
1Queues and Linked Lists

QUEUES AND LINKED
LISTS

• Queues

• Linked Lists

• Double-Ended Queues

head

Rome Seattle Toronto Zurich

∅

tail

2Queues and Linked Lists

Queues
• A queue differs from a stack in that its insertion and

removal routines follows thefirst-in-first-out(FIFO)
principle.

• Elements may be inserted at any time, but only the
element which has been in the queue the longest
may be removed.

• Elements are inserted at therear (enqueued) and
removed from thefront (dequeued)

a0 a1 a2 an-1

front rear

. . .

3Queues and Linked Lists

The Queue Abstract Data Type
• The queue has two fundamental methods:

- enqueue(o): Insert objecto at the rear of the queue

- dequeue(): Remove the object from the front of
the queue and return it;an error
occurs if the queue is empty

• These support methods should also be defined:

- size(): Return the number of objects in the
queue

- isEmpty(): Return a boolean value that indicates
whether the queue is empty

- front(): Return, but do not remove, the front
object in the queue;an error occurs if
the queue is empty

4Queues and Linked Lists

An Array-Based Queue
• Create a queue using an array in a circular fashion

• A maximum sizeN is specified, e.g.N = 1,000.

• The queue consists of anN-element arrayQ and two
integer variables:
- f, index of the front element
- r, index of the element after the rear one

• “normal configuration”

• “wrapped around” configuration

• What doesf=r mean?

• How do we compute the number of elements in the
queue fromf andr?

N−10 1 2

Q ...

rf

...Q

N−10 1 2 fr

5Queues and Linked Lists

An Array-Based Queue (contd.)
• Pseudo-Code (contd.)

Algorithm size():
return (N - f + r) mod N

Algorithm isEmpty():
return (f = r)

Algorithm front():
if isEmpty()then

throw a QueueEmptyException
return Q[f]

Algorithm dequeue():
if isEmpty()then

throw a QueueEmptyException
temp← Q[f]
Q[f] ← null
f ← (f + 1) modN
return temp

Algorithm enqueue(o):
if size =N - 1 then

throw a QueueFullException
Q[r] ← o

6Queues and Linked Lists

Implementing a Queue with a
Singly Linked List

• nodes connected in a chain by links

• the head of the list is the front of the queue, the tail
of the list is the rear of the queue

• why not the opposite?

head

Rome Seattle Toronto

∅

tail

7Queues and Linked Lists

Removing at the Head

• advance head reference

• inserting at the head is just as easy

head

Baltimore Rome Seattle Toronto

∅

tail

head

Baltimore Rome Seattle Toronto

∅

tail

8Queues and Linked Lists

Inserting at the Tail
• create a new node

• chain it and move the tail reference

• how about removing at the tail?

head

Rome Seattle Toronto

∅

tail

Zurich

∅

head

Rome Seattle Toronto Zurich

∅

tail

9Queues and Linked Lists

Double-Ended Queues
• A double-ended queue, ordeque, supports insertion

and deletion from the front and back.

• The Deque Abstract Data Type
- insertFirst(e): Insert e at the deginning of deque.

- insertLast(e): Insert e at end of deque

- removeFirst(): Removes and returns first element

- removeLast(): Removes and returns last element

• Additionally supported methods include:
- first()
- last()
- size()
- isEmpty()

10Queues and Linked Lists

Implementing Stacks and
Queues with Deques

• Stacks with Deques:

• Queues with Deques:

Stack Method
Deque

Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Queue Method
Deque

Implementation

size()
isEmpty()
front()
enqueue()
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()

11Queues and Linked Lists

The Adaptor Pattern
• Using a deque to implement a stack or queue is an

example of theadaptor pattern. Adaptor patterns
implement a class by using methods of another class

• In general, adaptor classes specialize general classes

• Two such applications:
- Specialize a general class by changing some

methods.
Ex: implementing a stack with a deque.

- Specialize the types of objects used by a general
class.

Ex: Defining anIntegerArrayStack class that
adaptsArrayStack to only store integers.

12Queues and Linked Lists

Implementing Deques with
Doubly Linked Lists

• Deletions at the tail of a singly linked list cannot be
done in constant time.

• To implement a deque, we use adoubly linked list.
with special header and trailer nodes.

• A node of a doubly linked list has anextand aprev
link. It supports the following methods:
- setElement(Object e)
- setNext(Object newNext)
- setPrev(Object newPrev)
- getElement()
- getNext()
- getPrev()

• By using a doubly linked list, all the methods of a
deque run in O(1) time.

header trailer

New York ProvidenceBaltimore

13Queues and Linked Lists

Implementing Deques with
Doubly Linked Lists (cont.)

• When implementing a doubly linked lists, we add
two special nodes to the ends of the lists: theheader
andtrailer nodes.
- The header node goes before the first list element.

It has a valid next link but a null prev link.
- The trailer node goes after the last element. It has a

valid prev reference but a null next reference.

• The header and trailer nodes are sentinel or
“dummy” nodes because they do not store elements.

• Here’s a diagram of our doubly linked list:

header trailer

New York ProvidenceBaltimore

14Queues and Linked Lists

Implementing Deques with
Doubly Linked Lists (cont.)

• Here’s a visualization of the code forremoveLast().

header trailer

New York Providence San FranciscoBaltimore

header trailer

New York ProvidenceBaltimore

secondtolast

last

header trailer

New York Providence San FranciscoBaltimore

secondtolast last

