<u>COMP 250, Winter 2004</u> <u>Review of the course</u>

Week 1	Lecture 1	Jan 5 Introduction, Algorithms	
	• What is an algorithm ?		
	• Importance of finit		
	• How we describe a	n algorithm.	
	• Pseudo-code.		
		<u>Jan 7 Algorithms</u>	
		search, multiplication of integers.	
	• Notion of running		
		Jan 9 Basics of Java	
		es, assignments, expressions, conditionals.	
		Methods, file names, etc.	
Week 2		Jan 12 Arrays and Iteration in Java	
	• Arrays, WHILE/F	OR loops.	
	• Examples.		
		Jan 14 Procedural Abstraction	
	• Idea of a subprogra	am.	
	• Advantages.		
<u>(Mercer)</u>		Jan 16 Classes and Methods	
	• Subprograms in JA	VA.	
Week 3	Lecture 7	<u>Jan 19 Thinking Recursively</u>	
	Lecture 8	Jan 21 Recursive Methods in Java	
	• Examples : Fibona	cci, Multiplication.	
	 Advantages. 		
	Lecture 9	Jan 23 Mathematical Induction	
		lized mathematical induction.	
	• Examples.		
Week 4	Lecture 10	Jan 26 Recursion and Induction	
	• Proofs of terminati	on.	
	Lecture 11	Jan 28 Running Time and Big-O	
	• Best case, worst ca	C C	
	 Justification of Big 	-	
	Estimating running	g time of loops.	
	Lecture 12	<u>Jan 30 Big-O, Ω, Θ</u>	
	 Definitions 		
	• Set of rules.		
Week 5	Lecture 13	Feb 2 Running Time	
	• Estimating running time of several examples.		
	Lecture 14	Feb 4 Running Time & Recursion	

Week 6	Lecture 15	Feb 9 Running Time & Recursion	
		ng time by setting a recursion.	
	• Master method.		
	-	y search, merge sort, etc.	
	Lecture 16	<u>Feb 11 Lists</u>	
	 Abstract notion of 		
	• Array implement		
	• Constructing a lis	-	
		Feb 13 Sorting Lists	
	• Sorting.		
***	• merge sort.		
Week 7	Lecture 18	<u>Feb 16 Stacks</u>	
	• Abstract notion o		
	Array implement	ation of a stack. ick operations : PUSH, POP, TOP, ISEMPTY, SIZE.	
	Lecture 19	Feb 18 Queues	
	 Abstract notion o Array implement 	1	
	• 1	ation of a queue. ack operations : ENQUEUE, DEQUEUE, FRONT,	
	ISEMPTY, SIZE.		
	Lecture 20	Feb 20 <i>MIDTERM</i>	
Week 8	Lecture 21	Mar 1 Classes and Objects	
	Lecture 22	Mar 3 Classes and Objects	
	• What is a JAVA		
	• Constructor.	J	
	• Lots of technical	things about JAVA classes and Objects.	
	Lecture 23	Mar 5 Lists in Java	
	• Defining a node	with an object and a reference to another node.	
	 Making a list. 		
	• Implementing so	me list operations : INSERT, DELETE, SIZE.	
Week 9	Lecture 24	<u>Mar 8 Graphs</u>	
	• Definition and pr	1	
	• Various data stru		
		dvantages and disadvantages.	
	Lecture 25	Mar 10 DFS & BFS	
	 Searching a graph, discovery edges. Depth First search Breath First search, educate gas and disadvantages. 		
	Depth-First search, Breath-First search, advantages and disadvantages.Spanning trees, connected components.		
	Lecture 26	Mar 12 Trees	
	 Definition and pr Root leaves interview 	ernal nodes, height.	
	 binary and K-arra 	•	
	sind y und it und	-,	

Week 10 Lecture 27 Mar 15 Traversing Trees

• In-order, Pre-order, Post-order.

• DFS vs BFS: stacks & queues.

