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Queues
• A queue differs from a stack in that its insertion and

removal routines follows thefirst-in-first-out(FIFO)
principle.

• Elements may be inserted at any time, but only the
element which has been in the queue the longest
may be removed.

• Elements are inserted at therear (enqueued) and
removed from thefront (dequeued)
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The Queue Abstract Data Type
• The queue has two fundamental methods:

- enqueue(o): Insert objecto at the rear of the queue

- dequeue(): Remove the object from the front of
the queue and return it;an error
occurs if the queue is empty

• These support methods should also be defined:

- size(): Return the number of objects in the
queue

- isEmpty(): Return a boolean value that indicates
whether the queue is empty

- front(): Return, but do not remove, the front
object in the queue;an error occurs if
the queue is empty
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An Array-Based Queue
• Create a queue using an array in a circular fashion

• A maximum sizeN is specified, e.g.N = 1,000.

• The queue consists of anN-element arrayQ and two
integer variables:
- f, index of the front element
- r, index of the element after the rear one

• “normal configuration”

• “wrapped around” configuration

• What doesf=r mean?

• How do we compute the number of elements in the
queue fromf andr?
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An Array-Based Queue (contd.)
• Pseudo-Code (contd.)

Algorithm  size():
return  (N - f + r) mod N

Algorithm  isEmpty():
return  (f = r)

Algorithm  front():
if  isEmpty()then

throw a QueueEmptyException
return Q[f]

Algorithm  dequeue():
if  isEmpty()then

throw a QueueEmptyException
temp← Q[f]
Q[f] ← null
f ← (f + 1) modN
return temp

Algorithm  enqueue(o):
if  size =N - 1 then

throw a QueueFullException
Q[r] ← o
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Implementing a Queue with a
Singly Linked List

• nodes connected in a chain by links

• the head of the list is the front of the queue, the tail
of the list is the rear of the queue

• why not the opposite?
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Removing at the Head

• advance head reference

• inserting at the head is just as easy
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Inserting at the Tail
• create a new node

• chain it and move the tail reference

• how about removing at the tail?
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Double-Ended Queues
• A double-ended queue, ordeque, supports insertion

and deletion from the front and back.

• The Deque Abstract Data Type
- insertFirst(e): Insert e at the deginning of deque.

- insertLast(e): Insert e at end of deque

- removeFirst(): Removes and returns first element

- removeLast(): Removes and returns last element

• Additionally supported methods include:
- first()
- last()
- size()
- isEmpty()
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Implementing Stacks and
Queues with Deques

• Stacks with Deques:

• Queues with Deques:

Stack Method
Deque

Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Queue Method
Deque

Implementation

size()
isEmpty()
front()
enqueue()
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()
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The Adaptor Pattern
• Using a deque to implement a stack or queue is an

example of theadaptor pattern. Adaptor patterns
implement a class by using methods of another class

• In general, adaptor classes specialize general classes

• Two such applications:
- Specialize a general class by changing some

methods.
Ex: implementing a stack with a deque.

- Specialize the types of objects used by a general
class.

Ex: Defining anIntegerArrayStack class that
adaptsArrayStack to only store integers.
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Implementing Deques with
Doubly Linked Lists

• Deletions at the tail of a singly linked list cannot be
done in constant time.

• To implement a deque, we use adoubly linked list.
with special header and trailer nodes.

• A node of a doubly linked list has anextand aprev
link. It supports the following methods:
- setElement(Object e)
- setNext(Object newNext)
- setPrev(Object newPrev)
- getElement()
- getNext()
- getPrev()

• By using a doubly linked list, all the methods of a
deque run in O(1) time.
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Implementing Deques with
Doubly Linked Lists (cont.)

• When implementing a doubly linked lists, we add
two special nodes to the ends of the lists: theheader
andtrailer nodes.
- The header node goes before the first list element.

It has a valid next link but a null prev link.
- The trailer node goes after the last element. It has a

valid prev reference but a null next reference.

• The header and trailer nodes are sentinel or
“dummy” nodes because they do not store elements.

• Here’s a diagram of our doubly linked list:
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Implementing Deques with
Doubly Linked Lists (cont.)

• Here’s a visualization of the code forremoveLast().
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