathematical induction.
- Examples.

Week 4 Lecture 10 Jan 26 Recursion and Induction

- Proofs of termination.

Lecture 11 Jan 28 Running Time and Big-O

- Best case, worst case, average case.
- Justification of Big-O notation.
- Estimating running time of loops.

Lecture 12 Jan 30 Big-O, Ω, Ø

- Definitions
- Set of rules.

Week 5 Lecture 13 Feb 2 Running Time

- Estimating running time of several examples.

Lecture 14 Feb 4 Running Time & Recursion

Week 6 Lecture 15 Feb 9 Running Time & Recursion

- Estimating running time by setting a recursion.
- Master method.
- Examples: binary search, merge sort, etc.

Lecture 16 Feb 11 Lists