Lecture 28 Mar 17 Binary search Trees

- What is a binary-search tree.
- Representation.
- BST methods : SEARCH, MIN, MAX, SUCCESSOR, PREDECESSOR, INSERT, DELETE.
- running times.

Lecture 29 Mar 19 Heaps & Heapsort

- What's a heap ? min or max heap ?
- Heaps and arrays.
- Heap methods : heapify, build-heap, heapsort.
- running times.

Week 11Lecture 30Mar 22 Computational Geometry

- Points, line segments.
- Intersecting segments and orientation method.
- Inside or outside a polygon ?

Lecture 31 Mar 24 Simple Closed Path

- Simple closed path.
- Sorting unkown angles, comparing via orientation...

Lecture 32 Mar 26 Convex Hull

- Relevance of Convex Hull problem.
- Gift wrapping method.
- Graham scan method.
- running times.

Week 12 Lecture 33 Mar 29 Pattern Matching

- Pattern matching problem.
- Brute-force algorithm.
- Hashing and Karp-Rabin method.

Lecture 34 Mar 29 Pattern Matching

• Knuth-Morris-Pratt method, failure function.

Lecture 35 Mar 31 Regular expression & FSA

- Regular expressions.
- Finite State automata.
- Converting regular expression to FSA.

Lecture 36 Apr 2 FSA simulation

- Finding if an FSA accepts a word.
- Finding if a string contains a sub-word recognized by a FSA.

Week 13 Lecture 37 Apr 5 Computability Theory

- Hilbert problems.
- Proving all theorems !!!
- Uncomputability.
- Busy Beaver, Post Correspondence Problem.

Lecture 38 Apr 7 Complexity Theory

- 2,3,4-colorability of planar graphs.
- 2,3,4-colorability of general graphs.
- P,NP, the "P=NP?" question, NP-completeness.
- Quantum Computers...

Week 14 Lecture 39 Apr 13 Review of the course

	<u>COMP 250, Winter 2004</u> Review of the course		
Week 1	Lecture 1 Jan 5 Introduction, Algorithms		
	• What is an algorithm ?		
	• Importance of finite description.		
	• How do we describe an algorithm ?		
	• Pseudo-code.		
	Lecture 2 Jan 7 Algorithms		
	Examples : binary search, multiplication of integers.Notion of running time.		
	Lecture 3 Jan 9 Basics of Java		
	• Variables, data types, assignments, expressions, conditionals.		
	basics of Classes, Methods, file names, etc.		
Week 2	Lecture 4 Jan 12 Arrays and Iteration in Java		
	• Arrays, WHILE/FOR loops.		
	• Examples.		
	Lecture 5 Jan 14 Procedural Abstraction		
	• Idea of a subprogram.		
	• Advantages.		
(Mercer)	Lecture 6 Jan 16 Classes and Methods		
	• Subprograms in JAVA.		
Week 3	Lecture 7 Jan 19 Thinking Recursively		
	Lecture 8 Jan 21 Recursive Methods in Java		
	 Examples : Fibonacci, Multiplication. 		
	Advantages.		
	Lecture 9 Jan 23 Induction		
	• Simple and generalized mathematical induction.		
	• Examples.		
Week 4	Lecture 10 Jan 26 Recursion and Induction		
	• Proofs of termination.		
	Lecture 11 Jan 28 Running Time and Big-O		
	Best case, worst case, average case.		
	Justification of Big-O notation.		
	• Estimating running time of loops. Lecture 12 Jan 30 Big-O. Ω. Θ		
	• Definitions		
	Set of rules.		
Wool 5			
WEEK 5	Estimating running time of several examples.		
	Estimating running time of several examples. Lecture 14 Feb 4 Running Time & Recursion		
Week 6	Lecture 15 Feb 9 Running Time & Recursion		
TTURU	• Estimating running time by setting a recursion.		
	Master method.		
	• Examples : binary search, merge sort, etc.		
	Lecture 16 Feb 11 Lists		
	•		