Recursion

and Java



Recursion is an extremely powerful problem-
solving technique. Problems that at first ap-
pear difficult often have simple recursive solu-
tions. Recursion breaks a problems into several
smaller problems of exactly the same type as
the original problem.

The typical example is the factorial of n, n!*.
Although you could iteratively calculate 1e2 e

.en, you could also claim that n! = n e
(n — 1)!. Therefore, if you knew (n — 1)!, you
could easily calculate n!.

Java supports recursion by letting the program-
mer make an activation call inside a method
on the method itself. However, be aware that
programming recursively is not always more
efficient or more elegant, the two main rea-
sons why recursivity is an attracting program-
ing technique, then an iterative approach.

e, nl=ne(n—1)e...e2e1



Example :

public class iter_fact

{

public static void main(String args[])

{

long n = Long.parselLong(args[0]), result = 1;

if (n == 0)
System.out.println(1);

else

{

for (long i = 1; i <= nj; i++)
result *= i;
System.out.println(result);

In which the program starts by reading an argument n

and initiates a result variable to 1. It then multiples this

variable result by all the values between 1 and n.



Example :

public class recur_fact

{
public static long fact(long n)
{
if (n == 0)
return 1;
else return n * fact(n-1);
}
public static void main(String args[])
{
long n = Long.parseLong(args[0]) ;
System.out.println(fact(n));
}
}

We have now defined a recursive method called fact
that takes as parameter the value whose factorial we are
looking for. The recursive call is in the return statement
where we multiply n by fact(n — 1).Note that we have
included a base case to stop the recursivity when n is
equal to O.



Cautions:

e A recursive algorithm must have a base case, whose
solution you know directly without making any re-
cursive calls. Without a base case, a recursive func-
tion will generate an infinite sequence of calls. Note
that you may have more then one base case.

e A recursive solution must involve one or more smaller
problems that are each closer to a base case than is
the original problem. You must be sure that these
smaller problems eventually reach the base case.
Failure to do so could result in an algorithm that
does not terminate.

e You must be sure that the solutions to the smaller
problems may be used to find a solution to the
original problem.

e A recursion that recomputes certain values frequently
can be quite inefficient.



The Fibonacci sequence:

(also known as the multiplying rabbits)

Suppose that every month a breeding pair of
rabbits produce a pair of offsprings. The off-
springs will in their turn start breeding two months
later, and so on.

Thus if you buy a pair of baby rabbits in month
1, you will still have just one pair in month 2.
In month 3 they will start breeding, so you now
have two pairs; in month 4 they will produce a
second pair of offsprings, so you now have three
pairs; in month 5 both they and their first pair
of offsprings will produce baby rabbits, so you
now have five pairs; and so on.

If no rabbits ever die, this can be written as :

Jo=0
Ji=1
fn — fn—l + fn—2



Although this could be programmed in an iterative man-
ner, programming it recursively is much more obvious :

public class fibo

{
public static long fib(long n)
{
if (n<2)
return n;
else return fib(n-1) + fib(n-2);
}
public static void main(String args[])
{
long n = Long.parselLong(args[0]);
System.out.println(fib(n));
}
}

Note that De Moivre proved the following formula :
fo=Z2(¢" = (=)™")

where ¢ is named the golden ratio and is worth @
This function can easily be precisely estimated.




