QUEUES AND L INKED

e Queues

e Linked Lists

e Double-Ended Queues

head

N

1T

|

LISTS

-

‘ ®

ail

\

g B

r-

_>|:|

\

C Rome) C Seattle) C Toron@ C Zurich)

Queues and Linked Lists

Queues

« A queue differs from a stack in that its insertion anc
removal routines follows thierst-in-first-out(FIFO)
principle.

* Elements may be inserted at any time, but only the
element which has been in the queue the longest
may be removed.

* Elements are inserted at te&r (enqueuepland
removed from théont (dequeued)

front rear

Queues and Linked Lists 2

The Queue Abstract Data Type

 The queue has two fundamental methods:

- enqueuad): Insert objecb at the rear of the queuge

- dequeue(): Remove the object from the front of
the queue and return iij

e These support methods should also be defined:

- size(): Return the number of objects in the
gueue

- IsEmpty(): Return a boolean value that indicates
whether the queue is empty

- front(): Return, but do not remove, the front
object in the queue;

Queues and Linked Lists 3

An Array-Based Queue

e Create a queue using an array in a circular fashio
« A maximum sizeN is specified, e.dN = 1,000.

 The queue consists of delement array) and two
Integer variables:

- f, Index of the front element
- 1, Index of the element after the rear one

* “normal configuration”

0 12 f ' N-1

* “wrapped around” configuration

0 \ - Q

012 r f N

 What doed=r mean?

« How do we compute the number of elements in tf
gueue fronf andr?

Queues and Linked Lists 4

An Array-Based Queue (contd.)

e Pseudo-Code (contd.)

Algorithm size():
return (N -f+r) modN

Algorithm isEmpty():
return (f=r)

Algorithm front():
If iIsEmpty()then
throw a QueueEmptyException
return Q[f]

Algorithm dequeue():
If iIsEmpty()then
throw a QueueEmptyException
temp — Q[f]

Q[f] <« null
f — (f+ 1) modN
return temp

Algorithm enqueuey):
If size =N - 1then
throw a QueueFullException

Qlr] ~ o

Queues and Linked Lists 5

Implementing a Queue with a
Singly Linked List

» nodes connected in a chain by links
head tail

N\ N\

1T [T % [*T—™

(Rome) (Seattle) (Toron@

 the head of the list is the front of the queue, the taill
of the list is the rear of the queue

« why not the opposite?

Queues and Linked Lists 6

Removing at the Head

head tail

N N

AT oy U o s B W g B W s el

\

CBaltimor@ C Rome) C Seattl@ C Toron@

e advance head reference

head tail

-~ T~
// \
/ \

r—=—rn"
| \ >

Tt B U hs I % o— [|
| \ \

| \ |

\ ‘ |
\ _ |
\\gB\aItlmor?)/l C Rome) C Seattl@ C Torontb

* inserting at the head Is just as easy

Queues and Linked Lists

Inserting at the Tall

e create a new node

head tail
\ \ /// \\\
Il r__l-'l\\
e s e s e U] 1ot []

\ \ ; | \ \
| \ |
\ |
\ _ I
C Rome) C Seattle) \\/I

e chain it and move the tail reference

head tail

N N

AT At g B et g R U £ g B U s g B

\

C Rome) C Seattle) C Toron@ C Zurich)

« how about removing at the tail?

Queues and Linked Lists

Double-Ended Queues

e A double-ended queuerdeque supports insertion
and deletion from the front and back.

 The Deque Abstract Data Type
- InsertFirste): Insert e at the deginning of deque
- InsertLast@): Insert e at end of deque

- removeFirst() Removes and returns first elemen

- removelast() Removes and returns last elemen

« Additionally supported methods include:
- first()
- last()
- size()
- ISEmpty()

Queues and Linked Lists 9

Implementing Stacks and
Queues with Deques

« Stacks with Deques:

Stack Method beque :
Implementation
size() size()
isSEmpty() ISEmpty()
top() last()
push(e) InsertLast(e)
pop() removelLast()
* Queues with Deques:
Deque
Queue Method Implementation
size() size()
isSEmpty() ISEmpty()
front() first()
engueue() InsertLast(e)
dequeue() removeFirst()

Queues and Linked Lists

10

The Adaptor Pattern

e Using a deque to implement a stack or queue is an
example of thedaptor patternAdaptor patterns
Implement a class by using methods of another cla

 In general, adaptor classes specialize general cl3as:

« Two such applications:
- Specialize a general class by changing some
methods.
EX: implementing a stack with a deque.
- Specialize the types of objects used by a general
class.

Ex: Defining anintegerArrayStacklass that
adaptsArrayStackto only store integers.

Queues and Linked Lists 11

Implementing Deques with
Doubly Linked Lists

» Deletions at the tall of a singly linked list cannot b
done in constant time.

* To implement a deque, we usda@ubly linked list
with special header and trailer nodes.

header trailer

L~ A"\‘ | 4——\
S Pl s ISP 8 P 8

* A node of a doubly linked list hash@xtandaprev
link. It supports the following methods:

- setElement(Object e)

- setNext(Object newNext)
- setPrev(Object newPrgv
- getElement()

- getNext()

- getPrev()

* By using a doubly linked list, all the methods of a
deque run in O(1) time.

e

Queues and Linked Lists 12

Implementing Deques with
Doubly Linked Lists (cont.)

 When implementing a doubly linked lists, we add

two special nodes to the ends of the lists: hieader
andtrailer nodes.

- The header node goes before the first list eleme
It has a valid next link but a null prev link.

- The trailer node goes after the last element. It has
valid prev reference but a null next reference.

| =4

N

 The header and trailer nodes are sentinel or
“*dummy” nodes because they do not store element

e Here’s a diagram of our doubly linked list:

header trailer

A"\‘. Af‘\\ h‘ A—-\.
N— T ® NN~ YY" ¢ 1N

Queues and Linked Lists 13

Implementing Deques with
Doubly Linked Lists (cont.)

e Here’s a visualization of the code femoveLast().

header secondtolast last trailer

L] \ QS% t qg\o

|~
N

Y P
B g (o P ¢ [N
-

last

header secondtolast /__\traﬂer
7 N

JEA WEA WA« WM s [

header trailer

4 A a— -
N ®l CIN~—1" Nt % 1N

Queues and Linked Lists

14

