
Lists



Fundamentals of Linked Lists:

A linked list is a structure of elements arranged one
after another with each element connected to the next
element by a “link”. Lists are probably one of the most
important tools of programming, they easily allow you to
keep track of an unknown amount of data, they serve as
the basis for the implementation of other Abstract Data

Types such as stacks or trees, they are the simplest
example of dynamic memory allocation.

We refer to the structure that holds an element and
a link to the next similar structure as a node. The
reference to the first node, the beginning of the list, is
called the head. The last node of a list is called the tail.

node

{

Value Link

list

{

a b c

In java the end marker, or the reference in the tail that
indicates the end of the list, is the null reference. If the
head points to this null reference, we say that the list
is empty. Note that there is an exception prepared for
errors related to this object, for example you may see
NullPointerException when trying to access the method
of a null reference.



Typical operations on lists include :

• Inserting a new node, either at the beginning, the
end, or at a specific position in an existing list.

• Removing a node, either generically such as always
the first one, or a specific node.

• Calculating the number of nodes.

• Traversing the entire list (to print out the values
for example).

• Concatenating two lists.

Lists can also be used with more specialized

operations, for example :

• The insertion could automatically place the new
item in the list in relation to the other already
present elements. This would create a sorted list.

• The list could only allow new items to be added at
one end of the list and removals to be done from
that end. This data structure is called a stack.

• If the removals where to be done from the other
end, the structure would represent a queue.



In java the class definition for a node could

look like :

public class node
{

private Object value;
private node next;

node(Object t_value, node t_next)
{

value = t_value;
next = t_next;

}

void set_value(Object t_value)
{

value = t_value;
}

void set_next(node t_next)
{

next = t_next;
}

Object get_value()
{

return value;
}

node get_next()
{

return next;
}

}



Adding a new node as the head of a list:

head = new node(value, head);

Removing a node from the head of a list:

if (head != null)

head = head.get_next();

Traversing a list:

for (node temp = head; temp != null; temp = temp.get_next())

...

or

node temp = head;

while (temp != null)
{

...

temp = temp.get_next();

}

Calculating the number of nodes:

int size = 0;

for (node temp = head; temp != null; temp = temp.get_next())

size++



Inserting an Object after another object:

node temp = head;
while ((temp.get_value() != Objective) && (temp != null))

temp = temp.get_next();

if (temp == null)

System.out.println(‘‘Error’’);

else
temp.set_next(new node(Addition, temp.get_next()));

Deleting a specific object :

if (head.get_value() == Substraction)

head = head.get_next();

else {

node temp = head;

while ((temp.get_next().get_value() != Substraction) &&
(temp.get_next() != null))

temp = temp.get_next();

if (temp.get_next() == null)

System.out.println(‘‘Error’’);

else
temp.set_next(temp.get_next().get_next());

}

These are of course only one way of imple-

menting these operations.



Although the representation of the lists that we

have made is accurate, it does not offer a self-

enclosed data type. The user must still make is

own verification as to whether or not the list is

empty as well a include all code fragments in is

program. You may therefore encounter dummy

classes. These enclose all the preceding code

in one class. For example :

See list.java


