Tools :

e T he Java Compiler
javac [options | filename.java ...
-depend: Causes recompilation of class files on which

the source files given as command line arguments
recursively depend.

-0: Optimizes code, slows down compilation, dis-
ables -depend.

e [he Java Interpreter
java [options | classname (args)

e [he Java Debugger
jdb [options |
Type help or 7 to get started.

On windows we have Jcreator and netbeans On
our BSD systems.

(We also have netbeans on windows available,
but it is not nearly as quick as jcreator.)

1

The simplest program:

public class Hello

{
public static void main(String[] args)
{
System.out.println("Hello.");
}
}

Hello. java

Executing this program would print to the console the
sentence ‘“Hello.”.

A bit more complex:

public class Second

{
public static void main(String[] input)
{
for (int i = input.length - 1; i >= 0; i--)
System.out.print (input[i] + " ");
System.out.print("\n") ;
}
}

Second. java

Executing this program would print to the console the
arguments in reverse order, each separated by one blank
space.

Primitive data types :
e byte : 8 bit integer, [-128 , 127]

e char : 16 bit unsigned integer, [0 , 65536]. This
character set offers 65536 distincts Unicode char-
acters.

e short : 16 bit signed integer, [-32768 , 32767]
e int : 32-bit integer, [-2147483648 , 2147483647]

e long : 64 bit signed integer,
[-9223372036854775807 , 92233720368547758006]

e float : 32-bit float, 1.4023984e—45 to 3.40282347e+38

e double : 64-bit float,
4.94065645841246544e—324 t0 1.79769313486231570e+308

e boolean : such a variable can take on one of two
values, true or false.

e null : special case ...

Punctuation :

Symbol Description
= assignment
+,4+ = addition | and string concatenation
- — = substraction
*, ok = multiplication
[,/ = division
%, % = modulo
++ pre and post increment
—— pre and post decrement
== comparison, equality
! boolean not
> comparison, greater than
< comparison, smaller than
<= comparison, lesser-or-equal than
>= comparison, greater-or-equal than
I = comparison, not-equal
&& boolean AND
|| boolean OR
- bitwise negation
& bitwise AND
| bitwise OR
B bitwise xor
<<, <<= | shift left
>>, >>= | shift right
! character delimiter
" string delimiter
X statement terminator
, separator
0O expression grouping
reference qualifier and decimal point
[*, %/ comment delimiter

//

single line comment

and there are a few more. ..

Operator Precedence

postfix ops
prefix ops
casting
mult. /div.
add./sub.
shift
comparison
equality
bitwise-and
bitwise-xor
bitwise-or
boolean and
boolean or
conditional
assignment
op assignment

bitwise assignment
boolean assignment

[0 (en)) {exp) + + (eap) — -
+ + <e:Up> - —(ea:p> — (ea;p) <eq;p> !(eacp)
((type))(exp)

x | %

| _

<< >> >>>

< <= > >= instanceof

&

|
&&

(bool-exp) ? (true-value) : (false-value)

N
I

Il %

RV 4|
V
Iy
AN
y I
V ~
\I{II

Conditional executions :

o if (exp) statement else statement

ex .

if (input[i].equals("Hello"))
{
System.out.println("Hi!");

System.out.println("Beautiful day, isn’t it 7");

}
else System.out.println("Impolite.");

e 7 . simplification for assignments

if (a < b)
X = 5;
else
x = 25;

can be rewritten

x =a<b?5: 25

e switch (exp) {

case 1 :
statement;
break;
case 2 :
statement;
case 3 :
statement;
break;
default:
statement;
break;

Escape characters :

Escape | Unicode | Name | Description

\b \u0008 BS Backspace

\t \u0009 HT | Horizontal tab
\n \u000a LF Line feed

\" \u0022 " Double quote
\’ \u0027 ' Single quote

\\ \u005c \ Backslash

Iteration keywords :

e do statement while (exp);
ex .

int i = O;
do System.out.println(i++);
while (i < 10);

e while (exp) statement
ex .

public static void main(String argl[]) throws I0OException
{

String temp, text = "";
BufferedReader input;

input = new BufferedReader(new InputStreamReader(System.in));

while (! (temp = input.readLine()).equals("end."))
text += temp;

System.out.println(text);
+

e for (initial stms; exp; steps) statement
ex .

int j = O;
for (int i = 0; i < 10; i++)
j += 1i;

System.out.println(j);

Casting :

Casting is used to force an explicit conversion of data
from one type to another. Depending on what type of
data is being cast to what other type, the actual con-
version can take place either at run time or at execution
time. If there is no way that the conversion could be

valid, the compiler generates an error.

exX:

int 1i;

float f£;

f = (float) i;

/* however this is unnecessary since the compiler could
have done the conversion automatically */

int a=1, b = 2;
float f;
f =a / b;
/* would return O,
since the calculation is done in int */
f = (float)a / (float) b;
/* would return 1/2 */

Overloading :

Commonly refers to the capability of an op-
erator to perform differently depending on its
context within a program. Although a few op-
erators are already overloaded, Java does not
allow you to change these.

int a =1, b = 2, c;
c = a + b;

/* ¢ is now worth 3 */

String d = “‘d’’, e = ‘‘e’’, concat;
concat = d + e;

/* concat is now worth ‘‘de’’ x/

However, as you'll see later on, we can overload
methods.

